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1 Introduction

The literature on irreversible investment under uncertainty pioneered by Arrow and Fisher

[2] and Henry [12] is based on the premise that three factors mainly influence the investment

decision. First, there is some uncertainty about the cash-flows that the investment project

will generate. Next, investment is at least partially irreversible, in the sense that investment

expenditures cannot be fully recovered. Last, there is some degree of flexibility in the timing

of investment, which is valuable because it gives the decision-maker the option to wait for new

information. The loss of this option value when investment occurs represents an additional

opportunity cost of investment. As a result, investment options are exercised significantly

above the point at which expected discounted cash-flows cover sunk capital costs, in contrast

with the usual net present value rule.

In the benchmark case of a single indivisible project, the optimal investment policy can be

mathematically determined as the solution of an optimal stopping problem. The prototype

of this approach is the model of McDonald and Siegel [20], in which the underlying value of

the investment project evolves as a geometric Brownian motion. Under this formulation, the

optimal investment strategy is a trigger strategy. Specifically, the investment option should

be exercised at the first time at which the value of the investment project reaches a critical

threshold that can be explicitly computed using standard smooth-fit techniques (Dixit and

Pindyck [8]).

The large and rapidly growing literature on real options has recently emphasized the

sequential nature of investment decisions (Majd and Pindyck [19], Bar-Ilan and Strange [3]),

the importance of incremental capacity choice (Pindyck [22], Kandel and Pearson [14]), and

addressed issues like entry and exit decisions (Dixit [6]), costly reversibility (Abel and Eberly

[1]), technology adoption (Farzin, Huisman and Kort [10]), and learning (Décamps, Mariotti

and Villeneuve [4]).

In this paper, we leave aside these complex and meaningful extensions of the theory

and revisit an old simple problem, namely the choice between mutually exclusive investment

projects under uncertainty. Despite its simplicity, this is still a topical question, as illustrated

for instance by Dias’ [5] recent survey of real options in the petroleum industry.

The starting point of our analysis is the model of Dixit [7]. In his model, a decision-

maker has to choose among alternative projects of different scales. The instantaneous cash-

flow generated by any of these projects is a linear function of a single geometric Brownian

motion that represents the dynamics of the output price, and of the constant output flow of

the project. Projects with larger sunk capital costs are associated with larger output flows

and, once installed, a project incurs no operating costs. When the decision-maker decides

to invest, he naturally selects the project with the highest net present value. Therefore, his

underlying payoff function is the upper envelope of the family of affine functions representing

the net present values of investing in each project given the current output price.

Dixit’s solution to this problem relies on a simple adaptation of the single project case

studied by McDonald and Siegel [20]. Specifically, he argues that each project should be

evaluated separately, and that the solution to the investment problem is simply to choose the

project with the highest option value. As an illustration, suppose there are two projects, 1

and 2. One could for instance think of these two projects as alternative ways of producing

electricity, by using a gas or a nuclear technology. Project 1 entails a lower sunk capital cost

and generates a lower output flow than project 2. Separate evaluation of these two projects
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leads to two option values, and associated critical investment thresholds p1 and p2 for the

output price, which is here the relevant state variable. According to Dixit, the solution of

the investment problem is then twofold.

(i) If the initial output price is low enough, it is optimal to invest in the project that has

the highest option value, at the first time at which the corresponding threshold p1 or

p2 is reached by the output price.

(ii) For values of the initial output price greater than this optimal threshold, the project

with the highest net present value is selected and investment is immediate.

While our solution coincides with Dixit’s in case (i), we find that (ii) is questionable. Our

counter-argument is as follows. Suppose that project 1 has a higher option value than project

2, which typically occurs if project 1 generates only a marginally lower output flow than

project 2, but entails a significantly lower sunk capital cost. In particular, when the current

output price is p1, the decision-maker is strictly better off investing in project 1 than in

project 2, so that p1 is below the indifference point for which the net present values of the

two projects are equal. We show that it is never optimal to invest in either project when

the output price is at this indifference point, thus contradicting part (ii) of Dixit’s solution.

The reason is that the underlying payoff function of the decision-maker is not differentiable

at the indifference point, where it exhibits an upward derivative jump. Using a local time

argument, we show that this implies the optimality of delaying investment for values of the

current output price in the neighborhood of this point.

As a result, when the option value of investing in project 1 is higher than that of investing

in project 2, the optimal investment strategy is no longer a trigger strategy, and the optimal

investment region in the state space is not connected. Instead, the optimal investment region

is dichotomous. Specifically, there are two critical thresholds p3 and p4 around the indifference

point such that if the current output price lies in [p1, p3], it is optimal to invest in project 1,

while if the current output price lies in [p4,∞), it is optimal to invest in project 2. It should
be noted that, for values of the output price below p3, Dixit’s solution remains correct. In

particular, when the initial output price is below p1, it is optimal to wait until the output

price reaches p1, and then to invest in project 1. By contrast, the intermediate region (p3, p4)

is an inaction region in which the decision-maker waits to see in which project to invest.

When the initial output price lies in (p3, p4), two scenarios can therefore occur. If the output

price raises to p4 before hitting p3, the decision-maker will invest in project 2. By contrast,

if the output price falls to p3 before hitting p4, the decision-maker will invest in project 1.

Under these circumstances, the eventual project choice is therefore path-dependent.

The existence of the intermediate inaction region (p3, p4) implies that, in striking contrast

with most standard real option models, it can be optimal to invest in a project even though

the instantaneous profit flow associated to this project falls. Investing in project 1 when

the output price falls down to p3 is optimal because p3 is higher than the output price

threshold p1 above which it would be optimal to invest in project 1 if that were the only

investment option available, and because it would be too costly to wait until the threshold

p4 is reached to invest in project 2–in other terms, “a bird in the hand is worth two in the

bush.” Moreover, there is a region of the state space in which it is optimal to delay investment

while it would be optimal to invest if only one project, 1 or 2, were available. This illustrates

again the interaction between the two investment options, which is not taken into account by
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Dixit’s solution. Adding a new investment option to an existing one increases the demand for

information and creates an additional incentive to delay investment, even if, when evaluated

separately, the second option is dominated by the first.

