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Abstract
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1 Motivation

In his seminal work Gamson (1961a) examined a coalition formation game where each

player in the \winning" coalition receives the share of the total coalition resources propor-

tional to her own contribution. This celebrated coalition formation game, often referred as

the Gamson's game or Gamson's law, has generated a tremendous interest in various ar-

eas of social sciences. Gamson's research was motivated by early work of Mills (1953) and

Caplow (1956) who analyzed the structure of coalitions formed in three-person families and

pointed out the presence of the weakest player in the equilibrium coalition. These theo-

retical considerations have produced an important volume of research in social psychology,

which made coalitional experiments1 an important part of the standard repertory in this

�eld (Bonacich, Grusky and Peyrot (1985), Chertko� (1967,1971), Gamson (1964), Miller

and Crandall (1980), Murnighan (1978), Nail and Cole (1985). A great deal has been learned

about choices of coalition partners and the way a division of coalition winnings is a�ected

by variations in game rules and players' attributes.

As noted and illustrated by Caplow (1968), the theory of coalitions in triads could be

used to analyze con
ict and cooperation in many social and political environments, including

international relations. Hsiung (1987) o�ers coalitional analysis of the strategic triangle of

the United States, China and the Soviet Union during the Cold War era of 1950-1985. Along

similar lines, Caplow (1989) discusses the failure of peace planning in 1815, 1919 and 1945,

while Zagare (1984) examines the outcome of the Geneva conference on Vietnam in 1954.

Together with the minimal size principle introduced by Riker (1962), Gamson's law is also

among the most popular hypothesis in political science and is one of the prominent landmarks

in empirical models of the allocation of cabinet portfolios in coalition governments.2 Laver

(1998) points out that "Gamson's law boasts one of the highest non-trivial R-squared �gures

in political science". One of the great appeals of Gamson's law is its intuitive nature and

the parsimony it o�ers, as it is independent of the game form underlying the legislative

bargaining process. The latter feature of Gamson's continues to generate the interest in this

�eld of political science as evidenced by recent contributions of Carroll, Cox and Pachon

(2004) and Fr�echette, Kagel and Morelli (2004).

The purpose of this brief note is to place the game-theoretical interpretation of Gamson's

law in the context of hedonic games developed by Banerjee, Konishi and S�onmez (2001) (BKS

- henceforth) (see also Bogomolnaia and Jackson (2002)). In this framework the payo� of

1Gamson (1961b) describes the results of an experiment designed to test his theory.
2See Brown and Franklin (1973), Brown and Freindreis (1980) and Warwick and Druckman (2001),

Acemoglu, Egorov and Sonin (2006) on modi�ed versions of Gamson's law in this context.
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every player payo� depends only on the composition of the coalition she belongs to. BKS

show that if players share common preferences over possible coalitions, there is a stable

partition of of all players into disjoint coalitions. This so-called \top-coalition property"

allows us to guarantee the existence and to characterize the equilibria of the Gamson game.

We then generalize the original Gamson game and examine the case where each player is

characterized by a multiple array of characteristics. We consider two di�erent types of a

generalized Gamson game and show that under the single division method, the BKS weak

top-coalition property still applies, thus, yielding the existence of a stable coalition. However,

under the double division method, a stable coalition may fail to exist. Incidentally, we o�er

a concept of \congruent" game and demonstrate that a game admits a stable coalition if

and only if it is congruent3. Finally, we consider the Gamson game with a continuum of

players and derive a necessary and su�cient condition for the existence of a stable coalition

and explore the political environment where one of the players' characteristics is determined

by their ideological preferences.

2 Model

Let us now introduce the Gamson game. Consider a �nite set of players N = f1; : : : ; ng,
where each player i 2 N is described by a positive parameter �i, interpreted as her endow-

ment. Without loss of generality, we assume that the players are ordered according to the

value of this parameter, i.e., �1 � �2 � : : : � �n. For every S � N denote by

�(S) =
X
i2S
�i

the total endowment of coalition S and put �(N) = 1.

