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Abstract

This paper studies the design of a pay-as-you-go social security system in a society
where fertility is in part stochastic and in part determined through capital investment.
If parents’ investments in children are publicly observable, pension benefits must be
linked positively to the the level of investment, and payroll taxes negatively to the
number of children. The outcome is characterized by full insurance with all parents,
regardless of their number of children, enjoying identical consumption levels. Without
observability, benefits must increase, and payroll taxes decrease, with the number of
children. The second-best level of investment in children, and the resulting average
fertility rate, are less than their corresponding first-best levels.

JEL classification: H55; J13.
Keywords: pay-as-you-go social security, endogenous fertility, storage, moral hazard,
Samuelson’s condition.



1 Introduction

The recent fertility decline in the West is often cited as a major impediment to the fiscal
solvency of pay-as-you-go (PAYGO) social security systems. At the same time, the pay-
as-you-go feature of the social security systems has partly been blamed for causing the
observed fertility decline. The reason for this latter linkage is that in such systems,
the size of a person’s pension benefits depends on everybody else’s fertility decisions
leading to a decentralized equilibrium outcome with too few children. This problem is
exacerbated by another externality problem associated with the “quality” of children,
and their human capital accumulation, through educational decisions of the parents.
The rate of return of a pay-as-you-go system depends not just on the fertility rate, but
also on productivity growth. The more productive the children, the higher will be their
ability to produce and to pay taxes. This reinforces the public good nature of a family’s
child-rearing activities. It is not surprising then that some economists have recently
advocated a policy of linking pension benefits (or contributions) to individuals’ fertility
choices.!

Such a policy raises a number of objections, however. What truly determines fer-
tility, and what accounts for the observed evolution in fertility behavior, are still open
questions. What is clear though is that no one can fully control fertility. The actual
number of children in a family does not necessarily coincide with the number the parents
initially intended to have. Infertility, premature death, misplanning and multiple births
are some of the reasons explaining this gap. Similarly, one cannot deterministically
determine the future earning abilities of children simply by investing in their education
and training. Making benefits independent of the number of children can then be viewed
as a mechanism to insure parents against these various random shocks.

This paper studies the design of pension systems in a setting that takes into account
the gap between intended and actual quantity, and quality, of children, the implicit free
riding, and the non-observability of effort. We use a two-period model in which the

actual “number” of children is in part the result of some early investment decisions the

' Abio et al. (2004), Bental (1989), Cigno et al. (2003), Fenge and Meier (2004), Kolmar (1997), van
Groezen et al. (2000, 2003).



prospective parents make at the beginning of the first period. However, the number of
children is observed early and the parents can adjust both their first and the second
period consumption levels accordingly. We do not specifically distinguish between fer-
tility and education decisions. Instead, we lump the investments in quantity and quality
together as if one decision determines both. In doing this, we use the concept of number
of children in “efficiency units” which is widely used in growth theory.?

There are two underlying agency problems here: adverse selection and moral hazard.
Adverse selection problem arises if individuals differ in child-rearing ability, or in taste
for children. To simplify matters, and to distinguish between the implications of the
two, here we focus on the moral hazard issue leaving the adverse selection considerations
to another paper.® This allows us to work with (ex-ante) identical individuals.

If fertility were fully deterministic, the moral hazard (incentive) problem could easily
be overcome and all individuals enticed to choose the socially optimal first-best number
of children. On the other hand, if fertility were fully random, there would be no moral
hazard (incentive) problem and the optimal social security system fully insures parents
against the fertility uncertainty. When fertility is determined in part through investment
and in part through random elements, there naturally arises a question as to the possible
tradeoff between full insurance and incentive considerations. In a first-best environment

P4

when the parents’ “effort levels” in having and raising (productive) children are publicly
observable, however, one may be able to achieve both objectives. We show that this
is the case. We also show that the decentralization of the first best requires pension

benefits to be linked positively to the parents’ level of investment in children (and not

2The key distinguishing element between quantity and quality decisions is one of timing. The number
of children born is known quite early; the quality of children (i.e. their future earning capacity) is
determined much later. To account for both features one needs a model with at least three periods of
decision making. This makes the problem more complicated than necessary. Concentrating on a setting
with two periods of decision making, as opposed to three, simplifies the modeling substantially. Cigno
and Luporini (2003) have a three-period model; however they do not optimize over tax instruments.

3See, Cremer ef al. (2004). The moral hazard problem has also been studied by Sinn (2004), though in
a different setting, and Cremer et al. (2003). That paper was based on two very restrictive assumptions
which we drop here. First, we had ignored all possibilities for private savings, assuming that the only
mechanism for transfer of resources to the future is (except for possible “voluntary” arrangements
between parents and children whereby children help their retired parents with the expectation that
their own children would help them) a PAYGO public pension system. Second, we had assumd that
the number of children is observed late in the first period so that the first-period consumption could
not vary with the number of children.



to their number), coupled with payroll taxes that vary inversely with the number of
children.

When the parents’ investment in children is not publicly observable, a tradeoff be-
tween insurance and incentive considerations surfaces. We prove that in this case, the
optimal level of investment in children, and the resulting average fertility rate, are less
than their corresponding first-best values. To attain the second-best, one must institute
a pay-as-you-go pension plan under which benefits increase, and payroll taxes decrease,
with the number of children. Moreover, families with more children should be more
than compensated for the extra cost of children so that they will enjoy a higher level
of first-period consumption. Interestingly, with the exception of the last finding, these
results carry over to situations where payroll taxes cannot depend on the number of
children.

Finally, we examine how the endogeneity of fertility modifies Samuelson’s classic
requirement for optimality of PAYGO pension plans.* To do this, we assume that
individuals can transfer resources to the future using a storage technology with a fixed
rate of return. We show that the possibility of investing in fertility, and thus making this
technology more productive, implies that PAYGO will dominate storage over a higher
range of returns. This will be the case in both first- and second-best environments;

however, this range will be smaller in the second best.