As pointed out above, a sufficient condition for the dichotomy of the optimal investment

region is that project 1 generates only a marginally lower output flow than project 2, but

entails a significantly lower sunk capital cost. Alternatively, one could fix the output and

cost parameters of the model, and investigate under which conditions on the underlying

output price process the optimal investment region is dichotomous. It turns out that, if the

volatility of the output price process is high enough, the optimal investment region is never

dichotomous and, no matter the current output price, it is never optimal to invest in project

1. Thus, holding the output and cost parameters of the model fixed, the dichotomy of the

optimal investment region requires a relatively low volatility of the output price process. More

generally, greater volatility systematically leads to the adoption of larger projects. However,

this result holds because in Dixit’s original model, the decision-maker cannot switch from

one project to the other. By contrast, we show that, whenever the decision-maker has the

option to switch from project 1 to project 2 by incurring the corresponding sunk capital cost,

there are output and cost parameters such that the dichotomy of the optimal investment

region is preserved and investment in project 1 occurs with positive probability even for a

very high volatility of the output price process. This suggests that greater volatility does not

systematically lead to the adoption of larger projects when the decision-maker has the option

to increase the scale of his operations as price conditions improve.

2 The basic model

2.1 The investment problem

Our basic setup and notation are directly in line with Dixit [7]. We simplify his model by

assuming that only two alternative investment projects are available. Time is continuous,

and labelled by t ≥ 0. A single risk-neutral decision-maker can invest in one of two projects,
i ∈ {1, 2}, of different scales. Project 2 generates a higher output flow than project 1, but
entails a higher sunk capital cost. Formally, each project i generates an output flow Xi > 0,

with X2 > X1, and entails a sunk capital cost Ki > 0, with K2 > K1. A project once

installed incurs no operating costs. The instantaneous cash-flow generated by project i is

PtXi, where P = {Pt; t ≥ 0} is a geometric Brownian motion with drift µ and volatility σ,

dPt = µPtdt+ σPtdWt; t ≥ 0,

that represents the dynamics of output price. The decision-maker discounts future revenues

and costs at a constant rate ρ > µ. A project once installed lasts for ever and, in the basic

version of the model, there is no option to switch from the smaller scale project 1 to the

larger scale project 2 once the former has been installed. Hence, for a current value p of the

output price, the net expected discounted profit of investing in project i is given by:

Vi(p) =
pXi
ρ− µ −Ki; p ≥ 0. (1)

When contemplating investment, the decision-maker will select the project which generates

the highest net expected discounted profit, given the current output price. So the value of
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investing is given by the upper envelope of V1 and V2:

V (p) = max{V1(p), V2(p)}; p ≥ 0. (2)

We denote by:

p̃ =
(ρ− µ)(K2 −K1)

X2 −X1
(3)

the output price level at which the decision-maker is indifferent between investing in either

project. In particular, V2(p) ≥ V1(p) if and only if p ≥ p̃. Note that V is not differentiable at
the indifference point p̃, with D+V (p̃) = X2/(ρ− µ) > X1/(ρ− µ) = D−V (p̃).

Let T P be the set of stopping times adapted to the filtration generated by the output
price P . The decision-maker’s investment problem can then be written as:

V(p) = sup
τ∈T P

E
£
e−ρτV (P pτ )

¤
; p ≥ 0, (4)

where the superscript p in P pt reflects the dependence of P on its initial value p. Let us denote

by S = {p > 0 | V(p) = V (p)} the stopping region for (4), and by τS = inf{t ≥ 0 | P pt ∈ S}
the associated stopping time. Since ρ > µ, the process {e−ρtV(P pt ); t ≥ 0} is uniformly
integrable and converges almost surely to 0 (see Appendix). A sufficient condition for τS to
be an optimal stopping time for (4) is then that S be non-empty (El Karoui [9]). We have
the following result.

Proposition 2.1 The stopping region S for (4) is non-empty.

Having shown the existence of a solution to (4), we now characterize the stopping region

S. Before that, it will be helpful to summarize Dixit’s approach to this problem.

2.2 Dixit’s solution

The solution proposed by Dixit to (4) is as follows. Relying on Itô’s lemma, he argues that,

on the continuation region R+ \ S, V must be of the form Bpβ, where:

β =
1

2
− µ

σ2
+

sµ
1

2
− µ

σ2

¶2
+
2ρ

σ2
> 1

is as usual the positive root of the quadratic equation:

q(ξ) =
1

2
σ2ξ(ξ − 1) + µξ − ρ = 0. (5)

The optimal value of B is determined as the highest B such that the contact condition

V (p) = Bpβ is satisfied for some p ≥ 0. Since V is an upper envelope of affine functions and

Bpβ is a convex function of p as β > 1, the contact between V and V cannot occur at the

indifference point p̃. Thus one needs only to compute the tangency points of functions of the

form Bip
β with each of the affine functions Vi, and select the one with the highest Bi. That

is, one solves, for each i:

Bip
β
i =

piXi
ρ− µ −Ki, (6)

βBip
β−1
i =

Xi
ρ− µ, (7)
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which leads to:

pi =
β

β − 1
Ki(ρ− µ)

Xi
, (8)

Bi =

·
Xi

(ρ− µ)β

¸βµβ − 1
Ki

¶β−1
. (9)

Dixit’s solution is then as follows. Let ī be the project for which Xβ
i /K

β−1
i is the largest.

Then, if the initial output price p is below pī, the decision-maker should wait until the output

price reaches pī, and then invest in project ī. If the initial output price p is above pī, the

decision-maker should immediately invest in the best available project. In other terms, the

stopping region S is of the form [pī,∞), and for any p ∈ S, the decision-maker should invest
in the project for which Vi(p) is the largest. In particular, the optimal investment strategy

would then be a simple trigger strategy, as when a single investment project is available

(McDonald and Siegel [20]).

Remark. There is a direct link between Dixit’s solution and that of the problem of

investing in a single project with output flow Xi and sunk capital cost Ki:

Vi(p) = sup
τ∈T P

E
£
e−ρτVi(P

p
τ )
¤
; p ≥ 0. (10)

Standard computations (Dixit and Pindyck [8]) show that the solution to (10) consists to

invest as soon as the output price reaches pi, and that Vi(p) = Bipβ for p ≤ pi. Equivalently,

Vi(p) =



µ
p

pi

¶β Ki
β − 1 if p ≤ pi,

pXi
ρ− µ −Ki if p > pi.

