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Stéphane Villeneuve‡

First Version: January 8, 2004
This Version: May 17, 2004

∗Acknowledgments: We thank Bruno Biais, Charles Goodhart and Jean Tirole for their comments, as
well as seminar participants at the LSE (FMG) and Toulouse University.

†Toulouse University, (IDEI, GREMAQ) and Toulouse Business School.
‡Toulouse University (GREMAQ).

1



Liquidity Risk and Corporate Demand for Hedging and Insurance

Abstract: We analyze the demand for hedging and insurance by a corporation that

faces liquidity risk. Namely, we consider a firm that is solvent (i.e. exploits a technology

with positive expected net present value) but potentially illiquid (i.e. that may face

a borrowing constraint). As a result, the firm’s optimal liquidity management policy

consists in accumulating reserves up to some threshold and distribute dividends to its

shareholders whenever its reserves exceed this threshold.

We study how this liquidity management policy interacts with two types of risk: a

Brownian risk that can be hedged through a financial derivative, and a Poisson risk that

can be insured by an insurance contract. We derive individual demand functions for hedg-

ing and insurance by corporations. We show that there is a finite price above which both

demand functions are zero. Surprisingly we find that the patterns of insurance and hedg-

ing decisions as a function of liquidity are pole apart: cash poor firms should hedge

but not insure, whereas the opposite is true for cash rich firms. We also find

non monotonic effects of profitability and leverage. This may explain the mixed findings

of empirical studies on corporate demand for hedging and insurance: linear specifications

are bound to miss the impact of profitability and leverage on risk management decisions.
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1 Introduction

Corporate risk management has been the subject of a large academic literature in the

last twenty years. This literature aims at filling the gap between the irrelevance results

derived from the benchmark of perfect capital markets (Modigliani and Miller, 1958) and

the practical importance of risk management decisions in modern corporations.

Several directions have been explored for explaining how and why firms should hedge

their risks:1

• managerial risk aversion (Stulz, 1984),

• tax optimization (Smith and Stulz, 1985),

• cost of financial distress (Smith and Stulz, 1985),

• cost of external financing (Stulz, 1990; Froot, Scharfstein and Stein, 1993).2

A few papers have applied these ideas to model corporate demand for insurance.3

The testable implications derived from these models are different, but there is now a

consensus among financial economists that profitability and leverage should be important

determinants of firms’ hedging and insurance policies. All of the above theories predict

indeed that more profitable firms should hedge less and that more leveraged firms should

hedge more. However this is not confirmed by the data. Indeed, although the empirical

literature (see for example Tufano 1996 and Geczy et al. 1997) typically finds that liquidity

is an important determinant of hedging (more liquid firms hedge less), leverage does not

seem to have a clear and robust impact on hedging decisions.

The main objective of this paper is to show that when liquidity management and risk

management decisions are endogenized simultaneously, the theoretical impact of prof-

itability and leverage is non monotonic: the firms that gain the most from actively man-

aging their risks are not the less profitable nor the most indebted. Moreover when insur-

ance decisions are explicitly modeled, we find that the optimal patterns of hedging and

insurance decisions by firms are exactly opposite: cash poor firms should hedge but not

insure, whereas the opposite is true for cash rich firms. Thus the relation between liquid-

ity, leverage and optimal risk management decisions of firms may be more complex than

1For a critical assessment of these ideas, see Smith and Stulz (1985).
2There are also theories based on performance evaluation (Breeden and Viswanathan, 1996; De Marzo

and Duffie, 1995), and the use of proprietary information by managers (De Marzo and Duffie, 1991).
However, these theories do not have simple implications on the impact of liquidity and leverage on
corporate risk management, the focus of this paper.

3See for example Mayers and Smith (1982), (1987) and (1990), or Caillaud et al. (2000).
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initially thought. This may explain the mixed findings of empirical studies on corporate

demand for hedging and insurance, who typically use linear specifications.

Our model uses a continuous time stationary framework la Merton (1974) or Leland

(1998), with the important difference that we focus on liquidity risk rather than solvency

risk. Namely, we consider a model similar to Radner and Shepp (1996) and Jeanblanc

and Shirayev (1995) where a firm operates a profitable technology but is confronted with

unpredictable4 liquidity shocks. In the benchmark model, the firm does not have access

to external financing. Thus, if its shareholders are cash constrained, the firm runs the

risk of being forced to liquidate if it makes operating losses. To mitigate this risk, the

optimal financial policy of the firm is to accumulate cash balances up to some target level

x∗ and distribute as dividends all further gains. As we explain below, x∗ can be viewed

as a measure of the cost of financial frictions.

After presenting a brief survey of empirical evidence on the relation between liquid-

ity, leverage and corporate risk management (Section 2), we recall the properties of the

benchmark model in Section 3. Then we study how the optimal financial policy of the

firm and the cost of financial frictions interact with hedging and insurance decisions. In

Section 4 we study hedging by introducing a Brownian risk that can be hedged by a

financial derivative. We show that the optimal value function can be characterized by a

system of variational inequalities (Theorem 1) then we exhibit the solution to this system

(Propositions 3 and 4). This allows us to measure the gain from hedging, as the reduc-

tion in the cost of financial frictions that is obtained through hedging. In Section 4 we

study insurance by introducing a Poisson risk than can be covered through an insurance

contract. Here also, we characterize the solution by a system of variational inequalities

(Theorem 3) that we solve explicitly (Propositions 6, 7 and 8). In Section 6 we introduce

the possibility of external financing and show that it decreases dramatically the gains from

hedging and insurance. Finally Section 7 derives testable implications on the impact of

profitability, risk and leverage on corporate hedging.

2 Liquidity, Leverage, and Corporate Risk Manage-

ment: Some Empirical Evidence

We will not review the enormous (and fast growing) empirical literature on corporate risk

management, but focus instead on the two factors we are interested in, namely liquidity

and leverage.5

4By contrast, in Merton (1978) and Leland (1998) the profitability of the firm is uncertain but cash
flows are predictable.

5We could not find any study on the impact of profitability on corporate risk management.
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Geczy et al. (1997) study a sample of 372 US firms, composed of the Fortune 500

largest firms that have at least one source of foreign exchange exposure. They use a

logit model to explore the determinants of the use of currency derivatives. They find no

statistically significant relationship between the decision to use currency derivatives and

capital structure, even when endogeneity of the latter is taken into account by using a

two-stage instrumental variable estimation technique. However they find evidence that

higher quick ratios, indicating more internally available funds, are associated with a lower

probability of using currency derivative instruments.

Tufano (1996) studies risk management behavior in the US gold mining industry. He

finds that managerial compensation (in the form of share ownership or stock options

holdings) is a major determinant of the use of derivatives: when managers own shares,

firms hedge more, but when managers own options, firms hedge less. They also find that

more liquid firms hedge less. However Tufano does not find a strong correlation between

leverage and hedging.

