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Abstract

This paper is an investigation of the third-degree stochastic dominance order which has

been introduced in the context of risk analysis and is now receiving an increased attention

in the area of inequality measurement. After observing that this partial order fails to satisfy

the von Neumann-Morgenstern property in the space of random variables, we introduce strong

and local third-degree stochastic dominance. We motivate these two new binary relations and

offer a complete and simple characterizations in the spirit of the Lorenz characterization of the

second-degree stochastic order. The paper compares our results with the closest literature.
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1 Introduction

Stochastic orders lie at the crossroads of several fields ranging from portfolio analysis to inequality

measurement. Given an underlying space of choices X, they are defined as the intersection of a

family F of complete orders over X. Any particular complete order % in the family F represents

the preference of an individual or social decision-maker over X and the stochastic order therefore

identifies the pairs of choices on which all the decision makers in the class F unanimously agree.

The most common application is the case where X is the set of probability distributions on the

real numbers: each member of is interpreted either as a lottery over monetary gains or losses or

as an income distribution. In all the family consists of a subclass of complete orderings satisfying

von Neumann-Morgenstern independence property and therefore expected utility maximizers:1 the

first stochastic order %1 asks for the von Neumann-Morgenstern utility to be increasing, the second

stochastic order %2 asks in addition to the first property for the von Neumann Morgenstern utility

function to be concave, the third stochastic order %3 asks in addition to these two properties for

the marginal utility to be convex. The main task is of course to sort out a simple characterization

of these various nested stochastic orders but a first thing must be noted: since the von Neumann-

Morgenstern independence property is preserved by intersection, all these stochastic orders will

satisfy the von Neumann-Morgenstern property too.

The set X of probability distributions over the real numbers is in a one to one relationship with

the set Xt of nondecreasing and right-continuous real valued random variables over the unit interval

[0, 1]. To each such random variable let P be its probability law and to each probability distribution

over <, let X(t) = Sup
F (x)≤t

x where F (x) = P (]−∞, x]). Given this one to one relationship, we can

therefore transpose any complete or partial order % over X into an order %t over Xt and vice

versa. Therefore we can define along these lines %t
1, %t

2 and %t
3 . Note also that X

t is a convex

1A remarkable characterization of the class of preorders satisfying the von Neumann-Morgenstern independence

axiom (together with some regularity axioms) but not necessarily complete has been derived by Baucells and Shap-

ley (1998) and Dubra, Maccheroni and Ok (2004). They show that any such preorder can be represented as the

intersection of a finite family of von Neumann-Morgenstern utility functions.
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cone in a linear vector space and therefore the von Neumann-Morgenstern independence property

is mathematically well defined on Xt as well. We have pointed out that %1, %2 and %3 both satisfy

the von Neumann-Morgenstern independence property. There is not reason to think a priori that

%t
1, %t

2 and %t
3 will satisfy this property as well. Following well know characterizations of %1 and

%2, we have surprisingly that %t
1 and %t

2 satisfy the independence property as well. The point of

departure of this paper is the recognition that this is not true anymore for %t
3 and to take this as

the mean reason why many things discontinuously change when we reach the third order.

In the first section we gather the main definitions used in this paper without being very explicit

about the partial orderings that we are considering. In section 2, we introduce some general notions

on partial preorders defined on a convex subset of real vector spaces. In section 3, we introduce

the three first stochastic orders over the subset of nondecreasing random variables taking discrete

values. We ask the following question in relation to the von Neumann-Morgenstern independence

property. Take two such random variables x and y. When is it the case that for any third option

z and any λ in [0, 1], λx+ (1− λ)z %t
3 λy + (1− λ)z ? Our first main results states that this will

happen if and only if x %t
2 y i.e. there is no subrelation of %t

3 other than %t
2 satisfying the von

Neumann-Morgenstern independence property. We then turn to examine a weakened version of the

von Neumann-Morgenstern ’s test. Precisely we ask: When is it the case that for any λ in [0, 1],

x %3 λx + (1 − λ)y %3 y ? We call strong third-degree stochastic dominance this binary relation

and we offer a complete characterization of strong third-degree stochastic dominance. The main

point in the characterization is its simplicity: it consists of a simple finite list of inequalities very

much in the spirit of the classical Lorenz inequalities. Turning to inequality measurement, we then

compare our result to some results on inequality measurement with third degree dominance and

show exactly why our test is a covariance test strictly more demanding than the classical variance

test.

In section 4, we introduce the notion of local stochastic dominance. We say that x %i y locally,

denoted x %L
i y if any move from x in the direction y−x leads to an improvement in the sense of %i

as long as the intensity of the move is small enough. After noting that local and ”global” stochastic
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dominance coincide for the first and second stochastic preorders, we show that ”global” third-degree

stochastic dominance implies local stochastic dominance but that the reverse implication does not

hold in general. We offer an almost full simple characterization "à la Lorenz" of local third-degree

stochastic dominance and we illustrate how this can be used in the evaluation of policy reforms.

Finally in section 4, we indicate how our results for discrete distributions extend to any dis-

tribution and we show why inverse third-degree stochastic dominance implies strong third-degree

stochastic dominance when we restrict to some specific smaller cones of random variables. The

proofs of all lemmas and propositions are relegated to the appendix.

The results of this paper lead to a better understanding of the first three stochastic preorders.

For the first two stochastic orders strong, global, local and inverse are all the same. When we reach

the third order these equivalences do not hold anymore: strong implies global which implies local

but the reverse implications are false in general; further global and inverse are logically unrelated.

Our claim is that the root of this brutal change is the fact that the third-degree stochastic preorder

does not satisfy the von Neumann-Morgenstern independence property.