(11)

Conditions (6) and (7) correspond respectively to the usual value-matching and smooth-

pasting conditions for (10). Hence, Dixit’s solution essentially consists to evaluate separately

the two investment options on each project, and then to select the project with the highest

option value.

2.3 A counter-argument

To rule out the relatively uninteresting case in which, no matter the current output price, it

is never optimal to invest in project 1, and therefore τ = inf{t ≥ 0 | P pt ≥ p2} is an optimal
stopping time for (4), let us from now on assume that:

Xβ
1

Kβ−1
1

>
Xβ
2

Kβ−1
2

. (12)

According to Dixit’s solution, the stopping region S should then be [p1,∞). In particular,
p1 < p̃ and thus the indifference point p̃ belongs to S (otherwise, it would never be optimal
to invest in project 1). However, one has the following result.

Proposition 2.2 The indifference point p̃ never belongs to the stopping region S for (4).
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The proof of this result is technical, and relies on a local time argument based on the

Itô—Tanaka—Meyer formula (Karatzas and Shreve [15, Theorem 3.7.1]). The intuition is that,

because the payoff function V defined by (2) is not differentiable at the indifference point p̃,

with D+V (p̃) > D−V (p̃), the decision-maker is always better off delaying investment when
the current output price is p̃ rather than investing in either project. As shown below, this

implies that whenever (12) holds, the stopping region S is not connected, and the optimal
investment strategy is not a trigger strategy, contrary to Dixit’s solution.

Remark. An alternative way of deriving Proposition 2.2 is as follows. From optimal

stopping theory, the process {e−ρtV(P pt ); t ≥ 0} is a supermartingale (El Karoui [9]). This
implies that:

AV ≤ 0

in the sense of distributions on R++,1 where the operator A is defined by:

Ag = 1

2
σ2p2D2g + µpDg − ρg (13)

(Jaillet, Lamberton and Lapeyre [13]). In particular, on the interior of the stopping region

S, one has, in the sense of distributions:

AV = AV ≤ 0. (14)

The distribution AV can be explicitly computed as follows:

AV = (−pX1 + ρK1)1[0,p̃) + (−pX2 + ρK2)1(p̃,∞) +
X2 −X1
ρ− µ δp̃,

where the Dirac mass δp̃ reflects the derivative jump of V at p̃. Suppose now that S = [p1,∞),
as prescribed by Dixit’s solution under (12). Then p̃ > p1 and, for any non-negative function

φ ∈ C∞K (R+) with support [p̃− ε, p̃+ ε] ⊂ (p1,∞),

hAV ,φi=
Z p̃+ε

p̃−ε
(−pX2 + ρK2)φ(p) dp+

X2 −X1
ρ− µ φ(p̃).

Choosing ε small enough and φ(p̃) large enough, it follows that hAV ,φi> 0, which contradicts
(14). It follows that the stopping region S cannot be of the prescribed form.

2.4 The optimal investment region

We are now ready to state and prove our main result.

Theorem 2.1 Suppose that (12) holds. Then:

(i) The stopping region S for (4) is the union of two disjoint intervals [p1, p3] and [p4,∞),
where p1 is given by (8) and p3 < p̃ < p4. If the current output price lies in [p1, p3],

it is optimal to invest in project 1, while if it lies in [p4,∞), it is optimal to invest in
project 2;

1Recall that a distribution T on an open set Ω ⊂ R++ is a linear form on the space C∞K (Ω) of infinitely
differentiable functions on Ω with compact support that satisfies the following property: for any sequence {φn}
of functions in C∞K (Ω) whose supports are contained in a fixed compact subset of Ω, and such that the sequence
{Dkφn} converges uniformly to 0 for every k ∈ N, the sequence {hT,φni} converges to 0 (see for instance
Ziemer [23, Definition 1.7.1]). The notation T ≤ 0 means that hT,φi≤ 0 for any non-negative φ ∈ C∞K (Ω).
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(ii) The value function V for (4) is continuously differentiable on R++ and satisfies the

following variational inequalities:

AV ≤ 0, (15)

V ≥ V, (16)

(V − V )AV = 0, (17)

where the operator A is given by (13). In particular, V coincides with V1 on [0, p3],
and p3 and p4 are characterized by the following value-matching and smooth-pasting

conditions:

V(p3) = V1(p3), (18)

V(p4) = V2(p4), (19)

DV(p3) = DV1(p3), (20)

DV(p4) = DV2(p4). (21)

The key insight of this result is that, whenever (12) holds, the optimal investment strategy

is not a trigger strategy, and the optimal investment region is dichotomous. It should be noted

that Dixit’s solution remains valid on the segment [0, p1] of the state space. If the output

price initially belongs to that region, it is optimal to wait until it reaches p1 to invest in

project 1. However, our solution departs from his in that there is a range of prices (p3, p4)

around the indifference point p̃ in which it is optimal for the decision-maker to wait in order

to decide in which project to invest. Note that if project 2 were not immediately available,

it would be optimal to invest in project 1 in that region. Thus delay in the region (p3, p4)

reflects the added opportunity to invest in project 2. Moreover, it is not difficult to check

that p4 > p2 if (12) holds, so that for values of the output price in (p2, p4), the decision-maker

chooses to delay investment although he would have invested immediately if only one project,

1 or 2, were available. This illustrates the interaction between the two investment options:

the decision-maker is ready to delay further investment in project 2 because he knows that

he will have the option to invest in project 1 if the output price deteriorates too much. Note

that this remains true despite the fact that, on the interval [0, p̃), the option of investing

in project 1 uniformly dominates that of investing in project 2 when these two options are

evaluated separately, that is, V1 > V2 on this price range.
As shown on Figure 1, the value function V coincides with V1 on [0, p1], then takes off

from V1 on (p3, p4) and touches down V2 at the point p4. On the interval [0, p1], V is of the
form B1p

β, where B1 is given by (9). On the interval [p3, p4], it follows from (15)—(17) that

V is of the form Apα +Bpβ, where:

α =
1

2
− µ

σ2
−

sµ
1

2
− µ

σ2

¶2
+
2ρ

σ2
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is the negative root of the quadratic equation (5). The coefficients A and B, as well as

the critical investment thresholds p3 and p4, can be found in principle by solving the value-

matching and smooth-pasting conditions (18)—(21), although no analytic solution is available.
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2.5 Discussion

Condition (12) is a necessary and sufficient condition for the optimal investment region to be

dichotomous in Dixit’s model when there are two alternative projects. For a fixed value of

β, (12) holds if project 1 generates only a marginally lower output flow than project 2, but

entails a significantly lower sunk capital cost. If (12) does not hold, then the option value

of investing in project 2, V2, uniformly dominates the payoff of investing in project 1, V1, so
that it never pays to select project 1. It is worth noting that, whenever σ goes to infinity and

thus β goes to 1, condition (12) is never satisfied as X1 < X2. Thus, holding the output and

cost parameters of the model fixed, the dichotomy of the optimal investment region requires

a relatively low volatility of the output price process. As we shall see, this is no longer the

case once one allows the decision-maker to switch from project 1 to project 2.