2 The basics

Consider a two-period overlapping generations model in the steady state. Each genera-
tion consists of a continuum of identical individuals. The young have fixed endowments
y and the old live on pensions. Preferences of the young depend positively on their con-
sumption in the first period, ¢, and their consumption in the second period, d. A parent
can have either nj or ns children, with no > n;. The actual realization of n; depends

on an initial “investment in children,” k, and on some random shock.’ Thus when a

*This is when the population growth rate (what Samuelson™(1958) called the “biological” rate of
interest), which is assumed exogenous, exceeds the interest rate.

5The investment may be construed as an investment to enhance “quality” as well as “quantity” of
children. With this interpretation, one should think of n; as being measured in “efficiency units”.



parent invests k, he will have ng children with probability 7 (k) where 0 < 7 (k) < 1 and
7' (k) >0 (7" (k) <0 and 7 (0) > 0). Naturally, the probability of having ny children
is given by 1 — 7 (k). Whenever it makes the notation simple, we substitute s (k) for
7 (k) and 71 (k) for 1 — 7w (k). The cost of having children is not limited to the initial
investment k. There are other costs that vary proportionately (at the rate of 6 > 0) to
the actual number of children. These costs are also borne in the first period.

To keep the model simple, assume that preferences over (¢;, d;), i = 1,2, are rep-
resented by an additive utility function. Consequently, at the beginning of the first
period, the expected utility of the young (i.e. future parents) is written as

2

U=> mi(k)[ulc)+v(d)], (1)

i=1
where u () and v (-) are strictly concave functions.

There are two potential mechanisms for financing second-period consumptions: stor-
age or a PAYGO pension plan. Under the storage technology, part of the initial en-
dowment is invested yielding a fived rate of return, .5 Under a PAYGO scheme, the
government collects taxes from the current young and distributes the proceeds to the

retired. With the young having, on average,
ﬁ(k‘) =T (k)m + o (ki)ng

children, the PAYGO rate of return is 7 (k) — 1. This corresponds to what Samuelson

called the biological rate of interest.

2.1 Laissez faire

Absent any government intervention, each individual maximizes his expected utility
subject to two budget constraints, one of which becoming relevant ex post, depending
on the number of children. The Lagrangian expression associated with the individual’s
problem is
cL—Z{mk) o (ci) + 0 ()] + A |y — e — = —k—nzﬂ]}.
147

7

5The rate of return is net of any “capital depreciation”.



It follows from the first-order conditions of this problem with respect to ¢; and d; that

’U’(di)_ 1 -
m—l_i_r, 2—1,2. (2)

This is the classic condition for optimal intertemporal consumption. We also have

oLy

i = )l e2) o (d2) —uen) v ()] = 3 i (W) () )

Observe that individuals with n; children have higher disposable incomes, net of
the cost of children, than individuals with ng children. It follows that u (c2) 4+ v (d2) >
u (c1)4v (dy) : utility is higher with ny children than with na. From (3) one then obtains
that 0L, /0k < 0 and

kr, = 0. (4)

That under laissez faire k£ = 0, should not be surprising. Children bestow no utility on
their parents so that there is no reason to invest in them (given that they are costly to
have).”

Having characterized the equilibrium under laissez faire, we next characterize the

first-best solution for this economy and then turn to the second best.

3 The utilitarian first-best

Assume first that the social planner has perfect information, particularly with respect
to the individuals’ investment levels in children k£, and that he controls all the relevant
variables in the economy. The planner determines which technology, storage or PAYGO,
is used to finance old-age consumption and sets ¢;, d; and k accordingly. He maximizes

the sum of steady-state lifetime utility

W = Zm i)+ v (dy)], (5)

"The individual’s problem has been set up on the assumption that there are no private insurance
markets. If individuals can buy fair insurance, they will pool their resources together and thus maximize
their expected utility subject to the single budget constraint

d;
Zm(k) {y—i 1+r_k On;| .

In this case, one can easily show that we will continue to have k = 0, but that ¢ = c2 and di = da.




subject to two alternative resource constraints:

;Wz‘(k) [?J—Cz‘—%—k—ﬂﬂ}:o, (6)

zz:m(k) {y—ci—%—k—nzﬂ]—o. (7)
We will see below that it will never be optimal to use both technologies simultaneously.
The first constraint holds when one saves for his own second-period consumption; the
second when old-age consumption is financed through a PAYGO scheme with 7 (k) =
71 (k)ny + m2 (k) n2.® The planner’s problem is best solved sequentially. First, we
find the optimum conditional on the use of storage and PAYGO technologies; then we

compare the levels of welfare achieved at these two conditional optima.
3.1 Storage

Under the storage technology, the planner maximizes (5) subject to the resource con-
straint (6). Deriving the first-order conditions of this problem, one can easily establish
that ¢1 = co = ¢; di = d2 = d. Thus, not surprisingly, consumption levels are equalized

across types. The problem can then be written as

max Ws=u(c)+v(d), (8)
st y-— —1jl_r—ﬁ(k;)020. )

Z/’((Cci; - 1%1—7‘7 (10)
and
kS =0. (11)

Equation (10) is the optimality condition for intertemporal consumption with the rate of

return 7 on storage. It is also similar to the expression (2) under laissez faire. Condition

8 As is well-known, one can always increase the steady-state utility level through the imposition of
lump-sum taxes on the old and distributing the proceeds to the young (also in a lump-sum manner).
However, such increases in steady-state utility are made at the expense of the old generation alive when
the policy is instituted. These issues are not pertinent to the main point of this paper and are ignored
in our discussions.