Some Related Literature

Before proceeding with the body of our analysis, let us briefly discuss the relationship of this

work to the most closely related literature. Third degree stochastic dominance was introduced in

the context of deciding between uncertain prospects and characterized by Whitmore (1970). The

property that the third derivative of the von Neumann-Morgenstern utility function has a positive

sign has been investigated by Menezes, Geiss and Tressler (1980). Is is strictly less demanding

than the classical property asking for the Arrow-Pratt ’s measure of risk aversion to decrease

with the level of wealth. We could therefore define a new stochastic order for the class of utility

functions exhibiting declining risk aversion; Bawa (1975) demonstrates that this new stochastic

order coincides with third-degree stochastic dominance as long as the distributions have the same

first moment. Bawa produces also a finite algorithm to test for third-degree stochastic dominance.

Fishburn (1982, 1985) derive some nice mathematical results on third-degree stochastic dominance.

In the area of inequality measurement, third-degree stochastic dominance has received in the
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last decade an increased attention because it offers the obvious advantage of leading sometimes to

conclusive judgments2 about the evolution of inequality in income distribution in situations where

the Lorenz curves intersect; it prevents the practitioner from deriving conclusions which would be

too sensitive to the choice of a particular inequality index. Early contributions by Atkinson (1973)

and Kolm (1976) points out the necessity of supplementing the Lorenz criterion by considerations

echoing third-degree stochastic dominance; Kolm’s principle of diminishing transfers asks that an

inequality index decreases more under the effect of a progressive transfer when the transfer takes

place at the bottom part of the income distribution, as opposed to the top part. The more important

contributions on this topic are due to Shorrocks and Foster (1987) and Davies and Hoy (1995). The

main result in Shorrocks and Foster states that if x and y are two income distributions with the same

first moment, then x %3 y if and only if we can move from y to x by a finite sequence of transfers

which are either progressive or variance preserving composite transfers of the following type: some

individual i transfers money to some individual j poorer than him and some individual k with an

income at least equal to the income of i transfers money to some individual l richer than him. They

also show that if the Lorenz curves of x and y intersect only once, then x %3 y if and only if xi > yi

where i is the first index for which xi 6= yi and the variance of x is less or equal to the variance of

y; in words in the case of single crossing of the Lorenz curves, third-degree stochastic dominance is

equivalent to the combination of the Rawls’s principle and the variance principle. Davies and Hoy

(1995) consider the more general case of Lorenz curves with multiple intersections and show that

third-degree stochastic dominance amounts to the comparison of variances for truncated income

distributions; the truncation points are the intersection points where x intersects y from below.

The main merit of these two contributions is the identification of the key role of the variance

in third-degree stochastic dominance. The variance principle is far from being an incontrovertible

principle and it is not difficult to come out with examples where the variance principle is not

2See Davis and Hoy (1995) and Shorrocks and Foster (1987) for some evidence on real data that third-degree is

useful to supplement the Lorenz order. Trannoy and Lugand (1992) make use of third-degree stochastic dominance

in their analysis of some French data.
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conclusive but where some other principles are conclusive. Take for example the case where x =

(21, 80, 999980, 100000020) and y = (1, 100, 1000000, 100000000). The Lorenz curve of x intersects

the Lorenz curve of y once from above but the variance of x is greater than the variance of y. In that

case however, inverse third-degree stochastic dominance leads to the conclusion that inequality has

been reduced when moving from y to x since the Gini index for x is equal to the Gini index for y;

the principle of minimal inequality aversion in Le Breton (1994) leads also to the same conclusion

for low values of the minimal degree of inequality aversion. This example shows that it is not the

case that all excentric inequality conclusions are excluded by third-degree stochastic dominance.

Finally, it should be pointed out that even if the two contributions discussed above improve

substantially our understanding of third-degree stochastic dominance, they do not contain a char-

acterization of third-degree stochastic dominance which would have the transparency of Lorenz

inequalities; as noted by Shorrocks and Foster ”No analogue of Lorenz dominance is known to be

equivalent to the third-order stochastic dominance”. In our opinion the search of such inequalities

is not motivated by the necessity of having a finite algorithm (such algorithms exist) but by the

interest of expressing third-degree stochastic dominance x %3 y by a finite list of inequalities only

involving the Lorenz vectors attached to x and y. Our paper provides such characterizations for

local third-degree stochastic dominance and strong third degree stochastic dominance but not for

third-degree stochastic dominance.

2 Preliminaries

In this section we introduce some general notions on partial preorders defined on real vector

spaces. Let K be a convex subset of a real vector space X and % be a preorder over K. We denote

respectively by Â the strict relation induced by % and by ∼ the indifference relation induced by

%. Let %∗ and %∗∗ be the two subrelations of % defined as follows. Let x, y ∈ K

x %∗ y iff x Â λx+ (1− λ)y % y for all λ ∈ ]0, 1[

and

6



x %∗∗ y iff λx+ (1− λ)z % λy + (1− λ)z for all λ ∈ ]0, 1] and all z ∈ K.

The latter subrelation %∗∗ refines % by asking not only that x % y but also that for any third

option z, the mixture λx+ (1− λ)z is preferred to λy + (1− λ)z. The former subrelation %∗ only

asks for a sort of intermediateness property: the mixture λx+ (1− λ)y must always be between x

and y. It is trivial to see that %∗∗⊆ %∗.

Of some interest are of course the preorders for which either %∗∗= % or %∗= %. Note first that

%∗∗= % is equivalent to:

x % y ⇒ λx+ (1− λ)z % λy + (1− λ)z for all λ ∈ ]0, 1] and all z ∈ K.