Examples of investment policies more complex than a simple trigger strategy abound in

the literature. The model of entry and exit by Dixit [6] generates a two-trigger strategy:

the critical output price above which it is optimal to enter an industry is higher than the

one below which it is optimal to exit from it. Similarly, Abel and Eberly [1] show that the

investment policy of a firm under costly reversibility is characterized by a range of inaction

8



in which it is optimal neither to purchase nor to sell capital. However, a common feature

of these and related papers is that the lower boundary of the inaction region corresponds

to a disinvestment decision. In our model, by contrast, both p3 and p4 correspond to an

investment decision, albeit in different projects.

A striking feature of the optimal investment strategy is that it may be optimal to invest

in project 1 after a drop in the output price if the output price initially lies in (p3, p4).

Rational investment in a down market can also be triggered by other factors. Competition is

one of them. Grenadier [11] develops a model of strategic exercise of investment options in

which competitors can simultaneously invest when the value of the investment goes down in

an attempt to avoid preemption. Décamps, Mariotti and Villeneuve [4] show that a similar

phenomenon can occur in a single decision-maker context when the drift of the value process

is not known ex-ante. The decision to invest then depends on both the observed current value

of the project and the beliefs about the unknown drift. This generates path dependency in

the optimal investment strategy, and it may be rational to invest after a drop in the current

value of the investment project. As we have shown, this phenomenon can also result from

the interaction between several investment options.

Finally, although we have derived our results for the case of two alternative projects,

it is conceptually straightforward to extend them to an arbitrary number of projects with

output flows X1, . . . ,XN and sunk capital costs K1, . . . ,KN ranked in increasing order. The

analogue of Proposition 2.2 is that it is never optimal to invest when the current output

price corresponds to a point of non-differentiability of the upper envelope of the net expected

discounted profits of investing in each project. As soon as the option of investing in project

N does not dominate all the other investment options, the optimal investment strategy will

be characterized by several disconnected inaction regions, in which the decision-maker waits

in order to determine in which project to invest.

3 Project switching

3.1 The investment problem

In this section, we modify Dixit’s [7] original setup by allowing the decision-maker to switch

from one project to another by incurring the corresponding sunk capital cost. Since project

2 generates a higher output flow than project 1, it is clear that it is never optimal to switch

from project 2, once installed, to project 1. Thus, for a current value p of the output price,

the net expected discounted profit of investing in project 2 is given by V2(p) as above. By

contrast, once project 1 is installed, it is optimal to switch to project 2 if the output price

becomes large enough, as we shall see below. The decision-maker’s investment problem can

then be written as:

Vswitch(p) = sup
τ1,τ2∈T P , τ1≤τ2

E
·
1{τ1<τ2}

µZ τ2

τ1

e−ρtP pt X1 dt− e−ρτ1K1 + e−ρτ2V2(P pτ2)
¶¸
(22)

+ E
£
1{τ1=τ2}e

−ρτ2V2(P
p
τ2)
¤
; p ≥ 0.

Here, τ1 denotes the first time at which the decision-maker invests, whichever project he

selects, and τ2 ≥ τ1 denotes the first time at which he invests in project 2. We shall solve

(22) by dynamic programming techniques. As a first step, this requires computing the value
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of investing sequentially in projects 1 and 2.

3.2 The switching option

To determine the value of investing in project 1, we must first take into account the option

of switching later from project 1 to project 2. Specifically, for a current value p of the output

price, the net expected discounted profit of investing in project 1 is given by:

V s1 (p) = sup
τ∈T P

E
·Z τ

0
e−ρtP pt X1 dt+ e

−ρτV2(P
p
τ )

¸
−K1. (23)

The optimal stopping problem in (23) is standard. In particular, V s1 + K1 is continuously

differentiable on R++ and satisfies the following variational inequalities:

A(V s1 +K1) + pX1 ≤ 0,

V s1 +K1 ≥ V2,

(V s1 +K1 − V2) [A(V s1 +K1) + pX1] = 0,

where the operator A is given by (13). Simple computations then lead to the following explicit
expression for V s1 :

V s1 (p) =


pX1
ρ− µ +

µ
p

ps12

¶β K2
β − 1 −K1 if p ≤ ps12,

pX2
ρ− µ −K2 −K1 if p > ps12,

(24)

where:

ps12 =
β

β − 1
K2(ρ− µ)
X2 −X1

(25)

is the critical output price level above which it is optimal to switch from project 1 to project

2. By (8) and (25), ps12 > p2. Intuitively, this is because the expected discounted gain from

switching from project 1 to project 2 is less than the expected discounted gain from investing

in project 2 starting from a situation where no project is in place, while the cost to the

decision-maker is the same.

From (1) and (24), V s1 (0) > V2(0) and V
s
1 (p) < V2(p) for any p > p

s
12. Since V

s
1 is convex,

with a slope that is everywhere smaller or equal than the constant slope of V2, there exists a

unique output price level p̃s < ps12 such that V2(p) ≥ V s1 (p) if and only if p ≥ p̃s. Moreover,
since the slopes of V s1 and V2 coincide only on [p

s
12,∞), DV2(p̃s) > DV s1 (p̃s).

Remark. Coming back to problem (22), note that it is clearly suboptimal to invest in

project 1 when the current output price is above ps12, since it would then be optimal to switch

immediately to project 2, and thus investing directly in project 2 is a dominant strategy. In

particular, since ps12 > p2, delaying investment in project 2 is pointless when the current

output price is above ps12.