(11) obtains because 0Wg/0k < 0 (when incorporating the budget constraint). It is
identical to condition (4) under laissez faire.” As in there, increasing & has only costs and
no benefits.! The values of ¢ and d that solve this problem depend on (the exogenous)
value of r, as does the associated level of welfare, W§(r). Moreover, it follows directly

from (9) that W is an increasing function of r.
3.2 PAYGO

The problem of the social planner under a PAYGO pension plan is to maximize (5)
subject to the resource constraint (7). In this case too, one obtains ¢; = ¢o = ¢ and

d1 = dy = d. The Lagrangian expression of the problem can then be written as

Lp= [u(c)—l—v(d)—i-u(y—c_%—k‘_ﬁ(k’)e)]7

with ¢, d and k as decision variables. One obtains the following optimality conditions'

v'(d) 1

1

u' (c) m’ (12
and -
‘5?_;_ [" T(Zz)d—l—ﬁ’(k)ﬂ] —0. (13)

Equation (12) is the counterpart of (10) with 7 (k) — 1 as the net rate of return on
“savings”. The optimal level of investment in children, &, is determined according to
the tradeoff stated in equation (13). This condition requires that the cost of increasing
k, which includes the extra cost of children 7’ (k) 6, equals the benefits associated with
the induced increase in the return to PAYGO. The level of welfare achieved at the
PAYGO solution is denoted by Wp.

3.3 PAYGO versus storage

To determine the first-best solution one must compare the levels of welfare attained

at the two conditional optima. First, observe that both conditional solutions imply

9The solution is thus identical to that under laissez faire with full private insurance.

10This extreme result holds because, as with the laissez faire solution, there are no direct benefits
associated with having children in this setting. To capture such benefits, one may include n as a separate
argument of the utility function. It would then be possible to have k% > 0.

"'The first-order condition with respect to k is for an interior solution. If we have a corner solution
k = 0, the solution is identical to a case with exogenous fertility and one is back to the original Samuelson
formulation.
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Figure 1: Figure 1: Optimal allocations with storage and PAYGO technologies

equalization of consumption levels across types. The parents are fully insured for the
uncertainty they face over the number of children they will have. Given this common
property, it is intuitively obvious that the choice between the technologies must depend
solely on their respective “rates of return”. Specifically, when 147 > 7 (kP) , the storage
technology dominates. Its return is at least as high as that of PAYGO, but it does not
require the initial investment k. Put differently, the rate of return for PAYGO must be
higher than the rate of return on storage to compensate for the investment k. When
1+ 7 < n(kP), the choice between the two technologies is more involved. This is best
explained using a graphical representation in the (¢, d) plane; see Figure 1.

Let o represent the optimal allocation between ¢ and d under PAYGO. It corre-
sponds to a point of tangency between an indifference curve and the resource constraint

originating from y — k¥ — 07 (kP) (endowment minus total cost of children) with a slope



(in absolute value) of 71 (k") . Define 7 as the rate of return on storage at which first-best
welfare level under storage equals its PAYGO level: W§(7) = Wj. Graphically, 1 + 7 is
the slope of the budget line (under storage) with horizontal intercept of y — 67 (0) and
which is tangent to the indifference curve corresponding to W5.'? One attains the same
utility level under storage at point 3, with more first-period and less second-period con-
sumption. Observe also that [ is not available unless everyone is subjected to PAYGO.
That is, it is not optimal to use the two technologies simultaneously. With r > 7, society
would opt for the storage technology and the solution . With r < 7, the demographic
technology dominates storage.

The above discussion reveals how endogenous fertility modifies the Samuelsonian
condition for instituting a PAYGO system. Denote the level of welfare under a PAYGO
system with an exogenous rate of return equal to 7(0) — 1 by Wy. Clearly, Wy < Wp.
Now, with W{(r) being an increasing function of r, the value of  that equates the rate
of returns on storage and PAYGO technologies in a Samuelsonian world, 7 = n(0) — 1,
must be less 7. It then follows that for all 147 € (7(0), 1 + #) one would use the storage
technology when fertility is exogenous and PAYGO when fertility is endogenous; see
Figure 2.13 Put differently, the endogeneity of n creates more possibilities for PAYGO
to outperform storage. Clearly, the more productive is investment in children, the larger
will be the region where PAYGO dominates storage (W} will be greater and 147 moves
to the right). On the other hand, the cost of investment in children works to diminish

the advantage of PAYGO. When this cost is high, W} will be smaller and (7(0),1 + 7)

12The graphical representation, and the comparison between 1+r and 7 (lcP ) , assume no initial fixed
investment costs in the storage technology. This is inconsequential; its only import being # < 7o (kP) —1:
the critical technology-switching rate of return on storage is less than the PAYGO rate of return.
Allowing for initial investment cost in storage may change this conclusion; but that is all that it may
do. To see this, let k% denote the cost of investment in storage. This changes the position of y — 07 (0)
intercept to y — k° —6n (0) . No further modification is called for as long as k° +6n (0) < k” +60n (k7).
On the other hand, if k% 4 67 (0) > k* + 6n (k") , the y — k° — 072 (0) intercept will be to the left of
y — k¥ — 0n (k”) intercept so that the line that originates from y — k° — 6n (0), and is tangent to the
indifference curve corresponding to Wp at 3, will have a steeper slope in absolute value than 7 (kp) (the
absolute value of the line through y — k¥ — 67 (kP) and tangent to the same indifference curve). In this
case, 8 will be above and to the left of . Consequently, one chooses PAYGO whenever 14+ <7 (k:P) .
Otherwise, if 1+7r > 7 (kp) , one will opt for one or the other technology depending on how r compares
with 7. Put differently, one must have 7 > n (kp) — 1. This will not change any of our conclusions.

