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1 Introduction

In Saint-Paul (2002), I consider the evolution of the gene pool in a popula-

tion under alternative economic institutions, and shown that alleles that cannot

survive natural selection under autarky can survive under trade, because in-

dividuals can specialize in activities so as to avoid the fitness disadvantages

associated with these alleles. The results are based on a very simplified repre-

sentation of sexual reproduction, with only one chromosome (instead of pairs of

chromosomes), and only two loci that determine the individual’s productivity

at two activities that affect fitness.

This paper generalizes these results for a more general system of sexual re-

production, with an arbitrary number of chromosomes and loci. Its contribution

is twofold. First, it provides a set of assumptions under which one can meaning-

fully state that some alleles dominate their alternatives and eventually eliminate

them in the long-run. Second, it extends the results in Saint-Paul (2002), by

characterizing the distribution of alleles for a trading population in a long-run

equilibrium (LRE), defined as a a stationary distribution of alleles which is also

an equilibrium in an economic sense.

The central result is that fitness-reducing alleles can survive in a trading

population, provided their frequency is not too large. However, the greater the

number of loci that matter for fitness, the more stringent the conditions under
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which these alleles can survive. That means that in the long-run, we expect

low alleles to survive only at a relatively small number of loci. Knowing more

about the long-run distribution of alleles when their initial distribution does not

satisfy the conditions for an LRE would involve analyzing the dynamics, which

I do not do here but is an interesting topic for further research.

2 Notations and genetic properties of stationary
populations

A genotype consists of an n−tuple g = (p1, ..., pn), where i = 1, ..., n denotes

a particular locus, and pi ∈ {0, 1, ...,K} is interpreted as the number of alleles

of the ”high type” at locus i (in the actual world where chromosomes come by

pairs, one has K = 2). Therefore, there are K − pi alleles of the ”low type” at

locus i. The set of possible genotypes is denoted by S. We will also denote by

g[i] the ith element of g.

2.1 The survival function

The survival rate of an individual only depends on its genotype, and is denoted

by ϕ(g). Note that the ϕ(g) function is not independent of culture. The oppor-

tunity to trade and specialize will dramatically change the ϕ(g) mapping. It

is useful to introduce the genetic improvement operators T (i)z , which, for any

genotype g such that g[i] < K− z, maps it into another genotype T (i)z g, defined

by T (i)z g[j] = g[j], j 6= i, and T (i)z g[i] = g[i] + z. Note that T (i)z+1 = T
(i)
z ◦ T (i)1 .

The survival function is monotonic at locus i if it satisfies

ϕ(T
(i)
1 g)− ϕ(g) ≥ 0,∀g (1)

Thus, having more of a high allele at locus i cannot increase mortality,

everything else equal. Note that this assumes that the role played by an allele

in mortality has the same sign regardless of what other alleles are present.
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We will say that a locus i is selective if

ϕ(T
(i)
1 g)− ϕ(g) > 0,∀g. (2)

2.2 The distribution of offsprings

We assume a quite general process for transmitting genes to offsprings, which

in particular is compatible with real-world genetics. When genotypes g0 and g00

mate, the fraction of their offsprings with genotype g is given by a probability

distribution function Fg0g00(g). We shall assume that it satisfies the following

properties:

1. Gene conservation

∀g∀i, ui(g0, g00) =
X
g∈S

Fg0g00(g)g[i]

=
1

2
(g0[i] + g00[i]) (3)

This says that on average, the number of high alleles at locus i among

offsprings, denoted by ui(g0, g00), is equal to the its average between the two

parents. For a given pair of parents, the average among actual offsprings will be

different from the parental average. However, with a continuum of individuals,

the law of large number will apply, and ui(g0, g00) will be equal to the population

average of the number of H-alleles at i among all offsprings of all couples with

genotypes g0 and g00.

2. Allele independence

Fg0g00(p1, ..., p̄, ...pn)P
g,g[i]=p̄ Fg0g00(g)

=
Fg0g00(p1, ..., p̃, ...pn)P

g,g[i]=p̃ Fg0g00(g)
(4)

This assumption tells us that, among offsprings with the same parental geno-

types, the distribution of other genes among those who have the same number

of high alleles at locus i, does not depend on that particular number. If that

3



property did not hold, having many good alleles at one locus could in principle

be systematically correlated with having many bad alleles at another locus, and

this complementarity could sustain a positive amount of mortality-increasing

alleles in the long-run, or, conversely, eliminate mortality-reducing ones.

3. Mixing

For any g0, g00, i, for all z such that

max(K/2, g0[i]) + max(K/2, g00[i])−K ≤ z ≤ min(K/2, g0[i]) + min(K/2, g00[i])
(5)

,there exists g such that g[i] = z, min(g0[j], g00[j]) ≤ g[j] ≤ max(g0[j], g00[j]) for

j 6= i, and Fg0g00(g) > 0.

The RHS of (5) is the maximum number of H-alleles at locus i if one inherits

K/2 alleles from each parent; the LHS is the minimum number of H-alleles.