10



3.3 Constrained sequential investment

As a benchmark, it is useful to consider what would happen if the decision-maker were

constrained to invest in project 1 before investing in project 2. His investment problem can

then be written as:

Vseq(p) = sup
τ1,τ2∈T P , τ1≤τ2

E
·Z τ2

τ1

e−ρtP pt X1 dt− e−ρτ1K1 + e−ρτ2V2(P pτ2) ;̧ p ≥ 0. (26)

Here, τ1 denotes the first time at which the decision-maker invests in project 2, and τ2 ≥ τ1
denotes the first time at which he invests in project 2. We solve (26) by dynamic programming

techniques. Given a current output price p, the value of investing in project 1, taking into

account the option to switch later to project 2, is V s1 (p). Hence, in analogy with (10), it

is natural to consider the following auxiliary optimal stopping problem, in which the payoff

function is given by V s1 instead of V1:

Vs1(p) = sup
τ∈T P

E
£
e−ρτV s1 (P

p
τ )
¤
; p ≥ 0. (27)

We have the following result.

Lemma 3.1 For any p ≥ 0, Vseq(p) ≤ Vs1(p).

Our strategy for solving (26) is then as follows. First, we characterize the solution to

(27). Next, we exhibit stopping times τ1 and τ2 which achieve the payoff Vs1(p) in (26), and
are thus optimal given Lemma 3.1.

Compared to (10), the difficulty in (27) is that V s1 is not affine in the current output

price, reflecting the fact that V s1 is itself an option value. One can nevertheless proceed in a

standard way by seeking a value function Vs1 for (27) that is continuously differentiable on
R++ and satisfies the following variational inequalities:

AVs1 ≤ 0,

Vs1 ≥ V s1 ,

(Vs1 − V s1 )AVs1 = 0,

where the operator A is given by (13). Simple computations show that the stopping region

Ss1 = {p > 0 | Vs1(p) = V s1 (p)} for (27) is of the form [ps1,∞), and that two cases can occur:

(i) If X2/X1 < I2/I1 + 1, then:

ps1 =
β

β − 1
K1(ρ− µ)

X1
< ps12. (28)

(ii) If X2/X1 ≥ I2/I1 + 1, then:

ps1 =
β

β − 1
(K1 +K2)(ρ− µ)

X2
≥ ps12. (29)

11



In both cases, the value function Vs1 can be written as:

Vs1(p) =


µ
p

ps1

¶β

V s1 (p
s
1) if p ≤ ps1,

V s1 (p) if p > ps1.

(30)

We can now exhibit stopping times that achieve the value Vs1(p) in the sequential investment
problem (26), thereby verifying that Vseq(p) = Vs1(p). In case (i), the optimal stopping times
are τ1 = inf{t ≥ 0 | P pt ≥ ps1} and τ2 = inf{t ≥ 0 | P pt ≥ ps12}. If P0 < ps12, investment is

sequential: it is optimal to invest in project 1 when the output price reaches ps1, and then

to wait until the output price reaches ps12 to invest in project 2. Note that, in this case, the

optimal investment threshold ps1 for project 1 is equal to p1 as given in (8). Thus investment

in project 1 is myopic, in the sense that it occurs at the same time than if the option of

switching to project 2 were not present, as in Leahy [18]. In case (ii), the optimal stopping

times are τ1 = τ2 = inf{t ≥ 0 | P pt ≥ ps1}, and the two investments occur simultaneously.

3.4 The optimal investment strategy

We are now in position to solve problem (22). As for (26), we adopt a dynamic programming

approach. Given a current output price p, the value of investing in project 1, taking into

account the option to switch later to project 2, is V s1 (p). Hence, in analogy with (2) and (4),

it is natural to consider the upper envelope of V s1 and V2:

V s(p) = max{V s1 (p), V2(p)}; p ≥ 0, (31)

and the following auxiliary optimal stopping problem:

Vs(p) = sup
τ∈T P

E
£
e−ρτV s(P pτ )

¤
; p ≥ 0. (32)

It should be noted that, in analogy with the basic model, V s is not differentiable at p̃s, with

D+V s(p̃s) = DV2(p̃
s) > DV s1 (p̃

s) = D−V s(p̃s). We have the following result.

Lemma 3.2 For any p ≥ 0, Vswitch(p) ≤ Vs(p).

Our strategy for solving (22) is then as follows. First, we characterize the solution to

(32). Next, we exhibit stopping times τ1 and τ2 which achieve the payoff Vs(p) in (22), and
are thus optimal given Lemma 3.2.

Let us denote by Ss = {p > 0 | Vs(p) = V s(p)} the stopping region for (32), and by
τSs = inf{t ≥ 0 | P pt ∈ Ss} the associated stopping time. As for (4), τSs is an optimal
stopping time for (32) if Ss is non-empty. We have the following result.

Proposition 3.1 The stopping region Ss for (32) is non-empty.

Proceeding as in Section 2, we first rule out the relatively uninteresting case in which, no

matter the current output price, it is never optimal to invest in project 1 and 2 sequentially,

and τ1 = τ2 = inf{t ≥ 0 | P pt ≥ p2} are optimal stopping times for (22). A necessary

and sufficient condition for this not to occur is that V s1 (p) > V2(p) for some p ≥ 0. Using

12



the explicit formulas (24) and (11) for V s1 and V2, it is straightforward to verify that this
condition is equivalent to:

Xβ
1

Kβ−1
1

>

"
1−

µ
1− X1

X2

¶β
#
Xβ
2

Kβ−1
2

, (33)

which is weaker than (12). It should be noted that, because β > 1, (33) implies thatK1/X1 <

K2/X2, so that p1 < p2 by (8). In particular, one can check that (33) implies that V
s
1 (p1) >

V2(p1) ≥ V2(p1), so that p1 < p̃s by definition of p̃s. Finally, in terms of the sequential

investment problem (26), we are in case (i), and thus ps1 = p1. We have the following result.