!3This assumes an interior solution for k. With a corner solution at k = 0, 2(0) = 1 + # and the
original Samuelsonian condition remains intact.
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(welfare: W5 = W§(7)) (welfare: W§(r))
I : : 147
1 n(0) 1+ 7

Figure 2: The choice between storage and PAYGO.
shrinks.
3.4 Decentralization of the optimum

We now briefly examine how the first-best optimum can be decentralized. With the first-
best consumption levels (in both periods) being independent of the number of children,
one may think of the decentralized solution as offering individuals full insurance against
the risk (from a personal perspective) of having many children. When the storage
technology dominates PAYGO, it suffices to compensate those with no children for
their extra cost of (ny —mn1)6. This is achieved by levying a lump-sum tax equal to
(ng —mq1)0/2 on parents with n; children, and giving the proceeds to parents with ns
children. Such a tax and transfer policy fully insures the parents while satisfying the
government’s budget constraint.

When PAYGO dominates storage, decentralization is somewhat more intricate.
First, in order for the payroll taxes (7;’s) and pension benefits (FP;’s) to satisfy the
government’s budget constraint, and with 7 (k) young individuals for every old person,
we must have n(k) Y m; (k) T; = > m; (k) P;. Second, as with the storage technology,
the individualized payroll taxes must satisfy 71 — T5 = (na — n1) 0 in order to equalize
first-period consumption levels. Third, to equalize second-period consumption levels,
pensions will have to be independent of the number of children: P, = P, = P. Finally,
we also need to induce the “correct” level of investment in children and ensure that

there are no private savings.

4 These conclusions are independent of the size of the initial investment in storage technology. This
is because such investments are present whether or not fertility is endogenous. On the other hand, the
cost of investment in fertility technology does not exist in the Samuelson model.

10



If there are no benefits associated with investment in children, no one will choose
a positive level of k. To ensure some investment, pensions must in part be conditioned
on k. Specifically, let k¥ and d¥ denote the (PAYGO) first-best values of k and d. Set
P = P+ kn(k?) where P is fixed and satisfies P + k¥ i(k?) = d¥. It is easy to show
that under this pension scheme, and with the “appropriate” choice of T7 and T5, all
individuals would choose k = kP, opt for zero private savings (negative savings are not
allowed) and choose d”” and ¢ as well (¢ is the PAYGO first-best value of ¢). A subsidy
on k at the rate of m(k”) — 1 per unit of k (a gross return of m(k"’) ) is necessary because
any given individual’s choice of k has no impact on the aggregate k and thus on 7(k),
the rate of return of the PAYGO system. Put differently, an individual’s investment
in children creates a positive externality. Consequently, unless there is a (Pigouvian)
subsidy, individuals will set k£ at zero and there will be no investment in children.

Observe that the Pigouvian subsidy is set at a rate that brings the private cost of
investing in k£ equal to its social cost which is one. To see this, recall that in the above
scheme the subsidy on k is paid in the second period as part of one’s pension benefits.
Discounted to the first period (with a discount rate of 1/m(k")), its value will be equal
to 1—the marginal cost of k. Observe also that, at the optimal solution, the marginal
cost of k equals the marginal (net) social benefits of k. One can see this by rewriting

(13) as

where the right-hand side of this expression is the net social marginal benefit of k. Its
first terms measures the induced impact on the return of PAYGO, while the second
terms represents the extra cost of raising children.

We summarize the results of this section as

Proposition 1 (i) The first-best allocation under storage requires that parents do not
invest in fertility, have equal consumption levels regardless of their number of children
in both periods of their lives, and that their first- and second-period consumption levels
satisfy the classic condition for intertemporal consumption at a rate of return determined

by the storage technology. The allocation can be decentralized by levying a lump-sum tax

11



equal to (ng —ny)@/2 on parents with ny children, and giving the proceeds to parents
with ny children.

(ii) The first-best allocation under PAY GO requires that parents make an investment
in fertility equal to kP, the solution to equation (13), have equal consumption levels
regardless of their number of children in both periods of their lives, and that their first
and second period consumption levels satisfy the condition for intertemporal consumption
at the rate of m(k*). The allocation can be decentralized by linking pension benefits, P,
to investment in children according to P = P + kn(k") where P is fived and satisfies
P+ kPR(kT) = dP (the superscript P denotes a PAYGO first-best value), coupled with
individualized payroll taxes that satisfy Ty — T = (ng —n1) 0 > 0 and the government’s
per period budget constraint, > m; (k) T; = > mi (k) P;/n(k).

(i1i) Let 7 denote the rate of return on storage at which first-best welfare level under
storage equals its PAYGO level. Then, for all v < ¥, PAYGO dominates storage and
for all r > 7, storage dominates PAYGO.

(iv) For all 1 +1r € (n(0),1 4+ 7) one would use the storage technology when fertility

is exogenous and PAYGO when fertility is endogenous.

4 Second-best solution

The first-best characterization rests on the assumption that the government can control
k fully, either directly or through a subsidy. This will be the case if & (and thus ¢) are
publicly observable. When the observability assumption is not satisfied, one will be in
a second-best environment. Under this circumstance, the full insurance prescriptions of
a first-best world may not hold. We shall examine this question below.

Assume that k and ¢ are not publicly observable but n;’s (i = 1,2) are. Public policy
consists of either a tax system while letting the young save for their own retirement;'®
or a pension plan through which the government collects taxes from the current young

and distributes the proceeds to the retired. With n;’s being publicly observable, taxes

T;’s and transfers P;’s may be conditioned on the number of children. Whether or not

15 Alternatively, the government may institute a fully-funded pension plan, taxing away all savings,
investing (storing) the proceeds and distributing the investments and the returns as pensions.

12



this should be the case is an interesting policy question which this section attempts to
shed light on. Next section studies the settings where contributions and/or pensions

are required by law to be uniform.