This property on% is exactly the independence property of von-Neumann-Morgenstern expected

utility theory. Therefore if the preorder is complete and continuous, then it is well known that %

satisfies the independence property if and only if there is a continuous linear functional over X

which is a utility representation of % over K.

Here we do not assume that % is complete. For each subset A ⊆ X, consider the binary relation

%A, defined over K as follows:

x %A y iff x = y + z for some z ∈ A.

It is immediate to show that %A is a preorder if and only if 0 ∈ A and A is stable under addition.

Note that if A ∩ (−A) = {0}, then x ∼A y if and only if x = y. In that case it follows easily that

%∗∗A = %A if and only if A is a convex cone pointed on 0. Therefore we can generate a large class

of partial preorders % for which %∗∗ = %. Of course if we insist on %A to be complete, then the

cone A must be a half space.

Similarly, %∗ = % is equivalent to:

x % y ⇒ x Â λx+ (1− λ)y % y for all λ ∈ ]0, 1[ .
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It is simple to see that %∗A = %A if and only if A is convex. Therefore within the class %A, %∗A

= %A if and only if %∗∗A = %A . This does not hold for an arbitrary partial order %.

To conclude note that %∗∗ is an order but %∗ is not transitive in general (however %∗ is of

course acyclic) as simply illustrated by the two indifference curves of a complete preorder depicted

on figure 1 below

Insert Figure1 here

3 Stochastic Orders: A Characterization of Ât∗
3 and Ât∗∗

3

From now on, we focus on the family of stochastic dominance orders. These partial orders are

defined on subsets of probability distributions over the real numbers. We limit our attention to

discrete probability distributions i.e. to probability distribution P of the following type:3

P =
nX

j=1

piδxj , where x1 ≤ x2 ≤ ....... ≤ xn, pi ≥ 0 ∀i = 1, ....n and
nX
i=1

pi = 1,

P can be interpreted as the uncertain prospect or lottery where the worst outcome is x1 and

has probability p1, the next worst outcome is x2 and has probability p2 and so on. P can also be

interpreted as an income distribution in a society. The society is divided into n groups from the

poorest group denoted by 1 to the richest group denoted by n. In that interpretation, xi and pi

denotes respectively the mean outcome and the percentage of the population in group i. We denote

by P the set of discrete probability distributions.

To define the first three stochastic orders over P, we need the following family of utility functions.

U1 denotes the set of non decreasing real valued functions over <+; U2 denotes the set of non

decreasing and concave real valued functions over <+ and U3 denotes the set of differentiable real

valued functions over <+ whose first derivative is non negative, non increasing and convex. Then

for all P =
Pn

j=1 piδxj and Q =
Pm

j=1 qiδyj and all s = 1, 2, 3 :

3 for all t ∈ <, δt denotes the Dirac mass in t.

8



P %s Q iff
nX
i=1

piu(xi) ≥
mX
i=1

qiu(yi) for all u ∈ Us.

The classical results on stochastic dominance are summarized in the following proposition. Let

EP and FP denote respectively the first moment of P and the distribution function of probability

P, i.e. for all t ∈ <, FP (t) = P (]−∞, t] .

Proposition 1 Let P , Q ∈ P. Then:

P %1 Q iff FP (t) ≤ FQ(t) for all t ∈ <,

P %2 Q iff
R t
−∞ FP (u)du ≤

R t
−∞ FQ(u)du for all t ∈ <,

P %3 Q iff
R t
−∞

R r
−∞ FP (u)dudr ≤

R t
−∞

R r
−∞ FQ(u)dudr for all t ∈ < and EP ≥ EQ.

Any discrete probability distribution can be approximated by a distribution where the proba-

bilities pi are all equal. We limit our attention to those with support in <+ and we denote by Pn
the subset of such probabilities whose support consist of at most n points. The set Pn is in a one

to one relationship with the cone Kn defined as follows.

Kn =
©
x ∈ <n

+ : x1 ≤ x2 ≤ ....... ≤ xn
ª
.

The stochastic orders on Pn are transported as follows on Kn. For all x, y ∈ Kn and all

s = 1, 2, 3 let:

x %t
s y if and only if

1

n

nX
j=1

δxj %s
1

n

nX
j=1

δyj

i.e.

x %t
s y iff

nX
i=1

u(xi) ≥
nX
i=1

u(yi) for all u ∈ Us.

For all x ∈ Kn and all j = 1, ..., n, let Xj =
Pj

i=1 xi. In what follows, we will refer to X as

being the Lorenz vector4 attached to x. The following proposition can be deduced from Proposition
4Strictly speaking it should be called the generalized Lorenz vector (Shorrocks (1983)) since the Lorenz vector

refers to the normalized vector where each of the Xi is divided by Xn.
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1 or demonstrated directly. The second part is due to Hardy, Littlewood and Polya (1934).5

Proposition 2 Let x, y ∈ Kn. Then:

x %t
1 y iff xj ≥ yj for all j = 1, ...n and x %t

2 y iff Xj ≥ Yj for all j = 1, ...n.

It follows from Proposition 1 that both %1, %2 and %3 satisfy the von Neumann-Morgenstern

independence property and therefore Â1 = Â∗1 = Â∗∗1 , Â2 = Â∗2 = Â∗∗2 and Â3 = Â∗3 = Â∗∗3 . It

follows from Proposition 2 that both %t
1 and %t

2 are cone preorders. Precisely, %t
1 = %A1 and

%t
2 = %A2 where A1 = {x ∈ <n : xi ≥ 0 ∀i = 1, ...., n} and A2 = {x ∈ <n : Xj ≥ 0 ∀j = 1, ...., n}.