A coalition S � N is winning if the total endowment of S exceeds the total endowment

of its complement NnS: We denote by W the set of winning coalitions, i.e.,

W = fS � N j�(S) > 1

2
g:

If a winning coalition S forms, every member of S derives the payo� Ui(S), which is a

share of her endowment in S. A coalition which is not winning, has nothing to o�er to its

members. That is, for every i 2 S

Ui(S) =

� �i
�(S)

if S 2 W
0 otherwise.

3We also point out that the notions of congruency and top-coalition property in general do not coincide.
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The Gamson game is hedonic in the sense that each player's strategic considerations take

into account the payo� distribution after the coalition she belongs is formed, and thus, the

payo� is the function of the composition of the formed coalition only. We now turn to the

notion of stability:

De�nition: A partition of the set N in two coalitions S and NnS is called stable if there is
no coalition T such that

Ui(T ) > Ui(S) for all i 2 T \ S and Ui(T ) > Ui(NnS) for all i 2 T \ (NnS) :

Obviously, if a partition is stable, one of its two elements, say S, is a winning coalition.

For the above inequality to hold true, it must be the case that T is winning. Therefore, we

deduce that T \ S 6= ? and that the second part part of the test can be deleted. Thus, a

partition is stable if and only if there is no winning coalition T with Ui(T ) > Ui(S) for all

i 2 T \ S. We have the following observation:

Result 2.1: A winning coalition S is stable if and only if it is weakest (in terms of endow-

ment) among all winning coalitions:

�(S) = min
T2W

�(T ):

A simple direct proof of this result can be provided. However, it immediately follows

from Corollary 2 in BKS.

It is worth pointing out that the hedonic framework of BKS allows for an extension of

the Gamson's game. Consider a positive-valued function H : <+ � <+ � 2N ! <++, which
is increasing in the �rst argument and is decreasing in the second. Put, for all i 2 S

Ui(S) =

�
H(�i;�(S); S) if S 2 W

0 otherwise

Since this generalized game satis�es the weak top-coalition property, the main theorem in

BKS yields the existence of a stable coalition. Note, however, that this formulation allows

for increasing returns to scale in terms of coalition size. Thus, a stable winning coalition is

not necessarily minimal. Note that this framework covers the case where coalitions are not

necessarily either winning or losing. In the case where a surplus is also distributed among

small coalitions, a core stable partition may contain more than two elements.

In the case of a triad, an equilibrium coalition contains the weakest player:

Result 2.2: Let n = 3 and
1

2
> �1 > �2 > �3, i.e., no singleton is a winning coalition. Then,

the unique stable coalition is f2; 3g.
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However, if n � 4, the stable coalition does not necessarily contain the weakest player.
Consider the following example:

Example 2.3: Let n = 4 and �1 = 0:40; �2 = 0:27; �3 = 0:25 and �4 = 0:08: Then the

unique stable coalition is f2; 3g, which does not contain player 4.

Finally, one can raise the question whether stable coalitions are connected or consecutive

(Greenberg and Weber (1986)), where, to recall, a coalition S is connected if for every three

di�erent players, i < j < k, i; k 2 S implies that j belongs to S as well. Assume now that
game is strict, i.e., there is no coalition S with �(S) = 1

2
.We have

Result 2.4: Let n = 4 and
1

2
> �1 > �2 > �3 > �4. If a stable coalition S does not contain

the weakest player, it is connected.

Proof: Suppose there is a stable coalition S that does not contain player 4 and is not

connected. Then S = f1; 3g. Since S is stable and the game is strict, �2 + �3 <
1

2
. But this

implies that �1 + �4 >
1

2
and f1; 4g is a stable coalition, a contradiction.2

However, Result 2.4 cannot be extended to a larger number of players:

Example 2.5: Let n = 5 and �1 = 0:40; �2 = 0:30; �3 = 0:12; �4 = 0:11 and �5 = 0:07.

Then the unique stable coalition is f1; 4g.

We leave open an interesting problem of the characterization of vectors � � (�1; �2; : : : ; �n)
for which stable coalitions exhibit connectedness or include the weakest player.

In the next section we examine a multi-dimensional variant of the Gamson game, where

each player is characterized by a multiple array of characteristics.