That assumptions says that for any number between these two bounds, there is

a positive probability for a couple g0, g00 to have an offspring with exactly that

number. Furthermore, we can pick up that offspring such that at all other loci,

its number of high alleles is between that of its two parents. Loosely speaking,

that means that the distribution of offsprings spans all possible cases.

4. Symmetry

∀g0, g00, Fg0g00(.) ≡ Fg00g0(.) (6)

5. Monotonicity

For any i,any g00, any g0 such that g0[i] < K, and any g such that g[i] = 0

uX
z=0

F
T
(i)
1 g0,g00

(T (i)z g) ≤
uX
z=0

Fg0,g00(T
(i)
z g);∀u < K (7)

KX
z=0

F
T
(i)
1 g0,g00

(T (i)z g) =
KX
z=0

Fg0,g00(T
(i)
z g) (8)
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This assumption says that if instead of g0, a genetically improved genotype

at locus i mates with g00, then holding the alleles at other loci constant, the

proportion of H-alleles at locus i improves in a first-order stochastic dominance

sense: offsprings are more likely to have a higher umber of H-alleles at i. For-

mally, applying the T (i)z operators starting from an initial genotype g such that

g[i] = 0, allows to compute the marginal distribution of g[i] among offsprings

holding other alleles constant. The last equality says that the partial distribu-

tion of the genotype at all other loci except i is invariant when one mates with

a genetic improvement of g0 at i instead of g0.

2.3 Demographics

These assumptions allow to write down the demographic evolution equations of

each genotype. We denote byNt total population at date t and by xg(t) the frac-

tion of people with genotype g. People mate randomly. There are xg0(t)xg00(t)Nt

matches of types g0 and g00 at date t. They produce ν offpsrings, and a fraction

ϕ(g) of offsprings with genotype g reach maturity. Consequently, xg(t) evolves

according to

xg(t+ 1)Nt+1 = Ntνϕ(g)
X
g0

X
g00

xg0(t)xg00(t)Fg0g00(g).

Adding all these equations across all possible genotypes we get that

Nt+1
Nt

= ν

⎛⎝X
g

ϕ(g)
X
g0

X
g00

xg0(t)xg00(t)Fg0g00(g)

⎞⎠ .
It is also useful to define the population frequency of high alleles at locus i :

hi(t) =
X
g

xg(t)g[i].

Note that if the gene conservation law holds, then one also has

hi(t) =
X
g0

X
g00

ui(g
0, g00)xg0(t)xg00(t). (9)
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3 Elimination of less fit alleles

In this section, I provide the basic results regarding the elimination of less

fit alleles. A first lemma, which derives from the random mating and mixing

properties, states that if a genotype exists and if a high allele exists in the

population at locus i, then we can find another genotype that differs from it

only in that it is ”improved” at locus i, unless, of course, the initial genotype

has the maximum number of H-alleles at i.

LEMMA 1 — Assume the mixing property holds. Assume there exists a steady

state, a locus i and a genotype g such that in that steady state, xg > 0, g[i] < K,

and hi > 0. Then xT (i)1 g
> 0.

PROOF — First note that because of random mating there exists a positive

measure of matches between two arbitrary genotypes, provided these genotypes

are in positive measure in the parent population.

If g[i] > 0, the mixing property applied at locus i implies that offsprings

of g with itself include T (i)1 g with positive probability. Assume g[i] = 0. Since

hi > 0, there exists g0 such that g0[i] > 0 and xg0 > 0. We can then iterate

the mixing property, by looking at stage k at the mates between g and g(k),

starting with g(0) = g0. If at stage k, there exists j 6= i such that g(k)[j] 6= g[j],

say g(k)[j] > g[j], by applying the mixing property at locus j we know that

among the offsprings between g and g(k), there exists one g(k+1) such that

Fgg(k)(g
(k+1)) > 0 — implying xg(k+1) > 0 in steady state — g

(k+1)[j] = g(k)[j]−1,

and | g(k+1)[l]− g [l] |≤ | g(k)[l]− g [l] | . In other words, the ”genetic distance”

between g(k) and g strictly goes down with k. Once we have reached the stage

where g(k)[j] = g[j] for all j 6= i, we apply the same procedure to locus i, until we

have produced an offspring such that g(k)[j] = g[j], j 6= i and g(k)[i] = g[i] + 1.

At that stage g(k) = T (i)1 g. QED.
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The following key result tells us that genes which increase mortality eventu-

ally disappear:

PROPOSITION 1 — Assume that one of these two conditions holds:

(i) locus i is selective, OR

(ii) ϕ is monotonic at i and there exists one genotype ĝ such that xĝ > 0 in

steady state, ĝ[i] < K, and ϕ(T
(i)
1 ĝ) > ϕ(ĝ).

Assume (A3) and (A4) holds. Then in any steady state with hi > 0, one

must have hi = K.

PROOF — The frequency of the high allele at i evolves according to

hi(t+ 1) =
X
g

xg(t+ 1)g[i]

=
Nt
Nt+1

X
g

υϕ(g)
X
g0

X
g00

xg0(t)xg00(t)Fg0g00(g)g[i].