Therefore, from section 2, they satisfy the von Neumann-Morgenstern independence property and

then Ât
1 = Ât∗

1 = Ât∗∗
1 and Ât

2 = Ât∗
2 = Ât∗∗

2 . Note that Pn is not convex in P and that for x, y ∈ Kn

and λ ∈ ]0, 1[, λ( 1n
Pn

j=1 δxj ) + (1− λ) 1n
Pn

j=1 δyj is not the same as
1
n

Pn
i=1 δλxi+(1−λ)yi and the

meaning of convex addition differs in the two spaces.6 The following simple example shows that

the third-degree dominance stochastic order %t
3 fails to satisfy even the weak form of the von

Neumann-Morgenstern independence property.

Example 1 Let n = 4, x = (4, 6, 11, 14) and y = (2, 10, 11, 12). We can verify that x Ât
3 y.

Consider now the utility function u defined as follows:

u(t) =

 10t− t2

2 if t ≤ 10

50 if t > 10.

It is easy to verify that u ∈ U3. For all λ ∈ [0, 1], let W (λ) =
Pn

j=1 u(λxj + (1 − λ)yj). We

obtain:

W (λ) = 168 + 16λ− 10λ2.

Since W (0.8) > W (1), we don’t have x Ât∗
3 y.

5See Marshall and Olkin (1979).
6 In fact Pn is not convex in P ; λP + (1 − λ)Q simply denotes the composite lottery where the lotteries P and

Q are drawn with probabilities λ and 1− λ. When P and Q stand for the income distributions x and y, I dont see

any immediate interpretation of the convex addition λP +(1−λ)Q in terms of income distribution while the convex

addition λx+ (1− λ)y is easy to interpret.
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We now turn to the characterization of %t∗∗
3 and %t∗

3 .

Proposition 3 %t∗∗
3 = %t

2 .

Proposition 3 is rather intriguing.

Proposition 4 Let x, y ∈ Kn. Then x %t∗
3 y if and only if

Pk
j=1(xj+1 − xj)(Xj − Yj) ≥ 0 for all

k = 1, ...., n− 1 and Xn ≥ Yn.

Proposition 4 provides a simple full characterization of strong third-degree stochastic domi-

nance. The finite list of inequalities in Proposition 4 is very much in the spirit of the Lorenz

inequalities. They consist in comparing weighted partial sums of the Lorenz coordinates of the two

distributions under scrutiny, where the Lorenz coordinate of rank j is weighted by the nonnegative

coefficient (xj+1 − xj). Since %t∗
3 is a subrelation of %t

3, we deduce:

Corollary 1 If
Pk

j=1(xj+1 − xj)(Xj − Yj) ≥ 0 for all k = 1, ...., n− 1 and Xn ≥ Yn then x %t
3 y.

Corollary 1 provides a simple sufficiency test for third-degree stochastic dominance to hold.

We now contrast this simple condition with was has been obtained in the literature. To this end,

consider two distributions x and y in Kn and define an intersection index as any value of j for which

either Xj−1 > Yj−1 and Xj ≤ Yj or Xj−1 < Yj−1 and Xj ≥ Yj .7 Label the intersection indices by

order of appearance. It is a trivial exercise to observe that the inequalities in Corollary 1 hold if

and only if
Pk

j=1(xj+1−xj)(Xj−Yj) ≥ 0 for the first intersection label and all intersection indices

k with an even label. For all x and y in Kn, denote by kxk and kyk their respective Euclidean

norms, by x and y their respective means and by < x, y > their Euclidean scalar product. In the

case where there is a single crossing i.e. two intersection indices, we obtain the following corollary.

Corollary 2 Let x, y ∈ Kn with x = y and assume that the Lorenz curve of x intersects that of

y once from above. Then x Ât∗
3 y if and only if k x k2≤< x, y >.

7With the convention X0 = Y0 = 0.
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The proof follows from the fact that under single crossing, the unique intersection index i with

an even label satisfies xj = yj for all j = i+1, ....n and can therefore, without loss of generality be

assumed to be equal to n. Since x = y, it is easy to verify that
Pn

j=1(xj+1 − xj)(Xj − Yj) ≥ 0 if

and only if
Pn

j=1 x
2
i ≥

Pn
j=1 xiyi. Corollary 2 can be contrasted with Theorem 3 in Shorrocks and

Foster (1987). Under the assumptions of Corollary 2, they show that x Ât
3 y if and only if k x k2 ≤

k y k2. Since from the Cauchy-Schwarz’s inequality, < x, y > ≤ k x kk y k we see immediately why

x Ât∗
3 y is strictly more demanding than x Ât

3 y. Third-degree stochastic dominance is a variance

test whereas strong third-degree stochastic dominance is a covariance test. In fact in the particular

case where k x k=k y k, we cannot have x Ât∗
3 y. Indeed from Corollary 2, if x Â∗3 y, then k x k2≤

< x, y >. From Cauchy-Schwarz’s inequality we deduce k x k2 ≤ < x, y > ≤ k x kk y k= k x k2and

therefore < x, y > = k x kk y k. But Cauchy-Schwarz ’s inequality is an equality if and only if

x = λy for some λ ∈ <. Since x = y, we obtain x = y. Therefore if x results from y by variance

preserving transfers, then we cannot obtain x Â∗3 y. This suggests that transfers will lead to a

reduction of inequality in the sense of strong third-degree stochastic dominance only if they strictly

reduce the variance. In Figure 2

Insert Figure 2 here

we represent all the feasible distributions of a given total income among three agents as points

of a Kolm’s triangle (such that the height of the triangle is equal to the total income). For an

income distribution B, the irregular hexagon with vertex B contains all the vectors that dominate

B according to SSD. Under the single crossing condition of Corollary 2, the circle passing through

B contains all the points that dominate B according to TSD. Then, A Ât∗
3 B is equivalent to

kAk2 < hABi. This condition leads to °°A− Ā
°°2 < (A− Ā)(B − Ā), which gives

°°A− Ā
°° < °°B − Ā

°° cosβ, (1)

where β is the angle generated by the vectors A− Ā and B − B̄.