Using survey data, Hoyt and Khang (2000) study how the volume of insurance pre-

miums paid by corporations depend on their financial stucture. They find that leverage

(measured by the debt-equity ratio) is strongly significant (with a positive coefficient)

but surprisingly that the bankruptcy probability (measured by Altman’s Z value) is not.

Core (1997) studies the use of Directors and Officers liability insurance in Canada on

a sample of 222 firms for 1994. He finds, contrarily to Hoyt and Khang (2000), that

risk of financial distress is an important determinant of Directors and Officers insurance

purchase, but that leverage is not. This is confirmed by Boyer (2003) on a larger sample.

Finally, Haushalter (2000) examines the risk management activities of 100 oil and

gas producers for 1992 to 1994. When hedging is measured by a continuous variable, he

finds that leverage is strongly positively correlated with hedging. But when he studies

separately the decision to hedge and the extend of hedging, he finds that leverage is not

statistically significant in any of the probit regressions that look for the determinants of

the decision to hedge. However, among the firms who hedge, the extent of hedging is

positively correlated with leverage.

3 The Benchmark Model

We consider a firm that exploits a technology characterized by a cash generating process

following a drifted Brownian motion:

dXt = µdt + σdWt, (1)
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where µ and σ are positive parameters, W is a standard Wiener process, and Xt represents

the amount of cash owned by the firm at date t. Shareholders are risk neutral and discount

the future at rate r.

We assume that the manager of the firm acts in the best interest of its shareholders

but that the firm does not have access to external finance. Shareholders cannot inject new

funds and the firm cannot issue new securities or borrow from a bank. Thus, whenever

Xt becomes negative, the firm is liquidated and the technology is lost forever.6 In the

absence of liquidity constraints (i.e. if the shareholders had unlimited cash holdings)

the firm would continue forever,7 the shareholders injecting money whenever needed and,

symmetrically, collecting any cash surplus in the form of dividends. The NPV of a firm

starting with a level of cash x would be:

VFB(x) = x + E

[∫ +∞

0

e−rtdXt

]
= x +

µ

r
, (2)

where the notation VFB stands for the “first best” value of the firm.

In fact this formula can be extended to negative values of x:

VFB(x) = max
(
0, x +

µ

r

)
, (3)

with the interpretation that unconstrained shareholders would be ready to pay out the

initial debt of the company up to the amount µ
r
, above which they exert their limited

liability option.

For the rest of the paper, we will consider the second best situation where the share-

holders of the firm have no cash,8 in which case the firm is liquidated whenever Xt becomes

negative. In that case it becomes optimal for shareholders to accumulate reserves up to

some level x∗ and to distribute dividends whenever Xt exceeds this level.9 The value of

the firm becomes:

V0(x) = E

[∫ τ0

0

e−rtd`t|x0 = x

]
, (4)

where τ0 represents the first time that Xt hits zero and d`t represents the local time10

associated to Xt attaining the threshold x∗. Hence, V0 can be found explicitly by solving

6These extreme assumptions are relaxed in Section 6.
7Contrarily to models such as Merton (1978) or Leland (1998) we focus on liquidity risk, and don’t

consider solvency risk.
8In the benchmark model, issuing debt or new equity is also impossible.
9See for example Radner and Shepp (1996), Jeanblanc and Shirayev (1995) or Milne and Robertson

(1996).
10The interpretation is that the optimal reserve is a diffusion reflected at x∗. The local time `t is the

process which ensures the reflection. We refer to Karatzas and Shreve (1991) section 3.6 for a rigourous
presentation of the notion of local time (see also the Appendix).
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the following boundary value problem:{
LV (x) = 0, 0 ≤ x ≤ x∗

V (0) = 0, V ′(x∗) = 1,
(5)

where LV represents the differential operator associated to (1), namely:

LV (x) = µV ′(x) +
1

2
σ2V ′′(x)− rV (x). (6)

The explicit value of V0 is given by

V0(x) =
eρ2x − eρ1x

ρ2eρ2x∗ − ρ1eρ1x∗
, (7)

where ρ1 < 0 < ρ2 are the roots of the characteristic equation:

r − µρ− 1

2
σ2ρ2 = 0. (8)

The optimal value of x∗ is obtained by minimizing the denominator of V0 or equiva-

lently by solving V ′′
0 (x∗) = 0:

x∗ =
1

ρ2 − ρ1

ln
ρ2

1

ρ2
2

. (9)

A more compact way of characterizing the optimal value function V0 is):

∀x ≥ 0, max (LV0(x), 1− V ′
0(x)) = 0. (10)

Like before, V0 can be extended to x < 0 by setting V0(x) = 0 (limited liability). All

these preliminary results are summarized in the following proposition:

Proposition 1 (Jeanblanc and Shirayev, 1995) : In the benchmark model with cash con-

strained shareholders but no external risks, the value of the firm when it holds cash volume

x is:

V0(x) = max

(
0,

eρ2x − eρ1x

ρ2eρ2x∗ − ρ1eρ1x∗

)
, (11)

where x∗ is given by formula (9).
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Figure 1: No external risk: The value V0(x) of the cash

constrained firm compared with

the first best value VFB(x).

V0(x) can be extended above x∗ by setting, for x ≥ x∗:

V0(x) = x− x∗ + V (x∗), (12)

with the interpretation that, if the firm starts with cash reserves x above x∗, the amount

(x − x∗) is immediately distributed as dividends. Therefore, for x large enough, the

difference VFB(x)−V (x), which measures the cost of financial frictions, is constant. Since

V ′
0(x

∗) = 1 and V ′′
0 (x∗) = 0, equation (5) implies that

V0(x
∗) =

µ

r
, (13)

which means that the cost of financial frictions (VFB(x) − V0(x)) is equal11 to x∗, when

x ≥ x∗.

What is noticeable about Figure 1 is that V0 is convex (and not differentiable) at 0 but

concave for 0 < x < x∗, and linear above x∗. This comes from the interaction between

the limited liability option (which generates the convex kink at zero) and liquidation costs

(which generate the strict concavity of V in [0, x∗)). This pattern will reveal crucial in

the sequel.

It is also interesting to look at the comparative statics properties of the cost x∗ of

financial frictions. Proposition 2 summarizes these properties:

Proposition 2 : The cost of financial frictions x∗ is a single peaked function of µ, and

an increasing function of σ2.

11Since (VFB − V0) decreases in x, x∗ underestimates the cost of financial frictions for x < x∗.
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Proof of Proposition 2: See the appendix.

The following figures represent the cost of financial frictions x∗ as a function of µ and

σ2. Notice that x∗ is bounded above by µ
r
.
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Figure 2: The cost of financial frictions

as a function of µ and σ2.

