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Abstract

We study the decision of when to invest in a project whose value is perfectly observable
but driven by a parameter that is unknown to the decision-maker ex-ante. This problem is
equivalent to an optimal stopping problem for a bivariate Markov process. Using filtering
and martingale techniques, we show that the optimal investment region is characterized by
a continuous and non-decreasing boundary in the value-belief state space. This generates
path-dependency in the optimal investment strategy. We further show that the decision-
maker always benefit from an uncertain drift relative to an average drift situation, and
that the value of the option to invest is not globally increasing with respect to the volatility
of the value process.
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1. Introduction. Uncertainty and irreversibility have long been recognized as key
determinants of investment (Arrow and Fisher 1974, Henry 1974). In contrast with the net
present value rule, which implicitly requires investment expenditures to be fully recoverable,
or investment opportunities to be seized on a now-or-never basis, the real option literature
has emphasized the ability of firms to delay their irreversible investment decisions (Dixit and
Pindyck 1994). In the presence of sunk costs, this flexibility in the timing of investment is
valuable because it gives firms the option to wait for new information. Conversely, the loss
of this option value at the time the firm invests generates an additional opportunity cost of
investment. As a consequence, investment options are exercised significantly above the point
at which expected discounted cash-flows cover the sunk investment expenditures.

In the benchmark case of a single project, the optimal investment policy can be formally
obtained as the solution to an optimal stopping problem. The prototype of this approach
is the model of McDonald and Siegel (1986), in which the underlying value of the project
evolves as a geometric Brownian motion. Under this assumption, the optimal investment time
can be explicitly characterized using Samuelson and McKean’s (1965) celebrated smooth-fit
principle. These results have been recently extended in various directions. For instance,
Hu and Øksendal (1998) study an environment in which the investment cost is driven by a
sum of correlated geometric Brownian motions, while Mordecki (1999) considers the case of
a jump-diffusion value process. However, a common feature of these contributions is their
focus on complete information settings, in which decision-makers have no uncertainty about
the fundamental characteristics of investment projects.

In this paper, we consider the problem of investing in a project whose value is observable
but driven by a parameter that is unknown to the decision-maker ex-ante. Specifically, the
value of the project evolves as an arithmetic Brownian motion, whose drift can take one
of two non-negative values. (Extensions to arbitrary finite numbers of values for the drift,
including negative ones, and to geometric Brownian motion, will be considered in Section 7.)
Uncertainty about the drift adds a structural risk component besides the standard diffusion
component of the value process. This captures in a simple way a variety of empirically relevant
investment situations. For instance, a firm might not know the exact growth characteristics
of a market on which it contemplates investing. Alternatively, the owner of an asset who
considers selling it might not know the future distribution of potential buyers’ valuations.
By observing the evolution of the value, the decision-maker can update his beliefs about the
unknown drift of the value process. This information is noisy, however, since it does not
allow to distinguish perfectly between the relative contributions of the drift and diffusion
components to the instantaneous variations of the value.

The filtering techniques of Liptser and Shiryaev (1977) allow us to restate our problem
recursively as an optimal stopping problem for a bivariate Markov process. The relevant
state variables are the current value of the project and the posterior belief of the decision-
maker about the unknown drift of the value process. The multi-dimensionality of the state
space is a key feature of our model, that distinguishes it from related investment or learning
models. It reflects the fact that the value process coincides with the observation process, so
that the diffusion component is both a genuine component of the value and a source of noise
for the identification of the drift. While this prevents us from using smooth-fit techniques to
characterize the optimal investment strategy, the martingale approach developed by Lakner
(1995), Karatzas (1997), Karatzas and Zhao (2001) or Benes̆ et al. (2004) in the context of
optimal control problems with partial observation allows us to derive analytical properties of
the value of the investment option as a function of the current state variables.

An important analytical result is that the optimal investment region is characterized by
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a continuous and non-decreasing boundary in the value-belief state space. Thus, in contrast
with standard real options models, the optimal decision rule is not described by a simple
threshold for the current value of the investment, above which it becomes optimal to invest no
matter the past evolution of value. The presence of learning generates this path-dependency,
although there is no option to suspend or abandon the project, in contrast to Dixit (1989).
As a result, a striking feature of the optimal investment strategy is that it may be rational
to invest after a drop in the value of the investment. This is because such a drop brings bad
news about the unknown drift, and thus about the future evolution of the value, thereby
reducing the current opportunity cost of investment. If the current value of the investment
is high enough relative to his new estimate of the drift, the decision-maker may give up on
learning, reflecting that “a bird in the hand is worth two in the bush.”