3 Multi-characteristic extension

Note taht Gamson's law has been formulated for the weighted majority games and we

could conceivably consider an extension to the case where, unlike in the previous section,

each player i 2 N is identi�ed by K > 1 characteristics, speci�cally, by the vector �i =�
�1i ; �

2
i ; : : : ; �

K
i

�
2 <K+ . A winning coalition S must satisfy

�k(S) =
X
i2S
�ki >

�k(N)

2
for every k = 1; 2; : : : ; K:
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This extension of weighted majority games is relevant to describe various voting environ-

ments. An important illustration is provided by the quali�ed majority provisions in the treaty

of Nice for which K = 3 and every country i is described by the vector �i = (1; �
2
i ; �

3
i ), where

�2i is the country i's population, and �
3
i is an assigned voting weight. Thus, in forming a win-

ning coalition one takes into account the number of countries it contains as well as their total

population and aggregated voting weight (Felsenthal and Machover (2001)). The more recent

quali�ed majority decision rules for the Council of Ministers of the EU that were included

in the draft European Constitution proposed by the 2003 European Convention reduced the

number of parameters to K = 2 (Felsenthal and Machover (2004)). Another example is

provided by the amendment of Canada's Constitution Act of 1982 (Kilgour (1983)).

There are several ways to extend the division of surplus in the Gamson game. Let

� =
�
�1; �2; : : : ; �K

�
, be the vector of positive weights assigned to each of K characteristics.

Assume that
Pk=K

k=1 �
k = 1.

First, consider a single division method, where the payo� Ui(S) of every member i of the

winning coalition S is the share of her "weighted" endowment in S. As before, a coalition

which is not winning, has nothing to o�er to its members. Thus, for every i 2 S we have

Ui(S) =

( Pk=K
k=1 �

k�kiPk=K
k=1 �

k�k(S)
if S 2 W

0 otherwise.

The extension of Result 2.1 to this setting is straightforward.

Result 3.1: Under the single division method, a winning coalition S is stable if it has the

smallest total endowment among all winning coalitions:

�(S) = min
T2W

k=KX
k=1

�k�k(S):

The situation is quite di�erent if instead of weighting the di�erent characteristics, the

pie is divided according to the double division method. Namely, for each characteristic k

the share of each player is determined according to the unidimensional Gamson rule. The

total share is then calculated as a weighted average by utilizing the weights �k for each

characteristic k. Thus, if a winning coalition S forms, every member i of S derives the

payo� Vi(S), de�ned as follows:

Vi(S) =

( Pk=K
k=1 �

k �ki
�k(S)

if S 2 W
0 otherwise

Interestingly enough, this game does not always admit an equilibrium.
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Result 3.2: Under the double division method, a stable coalition may fail to exist.

Proof: Consider the following example with three players and three characteristics.

Let �1 = (0:40; 0:35; 0:25), �2 = (0:25; 0:40; 0:35), �3 = (0:35; 0:25; 0:40) and � =
�
1
3
; 1
3
; 1
3

�
.

The winning coalitions consists of all groups with at least two players. Straightforward

calculations lead to :

V1(f1; 2g) =
1

3

�
40

75
+
25

65
+
35

60

�
' 0:500 43 > 0:499 57 ' V1(f1; 3g) =

1

3

�
40

65
+
25

60
+
35

75

�
V2(f2; 3g) =

1

3

�
40

75
+
25

65
+
35

60

�
' 0:500 43 > 0:499 57 ' V2(f1; 2g) =

1

3

�
40

65
+
25

60
+
35

75

�
V3(f1; 3g) =

1

3

�
40

75
+
25

65
+
35

60

�
' 0:500 43 > 0:499 57 ' V3(f2; 3g) =

1

3

�
40

65
+
25

60
+
35

75

�
A stable coalition does not exist due to the emergence of the Condorcet cycle among winning

coalitions.2

The last example suggests that the existence of stable coalitions calls for some degree

of congruence among a subset of players. The following notion of congruence which applies

to any game where the economies of scale are fully described by a proper4 set of winning

coalitions W (i.e. at equilibrium, if any, a single coalition forms) slightly generalizes the

notion of weak-top coalition property introduced by BKS. In fact, congruence is necessary

and su�cient for stability.