Maybe the most striking of these properties is the non-monotonicity of x∗ with respect

to µ, which measures the profitability of the firm. Highly profitable firms are not really

affected by financial frictions because their probability of financial distress is small. Con-

versely, barely profitable firms have little to lose from failure. It is the intermediate firms

that are hurt the most by the risk of failure. The same is true for leverage. Suppose that

the firm has to pay a constant coupon flow12 c, our formulas are immediately adapted by

replacing µ by µ− c. Figure 2 then implies a non monotonic influence of c on the cost x∗

of financial frictions. The case of the leveraged firm is analyzed in more detail in Section

5.

4 Hedging

We now introduce a first form of external risk, by assuming that the “operating” cash

flow process given by (1) is perturbed by a second Brownian motion of volatility σR (and

zero drift) that can be hedged through a financial derivative. This “external” risk can be

interpreted as foreign exchange risk or commodity price risk, the corresponding hedging

instruments being currency futures or commodity futures.

12As in Leland (1998), we assume that coupon payments are constant over time to maintain stationarity
of the financial structure.
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Equation (1) becomes

dXt = µdt + σdWt + σRdWR
t , (14)

when the external risk is not hedged (h = 0) and

dXt =

(
µ− 1

2
πσ2

R

)
dt + σdWt, (15)

when the external risk is hedged13 (h = 1). π ≥ 0 is interpreted as the risk premium or

loading factor (cost of hedging per unit of variance) that remunerates the sellers of the

futures contract for the risk they take. Without loss of generality, we can assume that the

two Brownian motions W and WR are independent.14 Let us introduce the differential

operators associated to h = 0, 1:

L(0)V (x) = µV ′(x) +
1

2
(σ2 + σ2

R)V ′′(x)− rV (x), (16)

and

L(1)V (x) =

(
µ− 1

2
πσ2

R

)
V ′(x) +

1

2
σ2V ′′(x)− rV (x). (17)

The optimal value function is obtained by finding the adapted process (ht, Zt) (where

ht ∈ {0, 1} represents the hedging decision at date t and Zt is the cumulative amount

of dividends distributed up to date t, a non-negative, non-decreasing15 right continuous

process) that maximizes the expected discounted value of dividends up to liquidation

(which occurs at τ , the first time where Xt hits 0). Formally

V (x) = max
h,Z

E

[∫ τ

0

e−rtdZt|x0 = x

]
. (18)

This is a mixed singular/regular control problem of the type studied by Fleming and

Soner (1993), who prove the following result:

Theorem 1 (Fleming and Soner, 1993): If the value function V defined by (18) is C2,

it satisfies the following variational inequalities:

∀x > 0 max (L(0)V (x), L(1)V (x), 1− V ′(x)) = 0, (19)

together with the initial condition:

V (0) = 0. (20)

13In Section 5 we consider the possibility of partial hedging (h ∈ [0, 1]).
14An alternative, but equivalent, formulation is to consider that the hedging instrument is imperfectly

correlated with W . Perfect hedging corresponds to the limit case of perfect correlation (σ = 0 in our
model).

15The condition that Zt be non-decreasing corresponds to the assumption that shareholders are cash
constrained (non negative dividends). Without this restriction the first best could be attained.
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Nevertheless, solving the conditions (19), (20) does not always guarantee the optimality

of the solution, since we do not know a priori if this solution is unique. We succeed in

our case by constructing a concave solution of (19), (20) and by proving the following

verification theorem.

Theorem 2 Assume there exist a twice continuously differentiable concave function W

and a constant x1 such that

∀x ≤ x1 max (L(0)W (x), L(1)W (x)) = 0 and W
′
(x) ≥ 1, (21)

∀x ≥ x1 W
′
(x) = 1 and max (L(0)W (x), W (1)V (x)) ≤ 0 (22)

together with the initial conditions:

W (0) = 0 and W
′
(0) < +∞ (23)

then W = V . Furthermore, let h∗ be the measurable function defined by

h∗(x) = 11{L(1)W (x)≥L(0)W (x)}

and Lt(x1) the local time at the level x1 of the diffusion process

dXt = (µ− σ2
R

2
πh∗(Xt))dt + σdWt + σR(1− h∗(Xt))dWR

t ,

then W (x) = E
∫ τ0

0
e−rsdLs(x1), where

τ0 = inf{t ≥ 0, Xt ≤ 0}.

Proof: See the appendix.

We are now going to characterize V by constructing a solution to (19), (20) that has

the same shape as V0 (see Section 2), i.e. has a convex kink at 0, is concave for x positive

but smaller than some threshold x1 (the target level of cash reserves) and linear for x

above x1. In particular this shape implies that, when π > 0, hedging is never optimal for

x sufficiently close to x1. Indeed:

L(1)V (x)− L(0)V (x) = −1

2
σ2

R [πV ′(x) + V ′′(x)] ,

which is negative at x1 (since V ′(x1) = 1 and V ′′(x1) = 0) and thus, by continuity, for

x close to x1. In fact we establish below the existence of a second threshold x0 ∈ [0, x1]

such that the optimal hedging decision is given by:

h∗(x) = 1 if 0 ≤ x < x0 (24)

= 0 if x0 ≤ x ≤ x1. (25)
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The limit case x0 = 0 corresponds to no hedging at all.

Here also, the value function V can be obtained explicitly by finding a C2 solution to

the following free boundary problem:
L(1)V (x) = 0 0 < x < x0,

L(0)V (x) = 0 x0 < x < x1,

V (0) = 0, V ′(x1) = 1, V ′′(x1) = 0.

We need to introduce some notation. Let us denote by θ1 < 0 < θ2 the roots of the

characteristic equation corresponding to h = 1 (hedging):(
µ− 1

2
πσ2

R

)
θ +

1

2
σ2θ2 = r, (26)

and by γ1 < 0 < γ2 the roots of the characteristic equation corresponding to h = 0 (no

hedging):

µγ +
1

2
(σ2 + σ2

R)γ2 = r. (27)

Proposition 3 : The value of the firm corresponding to the optimal hedging problem is

characterized by two regimes:

• 0 ≤ x ≤ x0 (hedging regime):

V (x) = A
[
eθ2x − eθ1x

]
, (28)

• x0 ≤ x ≤ x1 (no-hedging, or self insurance regime):

V (x) = Beγ1x + Ceγ2x, (29)

where A, B, C are positive constants.

proof: See the appendix.

Interestingly, the pattern derived in Proposition 3 is confirmed by empirical evidence:

both Tufano (1996) and Geczy et al. (1997) find that lower liquidity (measured by a low

quick ratio) is a significant determinant of hedging.