In steady state, we have that Nt+1/Nt = n,

xg =
υϕ(g)

n

X
g0

X
g00

xg0xg00Fg0g00(g), (10)

and

hi =
υ

n

X
g0

X
g00

xg0xg00
X
g

ϕ(g)Fg0g00(g)g[i]. (11)

The term Q(g0, g00) =
P
g ϕ(g)Fg0g00(g)g[i] can be rewritten as follows:

Q(g0, g00) =
KX
z=0

z
X

g,g[i]=z

ϕ(g)Fg0g00(g).

That can be rewritten as:

Q(g0, g00) =
X

g,g[i]=0

KX
z=0

zϕ(T (i)z g)Fg0g00(T
(i)
z g).
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This formula rests on the fact that all the genotypes such that g[i] = z can

be deducted by applying the transform T
(i)
z to all genotypes such that g[i] = 0.

Furthermore, the allele independence property implies that for g such that

g[i] = 0,

Fg0g00(T
(i)
z (g)) = Fg0g00(g)

qz(g
0, g00, i)

q0(g0, g00, i)
, (12)

where qz(g0, g00, i) =
P

g,g[i]=z Fg0g00(g) is the total fraction of genotypes with

g[i] = z among the offsprings of g0 and g00.1Note that one must have

ui(g
0, g00) =

KX
z=0

zqz(g
0, g00, i). (13)

Hence:

Q(g0, g00) =
X

g,g[i]=0

Fg0g00(g)

q0(g0, g00, i)

KX
z=0

zϕ(T (i)z g)qz(g
0, g00, i).

Now, if locus i is selective, then ϕ(T
(i)
z g) is strictly increasing in z. Conse-

quently we have

KX
z=0

zϕ(T (i)z g)qz(g
0, g00) ≥

Ã
kX
z=0

zqz(g
0, g00, i)

!Ã
kX
z=0

ϕ(T (i)z g)qz(g
0, g00, i)

!
. (14)

This inequality rests on the fact that
Pk
z=0 qz(g

0, g00, i) = 1. It holds with a

strict inequality unless all the qz(g0, g00, i) but one are equal to zero.

We now show that unless hi = 0 or hi = K, there exists a pair of geno-

types (g0, g00, i) such that xg0 > 0, xg00 > 0, and (14) strictly holds. First

note that if 0 < hi < K, there exists a genotype g0 such that xg0 > 0, and

0 < g0[i] < K.
2 Next, note that if there exists g0 such that 0 < g0[i] < K, the

mixing property implies that for two parents of the same genotype g0, there

1 If q0(g0, g00, i) = 0, we can write down the same steps using the smallest value of z such
that qz(g0, g00, i) > 0 as a benchmark.

2The only other possibility is to only have genotypes such that g1[i] = 0 and such that
g2[i] = K, but random mating and mixing imply that they will produce offsprings such that
0 < g[i] < K.
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is a positive probability of having an offpsring g such that g[i] = z, for any z

between 2max(K/2, g0[i]) − K and 2min(K/2, g0[i]). As long as K ≥ 2 and

0 < g0[i] < K, there are more than two values of z that satisfy that property.

Consequently, there are at least two strictly positive values of qz(g0, g0, i), and

one can take g0 = g00 = g0.

Thus, if 0 < hi < K, it must be that there exists a pair (g0, g00) such that

xg0 > 0, xg00 > 0, and (14) strictly holds.

Alternatively, consider the case where ϕ is monotonic. Then (14) also holds.

Furthermore, assume there exists ĝ such that xĝ > 0, ĝ[i] < K, and ϕ(T
(i)
1 ĝ)−

ϕ(ĝ) > 0. Let ẑ = ĝ[i]. Then (14) will hold with strict inequality for g0, g00

such that xg0 > 0, xg00 > 0, qẑ(g
0, g00, i) > 0 and qẑ+1(g0, g00, i) > 0. If ẑ > 0,

taking g0 = g00 = ĝ and applying the mixing property to locus i, generates

both offsprings with g[i] = ẑ and g[i] = ẑ + 1, implying that qẑ(ĝ, ĝ, i) > 0

and qẑ+1(ĝ, ĝ, i) > 0. If ĝ[i] = 0, the Lemma implies that x
T
(i)
1 ĝ

> 0. Taking

g0 = ĝ and g00 = T (i)1 ĝ then generates both offsprings with g[i] = 0 and g[i] = 1,

implying that q0(ĝ, ĝ, i) > 0 and q1(ĝ, ĝ, i) > 0. Thus, we can again pick up a

genotype g and a pair (g0, g00) such that xg0 > 0, xg00 > 0, and (14) strictly holds.