De�nition: A coalition S � N is congruent if for all i 2 S and all T � N the inequality

Ui(T ) > Ui(S) implies that there exists j 2 T \ S such that Uj(S) � Uj(T ). A

coalition formation game is called congruent if there exists a congruent coalition.

Since we consider proper simple games, there is no loss of generality in considering par-

titions consisting of two coalitions,5 S and NnS, where one, say S, is winning. Like for the
Gamson's game, we will refer to such coalition as a stable coalition. We have the following

result:

Result 3.3: Let W be a proper family of winning coalitions. A coalition formation game is

stable (i.e., admits a stable coalition) if and only if it is congruent.

4A simple game (N;W) is proper if S; T 2 W implies S \ T 6= ;.
5If the simple game is not proper, then a stable coalition structure may consists of more than two

coalitions. A standard example of such assertion is provided by hedonic matching games when the population
of at least six players is divided into two types.
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Proof: Let the game be congruent. We show that the partition of the set N into

coalitions S and NnS, where S is congruent, is stable. Indeed, if not, then there is a winning
coalition T such that Ui(T ) > Ui(S) for all i 2 T \ S, a contradiction to the congruency of
S.

Now, let S be a stable coalition. We show that S is congruent. Indeed, let i 2 S and
T � N be such that Ui(T ) > Ui(S). Since Uj(T ) > Uj(NnS) = 0 for all j 2 T \ (NnS),
we deduce that Uj(S) � Uj(T ) for some j 2 T \ S: Otherwise, we would contradict our
assumption that S is stable.2

The notion of congruence generalizes the notion of weak top-coalition property in BKS

as it does not imply that a congruent coalition S would be ranked at the top by all members

of S. Consider the following example:

Example 3.4: Let n = 4 and

V1(f1; 2; 4g) > V1(f1; 2; 3g) > V1(T ) for every other T that includes 1;

V2(f2; 3; 4g) > V2(f1; 2; 3g) > V2(T ) for every other T that includes 2;

V3(f1; 3; 4g) > V3(f1; 2; 3g) > V3(T ) for every other T that includes 3;

V4(f1; 2; 4g) > V4(f1; 2; 3g) > V4(T ) for every other T that includes 4:

Let W to be the set of majority coalitions. It is easy to see that S = f1; 2; 3g is a
congruent coalition. However, S does not satisfy the weak top-coalition property, as it

represents only the second best choice for the members of S.

We conclude this section by the examination of another extension of the Gamson game

framework which could also accommodate a wide spectrum of applications. In the current

formulation, the outcome of the game is determined by the division of a surplus among a

subset of players. As we already pointed out, in politics it may represent a cabinet portfolio

allocation in coalition governments. However, governments must also choose their policy.

Assuming that the policy space is represented by the M -dimensional Euclidean space and

that each player i, is identi�ed by her her weight �i as well as her ideal point xi 2 <M . We
then consider a game where a winning coalition does not only distribute a surplus of size B

but also decides upon a policy. A natural outcome function for this second dimension is given

by the weighted average of the ideal points of players (political parties) in the government

coalition S:

x(S) =

P
i2S �

ixiP
i2S �

i
:
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We assume that if a winning coalition S forms, every member i of S derives a payo� Ui(S),

which is a convex combination of the share of B she receives and the ideological cost repre-

sented by the distance k xi � x(S) k between her preferred ideology xi and x(S). As before,
a coalition which is not winning, is powerless:

Ui(S) = �
�iB

�(S)
� (1� �) k xi � x(S) k;

where � 2 [0; 1] is an exogenous parameter describing the respective importance of the two
motives.6 When player i is not a member of a winning coalition, it seems natural to assume

that she incurs only ideological cost:

Ui(S) = �(1� �) k xi � x(S) k :

The properties of this hedonic game where players are described by two parameters are yet

unknown. Does there always exist an equilibrium? If so, what can we say about the features

of an equilibrium coalition? We conclude the paper by stating that in the special case where

M = 1, n = 3 and players care exclusively about ideology, there always exist an equilibrium.

Result 4.3: Let M = 1; n = 3, � = 0 and 0 < �i < 1
2
for all i = 1; 2; 3: Then, there exists

an equilibrium coalition.