Condition (1) can be geometrically expressed as OA < OC, where C is the projection of B on

the half-line starting from O and passing through A. The higher part of box 1 in Figure 2 illustrates
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that Ât∗
3 satisfies the independence property: for any point G of the segment between A and B,

we get OG < OC 0. This evidence can be opposed to the violation of the independence property

that occurs to TSD in the lower part of the box 1, where L Ât
3 H and both vectors are strictly

dominated by D in the sense of TSD.

3.1 Discussion

The different policy implications of strong third-degree stochastic dominance and TSD are clarified

in the following example.

Example 2 Let n =3 to model the case where the society is divided into three classes of equal size:

the poor class indexed by 1, the middle class indexed by 2 and the rich class indexed by 3.

This should be considered as an interpolation of the true ”continuous” income distribution

obtained by linear interpolation of the Lorenz curve in 1
3 and

2
3 . Let y = (y1, y2, y3) denotes

the current income distribution and consider a public policy leading to the income distribution

x = (y1+ δ, y2− δ−∆, y3+∆) where δ and ∆ are positive numbers and such that 2δ+∆ <

y2− y1 i.e. a policy improving the situation of the poor and rich classes at the expense of the

middle class. We use Shorrocks and Foster’s Theorem 3 and Corollary 2 to obtain:

x Ât
3 y if and only if δ(y2 − y1)−∆(y3 − y2) ≥ δ2 +∆2 + δ∆

and

x Ât∗
3 y if and only if δ(y2−y1)−∆(y3−y2) ≥ 2δ2+2 δ∆+ 2∆2.

Let r(y) ≡ 1−
y3+y1
2
y2

be a relative measure of the gap between the middle class mean income and

the average of the extreme classes mean incomes in the original distribution y. In the case where

δ = ∆, the two conditions above simplify to:

x Ât
3y if and only if r(y) ≥

3∆

2y2
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and

x Ât∗
3 y if and only if r(y) ≥

3∆

y2
.

These two conditions illustrate the differences between third-degree stochastic dominance and

strong third-degree stochastic dominance. We see that not only r(y) must be strictly positive for

both to hold but also that the total relative burden of the transfer program on the middle class

should not exceed 4r(y)
3 for third-degree stochastic dominance and should not exceed 2r(y)

3 for strong

third-degree stochastic dominance.

This example is also useful to illustrate a peculiar fact of strong third-degree stochastic domi-

nance. Indeed let i be the first index for which Xi < Yi. Then if xk = x1 for all k = 1, ....., i,

we deduce from Proposition 4 that x Â∗3 y does not hold. This means that a transfer policy leading

to a perfect equalization among the first i groups with a reduction of the total share of the first i

groups cannot pass the test of strong third-degree stochastic dominance. Let y = (1, 81, 100), δ = 39

and ∆ = 2 in the above specification. Here r(y) ≈ 0, 376 i.e. we are in a situation where the

middle class is on the rich side.8 By applying the condition above, we can verify that x Ât
3 y but

not x Ât∗
3 y. A careful reader will check that for the following utility function in U3

u(t) =

 100t− t2

2 if t ≤ 100

5000 if t > 100

the income distribution λx+(1−λ)y where λ = 3082
3202 is superior to x. It should be noted however

that λ is very close to 1 i.e. x is not far from being the best outcome for this utility function.

Let us still use the Figure 2 to stress this important difference among Ât∗
3 and TSD. Starting

from the income distribution B, according to TSD, the regressive transfer from the median class

to the richest one which can be "compensated" by a progressive transfer from the median class to

the poor one reaches its maximum when the incomes of the two less endowed classes are equalized

(A = D). On the contrary, under Ât∗
3 , the regressive transfer in favour of the rich class CH that

can be balanced (in terms of social welfare) by a progressive transfer from the median class to the

8Note that r(y) ≤ 1
2
for all income distributions y.
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poor one first increases and then decreases with β, becoming 0 when β = π
2 . Furthermore, CH

reaches its max when α = β.9 What is really important is to reduce to a half the gap between the

median and the poor class, rather than totally fill such a gap.

4 Local Stochastic Dominance

Stochastic dominance orders have a global character: we can compare any pair of lotteries or income

distributions possibly very far apart from each other. In this section, we introduce the concept of

local stochastic dominance to address questions of the following type. Suppose that at some point

in time the income distribution of a society is described by y ∈ Kn and we ask ourselves whether

the situation would improve if we move locally in the direction ξ ≡ x − y where x ∈ Kn. By

locally, we mean that there exists some λ > 0 such that y + λξ is an improvement for all λ ≤ λ.

Improvement can be defined in several ways and here we will limit ourselves to the stochastic orders

%t
s for s = 1, 2, 3. Precisely we will say that the direction ξ ∈ <n is a %t

s direction of improvement

at y ∈ Kn if there exists λ > 0 such that:

y + λξ %t
s y for all λ ∈ [0, λ] .

This leads to the following definition of local stochastic dominance:

x %tl
s y iff there exists λ > 0 such that: y + λ(x− y) %t

s y for all λ ∈
£
0, λ

¤
.