From (14), we get that

Q(g0, g00) ≥
X

g,g[i]=0

Fg0g00(g)

q0(g0, g00, i)

Ã
kX
z=0

zqz(g
0, g00, i)

!Ã
kX
z=0

ϕ(T (i)z g)qz(g
0, g00, i)

!
= S(g0, g00) (15)

Once again, there exists a pair (g0, g00) such that xg0 > 0, xg00 > 0, and (15)

strictly holds. The RHS can be rewritten

S(g0, g00) = ui(g
0, g00)

X
g,g[i]=0

Fg0g00(g)

Ã
kX
z=0

ϕ(T (i)z g)
qz(g

0, g00, i)

q0(g0, g00, i)

!
= ui(g

0, g00)
X
g

Fg0g00(g)ϕ(g),

where the first step derives from (13) and the second one from (12).
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Inequality (15) means that the fitness of the high alleles in the gene pool of

the offsprings of g0 and g00 is higher than the average fitness of the offsprings

as individuals, because those with more H-alleles at i live longer. In order to

get that, the allele invariance property is needed. Otherwise, it could be that

the offsprings of g0, g00 that have a high g[i] have a lower fitness than the others

because they are systematically poorly endowed at other loci.

Going back to (11), we see that

nhi
υ

=
X
g0

X
g00

xg0xg00Q(g
0, g00)

>
X
g0

X
g00

xg0xg00S(g
0, g00) (16)

=
X
g0

X
g00

xg0xg00ui(g
0, g00)

X
g

Fg0g00(g)ϕ(g)

= h̃i

where the strict inequality comes from the fact that Q(g0, g00) > S(g0, g00) for at

least one pair (g0, g00) such that xg0xg00 > 0.

We now have

h̃i =
X

g0,g0[i]=0

kX
z=0

X
g00

1

2
(z + g00[i])x

T
(i)
z g0

xg00R(g
0, g00, z), (17)

where we have applied gene conservation and R(g0, g00, z) is defined as

R(g0, g00, z) =
X
g

F
T
(i)
z g0,g00

(g)ϕ(g).

Observe that R can be rewritten as

R(g0, g00, z) =
X

g,g[i]=0

KX
v=0

F
T
(i)
z g0,g00

(T (i)v g)ϕ(T (i)v g).

Furthermore, one can write F
T
(i)
z g0,g00

(T
(i)
v g) = Φ(v, z) − Φ(v − 1, z), where

Φ(v, z) =
Pv
u=0 FT (i)z g0,g00

(T
(i)
u g). Iterating the monotonicity property, we find

that Φ(v, z) is nondecreasing in z, while Φ(K, z) does not depend on z.We then

have that
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KX
v=0

F
T
(i)
z g0,g00

(T (i)v g)ϕ(T (i)v g)

=
KX
v=0

(S(v, z)− S(v − 1, z))ϕ(T (i)v g)

=
K−1X
v=0

S(v, z)
h
ϕ(T (i)v g)− ϕ(T

(i)
v+1g)

i
+ S(K, z)ϕ(T

(i)
K g).

Since ϕ is monotonic, the term in brackets is nonpositive. Thus, the sum

is nondecreasing in z, while the last term is constant in z. Therefore, the LHS

is nondecreasing in z, for any g such that g[i] = 0. Summing this property

across these g’s, we also find that R(g0, g00, z) is nondecreasing in z. Roughly,

that property means that the average mortality of offsprings improves when

one parent is genetically enhanced at locus i. The monotonicity property is

needed to get that. Otherwise, it could be that parents with more H-alleles at i,

everything else equal, have an Fg0g00 systematically biased toward high-mortality

genotypes.

Let us now go back to (17), which we can rewrite

h̃i =
X
g00

xg00
X

g0,g0[i]=0

kX
z=0

1

2
(z + g00[i])x

T
(i)
z g0

R(g0, g00, z).

For a given g00, we have that
P
g0,g0[i]=0

Pk
z=0 xT (i)z g0

= 1, that 1
2(z + g

00[i])

increases with z and that R(g0, g00, z) weakly increases with z. Thus, once again,

we have the following inequality:
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X
g0,g0[i]=0

kX
z=0

1

2
(z + g00[i])x

T
(i)
z g0

R(g0, g00, z)

≥

⎛⎝ X
g0,g0[i]=0

kX
z=0

1

2
(z + g00[i])x

T
(i)
z g0

⎞⎠ •
⎛⎝ X
g0,g0[i]=0

kX
z=0

x
T
(i)
z g0

R(g0, g00, z)

⎞⎠
=

1

2
(hi + g

00[i])

⎛⎝ X
g0,g0[i]=0

kX
z=0

x
T
(i)
z g0

R(g0, g00, z)

⎞⎠ .
Consequently,

h̃i ≥
X
g00

xg00
1

2
(hi + g

00[i])

⎛⎝ X
g0,g0[i]=0

kX
z=0

x
T
(i)
z g0

R(g0, g00, z)

⎞⎠
=

X
g00

xg00
1

2
(hi + g

00[i])

⎛⎝X
g0

xg0
X
g

Fg0g00(g)ϕ(g)

⎞⎠
=

1

2

nhi
υ
+
1

2

X
g00

X
g0

g00[i]xg00xg0
X
g

Fg0g00(g)ϕ(g)
µ(g)ν

µ(g) + ν − µ̄ ,

where the steady-state condition (10)has been used to derive the first term.