The five parameters characterizing V (namely x0, x1, A,B,C) are obtained by using

the five boundary conditions:

• V, V ′ and V ′′ are continuous at x0,

• V ′(x1) = 1, V ′′(x1) = 0.
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In particular we can easily determine the values of x0 and x1:

Proposition 4 : When π ≤ 2µ
σ2+σ2

R
, the hedging and dividend thresholds are given by

x0 =
1

θ2 − θ1

ln
θ1(θ1 + π)

θ2(θ2 + π)
, (30)

x1 = x0 +
1

γ2 − γ1

ln
γ1(γ2 + π)

γ2(γ1 + π)
. (31)

Proof: See the appendix.

Two limit cases are interesting:

• When π = 0 (costless heldging), x1 = x0 = 1
θ2−θ1

ln
(

θ1

θ2

)2

, which coincides in

this case with the dividend threshold x∗ of Section 3 (where σR = 0). This just

means that when hedging is costless, the firm always hedges and we are back to the

benchmark model with no external risk.

• When π ≥ 2µ
σ2+σ2

R
, x0 = 0: Thus there is a maximum price of hedging above which

the firm stops buying any hedging. This maximum price increases with the expected

profitability of the firm (µ) and decreases with the volatility of the unhedged cash

flow (
√

σ2 + σ2
R).

The properties of the optimal hedging pattern are represented in the following figure.

-
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Value
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V

x0 x1
Hedging No Hedging Dividends

Figure 3: The pattern of optimal hedging decisions.
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The next figure represents the gains from hedging.
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Figure 4 shows the value V (x) of the firm that hedges optimally (i.e. whenever x ≤ x0).

This value V (x) is in between the first best value VFB(x) and the value V0(x) of the firm

who never hedges. Notice that the hedged firm distributes more dividends. The gains

from hedging are represented by the difference G = x∗NH − x1 between the cost x∗NH

of financial frictions without hedging
(
x∗NH = 1

γ2−γ1
ln

γ2
1

γ2
2

)
, and the cost x1 of financial

frictions with optimal hedging. As we have already noticed, this difference vanishes when

π ≥ 2µ
σ2+σ2

R
.

Using formulas (30) and (31), we can derive the expression of these gains from hedging,

which we denote by G:

G =
1

γ2 − γ1

ln
γ2

1

γ2
2

− x1

=
1

γ2 − γ1

ln
γ1(γ1 + π)

γ2(γ2 + π)
− 1

θ2 − θ1

ln
θ1(θ1 + π)

θ2(θ2 + π)
, (32)

where θ1, θ2 and γ1, γ2 are defined respectively by (26) and (27). The comparative statics

properties of G are complicated, since in particular θ1 and θ2 are implicit functions of the

loading factor π. However, since the markets for financial derivatives are in general highly

competitive, we can reasonably assume that π is close to zero, in which case G converges

to:

G0 =
1

γ2 − γ1

ln
γ2

1

γ2
2

− 1

ρ2 − ρ1

ln
ρ2

1

ρ2
2

. (33)
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Notice that θ1 and θ2 converge to ρ1 and ρ2 (see Section 2) when π goes to zero. Let

us denote by x∗(µ, σ2) the cost of financial frictions derived in Section 2:

x∗(µ, σ2) =
1

ρ2 − ρ1

ln
ρ2

1

ρ2
2

=
σ2

2
√

µ2 + 2rσ2
ln

[√
µ2 + 2rσ2 + µ√
µ2 + 2rσ2 − µ

]
. (34)

We obtain a simple expression of the gains from (costless) hedging:

G0 = x∗(µ, σ2 + σ2
R)− x∗(µ, σ2). (35)

The gains from costless hedging are thus equal to the reduction in the cost of financial

frictions16 obtained by decreasing the squared volatility of the cash generating process

from σ2 + σ2
R to σ2. In Section 7, we use this formula to derive testable implications of

our model on the determinants of corporate hedging.

5 Insurance

We consider in this section a different type of external risk (say a fire or an accident) which

is modelled as a Poisson process: with a probability λdt, the firm incurs a loss m. This

risk can be covered by an insurance contract characterized by a flow premium λ[m+πm2]

where π represents, here again, a loading factor associated to the remuneration of the

risk taken by the insurer. Denoting by P a Poisson process of intensity λ, the cash flow

dynamics becomes:

dXt = µdt + σdWt −mdPt, (36)

in the absence of insurance (i = 0), and

dXt = {µ− λ(m + πm2)}dt + σdWt, (37)

if the firm buys insurance (i = 1). Assuming that W and P are independent, the associ-

ated operators are:

D(0)V (x) =
σ2

2
V ′′(x) + µV ′(x)− λ[V (x)− V (x−m)]− rV (x), (38)

and:

D(1)V (x) =
σ2

2
V ′′(x) + [µ− λ(m + πm2)]V ′(x)− rV (x). (39)

Again, the optimal value function is obtained by finding the adapted process (it, Zt)

(where it ∈ {0, 1} represents the insurance decision at date t and Zt is the cumulative

16Recall that this cost is measured by the amount of cash reserves needed before dividends can be
distributed. This is why hedging firms can distribute more dividends.
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dividend process) that maximizes the expected discounted value of dividends up to liqui-

dation

V̄ (x) = max
i,Z

E

[∫ τ

0

e−rtdZt|x0 = x

]
. (40)

As in the case of hedging, we obtain V̄ through a verification theorem whose proof,

similar to that of Theorem 2, is omitted.

Theorem 3 Assume there exist a twice continuously differentiable concave function W

and a constant x1 such that

∀x ≤ x1 max (D(0)W (x), D(1)W (x)) = 0, (41)

∀x ≥ x1 W
′
(x) = 1 (42)

together with the initial conditions:

W (0) = 0 and W
′
(0) < +∞ (43)

then W = V̄ . Furthermore, let i∗ the measurable function defined by

i∗(x) = 11{D(1)W (x)≥D(0)W (x)},

and Lt(x1) the local time at the level x1 of the diffusion process:

dXt = µ− λ(m + πm2)i∗(Xt))dt + σdWt −m(1− i∗(Xt))dPt.

Then W (x) = E
∫ τ0

0
e−rsdLs(x1), where

τ0 = inf{t ≥ 0, Xt ≤ 0}.

Using the same method as before, we shall construct a solution V̄ to these variational

inequalities that has the same pattern as V0 and V : convex kink at 0, then concave.

Before going further, we point out an interesting result: insurance is never optimal for x

small. Indeed:

D(1)V̄ (x)−D(0)V̄ (x) = λ
[
V̄ (x)− V̄ (x−m)− (m + πm2)V̄ ′(x)

]
.

Since V̄ (x−m) = 0 for x ≤ m and V̄ ′(0) > 0, this expression is negative for x sufficiently

small.