Theorem 3.1 Suppose that (33) holds. Then:

(i) The stopping region Ss for (32) is the union of two disjoint intervals [p1, ps3] and [ps4,∞),
where p1 is given by (8) and p

s
3 < p̃

s < ps4;

(ii) The value function Vs for (32) is continuously differentiable on R++ and satisfies the
following variational inequalities:

AVs ≤ 0, (34)

Vs ≥ V s, (35)

(Vs − V )AVs = 0, (36)

where the operator A is given by (13). In particular, Vs coincides with Vseq on [0, ps3],
and ps3 and p

s
4 are characterized by the following value-matching and smooth-pasting

conditions:

Vs(ps3) = V s1 (p
s
3), (37)

Vs(ps4) = V2(p
s
4), (38)

DVs(ps3) = DV s1 (p
s
3), (39)

DVs(ps4) = DV2(p
s
4). (40)

(iii) Vswitch = Vs and the optimal stopping times for (22) are:

τ1 = inf{t ≥ 0 | P pt ∈ Ss},

τ2 = inf

½
t ≥ 0 | P pt ≥ ps4, min

s∈[0,t]
P ps > p

s
3

¾
∧ inf

½
t ≥ 0 | P pt ≥ ps12, min

s∈[0,t]
P ps ≤ ps3

¾
.

In analogy with Proposition 2.2, the bulk of the proof consists to show that the indifference

point p̃s never belongs to the optimal stopping region Ss. The remaining arguments closely
follow those used to prove Theorem 2.1.

13



As shown on Figure 2, the value function Vswitch coincides with Vseq on [0, p1], then takes
off from V s1 on (p

s
3, p

s
4) and touches down V2 at the point p

s
4. On the interval [0, p1], Vswitch

is of the form Bs1p
β, where:

Bs1 =
1

pβ1

"
K1
β − 1 +

µ
p1
ps12

¶β K2
β − 1

#
can be easily computed from (24) and (30). On the interval [ps3, p

s
4], it follows from (34)—(36)

that Vswitch is of the form Aspα + Bspβ. The coefficients As and Bs, as well as the critical

investment thresholds ps3 and p
s
4, can be found in principle by solving the value matching and

smooth-pasting conditions (37)—(40) although, as in the basic model, no analytic solution is

available.

6
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Figure 2. The value function Vswitch
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3.5 Discussion

In the basic model, the dichotomy of the investment region is not robust to a high volatility

of the output price process, as the option of investing in project 2 uniformly dominates the

payoff of investing in project 1, and thus (12) is no longer satisfied. This is no longer the case

when one allows switching from project 1 to project 2. Indeed, the necessary and sufficient

condition (33) for a dichotomous investment region can be rewritten as:µ
X1
X2

¶βµK1
K2

¶1−β
+

µ
1− X1

X2

¶β

> 1. (41)
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Note that whenever σ goes to infinity and thus β goes to 1, (41) becomes an equality. Next,

the derivative of the left-hand side of (41) with respect to β at β = 1 is [ln(X1/X2) −
ln(K1/K2)]X1/X2+ln(1−X1/X2)(1−X1/X2) which is positive if K1/X1 < K2/X2 and X1
is close enough to X2. Under those circumstances, (41) still holds for β close to 1, and the

dichotomy of the investment region persists even if the output price process if highly volatile.

Appendix

Proof of Proposition 2.1: Since ρ > µ, the process {e−ρtP pt ; t ≥ 0} is a positive and continuous
supermartingale. In particular, it has a last element, namely 0. Hence, by the optional sam-

pling theorem (Karatzas and Shreve [15, Theorem 1.3.22]), E [e−ρτP pτ ] ≤ p for any stopping
time τ ∈ T P . Noting that there exist positive constants C1 and C2 such that V (p) ≤ C1p+C2
for any p ≥ 0, we therefore have:

E
£
e−ρτV (P pτ )

¤
≤ C1E

£
e−ρτP pτ

¤
+ C2 ≤ C1p+ C2

for any stopping time τ ∈ T P , and thus V(p) ≤ C1p+C2 for any p ≥ 0. It follows in particular
that V(p) is well-defined and finite and, since ρ > µ, that the process {e−ρtV(P pt ); t ≥ 0} is
uniformly integrable and converges almost surely to 0. According to optimal stopping theory,

the process {e−ρ(t∧τS)V(P pt∧τS ); t ≥ 0} is a martingale (El Karoui [9]). Now, suppose that
S = ∅. Then the process {e−ρtV(P pt ); t ≥ 0} is a martingale. Therefore, for any t ≥ 0,

V(p) = E
£
e−ρtV(P pt )

¤
≤ C1p e−(ρ−µ)t + C2e−ρt.

Since t is arbitrary and ρ > µ, it follows that V is identically equal to 0, which is absurd as
V ≥ max{0, V1, V2}. Thus S 6= ∅, as claimed. ¤

Proof of Proposition 2.2: Let us define the operator A by (13) and let f = V2 − V1. By
construction, f is a difference of two affine functions which satisfies f(p̃) = 0 and Df(p̃) > 0,

and we have V = V1+max{f, 0}. Since V1 is of class C2 on R++, it follows from Itô’s lemma

and the Itô—Tanaka—Meyer formula (Karatzas and Shreve, [15, Theorem 3.7.1]) that, for any

t ≥ 0,

E
h
e−ρtV (P p̃t )

i
= V (p̃) + E

·Z t

0
e−ρsAV1(P p̃s ) ds

¸

+ E
·Z t

0
e−ρsAf(P p̃s )1{P p̃s ≥p̃} ds

¸
+
1

2
Df(p̃)E

h
e−rtLp̃t

i
,

where {Lp̃t ; t ≥ 0} is the local time for the continuous semimartingale P at p̃. We treat

each term on the right-hand side of this equation separately. For the second term, one has

AV1(p) = −pX1 + ρK1. Hence, for any t ≥ 0,¯̄̄̄
E
·Z t

0
e−ρsAV1(P p̃s ) ds

¸¯̄̄̄
≤ E

·Z t

0
e−ρs

¯̄
AV1(P p̃s )

¯̄
ds

¸

≤ E
·Z t

0
e−ρs(P p̃sX1 + ρK1) ds

¸

=
p̃X1
ρ− µ [1− e

−(ρ−µ)t] +K1(1− e−ρt).
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Since ρ > µ, it follows that:

E
·Z t

0
e−rsAV1(P p̃s ) ds

¸
= o(
√
t).