By virtue of (16), (3) and (6), the last term in that formula must be equal to

h̃i/2, so that h̃i ≥ nhi
υ . (16) then implies that hi > hi, which is a contradiction.

Hence, it must be that either hi = 0 or hi = K. Q.E.D.

The last set of inequalities tell us that since parents who have a greater g0[i]

have children with a higher fitness, these parents’ children tend to increase the

survival rate of the high allele at i relative to average. Since, in addition, the

survival rate of the high allele at i among their children is greater than their

children’s average survival rate, these two effects together imply that the fitness

of the high allele at i is strictly higher than average. But that cannot be in

steady state, unless ϕi = 0 or K.

4 Autarky

12



We now describe how an individual’s genotype g affects his/her productivity at

various activities, depending on the ecomic setting.

The alleles present at a given locus i determines the individual’s productivity

at a corresponding activity denoted by the same index i. This productivity is

a strictly increasing function fi(g[i]) of g[i], the number of H-alleles at locus

i. Any individual has a total time endowment equal to 1. The time allocation

constraint of genotype g is therefore given by

nX
i=1

vi
fi(g[i])

≤ 1, (18)

where vi is the individual’s output in activity i.

Finally the individual’s fitness is

ϕ(g) = u(y1, ..., yn),

where yi is the individual’s consumption of activity i, and u is the ”utility func-

tion”, which is concave in each argument, and satisfies the ”Inada conditions”:

limyi−→0
∂u
∂yi

= +∞, limyi−→+∞ ∂u
∂yi

= 0.

Under autarky, we have yi = vi, and the following result holds:

PROPOSITION 2 — Under autarky, all loci are selective. Therefore, in any

steady state such that hi > 0,∀i, all individuals are of genotype gmax, i.e. the

H-allele is fixed at all locations.

Proof — Type T (i)1 g has a more favorable time budget constraint than type

g. Therefore, it achieves a higher fitness. The rest follows from the previous

subsection. Q.E.D.

Note that the case hi = 0 is not of interest: it means that the high allele

does not exist at that locus.
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5 Trade

Let us now look at the trade case. Each good i is traded at price pi.We assume

the following normalization for the price vector (pi)

nX
i=1

pi = 1 (19)

People allocate their time between the various activities so as to maximize

their income R(g) =
Pn
i=1 pivi, subject to the time allocation constraint (18).

Their demand vector is the one which maximizes u subject to their budget

constraint:

nX
i=1

piyi = R(g)

Types with lower incomes must achieve lower fitness and therefore disappear

in the long-run.

Furthermore, ϕ must be monotonic at all loci. The reason is that the vector

(v1, ...., vn) supplied by a genotype g can also be supplied by genotype T
(i)
1 g. On

the other hand, all loci need not be selective, as genotypes with fewer H-alleles

at locus i may achieve the same income as fitter genotypes, by just specializing.

Define a long-run equilibrium (LRE), as a stationary state such that the

economy is in equilibrium, i.e. each genotype sets its supply and demand as

just described, and markets clear for each good. The following proposition

generalizes the results derived for the two loci case in Saint-Paul (2002).

PROPOSITION 3 — (i) In any LRE such that hi > 0,∀i, a given type only

supplies goods corresponding to loci in their genotype where they have the highest

number of H—alleles: vi(g) > 0 =⇒ g[i] = K.

(ii) In any LRE such that hi > 0, the price vector is p* = (p∗1, ..., p
∗
q) such

that

p∗i =
1/fi(K)P
j

1
fj(K)

(20)
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(iii) In any LRE, there exists a locus j such that ϕj = K, i.e. allele H is

fixed at locus j.

Proof of (i) — Iterating the mixing property with appropriately chosen par-

ents, one can easily show that if hi > 0,∀i, in steady state there exists a strictly

positive supply of genotypes with a arbitrary, strictly positive number of H-

alleles g[i] at each locus i. In particular, there exists a strictly positive mass

of the best genotype gmax : xgmax > 0. Next, note that if R(g0) > R(g), then

genotype g0 achieves higher fitness than g, and hence ϕ(g0) > ϕ(g).

Assume there exists a genotype ĝ such that vl(ĝ) > 0 for l such that

ĝ[l] < K. Clearly, the plan (v1(ĝ), ..., vl(ĝ)
fl(g[l]+1)
fl(g[l])

, ..., vn(ĝ)) achieves a strictly

higher income level and is feasible (i.e. satisfies (18)) for T (i)1 g. Consequently,

R(T
(i)
1 g) > R(g), implying ϕ(T

(i)
1 g) > ϕ(g). But, given that ϕ is monotonic,

Proposition 1, under assumption (ii), would then imply that ϕi = K, which

makes it impossible for ĝ to exist. Consequently, any type g only supplies goods

where it has an H-allele.