Next section will be devoted to the case of fair insurance, that is π = 0.
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5.1 Fair Insurance

In the case of fair insurance, we will establish below that the optimal insurance decision

is given by:

i∗(x) = 0 if 0 ≤ x < x̄0 (44)

= 1 if x̄0 ≤ x ≤ x̄1, (45)

where x̄0 and x̄1 are respectively the insurance and the dividend thresholds. Notice that

the relation between cash holdings and insurance decisions is the opposite of the relation

between cash holdings and hedging decisions: the firms that are poor in cash do not buy

insurance but they do hedge. The opposite is true for cash-rich firms.

Like before, the value function V̄ can be obtained by finding a C2 solution to the

following free boundary problem:
D(0)V (x) = 0 0 < x < x̄0

D(1)V (x) = 0 x̄0 < x < x̄1

V (0) = 0, V ′(x1) = 1, V ′′(x̄1) = 0.

We need to introduce some notation. By analogy with Section 3, let us denote by

γ̄1 < 0 < γ̄2 the roots of the characteristic equation corresponding to i = 1 (insurance):

(µ− λm)γ +
1

2
σ2γ2 = r, (46)

and by θ̄1 < 0 < θ̄2 the roots of the characteristic equation corresponding to i = 0 (no

insurance):17

µθ +
1

2
σ2θ2 = r + λ. (47)

We are in a position to give the value of the firm corresponding to the optimal fair

insurance problem.

Theorem 4 Assume that m ≤ µ
r+λ

. The optimal return function V is given by

V̄ (x) =

 Ā(eθ̄2x − eθ̄1x) for x ≤ x̄0

B̄eγ̄1x + C̄eγ̄2x for x̄0 ≤ x ≤ x̄1

x + µ−λm
r

− x̄1 for x ≥ x̄1.

where x̄0 and x̄1 are given by

x̄0 =
1

θ̄2 − θ̄1

ln

(
1−mθ̄1

1−mθ̄2

)
. (48)

x̄1 = x̄0 +
1

γ̄2 − γ̄1

ln

(
γ̄2

1(1−mγ̄2)

γ̄2
2(1−mγ̄1)

)
. (49)

17This assumes implicitly that x̄0 ≤ m, so that V (x−m) = 0 in the no-insurance region. This will be
checked ex post.
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Proof: See the appendix.

Let us point out that the optimal fair insurance problem is characterized by three regimes:

• 0 ≤ x ≤ x̄0 (no insurance regime):

V̄ (x) = Ā
[
eθ̄2x − eθ̄1x

]
, (50)

• x̄0 ≤ x ≤ x̄1 (insurance regime):

V̄ (x) = B̄eγ̄1x + C̄eγ̄2x, (51)

• x ≥ x̄1 (dividend payment):

V̄ (x) = x +
µ− λm

r
− x̄1

Theorem 4 shows that fair insurance is bought when the firm is rich (x > x̄0) and the

risks are not too high (m ≤ µ
r+λ

). For completeness, we shall examine the case m ≥ µ
r+λ

.

Next proposition shows that in that case, the shareholders optimally assume the Poisson

risk. The optimal return function has the same form as in the Benchmark case. Hence,

and by contrast with the hedging case (see Proposition 4) large risks are not insured even

if insurance is fair.

Proposition 5 Assume that m ≥ µ
r+λ

, the optimal return function V̄ is given by:

V̄ (x) =

{
Ã(eθ̄2x − eθ̄1x) for x ≤ x̃1

x− x̃1 + µ
r+λ

,

where

x̃1 =
2

θ̄2 − θ̄1

ln

∣∣∣∣ θ̄1

θ̄2

∣∣∣∣ ,
and

Ã(eθ̄2x̃1 − eθ̄1x̃1) = 1.

Proof: See the appendix.

The properties of the value function corresponding to optimal fair insurance are sum-

marized in the following figure:
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Figure 5: The gains from insurance: The value V̄ (x)

of the firm that insures optimally compared with

the value V0(x) of the firm that does not insure, and

the first best value VFB(x) = max(0, x + µ
r+λ

).

Like for hedging, the gains from insurance can be measured by the difference between

the cost of financial frictions without and with insurance.

5.2 Positive loading factor

In the case of a positive loading factor (π > 0), we do not succeed to characterize the

optimal policy. We will content ourselves to highlight the readers about the complexity

of the study. In particular, the optimal policy for insurance may not exhibit the same

pattern as in the case of fair insurance. As a first result, we will prove below that the

optimal policy i∗(x) must be equal to zero in the neighbourhood of the level of dividend

payment x1 as soon as the loss m is small.

Proposition 6 Assume that π > 0. For m small enough, there is an open interval

O = (x1 − ε, x1) where the optimal policy i∗ equals zero .

Proof: See the appendix.

As a second result, we will point out that there still exists situations where it is optimal

to insure. Recall that,

D(1)V̄ (x)−D(0)V̄ (x) = λ
[
V̄ (x)− V̄ (x−m)− (m + πm2)V̄ ′(x)

]
.
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Therefore, for x ≤ m, we assume optimally the risk if and only if

ϕ(x) ≡ eθ̄2x − eθ̄1x

θ̄2eθ̄2x − θ̄1eθ̄1x
. ≤ m(1 + πm).

Note that ϕ is a nondecreasing function with

ϕ(0) = 0, ϕ′(0) = 1, ϕ′′(0) = 2
µ

σ2
.

this is equivalent to ϕ(m) ≤ m(1 + πm).

Conversely, when π < µ
σ2 , ϕ(m) ∼ m + µ

σ2 m
2, and thus is greater than m(1 + πm) for m

small enough. Thus, it is optimal to buy insurance before hitting the level m. The last

remark aggregates the previous ones. We claim that for π < µ
σ2 and m small enough the

optimal policy should have four regimes: a non insurance regime in the neightbourhood

of zero, an insurance regime around m and a non insurance regime in the neightbourhood

of the dividend payment threshold and dividend payment.

6 Extensions

6.1 External Financing

So far, we have only considered the extreme case of a firm with no access to external

financing. It is easy to see that introducing such possibilities has a dramatic impact on

the gains from hedging. For example in the absence of financial frictions, the firm could

attain its first best value by essentially transfering all its risk to a competitive bank (i.e.

σdWt, which has a zero NPV) and retaining the deterministic part (i.e. µdt, which has

NPV µ
r
). Then there would be no need for the firm to retain cash and thus no gains from

hedging or insurance.

Of course some form of financial frictions (due for example to imperfect verifiability

of cash flows, moral hazard or agency problems) have to be introduced for hedging and

insurance to become valuable. But then the financial structure and risk management

policies would have to be endogenized simultaneously so as to limit the impact of those

financial frictions. This is outside the scope of this paper. What we do instead is introduce

exogenously two types of external financing:

a) a risky bond that pays a constant coupon flow cdt until the firm goes bust. This is

easily captured by replacing µ by (µ− c) in all our formulas,

b) a credit line that allows the firm to incur an overdraft (i.e. a negative Xt) up to

some limit Xt = −l, where the firm is liquidated.
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If financial markets are competitive, the best credit line that can be obtained by the

firm is characterized by two features:

• The credit limit l is equal to the liquidation value of the firm’s assets for the bank.