An important question is whether uncertainty about the drift actually benefits or harms
the decision-maker. Specifically, we compare the value of an investment project with unknown
drift and learning with that of an investment project with same volatility in which the drift of
the value process is known and equal to the prior expectation of the drift in the first project.
Using dynamic programming techniques, we show that the decision-maker always prefers the
former unknown drift project to the latter average drift project, despite the fact that the value
process only conveys a noisy signal of the drift. In other terms, an investment opportunity
with uncertain growth prospects dominates one with average growth prospects. The intuition
of this result is particularly easy to grasp whenever the volatility of the observation-value
process is close to zero. In these circumstances, the value becomes a very accurate signal of
the drift, so that learning occurs at a very fast rate. The fact that the unknown drift problem
has a higher value for the decision-maker than the average drift problem then simply reflects
that the value of the latter is convex with respect to the drift.

To get some intuition about the shape of the investment boundary, as well as about the
wedge between the unknown drift problem and the average drift problem, we perform a local
analysis whenever the volatility of the observation-value process is close to zero. We show
that, as the volatility converges to zero, the loss in value arising from the need to learn about
the drift vanishes, so that the value of the incomplete information problem converges to that
of the complete information problem. An interesting by-product of this analysis is that, in
contrast with standard models of investment under uncertainty, the value of the unknown
drift problem is not everywhere increasing with respect to the volatility. This illustrates
again the duality of the value process in our model. An increase in the volatility makes the
payoff of the decision-maker upon investing more volatile, which tends to increase the value
of the investment opportunity and the incentive to delay investment. However, since the
value process coincides with the observation process, this also lowers the rate at which the
decision-maker accumulates information about the unknown drift, which tends to decrease
the value of the investment opportunity and the incentive to delay investment.

The paper is organized as follows. The model is described in Section 2. In Section 3,
we provide the recursive formulation of our problem, and derive some basic properties of the
value function. Section 4 derives the continuity of the investment boundary. In Section 5,
we compare the unknown drift problem with the average drift problem. Section 6 is devoted
to a local study of the investment boundary whenever the volatility of the observation-value
process is close to zero. In Section 7, we investigate extensions of our model to an arbitrary
finite number of values for the drift, including negative ones, and to a geometric Brownian
motion specification of the value process. Section 8 concludes. Proofs not given in the text
are in the Appendix.
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2. The investment problem.

2.1. The basic model. The following notation will be maintained throughout the
paper. Time is continuous, and labelled by t ≥ 0. Uncertainty is modelled by a complete
probability space (Ω,F ,P), the precise description of which we defer until the end of this
section. We denote by E the expectation operator associated to P. For any stochastic process
X = {Xt; t ≥ 0} defined on (Ω,F ,P), FX = {FX

t ; t ≥ 0} is the P–augmentation of the
filtration {σ(Xs; s ≤ t); t ≥ 0} generated by X, and T X is the set of FX–adapted stopping
times, with values in R+ ∪ {∞}.

An infinitely lived decision-maker has to choose when to invest in a risky project. The
investment is irreversible and entails a sunk cost I > 0. The value of the project follows an
arithmetic Brownian motion with unknown drift µ and known variance σ,

(1) dVt = µdt + σdWt; t ≥ 0,

where (W,FW ) is a standard Wiener process independent of µ. In the basic version of the
model, µ can take only two non-negative values, normalized to 0 and 1. We denote by v the
initial value of the project. The decision-maker is risk-neutral, and discounts future revenues
and costs at a constant rate r > 0.

A key assumption of our model is that the decision-maker does not know the true value
of µ ex-ante. We denote by p = P [µ = 1] his prior belief that µ = 1. The decision-maker
then perfectly observes the value process V , but neither the drift µ, nor the evolution of W .
His information at any time t is thus summarized by FV

t . It is clear from (1) that the value
process conveys some information about µ. However, because of the unobservable shocks σW
to the value, this information is noisy.

At any time t prior to investment, the decision-maker chooses whether to pay the sunk cost
I to earn the gross profit Vt, or to delay further his investment. Since the only information
available to him ex-post is generated by the value process, his decision problem is to find a
stopping time τ∗ ∈ T V such that:

(2) sup
τ∈T V

E
[
e−rτ (Vτ − I)

]
= E

[
e−rτ∗(Vτ∗ − I)

]
.

We shall denote this problem by P. Our objective is to characterize as fully as we can the
optimal investment strategy for P.