The difference between ”global” and local stochastic dominance appears clearly in the above

definition since we only ask for improving local changes in the direction x− y instead of asking of

moving all the way from y to x. Local and ”global” stochastic dominance coincide for the first and

second degrees.10

Proposition 5 Let x, y ∈ Kn. Then x %t
s y if and only if x %tl

s y for s = 1, 2.

9 In fact, CH = OB sinβ sinα, that is equal to OB 1
2 cos (β − α) − 1

2 cos (β + α) . Since β and α belong to the

interval [0, π
2
] and (β + α) is fixed, CH is maximized for β = α.

10The proof of this proposition follows closely the standard arguments in stochastic dominance and is omitted.
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This equivalence does not hold at the third degree and we deduce therefore from proposition 4

that local third-degree stochastic dominance is strictly less demanding than third-degree stochastic

dominance. The following proposition states a necessary condition11 for local third-degree stochas-

tic dominance.

Proposition 6 Let x, y ∈ Kn. If x %tl
3 y then Xn ≥ Yn and for all k = 1, ...., n− 1,

Pk
j=1(yj+1 −

yj)(Xj − Yj) ≥ 0.

The condition is simple and also very much in the spirit of the Lorenz inequalities. They consist

in comparing weighted partial sums of the Lorenz coordinates of the two distributions under scrutiny

where the Lorenz coordinate of rank j is now weighted by the nonnegative coefficient (yj+1 − yj)

instead of the coefficient (xj+1 − xj). The cone of improving directions at y is the set of vectors ξ

in <n such that:

nX
i=1

ξi ≥ 0 and
kX

j=1

jX
i=1

(yj+1 − yj)ξi > 0 for all k = 1, ...n− 1.

Since %t
3 is a subrelation of %tl

3 , we deduce the following necessity test for third-degree stochastic

dominance:

Corollary 3 If x %tl
3 y then,

Pk
j=1(yj+1 − yj)(Xj − Yj) ≥ 0 for all k = 1, ...., n− 1 and Xn ≥ Yn.

As we did in Section 3, we can always see how this results specializes in the case where the

Lorenz curves display a specific pattern.

Corollary 4 Let x, y ∈ Kn with x = y and assume that the Lorenz curve of x intersects that of

y once from above. Then if x Ât∗
3 y then < x, y > ≤ k y k2.

The proof is identical to the proof of Corollary 2. Corollary 4 can be contrasted with Theorem

3 in Shorrocks and Foster (1987). We already know that under the assumptions of Corollary 4,

11These conditions are in fact almost sufficient. We have just to be careful in the case where some of the inequalitiesPk
j=1(yj+1 − yj)(Xj − Yj) = 0 as in such a case we need to move to an higher order.
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third-degree stochastic dominance is the variance test k x k2 ≤ k y k2, whereas local third-degree

stochastic dominance is again a covariance test. From the Cauchy-Schwarz’s inequality, we see

immediately that this covariance test is indeed less demanding than the variance test. Therefore

local third-degree stochastic dominance may be conclusive in situations where the variance of x is

strictly greater than the variance of y. To see by how much the two criteria differ, let us consider

Example 2 examined in the previous section.

Example 3 Let n=3 and as in Example 2 let y = (y1, y2, y3) denotes the current income distri-

bution and consider a public policy leading to the income distribution x = (y1 + δ, y2 − δ −

∆, y3 +∆) where δ and ∆ are positive numbers and such that 2δ +∆ < y2 − y1 i.e. a policy

improving the situation of the poor and rich classes at the expense of the middle class. We

already know that:

x Ât
3y if and only if δ(y2−y1)−∆(y3−y2) ≥ δ2+∆2+δ∆.

Instead, Corollary 3 leads to:

x Âtl
3 y if and only if δ(y2−y1)−∆(y3−y2) ≥ 0

In the case where δ = ∆, the two conditions above simplify to:

x Ât
3y if and only if r(y) ≥

3∆

2y2

and

x Ât∗
3 y if and only if r(y) ≥ 0 .

For y = (1, 81, 100), the cone of improving directions is the set of vectors ξ ∈ <3 such that:

17



ξ1 ≥ 0

99ξ1 + 19ξ2 ≥ 0

and ξ1 + ξ2 + ξ3 ≥ 0.

Picture 2 can also be used to illustrate Âtl
3 . Since A Âtl

3 L implies hALi < kLk2 , we get

°°A− Ā
°° cosϑ <

°°L− Ā
°° . (2)

Then, it is easy to see that Âtl
3 refines TSD. When the income of the poorest class approaches

that of the median one, the regressive transfers from the median to the rich class which are consistent

with Âtl
3 (as points near to KD in Figure 2) exceed the regressive transfers allowed by TSD.

We would like to argue that the local stochastic dominance point of view seems very much ap-

propriate to examine public policy reforms along the lines pioneered by Feldstein (1976), Guesnerie

(1977), Weymark (1981) and others in their analysis of Pareto improving commodity taxation re-

forms. A Pareto improving direction of reform is exactly defined as a direction leading to a welfare

improvement for everybody in the neighborhood of the original policy. To see, how it applies here,

let y(θ) = ( y1(θ), ...., yn(θ)) be the current income distribution of an economy where θ denotes

the vector of policy decisions by the public sector. Then Proposition 6 gives a practical criterion

to decide whether moving from θ to θ + dθ leads to a third-degree stochastic dominance improve-

ment. Suppose for instance that θ is one dimensional. Then moving from θ to θ + dθ leads to an

improvement if and only if:

kX
j=1

(yj+1(θ)− yj(θ))(

jX
i=1

dxi(θ)

dθ
) ≥ 0 for all k = 1, ...., n− 1 and

nX
i=1

dxi(θ)

dθ
≥ 0.