We assume that it is a fraction α of the expected present value µ
r

of future cash

flows. α measures the tangibility of the firm’s assets.

• The interest rate charged on overdrafts is equal to r (the managers pays rXt per

unit of time if Xt becomes negative).

For simplicity, let us discuss the impact of these two financial instruments one after

the other.

Leverage has a relatively straightforward effect, analogous to reduced profitability.

This is because µ is replaced in all our formulas by (µ− c). In order to measure relative

leverage, we use the variable c
µ
, the inverse of the interest coverage ratio. The impact of

c
µ

on hedging is discussed in the next section.

The impact of the credit line is more complex: equation (1) becomes

dXt = (µ− rX−
t )dt + σdWt

and the value function becomes

VCL(x) = sup
Z

E

(∫ T−l

0

e−rs dZs

)
.

where l = αµ
r

and

T−l = inf{t ≥ 0, Xt ≤ −l}.

As before, one can show that VCL is a concave nondecreasing function and there is a

threshold x∗CL above which dividends are distributed. Moreover, VCL is characterized by:{
rVCL = (µ− rx−)V ′

CL + 1
2
σ2V ′′

CL

VCL(−l) = 0 V ′
CL(x∗CL) = 1 V ′′

CL(x∗CL) = 0
.

As established in next Proposition, the credit line contract decreases the cost of finan-

cial frictions (and therefore the gains from hedging). To illustrate this we have represented

in Figure 6 the impact of the credit line on the value function in the absence of hedging

(benchmark case). Gains from hedging, measured by the vertical distance to the first

best value function VFB are dramatically reduced, especially if α is large (more tangible

assets).

Proposition 7 The value function VCL is a strictly increasing function of α. Conse-

quently, 0 ≤ x∗CL ≤ x∗ where x∗ is the optimal threshold in the benchmark model.
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The proof is reported to the Appendix. Note that if we define VCL = Vα to illustrate

the dependence in α, V0 is the value function in the benchmark model and V1 = VFB the

unconstrained value function.
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Figure 6: A credit line reduces the dividend

threshold (and thus the potential gains from hedging

from x∗ to x∗CL). The value function becomes VCL.

To conclude, notice that even if credit line availability changes the extend of hedging,

it does not alter our main, qualitative, findings:

• profitability and leverage have a non monotonic impact on hedging,

• insurance and hedging patterns are opposed.

6.2 Partial Hedging

As a second extension we discuss what happens when we allow the firm to choose a

hedging ratio h in the interval [0, 1]. When hedging is costly, it will be optimal to do so

in our model.18 In fact the optimal hedging pattern will be consistent with our previous

findings (see Figure 3). The main difference is that the value function of the firm is now

18This is consistent with empirical evidence. For example Allayanis and Ofek (2001) examine the
decision to use foreign currency derivatives and the extent of currency hedging. They find that a firm’s
net exchange rate exposure is positively related with foreign sales, and negatively related with foreign
currency derivatives use, which is consistent with a partial coverage of currency risk.
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characterized by the non linear differential equation:{
max
0≤h≤1

L(h)V (x) = 0 for x ≤ x1

V (0) = 0 V ′(x1) = 1 V ′′(x1) = 0
(52)

with

L(h)V (x) =
1

2
(σ2 + (1− h)2σ2

R)V ′′(x) + (µ− h
σ2

R

2
π)V ′(x)− rV (x).

The main task is to construct a concave solution to equation (52). Unfortunately, we

do not achieve this purpose. We content ourselves with providing qualitative results

concerning the optimal hedging policy. Let us define by h∗ the maximizer and assume

the existence of an open interval O such that 0 < h∗(x) < 1. Then,

h∗(x) = 1 +
π

2

V ′(x)

V ′′(x)
,

and

L(h∗)V (x) = L(1)V (x)− π2σ2
R

8

(V ′(x))2

V ′′(x)
. (53)

We start our analysis by looking forward assumptions ensuring that h∗(x) = 0. If it is

optimal to assume the risk, the value function is given by the benchmark formula

V (x) = A(eθ2x − eθ1x)

where θ1 < 0 < θ2 are the roots of the equation

1

2
(σ2 + σ2

R)θ2 + µθ = r.

Computing h∗ near 0, we obtain

π ≥ 4µ

σ2 + σ2
R

Therefore, we have

Proposition 8 If π ≥ 4µ
σ2+σ2

R
, it is optimal to assume the risk. Moreover, the value

function is given by the benchmark case with σ2 + σ2
R in place of σ2.

From now, we assume that π ≤ 4µ
σ2+σ2

R
. Our next finding concerns the pattern of the

maximizer h∗. Setting

a =
σ2

2
, b = µ− σ2

R

2
π and α =

π2σ2
R

8
,

we can solve implicitly the nonlinear equation (53),

2aV ′′(x) = −bV ′(x) + rV (x)−
√

(bV ′(x)− rV (x))2 + 4aα(V ′(x))2. (54)
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Therefore,

L(h∗)V (0+) = L(1)V (0+) +
α

2a
(b +

√
b2 + 4aα)V ′(0+).

Since V ′ is bounded below by one, we conclude that it is never optimal to totally hedge

its position even in the neightbourhood of zero.

Conversely, we claim that there is a constant x0 < x1 such that h∗ = 0 on (x0, x1). If not,

putting in the equation (54) the conditions defining V on x1, we obtain

0 = −b + rV (x1) +
√

(b− rV (x1))2 + 4aα

which yields to a contradiction.

7 Who Should Hedge?

We conclude this paper by deriving from our model several testable implications about

which firms are more likely to hedge,19 in the hope to shed light on the mixed findings

of the empirical literature. We already found in Proposition 3 that, provided a firm has

decided to use hedging instruments optimally, it will tend to buy hedging (h = 1) when

it is cash poor (x ≤ x0) and to self-insure (h = 0) when it is cash rich (x > x0). We now

study the prior decision to create, within the firm, a risk management unit and to hire the

personnel able to manage the hedging position of the firm according to the instructions

given by top management. This decision is optimal if the gains from hedging exceeds the

cost of creating this risk management unit.