4.1 Storage

Under the storage technology, the resource constraint is given by

Zm(k)[y—ci—lcjjr—k—m@ =0. (14)
%

This is identical to the first-best constraint. Most significantly, the unobservability of & is
of no relevance here. In particular, there is no reason why individuals should be induced
to choose a different level of k than they would do otherwise. Indeed, the (conditional)
first-best allocation of subsection 3.4 (which requires equalization of consumptions levels
for parents with different number of children) is attainable as long as tax payments are
not restricted to be uniform. As in the first-best, this is done through levying a lump-
sum tax equal to (ng —n1)60/2 on parents with n; children, and giving the proceeds
to parents with ng children. The investment level k is set at zero which is in line with
individual incentives. Summing up, with storage and state-dependant contributions,

the (conditional) first- and second-best solutions coincide.

4.2 PAYGO

Recall that the first-best outcome entailed two properties: full insurance plus an optimal
choice of k such that, given an exogenous rate of return on storage equal to r, m(kP) >
147 > 1+ r. With £ being directly “under control,” the planner could set it at its
optimal level without one having to forgo the full insurance property. In a second
best environment, k can no longer be directly controlled and keeping the full insurance
property is consistent with k = 0 only. Second-best optimality may then require trading
off the full insurance property for a positive choice of k (although not at its first-best
value). We will see below this is precisely the outcome when one can control & only

indirectly, through the incentives that the pension scheme provides.

13



The young’s problem, when facing the policy instruments 77,75, P; and P, is

maXe, ;U= (1= n(k))[u(cr) +v(d)] + 7(k)[u(ca) + v(da2)], (15)
s.t. c=y—k—T;,—6n; 1=1,2, (16)
d; = P; i=1,2. (17)

This yields the following first-order condition for an interior solution for k,
Tr'(k‘){u(CQ) +u(d) — [u(er) + v(dy)] } — (1= 7(k))t (1) — w(k)u/(ca) = 0. (18)

Naturally, the second-order condition A = (d2U/dk?)| p—i < 0 must also be satisfied; we
shall assume throughout the paper that this is the case.'

The first term on the left-hand side of (18) measures the benefit (for the individual)
of increasing k, while the second term measures the cost. Not surprisingly, an interior
solution requires marginal benefits to equal marginal costs. Observe that when the
left-hand side of (18) is non-positive at k& = 0, we have a corner solution and the
individual does not invest in k. This occurs for instance when ¢; = ¢y (i.e., when
Ty —To = 6(n2 — n1)) and d; = da. The solution to the individual’s problem, denoted
by E(Tl,Tg, Py, P,), describes all possible values of k that the government can induce
through its choice of 17,15, P; and P». The following lemma establishes the comparative
static properties of E(Tl, Ty, Py, P,), which will prove useful in studying the government’s

problem.

10We have

A = 7;’,’((:)) Z ’/Ti(k')ul(c'i) + 27r'(k) [U/(Cl) _ U/(Cg)] + Z Tri(k)u/l(()i).

The first and the last expressions in the right-hand side of above are negative due to concavity of u(.)
and 7(.) Consequently, as long as cz does not exceed ¢1 by “much”, A will be negative. A sufficient
condition is ¢1 > ¢z = T1 — T2 < O(na2 — n1).

14



Lemma 1 If E(Tl,Tg, Py, Py) is given by an interior solution,

g%: MMMMTESMMW%ﬂgo (19)
;% _ —ﬂummingwmm@)<0 (20)
LAY o)

At a corner solution, k = 0 and all partial derivatives of k are also equal to zero.\”

The inequality signs are as expected. The ambiguity of the first derivative is due
to the conflicting income and incentive effects of increasing 7. For simplicity we shall
concentrate on the “normal” case which occurs if Ok /0T > 0.

Consider now the government problem. A first ingredient is the resource constraint.

With 7 (k) young individuals for every old person, this is given by
(k) [(1 —7(k)T1 + 7 (k)T2] = (1 — n(k)) Py + 7(k)Pa. (23)

Equation (23) is a rewriting of (7) in terms of the second-best policy instruments. It
requires that total contributions equal total pension benefits. A second element is the
constraint that k = E(Tl, T5, P1, Py) which reflects the government’s indirect control of
the level of investment in children. The conditional second-best problem for the PAYGO

case is then summarized by the Lagrangian

% = (1—m(k)[u(er) +v(dr)] + 7 (k) [u(ca) + v(dy)]
+ {1 = 7(k)@(E)Ty — Pr) + m(k)(Am(k)Ty — P2)}

+ n[k(TlaT2>P1>P2)_kj|a

17 At the transition between these two regimes k may not be differentiable (even though it is continuous
as long as the second-order condition holds). We ignore this technical difficulty for the sake of simplicity.
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where d; = P; and ¢; =y — k — T; — 0n; (i = 1,2). The first-order conditions are'®

o = ) —(er)] + e =0, 21
O = (k) — ] + o =, (25)
o = (=)~ )+ e = (26)
o = /() i+ n% o0, (21)
88—I: = pf = A (R)@E)TL — dy) + (1 — 7(k)) T1(ng — ny)w’ (k)

+ (k) (m(k)Ty — dg) + (k)T (ng — n1)7r'(k;)} —n=0. (28)

Recall that the definition of E(Tl,Tg, Py, Py) encompasses both interior as well as
corner solutions (of the individuals’ problem). We start by considering the case in which
the optimal policy induces an interior solution for k. The case of k = 0 will be discussed
later.

4.2.1 Interior solution for k

The first-order conditions (24)—(28) indicate that the properties of the second-best solu-
tion depend crucially on the sign of 7. To the extent that k entails a positive externality
so that the individuals tend to choose a level of k& that is “too low”, one would expect
1 > 0. The following lemma shows that this is effectively the case, as long as 8%/ 011 >0
holds.

Lemma 2 If 0k/8Ty > 0, then n > 0.