For the third term, note that there exists positive constants C1 and C2 such that |Af(p)| ≤
C1p+ C2 for p ≥ p̃. Hence, for every t ≥ 0,¯̄̄̄

E
·Z t

0
e−ρsAf(P p̃s )1{P p̃s≥p̃} ds

¸¯̄̄̄
≤ E

·Z t

0
e−ρs

¯̄̄
Af(P p̃s )1{P p̃s ≥p̃}

¯̄̄
ds

¸

≤ E
·Z t

0
e−ρs(C1P

p̃
s +C2) ds

¸

=
C1p̃

ρ− µ [1− e
−(ρ−µ)t] +

C2
ρ
(1− e−ρt).

Since ρ > µ, it follows that:

E
·Z t

0
e−ρsAf(P p̃s )1{P p̃s≥p̃} ds

¸
= o(
√
t).

For the fourth term, note that by the Itô—Tanaka—Meyer formula,

E
h
e−ρt(P p̃t − p̃)+

i
= µE

·Z t

0
e−ρsP p̃s 1{P p̃s ≥p̃} ds

¸
− ρE

·Z t

0
e−ρs(P p̃s − p̃)+ ds

¸
+
1

2
E
h
e−ρtLp̃t

i
.

The first two terms on the right-hand side of this equality can be shown to be on the order

of o(
√
t) by the same reasoning as above. Hence:

1

2
E
h
e−ρtLp̃t

i
= E

h
e−ρt(P p̃t − p̃)+

i
+ o(
√
t)

= e−ρtp̃

½
eµt P

·
W1 ≤

µ+ σ2/2

σ

√
t

¸
− P

·
W1 ≤

µ− σ2/2

σ

√
t

¸¾
+ o(
√
t)

= p̃σ

r
t

2π
+ o(
√
t),

where the second and third equalities follow from a direct computation. Summing up, we

therefore obtain:

E
h
e−ρtV (P p̃t )

i
= V (p̃) + p̃σDf(p̃)

r
t

2π
+ o(
√
t).

Since Df(p̃) > 0, letting t tend to 0 yields that supτ∈T P E [e−ρτV (P
p̃
τ )] > V (p̃). Hence p̃ does

not belong to the stopping region S. ¤

Proof of Theorem 2.1: (i) Let V1 and V2 be the option values for each project as defined
by (10). It is easy to check from (8) that (12) and K1 < K2 imply that p1 < p2 and

V1(p1) > B2p
β
1 = V2(p1). It follows that V 6= V2, and thus S ∩ [0, p̃] 6= ∅. Moreover, by

Proposition 2.2, inf S < p̃. It is clear that for p < p1, V(p) ≥ V1(p) > V1(p), so that

inf S ≥ p1. We now prove the reverse inequality, establishing that inf S = p1. We have:

V(p1) = E
£
e−ρτSV1(P

p1
τS )
¤
≤ sup

τ∈T P
E
£
e−ρτV1(P

p1
τ )
¤
= V1(p1),
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where the first equality follows from the fact that inf S < p̃, and the second from the definition
of p1. Since V(p1) ≥ V1(p1), these quantities are in fact equal, and it follows that p1 ≥ inf S,
as claimed. A similar argument establishes that S ∩ [0, p̃] is an interval [p1, p3], and by
Proposition 2.2, p3 < p̃. We now prove that S ∩ [p̃,∞) 6= ∅. If this were not the case, then
S = [p1, p3], and for any p > p3, we would have:

V(p) = E
£
e−ρτSV1(P

p
τS )
¤
> V2(p),

or, equivalently: µ
p

p3

¶αµ p3X1
ρ− µ −K1

¶
>
pX2
ρ− µ −K2, (42)

where α is the negative root of the quadratic equation (5). For p large enough, (42) is violated,

and we obtain a contradiction. Let p4 = inf S∩ [p̃,∞). By Proposition 2.2, p4 > p̃. Moreover,
it is immediate that p4 ≥ p2, since otherwise waiting until the output price exceeds p2 to
invest in project 2 would secure the decision-maker a strictly greater payoff than investing in

project 2 when the current value of the output price is p4. It then follows by an argument

similar to the one used to prove that p1 = inf S that S ∩ [p̃,∞) = [p4,∞).
(ii) The variational inequalities (15)—(17) characterize V if V is differentiable (Øksendal

[21, Theorem 10.4.1]). We only need to prove this at the investment triggers p1, p3 and p4.

On [0, p1], we clearly have V = V1, and the differentiability of V at p1 follows from a standard
smooth-pasting argument for problem (10). We now prove that DV(p3) = DV1(p3). Since

V ≥ V1 and V(p3) = V1(p3), we have, for any ε > 0,

V(p3 + ε)− V(p3)
ε

=
V(p3 + ε)− V1(p3)

ε
≥ V1(p3 + ε)− V1(p3)

ε
. (43)

Following Karatzas and Shreve [16, Lemma 7.8], let us introduce the stopping times T 1ε =

inf{t ≥ 0 | (p3 + ε)Ht ≤ p3} and T 2ε = inf{t ≥ 0 | (p3 + ε)Ht ≥ p4}, where Ht = exp((µ −
σ2/2)t+σWt) for each t ≥ 0. The stopping time Tε = T 1ε ∧T 2ε is optimal whenever the initial
value of P is p3 + ε. Therefore:

V(p3 + ε) = E
£
e−ρTεV ((p3 + ε)HTε)

¤
≤ V(p3) + E

£
e−ρTε [V ((p3 + ε)HTε)− V (p3HTε)]

¤
,

where the inequality follows from the fact that Tε is not an optimal stopping time whenever

the initial value of P is p3. Up to the term V(p3), the right-hand side of this inequality can
be written as:·

V1(p3)− V1
µ

p23
p3 + ε

¶¸
E
£
e−ρTε1{Tε=T 1ε }

¤
+

·
V2(p4)− V2

µ
p3p4
p3 + ε

¶¸
E
£
e−ρTε1{Tε=T2ε }

¤
.

Using standard results on the Laplace transform of the exit time of a Brownian motion on

a finite interval (Karatzas and Shreve [15, §2.8.C]), together with the continuity of V2, we
obtain that: ·

V2(p4)− V2
µ
p3p4
p3 + ε

¶¸
E
£
e−ρTε1{Tε=T2ε }

¤
= o(ε).