Our notation and modelling assumptions are worthy of some comments. First, it should
be noted that we allow for non P–almost surely finite stopping times. While this added
degree of freedom is not useful when µ only takes non-negative values, it is required when
the model is extended to allow for negative values of µ, see Section 7. The notation in (2) is
without ambiguity since e−rτ (Vτ −I) = limt→∞ e−rt(Vt−I) = 0 P–almost surely on {τ = ∞}
for any τ ∈ T V . Second, under the formulation (1), the value V of the project can become
negative. This can arise if V represents the difference between the true value of the project
and opportunity costs of investment not captured by I. One way to avoid this issue altogether
is to assume that V follows a geometric Brownian motion with drift µ. We defer until Section
7 the extension of the model to this case.

For further reference, it will be useful to describe precisely the underlying probability
space (Ω,F ,P). Specifically, define Ω = {0, 1} × C(R+) and F = 2{0,1}⊗ B(C(R+)), where
C(R+) is the space of continuous real-valued functions on R+ with Borel σ–field B(C(R+)).
Finally, define P = M ⊗W, where M is a probability measure on ({0, 1}, 2{0,1}) such that
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M [{1}] = p, and W is the Wiener measure on (C(R+),B(C(R+))). Now µ can be defined as
a random variable on ({0, 1}, 2{0,1}) with distribution M, and W as the coordinate mapping
process on (C(R+),B(C(R+))), Wt(φ) = φ(t), t ≥ 0, φ ∈ C(R+), which is a standard
one-dimensional Brownian motion under the Wiener measure W. Last, two filtrations on
(Ω,F ,P) are worth emphasizing. (i) One is the filtration generated by µ and W , Fµ,W =
{σ(µ)⊗FW

t ; t ≥ 0}, which corresponds to the information available to the modeller. Since µ
and W are independent by construction, W is also a Brownian motion under this filtration.
(ii) The other is the filtration generated by V , FV , which corresponds to the information
available to the decision-maker. In contrast with the previous case, it should be noted that
W is not a Brownian motion under this filtration.

2.2. Related literature. Before we proceed with the analysis, it might be helpful to
briefly contrast our model with some closely related contributions.

As in the real option literature, we model the investment decision as an optimal stopping
problem (McDonald and Siegel 1986, Dixit and Pindyck 1994). The distinguishing feature of
our setting is that, since the decision-maker can observe neither the drift µ nor the evolution
of the diffusion term W , he has incomplete information about the dynamics of the value
process V . As a result, his beliefs about the drift become sensitive to information about the
past evolution of the value, which in turn affects his anticipations about the future evolution
of the value. This implies that the current value of the project is not a sufficient statistic for
the investment problem P.

The problem of sequentially testing the two alternative hypotheses on the drift µ given
the observation process V has been solved by Chernoff (1972, §17.5) assuming constant
linear waiting costs. The solution consists to accumulate information until an upper or lower
threshold is reached by the process of posterior beliefs about the drift. By contrast, a key
feature of our model is that the observation process coincides with the value process, so that
the diffusion term W affects directly the payoff of the decision-maker. This implies that the
current belief about the drift of the observation process is not a sufficient statistic for the
investment problem P.

Sequential control problems under incomplete information and learning have been the
focus of the economics literature on optimal experimentation. Most contributions follow
Chernoff (1972) as we do in parameterizing the unknown state of nature by the drift of the
observation-value process. However, the current belief about the drift remains a sufficient
statistic, because the value process is interpreted in a cumulative sense (Jovanovic 1979, Felli
and Harris 1996, Bolton and Harris 1999, Keller and Rady 1999, Bergemann and Välimäki
2000, Bernardo and Chowdhry 2002), or because terminal payoffs depend only on beliefs
(Moscarini and Smith 2001).

The classical consumption-portfolio problem (Merton 1971) has been recently extended
to situations in which the investor is uncertain about the drift of the stock price process.
While Lakner (1995) tackles the problem via martingale methods, Karatzas and Zhao (2001)
show that the Bellman principle can be applied and leads to explicit solutions for particular
choices of utility functions (see also Brennan 1998). In order to explain excess volatility and
time-variability of stock returns, Veronesi (1999, 2000) studies rational expectation models
of equilibrium asset prices in which the drift of fundamentals may shift between several
unobservable states at random times.

3. Markov formulation. In this section, we first derive a recursive representation
of P, for which a natural state variable is the pair (V, P ) formed by the current value of
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investing in the project and the current belief about the drift of the value process. This
allows us to prove the existence of an optimal stopping time for P. We then use a change of
measure argument to derive some basic properties of the value function.