5 Extensions

In the preceding sections, we limited our attention to probability distributions with a discrete

support but the notion of stochastic orders can be extended easily to the broader family of bounded
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(i.e.; with compact support) probability distributions over <+. Given two such distributions P and

Q, define for all i=1,2,3.

P %i Q iff
Z
<+

u(x)P (dx) ≥
Z
<+

u(x)Q(dx) for all u ∈ Ui.

A probability distribution P over <+ is entirely characterized by its distribution function F

defined as F (x) = P ([0, x]). Characterizations of the stochastic orders %ihave been provided in

terms of distribution functions but these characterizations are not very meaningful in the area

of inequality measurement where alternative characterizations in terms of "inverse distribution

functions" are usually privileged. Recall that given a probability distribution P over <+, there

exists a unique random variable x over [0, 1] increasing, right continuous and with P as probability

law when [0, 1] is endowed with the Lebesgue measure.12 Like in the preceding sections, we can now

investigate characterizations over the cone D of increasing and right continuous random variables

in L∞ ([0, 1]). The following characterizations of %1 and %2 are well known. Given x and y in the

cone D:

x %1 y iff x(t) ≥ y(t) for all t ∈ [0, 1]

x %2 y iff X(t) ≥ Y (t) for all t ∈ [0, 1] ,

where X(t) ≡ R t0 x(s)ds and Y (t) ≡ R t0 y(s)ds. Muliere and Scarsini (1989) have considered the
stochastic order %0

3 defined as follows:

x %0
3 y iff bX(t) ≥ bY (t) for all t ∈ [0, 1]

where bX(t) ≡ R t0 X(s)ds and bY (t) ≡ R t0 Y (s)ds. The stochastic order %3 is different from the

stochastic order %3 and we don’t have a simple characterization of %3 over D. It is straightforward

to extend the preceding propositions concerning %∗3 and %∗∗3 to the cone D.13

12This random variable is often designated under the name right inverse of P or F and denoted accordingly F−1.
13This technical exercise is left to the reader.
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We would like to conclude by a simple proposition which helps to understand why the stochastic

orders %3 and %
0
3 differ in general.

Proposition 7 Let x be in D and with a continuous second derivative such that x00(t) ≤ 0 for all

t in [0, 1]. Then for any y in D such that x %0
3 y and X(1) ≥ Y (1), x %∗3 y and therefore

x %3 y.

Proposition 7 points out the root of the gap between %0
3and %3. Indeed, within the cone D, we

control the sign of the first derivative but not the sign of the second. This suggests that it could

be valuable to explore the stochastic order %3over the cone of "concave" random variables.

6 Appendix

Proof of Proposition 3: Since %2⊂ %3 and %∗∗2 = %2, we obtain %2⊂ %∗∗3 . We now prove that

%∗∗3 ⊂ %2. Let x, y ∈ K with x %∗∗3 y, i.e.

Fu,z(λ) =
nX
i=1

u(λxi+(1−λ)zi)−
nX
i=1

u(λyi+(1−λ)zi) ≥ 0 for all z ∈ K,u ∈ U3 and λ ∈ [0, 1] . (3)

Since Fu,z(0) = 0, (1) implies:

F 0u,z(0) =
nX
i=1

u0(zi)(xi − yi) ≥ 0 for all z ∈ K and u ∈ U3. (4)

Let

ut(w) =

 tw − w2

2 if w ≤ t

t2

2 if w > t

zi = t− � for all i = 1, ...., k and zi = t+ � for all i = k + 1, ...., n for some t > 0 and 0 < � < t.

Since ut ∈ U3, we deduce from (2)

kX
i=1

xi ≥
kX
i=1

yi
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as desired.¤

Proof of Proposition 4: Let x, y ∈ K; x %∗3 y is equivalently formulated as:

Fu(1) ≥ Fu(λ) ≥ Fu(0) for all u ∈ U3 and λ ∈ [0, 1] (5)

where:

Fu(λ) =
nX
i=1

u(λxi + (1− λ)yi).

To proceed, we need the following claims:14

Claim 1: (5) is equivalent to F 0u(1) ≥ 0 for all u ∈ U3

Proof of Claim 1: Necessity follows immediately from (5). To prove sufficiency let u ∈ U3.

Since

F 00u (λ) =
nX
i=1

u00(λxi + (1− λ)yi)(xi − yi)
2

it follows that Fu is concave on [0, 1]. Therefore, if F 0u(1) ≥ 0 then F 0u(λ) ≥ 0 and (5) follows.¤

Claim 2: Every u ∈ U3 is the uniform limit of positive linear combinations of functions ut where

ut(w) =

 tw − w2

2 if w ≤ t

t2

2 if w > t.

By combining the two claims and noting that u0t(w) = Max(t − w, 0) for all t > 0, we deduce

that x %∗3 y if and only if:

Φ(t) ≡ F 0ut(1) =
nX
i=1

Max(t− xi, 0)(xi − yi) ≥ 0 for all t > 0

14The proof of claim 2 appears in Le Breton (1987).
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Φ is linear on the intervals [0, x1] , [x1, x2] , ....., [xn−1, xn] and [xn,+∞[. Therefore Φ(t) for all

t > 0 if and only if:

Φ(xk) ≥ 0 for all k = 2, ...., n and Φ0(t) ≥ 0 on [xn,+∞[ .

Note that:

Φ(xk) =
k−1X
i=1

(xk − xi)(xi − yi).

By using the Abel’s trick, we deduce:

Φ(xk) =
k−1X
i=1

(xi+1 − xi)(Xi − Yi).