It follows that:

V(p3 + ε)− V(p3)
ε

≤
V1(p3)− V1

µ
p23

p3 + ε

¶
ε

+ o(1). (44)
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Using (43)—(44) and letting ε go to 0, we obtain that D+V(p3) = D+V1(p3), which implies
the result. The proof of the differentiability of V at p4 is similar, and therefore omitted. ¤

Proof of Lemma 3.1: Consider two stopping times τ1, τ2 ∈ T P such that τ1 ≤ τ2. Then, using

the strong Markov property and the definition of V s1 , we obtain that:

E
·Z τ2

τ1

e−ρtP pt X1 dt− e−ρτ1K1 + e−ρτ2V2(P pτ2)
¸

= E
·
e−ρτ1Eτ1

·Z τ2

τ1

e−ρ(t−τ1)P pt X1 dt+ e
−ρ(τ2−τ1)V2(P

p
τ2)−K1

¸¸

= E
·
e−ρτ1Eτ1

·Z τ2−τ1

0
e−ρtP

Ppτ1
t X1 dt+ e

−ρ(τ2−τ1)V2(P
Ppτ1
τ2 )−K1

¸¸
≤ E

£
e−ρτ1V s1 (P

p
τ1)
¤
.

The result follows then directly from comparing the objective functions in (26) and (27). ¤

Proof of Lemma 3.2: Consider two stopping times τ1, τ2 ∈ T P such that τ1 ≤ τ2. Then,

proceeding as in the proof of Lemma 3.1, we obtain that:

E
·
1{τ1<τ2}

µZ τ2

τ1

e−ρtP pt X1 dt− e−ρτ1K1 + e−ρτ2V2(P pτ2)
¶¸
≤ E

£
1{τ1<τ2}e

−ρτ1V s1 (P
p
τ1)
¤
.

Hence, the objective function in (22) is bounded above by:

E
£
1{τ1<τ2}e

−ρτ1V s1 (P
p
τ1) + 1{τ1=τ2}e

−ρτ2V2(P
p
τ2)
¤

= E
£
1{τ1<τ2}e

−ρτ1V s1 (P
p
τ1) + 1{τ1=τ2}e

−ρτ1V2(P
p
τ1)
¤

≤ E
£
e−ρτ1 max{V s1 (P pτ1), V2(P

p
τ1)}

¤
= E

£
e−ρτ1V s(P pτ1)

¤
,

from which the result follows by (32). ¤

Proof of Proposition 3.1: The proof mimics that of Proposition 2.1, with V s1 , V
s and Vs

instead of V1, V and V. ¤

Proof of Theorem 3.1: (i) The first step of the proof consists to show that p̃s 6∈ Ss. We
proceed as in the proof of Proposition 2.2. Let fs = V2 − V s1 . By construction, fs is

a difference of two convex functions which satisfies fs(p̃s) = 0 and Dfs(p̃s) > 0, and we

have V s = V s1 + max{fs, 0}. Since V s1 is of class C2 on R++ \ {ps12}, and its derivative is
absolutely continuous, it follows from the generalized Itô formula (Krylov [17, §2.10]) and the
Itô—Tanaka—Meyer formula (Karatzas and Shreve [15, Theorem 3.7.1]) that, for any t ≥ 0,

E
h
e−ρtV s(P p̃

s

t )
i
= V s(p̃s) + E

·Z t

0
e−ρuAV s1 (P p̃

s

u ) du

¸

+ E
·Z t

0
e−ρuAfs(P p̃su )1{P p̃su ≥p̃s} du

¸
+
1

2
Df(p̃s)E

h
e−rtLp̃

s

t

i
.
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We treat each term on the right-hand side of this equation separately. For the second term,

since V s1 is of class C2 on (0, ps12), there exists a positive constant C1 such that |AV s1 (p)| ≤ C1
for any p ∈ (0, ps12). For p ∈ (ps12,∞), AV s1 (p) = −pX2+ ρ(K1+K2). Hence, for every t ≥ 0,¯̄̄̄

E
·Z t

0
e−ρuAV s1 (P p̃

s

u ) du

¸¯̄̄̄
≤ E

·Z t

0
e−ρu

¯̄
AV s1 (P p̃

s

u )
¯̄
du

¸

≤ E
·Z t

0
e−ρu[P p̃

s

u X2 + ρ(K1 +K2) +C1] du

¸

=
p̃sX2
ρ− µ [1− e

−(ρ−µ)t] +

µ
K1 +K2 +

C1
ρ

¶
(1− e−ρt).

Since ρ > µ, it follows that:

E
·Z t

0
e−ρuAV s1 (P p̃

s

u ) du

¸
= o(
√
t).

The third and fourth terms can be treated as in the proof of Proposition 2.2, and thus:

E
h
e−ρtV s(P p̃

s

t )
i
= V s(p̃s) + p̃sσDfs(p̃s)

r
t

2π
+ o(
√
t).

Since Dfs(p̃s) > 0, letting t tend to 0 yields that supτ∈T P E [e−ρτV s(P
p̃s
τ )] > V s(p̃s). Hence

p̃s does not belong to the stopping region Ss. Next, as mentioned in the text, (33) implies
that V s1 (p1) > V2(p1). It follows that Vs 6= V2, and thus Ss∩ [0, p̃s] 6= ∅. The remaining of the
proof mimics that of Theorem 2.1(i), with V s1 , Vs1 , Vs, Ss, p̃s, ps3 and ps4 instead of V1, V1, V,
S, p̃, p3 and p4. (Note that ps1 = p1 under (33).) The only point that requires modification
is (42), which becomes:µ

p

ps3

¶α
"
ps3X1
ρ− µ +

µ
ps3
ps12

¶β K2
β − 1 −K1

#
>
pX2
ρ− µ −K2. (45)

Just as (42), (45) is violated for p large enough, which implies the desired result.

(ii) Noting that V1s = Vseq, the proof mimics that of Theorem 2.1(ii), with V s1 , Vs1 , Vs,
Ss, p̃s, ps3 and ps4 instead of V1, V1, V, S, p̃, p3 and p4.

(iii) It is immediate to check that the stopping times τ1 and τ2 yield the value Vs(p) in
(22). Since Vswitch(p) ≤ Vs(p) for any p ≥ 0 by Lemma 3.2, the result follows. ¤
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