Proof of (ii) — The price vector defined by (20) is the one which makes type

gmax indifferent between all activities. Assume there exists an LRE with a

different price vector. Then there exists a pair of goods (j, k) such that

pj
pk
<
fk(K)

fj(K)
, (21)

and vj(gmax) = 0 since more income is yielded for type gmax by offering good

k than good j.

Since u satisfies the Inada conditions, the demand for good j is strictly

positive; since gmax does not supply good j, there exists g 6= gmax such that

xg > 0 and vj(g) > 0. By virtue of (i), g[j] = K. Furthermore, g[k] < K,

otherwise g would prefer to supply k instead of j as well.

The income of type g is R(g) =
Pq

i=1 p(ivi(g) =
P
i6=j pivi(g) + pjvj(g).

The supply vector (vi(g)) is feasible for type T
(k)
K−g[k]g, since T

(k)
K−g[k]g is more
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productive than g at all activities. The supply vector (v0i) defined by v
0
i =

vi(g), i 6= j, k, v0j = 0, v0k = vk(g) + vj(g)
fk(K)
fj(K)

also satisfies (18) for T (k)K−g[k]g.

Therefore,

R(T
(k)
K−g[k]g) ≥

qX
i=1

piv
0
i

= R(g)− pjvj(g) + pk
fk(K)

fj(K)
vj(g)

> R(g),

where the last inequality comes from (21). But, this cannot hold since it again

implies ϕ(T (k)K−g[k]g) > ϕ(g). Consequently, there exists ĝ ∈ {g, T (k)1 g, ...T
(k)
K−g[k]}

such that ϕ(T (k)1 ĝ) > ϕ(ĝ). Furthermore, as xg > 0, iterating Lemma 1 implies

that xĝ > 0.Monotonicity of ϕ then implies that (ii) in Proposition 1 is satisfied.

Consequently, hk = K. But that contradicts the requirement that g[k] < K.

Q.E.D.

Proof of (iii) — Suppose not; then by iterating the mixing property with

appropriately chosen parents, one can prove that xgmin > 0. But that contradicts

(i).

Q.E.D.

The preceding proposition tells us what properties an LRE must necessarily

have, but does not tell us whether an LRE exists and whether, as in the preced-

ing analysis, one can construct equilibria with a positive level of some L-alleles.

We now establish a result which tells us that an LRE exists with a strictly

positive proportion of L-alleles, provided these alleles are not too frequent.

To do so, for any subset S of {1, ...n} we define S̃ as S̃ = {g, g[i] = K ⇒ i ∈

S}. S̃ is the set of all genotypes such that their loci saturated with H-alleles

(which define the activities at which they can possibly specialize) are all in S.

PROPOSITION 4 — Let Rwi(p) be the inverse demand function for the

fitness maximization problem of an individual with income R facing price vector

16



p. Let

Di =
1P

j
1

fj(K)

wi(p*)

Then there exists an LRE with a distribution {xg} of genotypes if and only

if this distribution satisfies the following property:

∀S ⊂ {1, ...q},
X
i∈S

Di
fi(K)

≥
X
g∈S̃

xg. (22)

Proof — We first prove that this condition is necessary. The RHS of (22)

is the total time supplied by genotypes in S̃ (relative to the population’s total

time). Proposition 3, (i) implies that it must be allocated among goods i such

that g[i] = K, i.e. among goods in S. It also implies that in any candidate

equilibrium, income per capita (equal to the income of any genotype) must be

equal to 1P
j

1
fj(K)

. Thus, Di is the per capita amount of good i consumed and

produced in any candidate equilibrium. The LHS of (22) is therefore the total

time input needed to produce all the goods in S. It must be greater than or equal

to its RHS, since genotypes in S̃ cannot produce any other good. Otherwise,

supply would exceed demand. Note that (22) applied to S = ∅ implies that one

H -allele is fixed (the LHS is then the total supply of all genotypes g such that

g[i] < K,∀i). Also, (22) applied to S = {1, ...n} boils down to Walras’ law, since

it is equivalent to
Pq
i=1 p

∗
iwi(p

∗) ≥ 1, and by Walras law
Pq
i=1 p

∗
iwi(p

∗) = 1.

Let us now prove sufficiency. In order to do so, we construct a set of functions

mi(g), representing the share of time of genotype g devoted to activity i, such

that:

mi(g) > 0 =⇒ g[i] = K (23)

X
g,g[i]=K

mi(g)xg =
Di
fi(K)

. (24)
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X
i

mi(g) = 1,∀g (25)

If we are able to construct such functions, then this is indeed an equilibrium,

since supply equals demand for all goods, and since the price vector in (20)

implies that a genotype is indifferent between supplying all the goods at which

it has K H-alleles.

To construct the mi(g), we use the following algorithm. We start from any

arbitrary allocation m(0)
i (g) satisfying (23) and (25). This defines the initial

stage.3 Then we move from stage (k) to stage (k + 1) as follows. At the

beginning of stage (k), the set {1, ...n} can be partitioned into three subsets:

H
(k)
0 = {i,

X
g,g[i]=K

m
(k)
i (g)xg =

Di
fi(K)

}

H
(k)
+ = {i,

X
g,g[i]=K

m
(k)
i (g)xg <

Di
fi(K)

}

H
(k)
− = {i,

X
g,g[i]=K

m
(k)
i (g)xg >

Di
fi(K)

}.