The last inequality in Proposition 4 follows from the fact that Φ(t) = t(Xn−Yn)−
Pn

i=1 xi(xi−yi)

and therefore Φ0(t) = Xn − Yn.¤

Proof of Proposition 6: Let x, y ∈ K; if x %tl
3 y then we deduce:

F 0u(0) ≥ 0 for all u ∈ U3. (6)

Proceeding as in the proof of Proposition 4, we deduce that (4) holds if and only if:

Ψ(t) ≡
nX
i=1

Max(t− yi, 0)(xi − yi) ≥ 0 for all t > 0

the rest of the proof follows the last step in the proof of Proposition 4 and is omitted.¤

Proof of Proposition 7: Let x, y ∈ K. As in the proof of Proposition 4, x %∗3 y is equivalent

to:

F 0u(1) ≥ 0 for all u ∈ U3

where:
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Fu(λ) =

Z 1

0
u(λx(t) + (1− λ)y(t))dt.

Let u be three times continuously differentiable.15 Since

F 0u(1) =
Z 1

0
u0(x(t))(x(t)− y(t))dt

integrating by parts, we obtain:

F 0u(1) = u0(x(1))(X(1)− Y (1))− u00(x(1))( bX(1)− bY (1)
+

Z 1

0

³
u000(x(t))x0(t)2 + u00(t)x00(t)( bX(t)− bY (t)´ dt

Since u0 ≥ 0, u00 ≤ 0, u000 ≥ 0 and x00 ≤ 0, the conclusion follows. ¤

7 References

Atkinson, A.B. (1973) “More on the Measurement of Inequality” Mimeo.

Baucells, M. and L.S. Shapley (1998) "Multiperson Utility", UCLA, Mimeo.

Bawa, V.S. (1975) “Optimal Rules for Ordering Uncertain Prospects”, Journal of Financial

Economics, 2, 95-121.

Davies, J.B. and M. Hoy (1994) ”The Normative Significance of Using Third-Degree Stochatic

Dominance in Comparing Income Distributions”, Journal of Economic Theory, 64, 520-530.

Davies, J.B. and M. Hoy (1995) ”Making Inequality Comparisons when Lorenz Curves Inter-

sect”, American Economic Review, 85, 980-986.

Dubra, J., Maccheroni, F. and E.O. Ok (2004) ”Expected Utility Theory without the Com-

pleteness Axiom”, Journal of Economic Theory,115, 118-133.

Feldstein„ M.S. (1976) ”On the Theory of Tax Reform”, Journal of Public Economics, 6, 77-104.

15This is without loss of generality since any u in U3 can be uniformly approximated with such functions within

the class U3. A proof of this fact and similar approximation statements can be found in Le Breton (1986).

23



Fishburn, P.C. (1982) The Foundations of Expected Utility, Dordrecht: D. Reidel Publishing

Company.

Fishburn, P.C. (1982) “Moment-Preserving Shifts and Stochastic Dominance”, Mathematics of

Operations Research, 7, 629-634.

Fishburn, P.C. (1985) ”Third-Degree Stochastic Dominance and Random Variables”, Economic

Letters, 19, 113-117.

Guesnerie, R. (1977) ”On the Direction of Tax Reform”, Journal of Public Economics, 7, 179-

202.

Hardy,G.H., Littlewood, J.E. and G. Polya (1934) Inequalities, Cambridge University Press,

Cambridge.

Kolm, S.C. (1976) ”Unequal Inequalities II”, Journal of Economic Theory, 13, 82-111.

Le Breton, M. (1986) ”Essais sur les Fondements de l’Analyse Economique de l’Inégalité”, Thèse

de Doctorat d’Etat, Université de Rennes.

Le Breton, M. (1987) ”Stochastic Dominance: A Bibliographical Rectification and a Restate-

ment of Whitmore’s Theorem”, Mathematical Social Sciences, 13, 73-79.

Le Breton, M. (1994) ”Inequality, Poverty Measurement and Welfare Dominance ; An Attempt

at Unification” in W. Eichhorn (Ed), Models and Measurement of Welfare and Inequality, Springer-

Verlag, Berlin.

Marshall, A.W. and I. Olkin (1979) Inequalities: Theory of Majorization and Its Applications,

Academic press, London.

Menezes, C., Geiss, C. and J. Tressler (1980) ”Increasing Downside Risk”, American Economic

Review, 70, 921-932.

Muliere, P. and M. Scarsini ((1989) ”A Note on Stochastic Dominance and Inequality Measures”,

Journal of Economic Theory, 49, 314-323.

Newbery, D.M. (1970) ”A Theorem on the Measurement of Inequality”, Journal of Economic

Theory, 2, 264-266.

Shorrocks, A. (1983) ”Ranking Income Distributions”, Economica, 50, 3-17.

24



Shorrocks, A. and J.E. Foster (1987) ”Transfer Sensitive Inequality Measures”, Review of Eco-

nomic Studies, 54, 485-497.

Trannoy, A and C. Lugand (1992) ”L’Evolution de l’Inégalité des Salaires dues aux Différences

de Qualifications: Une Etude d’Entreprises Françaises de 1976 à 1987”, Economie et Prévision,102/103,

205-220.

Weymark, J.A. (1981) ”Undominated Directions of Tax Reform”, Journal of Public Economics,

16, 343-369.

Whitmore, G.A. (1970) ”Third-Degree Stochastic Dominance”, American Economic Review,

60, 457-459.

25



Figure 1

•

Z

y
x



βα

α
H

B

O

A.C 
D

K

Figure 2

B

C’

G

Strong TSD

A

C 

O

L

O

H

D

TSD

Box 1: Independence
Property