Proof. The proof is by contradiction. Assume 1 < 0. Then the first-order conditions
(26)—(27), together with the concavity of v(-), imply da2 < d;. Similarly, (24)—(25), the
assumption that 87-5/ 0Ty > 0 and the concavity of u(-) result in ¢z < ¢;. Given these
two inequalities, it follows directly from (18) that one cannot have an interior solution

for k, and we have a contradiction. m

181n calculating O1'° /Ok, we have utilized the individual’s first-order condition (18).
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We are now in a position to study the properties of the second-best solution. We are
particularly interested in the relationship between payroll taxes and pension benefits
on the one hand, and the number of children on the other. Consider the benefits first.
With 1 > 0, it follows from (21) and (26) that v'(dy) — p > 0, and from (22) and (27)
that v'(d2) — p < 0. The concavity of v(.) then implies do > d;. Regarding payroll
taxes, with 9k/9T) > 0, expression (20) and equations (24)—(25) yield ym < /(c1) and
um > u'(cg). Concavity of u(.) then implies co > ¢1, so that 71 — T > 6(ny — ny) > 0.

The following proposition summarizes the second-best results under storage and

PAYGO.

Proposition 2 (a) Under storage the (conditional) first- and second-best solutions co-
incide.

(b) Assume an increase in payroll taxes on parents with small number of children
increases (or leaves unchanged) their investment in children (9k/8Ty > 0). Then in the
second-best allocation under a PAYGO pension system: Benefits should increase with the
number of children (Py > P ); payroll tazes must decrease with the number of children;
families with a higher number of children are more than compensated for the extra cost
of children (Ty — Ty > 6(na2 —n1) > 0, and ca > c1); the investment in children, and the

resulting average fertility rate, are less than their corresponding first-best levels.

To interpret these results, recall that the first-best solution requires full insurance:
consumption levels of the young and the retired are independent of the number of
children. In a first-best setting, this is provided without preventing k to also be set at
its optimal level. As shown earlier, one could induce an optimal level of k, a publicly
observable variable, by linking pension benefits to it. When & is not observable, this
procedure is no longer feasible. Instead, pension benefits, and contributions, may be
linked to the number of children which are observable, and whose realization can be
influenced by k.

Specifically, if contributions and benefits entail full insurance, individuals will have
no incentive to invest in children and £ = 0. To induce a positive k, contributions and

benefits must be linked to the number of children. In consequence, one loses the full
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insurance property. The optimal policy then strikes a balance between insurance and
incentive considerations. Roughly speaking, if one were to think of k as effort, we have
a moral hazard problem which calls for less-than-full insurance. It is thus not surprising
that do > dy and co > c¢;. The higher consumption levels for parents with a greater
number of children, works as an incentive mechanism to induce positive investment in
children. Observe that co > ¢; does not just require 71 > 75, it calls for the stronger
condition 71 —T5 > 6(n2—nq). In words, a higher number of children implies a reduction
in benefits larger than the extra cost of children. This may appear surprising at first,
but it is easily understood by realizing that when 77 — 75 < 6(n2 — n1), one can gain
on both the insurance and incentive fronts by widening the gap between T and T5.

As a final observation, manipulate the first-order conditions (24)—(27) to arrive at

(29)

The left-hand side of equation (29) denotes the marginal rate of substitution between
d;’s and ¢;’s. This was set equal to equal to 1/7(k), their relative “marginal costs”,
under first best; see equation (12). Consequently, the second best implies that the
individuals’ life-cycle consumption patterns are distorted. If the difference in the young’s
consumption levels is “close” to the difference in the old’s consumption levels (between
people with different number of children),'” the right-hand side of (29) is greater than
1/7(k). This means that the marginal rate of substitution between d;’s and ¢;’s increases
as one goes from first best to second best. Put differently, less resources are transferred

to the future for consumption in the second best relative to first best.

198pecifically,
-2 +aE) 1
k) + 2 (& + 2y k)
f%{w'(k) w/(er) — ' (e2)] + 7 (k)A(k) [V (d2) — o' (di)] + 3 wiku”(ci)}

(—A)a(k) + (k) + 2 (55 + 575)]
With dk/8Ty > 0, one can show that dk/OTy + dk/OT> > 0 so that the denominator is positive.

The numerator will also be positive as long as u'(c1) — u'(c2) > 0 is “close,” in absolute value, to

n(k) [v'(d2) — v'(d1)] < 0.
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4.2.2 Corner solution at k = 0

In describing an individual’s behavior facing the policy instruments 731,75, Py and P
under PAYGO, we pointed out that if the individual is induced to choose ¢; = ¢o and
P, = P, then he will opt for £ = 0. Similarly, one can deduce from the first-order
conditions (24)—(27) of the second-best problem, that if £ = 0 is the second-best choice
of k, optimality requires ¢; = co and P = P». Consequently, one faces the possibility
of having ¢; = ¢2, di = do and k = 0 as the second-best solution. To investigate this
possibility, evaluate OI'% /Ok at ¢1 = c3 = ¢, d; = dy = d, k = 0 and simplify.2’ We have

ors
ok

— _/(¢) + ' (0)(ng — 1) [% - en(())] .

One can see from this expression that 91" /0k may take a negative value at k = 0. Thus
we cannot a priori rule out a solution with d; = do, ¢; = c3 and k£ = 0. This would be
the case if individuals have a very large degree of risk aversion, if 7 is not very responsive
to k or if 6 is “large” . If this happens, the tradeoff between ¢ and d will again be at its
first-best value of 1/7(k), albeit at & = 0. [See equation (29) which would then simplify

to (12)]. The solution is effectively the same as the first-best outcome under storage,

with a rate of return equal to (1 + r) = 7(0), rather than the PAYGO technology.