3.1. An existence result. The decision-maker in P faces a standard signal extraction
problem. As µ is either equal to 0 or 1, his belief about µ at any time t is summarized by the
probability that µ = 1 conditional on information available up to time t, Pt = P [µ = 1 | FV

t ].
From Liptser and Shiryaev (1977, Theorems 7.12 and 9.1), the belief process (P,FV ) satisfies
the following filtering equation:

(3) dPt =
Pt(1− Pt)

σ
dW̄t; t ≥ 0,

where the innovation process (W̄ ,FV ) is a standard Wiener process given by:

(4) dW̄t =
dVt − Ptdt

σ
; t ≥ 0.

Heuristically, the change in beliefs dPt is normally distributed with mean 0 and variance
[P 2

t (1− Pt)2/σ2]dt. By construction, (P,FV ) is a martingale.
It is worth noting that 0 and 1 are absorbing barriers for the belief process. However, if

the latter does not start at one of these values, then neither can be attained in finite time.
These useful properties are summarized in the following lemma.

Lemma 1. For any p ∈ [0, 1], the unique solution (P p,FV ) of (3) satisfying P p
0 = p lies

P–almost surely in [0, 1] and satisfies:

(i) P 0 = 0 and P 1 = 1, P–almost surely;

(ii) For any p ∈ (0, 1), inf{t ≥ 0 | P p
t 6∈ (0, 1)} = ∞, P–almost surely.

Solving P when p is equal to 0 or 1 amounts to finding an optimal stopping time for a
discounted arithmetic Brownian motion with known drift 0 or 1. This a problem for which a
closed-form solution is available, and the optimal stopping time is a trigger strategy. When
p = 0 or p = 1, the optimal investment strategy consists to invest when the value respectively
reaches v∗(0) = I + σ2/

√
2rσ2 and v∗(1) = I + σ2/(

√
1 + 2rσ2 − 1), see Section 5. Note in

particular that v∗(1) > v∗(0) > I, reflecting the option value of waiting.
Since W is not a Brownian motion under the filtration FV of the observation process,

the formulation (1)–(2) of P is not recursive. What the filtering approach allows us to do is
to transform P into a stopping time problem for a two-dimensional Markov process. Indeed,
it is immediate from (3)–(4) that the joint value-belief process can be rewritten as:

(5) d

[
V v

t

P p
t

]
=

[
P p

t

0

]
dt +

[
σ

P p
t (1− P p

t )/σ

]
dW̄t; t ≥ 0,

where we have made explicit the dependence of V and P upon their respective initial values
v and p. Since the innovation process W̄ , unlike W , is a Brownian motion under FV , it is
clear from (5) that the value-belief process Xv,p = (V v, P p) is a Markov process under FV .
We can thus restate P as the problem of finding a value function G∗ : R × [0, 1] → R and a
stopping time τ∗ ∈ T V such that:

(6) G∗(v, p) = sup
τ∈T V

E
[
e−rτ g(Xv,p

τ )
]
= E

[
e−rτ∗g(Xv,p

τ∗ )
]
; (v, p) ∈ R× [0, 1],
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where g(v, p) = v − I for any (v, p) ∈ R × [0, 1]. Given the recursive representation (6), we
are in position to prove the existence of a solution to P by using standard results in optimal
stopping theory for Markov processes.

Proposition 1.

(i) There exist a value function G∗ and a P–almost surely finite stopping time τ∗ ∈ T V

that solve (6);

(ii) The coincidence set S∗ = {(v, p) ∈ R × [0, 1] | G∗(v, p) = g(v, p)} for (6) is non-empty
and satisfies S∗ =

⋃
p∈[0,1]{p} × [v∗(p),∞), where v∗(p) = inf{v ∈ R | (v, p) ∈ S∗} < ∞

for any p ∈ [0, 1].

Proposition 1 implies that τ∗ = inf{t ≥ 0 | (V v
t , P p

t ) ∈ S∗} = inf{t ≥ 0 | V v
t ≥ v∗(P p

t )},
so that the optimal investment strategy consists to invest whenever the value-belief process
crosses a boundary that depends on the current belief about µ. We will refer to v∗ as the
investment boundary function for the unknown drift problem.

3.2. A Girsanov transformation. Following Lackner (1995), Karatzas (1997) and
Karatzas and Zhao (2001), we now construct a probability measure Q under which V and µ
are independent. Specifically, consider:

(7) Zt(µ) = exp
(
−

(µ

σ

)
Wt − 1

2

(µ

σ

)2
t

)
; t ≥ 0.