That is, those goods for which supply equals demand, those for which there

is excess demand, and those for which there is excess supply. Note that sinceP
iDi/fi(K) = 1, H

(k)
+ is empty if and only if H(k)

− is empty. If H(k)
+ = H

(k)
− =

∅, then we have an equilibrium, and the algorithm stops.

Assume therefore that it is not the case. Then neither H(k)
+ nor H(k)

− are

empty. We now distinguish two cases.

Case A. Assume there exists a partition (HA,HB) of {1, ...n} such that

H
(k)
− ⊆ HA;H(k)

+ ⊆ HB.

and:
3One can trivially check that such an allocation exists, since one H−allele is fixed, all

genotypes have at least one locus where g[i] = K.
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∀g,
³
∃i ∈ HA,m(k)

i (g) > 0
´
=⇒ (∀i ∈ HB, g[i] < K) (P)

That is, people who do produce goods in HA cannot produce goods in HB.

For any good i, let

G(i) = {g,m(k)
i (g) > 0}.

Clearly, one has g[i] = K, for all g ∈ G(i). We then have

X
i∈HA

X
g∈G(i)

xgm
(k)
i (g) >

X
i∈HA

Di
fi(K)

.

This strict inequality comes from the fact that H(k)
− ⊆ HA ⊆ H

(k)
0 ∪ H(k)

−

and from the fact that H(k)
− is non-empty.

Furthermore,

X
g∈H̃A

xg =
X
g∈H̃A

xg
X
i∈HA

m
(k)
i (g).

This is because if g ∈ H̃A and m(k)
i (g) > 0, then g[i] = K, implying i ∈ H̃A.

Therefore
Pn
i=1m

(k)
i (g) =

P
i∈HA

m
(k)
i (g) = 1.

Interverting, we get

X
g∈H̃A

xg =
X
i∈HA

X
g∈H̃A

xgm
(k)
i (g)

Now, note that G(i) ⊆ H̃A : If I produce one good in HA, all my loci with

K H-alleles are also in HA. Consequently,X
g∈H̃A

xg ≥
X
i∈HA

X
g∈G(i)

xgm
(k)
i (g) >

X
i∈HA

Di
fi(K)

,

which clearly violates assumption (22). Case A is therefore ruled out.

Case B. Assume then that there exists no such partition. We can construct

a chain of q goods i1, ..., iq such that the following property holds:
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PROPERTY Q:

(a) i1 ∈ H(k)
− ;

(b) iq ∈ H(k)
+ ;

(c) il ∈ H(k)
0 , for l = 2, ..., q − 1.

(d) ∀l ∈ {1, ...q − 1},∃gl, m(k)
il
(gl) > 0 and gl[il+1] = K.

To construct such a chain, proceed as follows. We will write i I i0 if: (∃g,

m
(k)
i (g) > 0 and g[i0] = K). In this case, we call Ω(i, i0) the set of genotypes

that satisfy this property: Ω(i, i0) = {g, m(k)
i (g) > 0 and g[i0] = K}. Property

(d) implies that the chain we want to construct is such that i I i0.

Start from a set H(0)
A = H

(k)
− . As property (P) is violated, there exists

i01 ∈ H
(0)
A , i02 ∈ {1, ..., n}−H

(0)
A , such that i01 I i02.

If i02 ∈ H
(k)
+ , stop the procedure there, and take i1 = i01, i2 = i

0
2, g1 ∈ Ω(i1, i2).

If not, then i02 ∈ H
(k)
0 . Add i02 toHA: H

(1)
A = H

(0)
A ∪{i02}. Since H

(k)
0 ∩H

(1)
A =

{i02},it must be that i ∈ H
(1)
A ∩H(k)

0 =⇒ ∃j ∈ H(k)
− , j I i. Use again the fact

that (P) is violated. There exists i001 ∈ H
(1)
A , i002 ∈ {1, ..., n} − H

(1)
A , such that

i001 I i002 . Given that either i001 = i02 or i001 ∈ H
(k)
− , there exists a chain of length q,

(i
(1)
1 , ...i

(1)
q = i002) such that i

(1)
1 ∈ H(k)

− , i
(1)
l ²H

(1)
A ∩H(k)

0 , l < q, and i(1)l I i(1)l+1.

If i002 ∈ H
(k)
+ , we use that chain and stop the procedure. Otherwise, we add i002

to HA, and iterate again.