Proof: Let the vector of ideologies be such that x1 < x2 < x3 and a � x (f1; 2g),
b � x (f2; 3g) and c � x (f1; 3g). Then we have x1 < a < x2, x2 < b < x3:
Suppose that x2 � a � b� x2. We argue then that f1; 2g is an equilibrium coalition. (If

the opposite inequality x2 � a > b � x2 holds, we can show in a similar way that f2; 3g is
an equilibrium coalition.)

If c � a, it is obvious that neither player 1 nor player 2 would deviate to form a coalition
with player 3. If player 1 forms a coalition with 3 the outcome would be c, which is further

away from x1 than a. If player 2 forms a coalition with 3, the outcome would be b, which,

by assumption, is more distant from x2 than a.

If c < a, player 1 would deviate and form a coalition with player 3. However, player 3

does not want to form a coalition with player 1 since she prefers outcome a over c.2

In the next section we discuss an extension of the Gamson game to environments that

consist of in�nite number of players.

6This is a particular case of the setting considered by Jackson and Moselle (2002).
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4 Atomless environments

The analysis in previous sections has been conducted under the assumption that the set

of players was �nite. Consider instead an environment with a continuum of players given

by the unit interval [0; 1] and a vector � =
�
�1; �2; : : : ; �K

�
of K positive random variables,

where �(t) =
�
�1(t); �2(t); : : : ; �K(t)

�
denotes the characteristics of a player of type t 2 [0; 1].

Without loss of generality we assume that
R 1
0
�k(t)dt = 1 for all k = 1; : : : ; K: Given a small

positive number ",7 consider a proper simple game W" de�ned as follows:

S 2 W" if and only if �
k(S) =

Z
S

�k(t)dt � 1

2
+ ":

We assume that the fraction 1
K
of the pie is divided among the members of the coalition

on the basis of their kth characteristic by using the double division method. That is, if a

coalition S forms, every player of type t of S derives the payo� Vt(S), de�ned as follows:

Vt(S) =

(
1
K

Pk=K
k=1

�k(t)
�k(S)

if S 2 W"

0 otherwise.

An obvious su�cient condition for a coalition S to be stable is

�k(S) =
1

2
+ " (1)

for all k = 1; : : : ; K.

In the �nite case, condition (1) is not necessary for stability as illustrated by the following

example:

Example 4.1: Let n = 4,K = 2, �1 = (0:40; 0:32; 0:17; 0:11) and �2 = (0:17; 0:10; 0:31; 0:42).

Then there is a unique stable coalition f1; 4g. is the only stable coalition. However
�2(f2; 4g) = 0:59 > �2(f2; 4g) = 0:52.

The situation is however di�erent when the set of players is atomless:

Result 4.2: There exists a stable coalition. Moreover, S is stable if and only if it satis�es

(1).

Proof: The fact that condition (1) is necessary and su�cient condition for stability

is immediate. For the existence of a stable coalition, consider the K-dimensional valued

7In the case of the classical majority simple game, existence of a stable coalition fails as the game is
discontinuous if " = 0.
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measure � de�ned as follows:

�(S) =

0BBBB@
�1(S)
�2(S)
: : :
: : :
�K(S)

1CCCCA
Since � is atomless, �(?) = (0; 0; ::; 0) and �([0; 1]) = (1; 1; ::; 1). Thus, by the Lyapunov's
theorem8 that there exits S � [0; 1] such that

�(S) =

�
1

2
+ ";

1

2
+ "; : : : ;

1

2
+ "

�
:

2

Result 4.2 indicates that the existence of an equilibrium coalition is a relatively simple

question in the case where we have a continuum of players. In fact, the argument above

applies for any hedonic game of the following form:

the payo� of a player of type t 2 [0; 1] is de�ned by

Vt(S) =

�
U(�1(S); �2(S); : : : ; �K(S)) if S 2 W

0 otherwise,

where U is a decreasing function and there exist the values 
k 2
�
1
2
; 1
�
; k = 1; : : : ; K such

that the set of winning coalitions W is determined by

W = fS � [0; 1]j�k(S) � 
k for all k = 1; : : : ; Kg:
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