4.3 PAYGO versus storage in the second best

Denote the welfare achieved at the second-best solution by W52 (for PAYGO) and
WEB(r) (for storage). As in the first best, the choice between the two technologies
hinges on the exogenous level of r. The results obtained in subsections 4.2 and 4.1
imply that WEB < W;S,Ql while Ws? B(r) = W§(r) holds for any level of r. Thus, under
PAYGO, the unobservability of k results in a welfare loss. Under storage, on the other
hand, the first-best outcome is achieved even if k is unobservable. Let r°Z denote the
critical level of return satisfying WEP(rS8) = W58 < W5, It then immediately follows

that 758 < 7, where 7 is the critical level in the first best. In other words, the range

20The expression for 8I‘S/8k: differs from that given by (28) because the latter was derived assuming
an interior solution for k.

*'The equality sign applies if the first- and second-best outcomes under PAYGO are given by the
corner solution k£ =0, and ¢1 = c2,d1 = da.
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Figure 3: PAYGO versus storage in the second best.

of values of r for which storage dominates PAYGO is larger in the second best than in
the first best. Put differently, whenever storage is optimal in the first best, it is also
optimal in the second best. On the other hand, when PAYGO is optimal in the first
best, it may or may not be optimal in the second best.

Observe also that a simple graphical representation as in Figure 1 can no longer be
provided because, in the second best under PAYGO, ¢; # ¢2 and d; # ds.22 Nevertheless
a graphical representation similar to Figure 2 is possible. Figure 3 depicts the range of
values of r for which one or the other technology dominates in the second best. The
figure shows that the endogeneity of fertility continues to lead to the superiority of
PAYGO over storage for some values of r (at which the reverse would have been true
under Samuelson’s original model with exogenous fertility). Nevertheless second-best
considerations make this range smaller. Recall that in the first best whenever 1 4 r €
(n(0),1 + 7), PAYGO will outperform storage with endogenous fertility (but not when
fertility is exogenous where 1+ 7 = 72(0)). In the second best, this interval is shortened
to (2(0),1 + r9B). Observe also that if we have a corner solution under second best
but not under first best, 1 + 98 = n(0), and the “superiority” of the second best
PAYGO disappears completely. If we have a corner solution under first best as well,
then 1+ 7 = 1+ 5B = n(0) and we are back in Samuelson’s world.

We end this section with another proposition.

Proposition 3 Let 758 denote the rate of return on storage at which second-best welfare

22Except, of course, when the PAYGO second best implies a corner solution for & = 0. We would
then have, for both technologies, budget lines starting from y and it will be sufficient to compare r with
7(0).
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level under storage equals its PAYGO level [WEB(rSB) = WEB]. We have:

(i) r5B < 7, WEB(roB) = WE(r9B), and WEB < W5 [ is the welfare-equalizing
rate under first best, and * indicates first-best values./

(i) For all 1+ € (2(0),14758) one would use the storage technology when fertility

is exogenous, and PAYGO when fertility is endogenous.

5 Second best PAY GO with state-independent first-period
taxes

The discussion thus far has allowed for tax and benefit schemes that are both state
dependent. As a policy prescription, however, one may want to restrict pension contri-
butions and/or pension benefits to be independent of the number of children. Indeed,
depending on the timing of the decision process, there are circumstances under which
differentiation of T from 75 may not even be possible.?> With this in mind, we shall
now discuss a special case of our model where the tax payments do not vary with the
number of children. This policy restriction prevents us from achieving the second best
solution of the previous section. However, the setting continues to constitute a depar-
ture from the traditional PAYGO pension plans under which it is not just the taxes on
the young, but also the pension benefits of the old, that do not vary with the number
of children.

Formally, observe first that the equality of first-period tax payments implies, from
(16),

c1 —ca=0(ng —ny) > 0.

Thus, individuals who end up with more children would also have to pay in full the
corresponding additional costs (this is in addition to k paid by everyone). Now, with
an individual treating his tax payments and pension benefits as fixed, he faces the same

optimization problem as before. This yields a first-order condition identical to (18).24

23 This will be the case, for example, if taxes are levied before n is realized. It will be a natural timing
sequence if n represents the quality (productivity) of children rather than their number. With this
interpretation, however, one may also want to set 6 at zero.

HWith Ty = T, ¢1 — c2 = 0(na —n1) > 0 so that u'(c1) < u/(c2). It then follows from the expression
for A in footnote 16 that A < 0 and the second-order condition is now necessarily satisfied.
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The solution to k in this case will depend on Pj, Py and T (with T} = T = T). It
is easy to check that the expressions for 8%/ 0P, and 87{2/ O0P» remain unchanged from
(21)-(22). One can also easily show that, with ¢; > cg, 9k/OT = 0k /0T + Ok /T, < 0.

Regarding the government’s optimization, one must now impose an additional con-
straint (7} = T = T) on the second-best problem. This is summarized by the La-

grangian

I = (1=n(k)uler) +v(d)] + 7 (k)[u(c2) + v(d2)]
p{ (1= (k) (@(k)T1 — Pr) + n(k)(@(k)T2 — P2) }

+
+ n[k(Ty,To, P1, P2) — k] + ATy — T3),

with d; = P; and do = P». The first-order conditions with respect to P, P, and k, are as
in the unconstrained case. As in that case, we will again have, as long as the solution for
kis interior, n > 0 and do > d;.?> The intuition is the same as in the unrestricted case.
In particular, the level of differentiation between do and d; is determined by trading off
incentive with insurance effects. Of course, the levels of d;, ds and k will be different as
c1 now exceeds co rather than the other way around.