Consider now an empirical economist who has collected data on the balance sheets

of a large population of firms, and can therefore estimate the parameters of our model

such as expected profitability µ, volatility of earnings, σ2, leverage (measured here by the

inverse interest coverage ratio c
µ
). Our model predicts that the probability that a firm

has created a risk management unit is an increasing function of the gain from hedging,

measured by the reduction in the costs of financial frictions obtained by hedging. When

the cost of hedging is small (π ∼ 0) we saw that this gain could be approximated by:

G0 = x∗(µ, σ2 + σ2
R)− x∗(µ, σ2)

when the firm is unleveraged (c = 0). As we have noticed in Section 5, this formula can

be easily extended to the case where c > 0:

G0 = x∗(µ− c, σ2 + σ2
R)− x∗(µ− c, σ2). (55)

19For simplicity, we focus on the hedging decision, since the formulas for the gains from insurance are
more complex.
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We already saw that x∗ is an increasing, concave, function of σ2. Thus we deduce

immediately from formula (55) that:

∂G0

∂σ2
R

> 0 and
∂G0

∂σ2
< 0.

This means that the gain from hedging increases with the volatility σ2
R of the hedgeable

risk and decreases with the volatility σ2 of the “operating” risk. More interestingly, the

impact of µ and c (or indeed µ− c) is non monotonic, as illustrated by Figure 7:

- -µ c/µ•
c

•
1

6

G0

6

G0

Figure 7: The gain from hedging as a function

of profitability µ and leverage c/µ.

Thus profitability and leverage have a non monotonic (and highly non linear) impact

on the gains from hedging. This may explain why empirical studies who use linear spec-

ifications have failed to derive a significant impact of profitability and leverage on the

likelihood that a firm decides to hedge.
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Appendix

Proof of Proposition 2: Let us recall that the cost of financial frictions is given by:

x∗(µ, σ2) =
1

ρ2 − ρ1

ln
ρ2

1

ρ2
2

=
σ2

2
√

µ2 + 2rσ2
ln

[√
µ2 + 2rσ2 + µ√
µ2 + 2rσ2 − µ

]
.

x∗ is a continuous, positive function of µ satisfying

lim
{µ→0}

x∗(µ, σ2) = lim
{µ→∞}

x∗(µ, σ2) = 0.

A straightforward but tedious calculus gives

∂x∗

∂µ
(µ, σ2) = σ2(µ + 2rσ2)−

3
2

[
−µArgth

(
µ√

µ + 2rσ2

)
+
√

µ + 2rσ2

]

Thus ∂x∗

∂µ
has the sign of

g(µ) = −µArgth

(
µ√

µ + 2rσ2

)
+
√

µ + 2rσ2.

But, g
′
(µ) = −Argth

(
µ√

µ+2rσ2

)
and g(0) =

√
2rσ2 and lim{µ→∞} g(µ) = −∞. Therefore,

f changes sign once and x∗ admits a unique maximum.

Moreover, setting t = µ
σ2 and a = 2r

µ
, we get

x∗(µ, σ2) ≡ f(t) =
1√

t2 + a
Argth

(√
t

t + a

)
.

We have f
′
(0) = −1 and f

′′
(t) = −2Argth

(√
t

t+a

)
. Therefore,

∂x∗

∂σ2
=

∂t

∂σ2
f
′
(t) ≥ 0.

Proof of Theorem 2: The result is a consequence of the two following lemmas.

Lemma 1 Let W satisfy the assumptions of Theorem 2. Then for any control (ht, Zt),

W (x) ≥ E

(∫ τ0

0

e−rs dZs

)
,

for all x ≥ 0.
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Proof of lemma 1 Fix a policy (ht, Zt) and write the process Zt = Zc
t + Zd

t where Zc
t is

the continuous part of Zt and Zd
t is the pure discontinuous part of Zt. Let,

dXt = (µ− σ2
R

2
ht)t + σdWt + σR(1− ht)dWR

t − dZt,

be the evolution of the cash under the policy (ht, Zt) and let us define

τ0 = inf{t ≥, Xt ≤ 0}.

Using the generalized Ito formula (see Dellacherie and Meyer Theorem VIII.27) and the

equality Xs −Xs− = −(Zs − Zs−), we can write

e−r(t∧τ0)W (Xt∧τ0) = W (x) +

∫ t∧τ0

0

e−rsL(h)W (Xs) ds

+

∫ t∧τ0

0

e−rsW
′
(Xs) (σdWt + σR(1− ht)dWR

t )−
∫ t∧τ0

0

e−rsW
′
(Xs) dZc

s

+
∑

s≤t∧τ0

e−rs(W (Xs)−W (Xs−)),

where

L(h)W (x) =

(
σ2 + σ2

R(1− h)2

2

)
W

′′
+ (µ− σ2

R

2
h)W

′ − rW.

Since W satisfies (21) and (22) the second term of the right hand side is negative. Since

W is concave and increasing, 0 ≤ W
′
(Xs) ≤ W

′
(0) and thus the third term is a centered

square integrable martingale. Taking expectations, we get

E
(
e−r(t∧τ0)W (Xt∧τ0)

)
= W (x)− E

∫ t∧τ0

0

e−rsW
′
(Xs) dZc

s

+ E
∑

s≤t∧τ0

e−rs(W (Xs)−W (Xs−)).

By concavity and since W
′
(x) ≥ 1, we get W (Xs)−W (Xs−) ≤ −(Zs − Zs−). Therefore,

W (x) ≥ E
(
e−r(t∧τ0)W (Xt∧τ0)

)
+ E

∫ t∧τ0

0

e−rsW
′
(Xs) dZs.

By concavity, W (x) ≤ W
′
(0)x and thus

lim inf
t→∞

E
(
e−r(t∧τ0)W (Xt∧τ0)

)
= 0.

We conclude by letting t tend to infinity.

Lemma 2 Let W, h∗ and Lt(x1) be given by Theorem 2. Then,

W (x) = E

(∫ τ0

0

e−rs dLs(x1)

)
.
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Proof of lemma 2 Assume that x ≤ x1. According to slight extension of Proposition

6.16 in Karatzas and Shreve (1991), (Xt, Lt(x1)) is a solution to the following Skorohod

problem: {
Xt ≤ x1∫∞

0
11{Xs 6=x1}dLs(x1) = 0

Moreover, L(h∗)W (x) = 0 for all x ≤ x1. Applying Ito’s formula in the same manner as

in the proof of lemme 1, we get

E
(
e−r(t∧τ0)W (Xt∧τ0)

)
= W (x)− E

∫ t∧τ0

0

e−rsW
′
(Xs) dLs(x1).

Since W
′
(x1) = 1, the Skorohod problem gives

E
(
e−r(t∧τ0)W (Xt∧τ0)

)
= W (x)− E

∫ t∧τ0

0

e−rs dLs(x1).

We conclude by letting t tend to infinity.