More generally, at each iteration (r), there is a set H(r)
A such that H(k)

− ⊆

H
(r)
A ⊆ H

(k)
0 ∪ H(k)

− , and such that for all i ∈ H(r)
A ∩ H(k)

0 , there exists a

chain (i01, ...i
0
q) such that i

0
1 ∈ H

(k)
− , i0l ∈ H

(r)
A ∩ H(k)

0 , l > 1, i0q = i, and i0l I

i0l+1 (The chain property). Because (P) is violated, there exists i
00
1 ∈ H

(r)
A and

i002 ∈ {1, ..., n} − H
(r)
A , such that i001 I i002 . Let (i

000
1 , ...i

000
q = i001) be the chain

corresponding to i001 . If i
00
2 ∈ H

(k)
+ , we use the chain (i0001 , ...i

000
q = i

00
1 , i

00
2) and stop

the procedure. If i002 ∈ H
(k)
0 , we use H(r+1)

A = H
(r)
A ∪ {i002} and iterate the

procedure. As the new member i002 is connected to i
000
1 via the chain (i

000
1 , ...i

000
q =

i001 , i
00
2), H

(r+1)
A still satisfies the chain property. As i002 ∈ H

(k)
0 , it also satisfies

H
(k)
− ⊆ H(r+1)

A ⊆ H(k)
0 ∪H(k)

− . As the number of elements in H(r+1)
A goes up
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by one unit at each iteration, one must find an i002 in H
(k)
+ a finite number of

iterations.

Next, we can use such a chain to construct a new allocation of labor for

stage k + 1. Let

∆0 = min(m
(k)
il
(gl), l = 1, ..q − 1},

and

∆ = min(
X

g∈G(i1)
m
(k)
i1
(g)xg −

Di1
fi1(K)

,
Diq
fiq(K)

−
X

g∈G(iq)
m
(k)
iq
(g)xg,∆0)

Define the new allocation as follows:

m
(k+1)
il

(gl) = m
(k)
il
(gl)−∆;

m
(k+1)
il+1

(gl) = m
(k)
il+1
(gl) +∆;

m
(k+1)
i (gl) = m

(k)
i (gl), i 6= i1, ...iq

∀i,m(k+1)
i (g) = m

(k)
i (g), g 6= g1, ..., gq−1.

The new allocation clearly still satisfies (23) (as gl[il+1] = K), and (25) (as

m
(k+1)
il

(gl)+m
(k+1)
il+1

(gl) = m
(k)
il
(gl)+m

(k)
il+1
(gl)). Futhermore, one hasm

(k+1)
i (g) ≥

0, as ∆ ≤ ∆0. Finally, for 1 < l < q, m
(k+1)
il

(gl) +m
(k+1)
il

(gl−1) = m
(k)
il
(gl) +

m
(k)
il
(gl−1). Hence, all markets that were in equilibrium remain so. Further-

more, as ∆ ≤
P
g∈G(i1)m

(k)
i1
(g)xg − Di1

fi1 (K)
, market i1 weakly remains in excess

supply, and similarly market iq weakly remains in excess demand. Therefore:

H
(k)
0 ⊆ H(k+1)

0 ;

H
(k)
− ⊇ H(k+1)

− ;

21



H
(k)
+ ⊇ H(k+1)

+ .

Finally, we note that either

(i) H(k)
0 Ã H(k+1)

0 , which will be true provided ∆ =
P
g∈G(i1)m

(k)
i1
(g)xg −

Di1

fi1 (K)
or ∆ =

Diq

fiq (K)
−
P
g∈G(iq)m

(k)
iq
(g)xg. In such cases the new allocation

restores equilibrium in market i1 (resp. iq)

(ii) Or, the chain (i1, ...iq) and its associated chain of genotypes (g1, ...gq−1)

no longer satisfy Q; that is the case if ∆ = m
(k)
il
(gl) for some l, in which case

m
(k+1)
il

(gl) = 0. In such a case, we have constructed a new allocation such thatP
g | {i,mi(g) = 0} | has increased by at least one unit, and which satisfies (23)

and (25).

Thus, at each stage, the quantity
P
g | {i,mi(g) = 0} | + | H(k)

0 | strictly

increases. As it is bounded, the procedure cannot go on forever, and the only

case in which one cannot iterate it is if H(k)
+ = H

(k)
− = ∅. This proves the

existence of equilibrium. Q.E.D.

Clearly, conditions (22) are pretty stringent, so that it is not straightforward

to construct an equilibrium. However for xgmax close enough to 1, i.e. xg small

enough when g 6= gmax, they are clearly satisfied, since xgmax appears on the

RHS only for S = {1, ...q}, in which case (22) is always satisfied with equality,

due to Walras’ law:
Pq
i=1

Di

zHi
=
Pq
i=1 p

∗
i fi(p

∗) = 1 =
P

g xg . Therefore

there always exist equilibria with a strictly positive fraction of genotypes with

L-alleles, provided this fraction is small enough.

Note that the greater the number of loci, the greater the number of condi-

tions that must hold. Intuitively, that suggests that the equilibrium fraction of

L−alleles must become smaller. Intuitively, if the initial distribution of alleles

in the population is such that (22) is violated, we expect a number of H-alleles

to eventually become fixed, which is equivalent to a reduction in n. The process
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would continue until n is small enough for the number of relevant activities not

to be too large, so that (22) holds.
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