To see the implication of T} = T5 constraint, assume again that 8%/ o171 > 0. Under
this circumstance, A < 0 (see the Appendix). Thus reducing 75 and increasing 7} from
their current equal value are welfare improving. Finally, corresponding to equation (29)
under the unconstrained second best, we now have

(1= 7))/ (d) + 7(k)/(do) 1 2(Fk +ap) 1
(L =7(k)u'(cr) + m(R)u'(c2)  m(k) + 1(gk) n(k)’

(30)

where the inequality sign follows from the fact that 9k /0T = 8%/ 0Ty —1—8%/ 0T, < 0, and
87%/ opP + 87%/ 0P, < 0.26 This duplicates the result under the unrestricted second best.

However, there, we had to assume that the differences in consumption levels between

25Proofs are as in the unrestricted case except that, with ¢c1 > co in this case, the first-order conditions
with respect to c1,c2 are not utilized. Consequently, the sign of 9k/9T1 is of no relevance here.
26
We have B ~
ok ok (k) [v'(d2) = 0'(dv)]

oP 9P, (—A)
With d2 > di, the concavity of v(-) implies v'(d2) — v’(d1) < 0, and the above expression is negative.
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people with different number of children were “close” for when they are young and when
they are old. We can now state, unambiguously, that as long as taxes are independent
of the number of children, less resources are transferred to the future relative to the
first best.

We summarize these results as

Proposition 4 Assume Ty =15 =T

(i) The constraint implies ¢1 > co thus reversing the corresponding (unconstrained)
second-best finding on first-period consumption levels. The other second-best results
continue to hold. That is, pension benefits increase with the number of children so that
dg > di; and that investment in children and the average fertility rate are less than their
corresponding first-best levels.

(ii) Reducing T and increasing Ty from T are welfare improving (if 87{?/ Ty > 0).

(iv) Less resources are transferred to the future relative to the first best.

6 Two polar cases

Finally, it will be instructive to contrast the lessons of our model with those obtained in
two polar cases: one where fertility is controlled in a deterministic way, and the other
where fertility is random and purely exogenous. Consider first the case where fertility
is perfectly controllable. Clearly, in a deterministic environment, there is no need to
provide insurance. One only needs to worry about incentives and ensure the “correct”
choice of k. A simple formalization of this idea within our model is to assume that &
takes only two values k € {ki,ks}, and that k; leads to n; and ka > ki to na. Then,
with children having no intrinsic benefits, parents will choose ki even if ko happens to
be optimal. (We are assuming that the rate of return to storage is low enough that a
PAYGO with k is preferable to storage). The optimal policy is then to have ¢; = ¢(k*),
P, = d; = d(k*), and T; = P;/n; where u/(¢;) = njv'(d;) and k* € {k1, ka} yields the
higher U. This ensures that individuals will choose the socially optimal (first-best)
number of children.

Consider next the other extreme setting in which there is no control over fertility.
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There is no moral hazard (incentive) problem here and first-best optimality requires
only full insurance. This is precisely the outcome under the structure of our model
when 7’ (k) = 0. Then, one can easily check that the optimal policy is to set k = 0
and ¢; = ¢ and dj = dy (we are again assuming that the rate of return on storage is
low enough that it is dominated by the PAYGO scheme). The optimal social security
system fully insures parents against the fertility uncertainty. The solutions (first-best
and second-best) derived in this paper offer a compromise between the two extreme

cases.

7 Conclusion

The PAYGO social security has traditionally been studied as if the rate of fertility were
given or at least not controllable. More recently, a series of papers have focused on the
endogeneity of fertility and the need to make parents responsible when their behavior
have social externalities. In the case or PAYGO pension plans, social externalities are
positive implying that the laissez-faire generates a suboptimal population growth. In
other cases, such as the “Tragedy of the Commons,” social externalities are negative
and population growth is excessive. Making people responsible for their fecundity raises
problems when the control is only partial because fecundity involves some randomness.
It is then important to insure parents against fertility shocks they are not responsible
for.

We have shown that, with positive externalities, one should grant parents who have
more children larger pension benefits. At the same time, the parents’ contributions
must be linked negatively to their investment in children if the investments are publicly
observable, and to the number of children if investments are not observable. With
observability, the outcome is characterized by full insurance with all parents enjoying
identical consumption levels regardless of their number of children, when they work as
well as when they are retired. In the absence of observability, families with more children
should be more than compensated for the extra cost of children so that they can enjoy
a higher level of first-period consumption. Moreover, the optimal level of investment in

children, and the resulting average fertility rate, will be less than their corresponding

24



first-best levels. Except for the extra compensation result, all other second-best results
carry over to situations where payroll taxes cannot depend on the number of children.

Finally, we have revisited Samuelson’s classic requirement for optimality of PAYGO
pension plans when fertility is in part endogenous. We have shown that the possibility
of investing in fertility, and thus making this technology more productive, implies that
PAYGO will dominate storage over a higher range of rates of return in both first- and

second-best environments, with the range being smaller in the second best.

25



Appendix
Second-best under 77 = 715 = T constraint:

(i): The first-order conditions are

T ~

gLTl = [1—n(k)][pn(k) — ' (c1)] + 7768—;1 +A=0, (A1)
T ~

gLTz = mk)lm(k) - w'(e2)] + ng—zli; —A=0, (A2)
T -

ZFTI = (1 - Tr(k))[v/(dl) - M] + 7753—;:1 = O7 (A3)
T -

O = () i+ = "

ort .

Ok = pr' (k)((ng —n)T —n=0 (A5)

Adding equation (A1) to (A2) leads to,
ok | Ok
— o _ / ! _ 7 _

p() = ' (er) = m(k)[u'(e2) — ()] = (= + 57) >0, (A6)
where the sign follows from the fact that ¢; > ¢y in this case, the concavity of u(-), and
Ok /0T, + 0k/OT, < 0. Next, assuming 9k/OT; > 0, and using (A6) in (A1) we will
have, N

_ / ok
A= =[1=7(k)] [pa(k) —u'(c1)] — T < 0. (A7)
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