Proof of Proposition 3: When it is positive, x0 is characterized by the condition that

the firm is indifferent between hedging or not:

L(1)V (x0)− L(0)V (x0) = −1

2
σ2

R [πV ′(x0) + V ′′(x0)] = 0

or

−V ′′(x0)

V ′(x0)
= π. (A1)

Given the expression of V in the hedging region (formula (28) in Proposition 3), we

deduce:

θ2
2e

θ2x0 − θ2
1e

θ1x0 = −π
[
θ2e

θ2x0 − θ1e
θ1x0
]
.

Thus

e(θ2−θ1)x0 =
θ1(θ1 + π)

θ2(θ2 + π)
,

which implies (30).

V being C2, we can also use the expression of V in the no-hedging region:

V (x) = Beγ1x + Ceγ2x.

The boundary conditions at x1 give the values of B and C:

B =
γ2e

−γ1x1

γ1(γ2 − γ1)
, C = − γ1e

−γ2x1

γ2(γ2 − γ1)
.
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Condition (A1) then implies:

−γ1γ2e
γ1(x0−x1) + γ1γ2e

γ2(x0−x1) = π
[
γ2e

γ1(x0−x1) − γ1e
γ2(x0−x1)

]
.

This gives:

e(γ1−γ2)(x0−x1) =
γ1(γ2 + π)

γ2(γ1 + π)
, (A2)

which implies formula (31). We just have to check that the right hand side of (A2) is

positive. This comes from the fact that π ≤ 2µ
σ2+σ2

R
< −γ1.

Proof of Theorem 4: The proof is very similar to that of Proposition 4. By definition,

x̄0 is such that

D(1)V̄ (x̄0) = D(0)V̄ (x̄0), i.e.

V̄ (x̄0)− V̄ (x̄0 −m) = mV̄ ′(x̄0).

When x̄0 < m (which will be checked ex post), V̄ (x̄0 − m) = 0, and the condition

becomes

V̄ (x̄0) = mV̄ ′(x0).

Using the expression of V̄ in the no-insurance regime (equation (50)), this gives:

eθ̄2x̄0 − eθ̄1x̄0 = m(1 + πm)
[
θ̄2e

θ̄2x̄0 − θ̄1e
θ̄1x̄0

]
,

which implies (48). Similarly we can use the expression of V̄ in the insurance regime

(equation (51)), together with the values of B̄ and C̄ obtained as in the proof of Propo-

sition 3:

B̄ =
γ̄2e

−γ̄1x̄1

γ̄1(γ̄2 − γ̄1)
, C̄ = − γ̄1e

−γ̄2x̄1

γ̄2(γ̄2 − γ̄1)
,

and

B̄eγ̄1x̄0 + C̄eγ̄2x̄0 = m
[
γ̄1B̄eγ̄1x̄0 + γ̄2C̄eγ̄2x̄0

]
.

After easy computations, we obtain formula (49). Then we have to check that x̄0 ≤ m

and x̄1 ≥ x̄0. The first condition is equivalent to prove that the function g defined by

g(m) = ln(1−mθ̄1)− ln(1−mθ̄2)−m(θ̄2 − θ̄1).

is nonpositive. But, under the assumption m ≤ µ

r + λ
, it is easy to check that g(0) = 0

and g
′
(m) ≤ 0 for any m ≤ µ

r+λ
. Therefore, g is nonpositive on (0, µ

r+λ
) which is the

desired result.

The second condition is equivalent to

γ̄2
1(1− γ̄2m) ≥ γ̄2

2(1− γ̄1m),
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or:

m ≤ γ̄2
1 − γ̄2

2

γ̄1γ̄2(γ̄1 − γ̄2)
=

γ̄1 + γ̄2

γ̄1γ̄2

=
µ− λm

r
,

that is m ≤ µ
r+λ

.

Finally, we check that V̄ is a concave solution to the variational inequalities (41), (42).

Proof of Proposition 5: Again, it is enough to check that V̄ is a concave solution to

the variational inequalities (41), (42).

For x ≤ x̃1, D(1)V̄ (x) must be nonpositive. But,

D(1)V̄ (x) = Ãλ
(
(1−mθ̄2)e

θ̄2x − (1−mθ̄1)e
θ̄1x
)

.

If (1 − mθ̄2) ≤ 0 then D(1)V̄ (x) is nonpositive, while if (1 − mθ̄2) ≥ 0 then D(1)V̄ (x)

is a nondecreasing function, nonpositive on the interval [0, 1
θ̄2−θ̄1

ln
(

1−mθ̄1

1−mθ̄2

)
]. Since, the

condition m ≥ µ
r+λ

is equivalent to

2

θ̄2 − θ̄1

ln

∣∣∣∣ θ̄1

θ̄2

∣∣∣∣ ≤ 1

θ̄2 − θ̄1

ln

(
1−mθ̄1

1−mθ̄2

)
,

D(1)V̄ (x) is nonpositive on [0, x̃1].

For x ≥ x̃1, we have

D(1)V̄ (x) = −r(x− x̃1)− λ(m− µ

r + λ
) ≤ 0,

and

D(0)V̄ (x) = −r(x− x̃1)− λ(V̄ (x)− V̄ (x−m)− µ

r + λ
).

Concavity of V̄ yields the result.

Proof of Proposition 6: Using the equality,

D(1)V̄ (x)−D(0)V̄ (x) = λ
[
V̄ (x)− V̄ (x−m)− (m + πm2)V̄ ′(x)

]
,

we give an expansion of V (x−m) around x to obtain

D(1)V̄ (x)−D(0)V̄ (x) =

[
−πV̄ ′(x)− 1

2
V̄ ′′(x)

]
m2 + o(m2).

Remembering that V̄ ′(x1) = 1 and V̄ ′′(x1) = 0, we have

D(1)V̄ (x1)−D(0)V̄ (x1) = −πm2 + o(m2) < 0.

The conclusion follows from the continuity of the function D(1)V̄ (x)−D(0)V̄ (x)

Proof of Proposition 7 Take α1 ≤ α2, and define the associated liquidation thresholds

li, i = 1, 2 and hitting times T−li , i = 1, 2. We want to show that Vα1 ≤ Vα2 . There is
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nothing to prove for x ≤ −l1. For x ≥ −l1, we have T−l1 ≤ T−l2 almost surely. Therefore,

let us consider the dividend policy,

Ẑt = L
x∗1
t if t ≤ T−l1 ,

and

Ẑt = L
x∗2
t if T−l1 ≤ t ≤ T−l2 ,

we obtain

Vα2(x) ≥ E

(∫ T−l2

0

e−rs dẐs

)
= E

(∫ T−l1

0

e−rsdLx∗1
s + e−rT−l1Vα2(−l1)

)
= Vα1(x) + Vα2(−l1)E(e−rT−l1 ).

Since Vα2 is a strictly increasing function with Vα2(−l2) = 0, we have Vα2(−l1) > 0 which

implies the desired result.
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