By construction, (Z(µ),Fµ,W ) is a martingale and E [Zt(µ)] = 1 for each t ≥ 0. For any such t,
let Qt be the unique probability measure on (Ω,Fµ,W

t ) such that, for any (A,B) ∈ σ(µ)×FW
t ,

Qt[A×B] = E [1A×BZt(µ)] =
∫
AQ

m
t [B]M(dm), where, for any m ∈ {0, 1}:

Qm
t [B] = EW

[
1B exp

(
−

(m

σ

)
Wt − 1

2

(m

σ

)2
t

)]
; B ∈ FW

t .

Here, EW is the expectation operator associated to the Wiener measure W. It follows from
a standard extension argument that, for any m ∈ {0, 1}, there exists a unique probability
measure Qm on (C(R+),B(C(R+))) such that Qm[B] = Qm

t [B] for any t ≥ 0 and B ∈ FW
t

(Karatzas and Shreve 1991, §3.5.A, Discussion). To complete the construction, define Q as
the unique probability measure on (Ω,F) such that Q [A × B] =

∫
AQ

m[B]M(dm) for any
(A,B) ∈ σ(µ)× B(C(R+)).

By construction, Q [C] = E [1CZt(µ)] for any C ∈ Fµ,W
t . As {µ = 1} ∈ Fµ,W

0 and
Z0(µ) = 1, one obtains in particular that Q [µ = 1] = P [µ = 1] = p. A standard computation
based on Bayes’ rule (Karatzas and Shreve 1991, Lemma 3.5.3) implies that the process
(B,Fµ,W ) defined by:

(8) Bt = Wt +
(µ

σ

)
t; t ≥ 0

is a Brownian motion under Q. Since µ is Fµ,W
0 –measurable and independent of W , and

B has independent increments, B and µ are independent under Q. Note that B is also a
Brownian motion with respect to its own filtration FB under Q. Since dVt = σ dBt, the
filtrations FB and FV generated by B and V are identical, as well as the sets of stopping
times T B and T V . We denote by EQ the expectation operator associated to Q.
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3.3. Properties of the value function. Define:

(9) Ht(µ) = exp
((µ

σ

)
Bt − 1

2

(µ

σ

)2
t

)
; t ≥ 0,

where Bt is given by (8). It follows from our previous results that (H(µ),Fµ,W ) is a martingale
under Q. One has the following useful lemma.

Lemma 2. For any τ ∈ T V ,

E
[
e−rτ (Vτ − I)

]
= EQ

[
e−rτHτ (µ)(v + σBτ − I)

]
.

Then, the following holds.

Proposition 2. For any (v, p) ∈ R× [0, 1],

(10) G∗(v, p) = sup
τ∈T B

EQ
[
e−rτ

{
1 + p

[
exp

(
Bτ

σ
− τ

2σ2

)
− 1

]}
(v + σBτ − I)

]
.

Proof. For any (v, p) ∈ R× [0, 1],

G∗(v, p) = sup
τ∈T V

EQ
[
e−rτHτ (µ)(v + σBτ − I)

]

= sup
τ∈T V

EQ
[
EQ

[
e−rτHτ (µ)(v + σBτ − I) | FV

τ

]]

= sup
τ∈T B

EQ
[
e−rτEQ

[
Hτ (µ) | FB

τ

]
(v + σBτ − I)

]

= sup
τ∈T B

EQ
[
e−rτ [pHτ (1) + (1− p)Hτ (0)](v + σBτ − I)

]

= sup
τ∈T B

EQ
[
e−rτ

{
1 + p

[
exp

(
Bτ

σ
− τ

2σ2

)
− 1

]}
(v + σBτ − I)

]
,

where the first equality follows from Lemma 2, the third from FV = FB, and the fourth
from the fact that, for any τ ∈ T V , µ and Bτ are independent under Q, which implies that
Q [µ = 1 | FB

τ ] = Q [µ = 1] = p. ¤
This result admits a natural interpretation. Under Q, the value process V v = v + σB

is independent of µ, so that no learning occurs. We have thus transformed an incomplete
information stopping problem into a complete information one. Of course, this requires
a corresponding modification of the payoffs. Under Q, the decision-maker maximizes the
expectation of a discounted weighted average of H(m,B)(v + σB − I), m = 0, 1, where the
weights 1− p and p reflect his prior beliefs about µ.

The Girsanov transformation allows us to represent the belief process in terms of the
value process. A direct application of Bayes’ rule yields:

(11) P p
t =

pHt(1)
pHt(1) + 1− p

=
p exp

(
V v

t − v

σ2
− t

2σ2

)

p exp
(

V v
t − v

σ2
− t

2σ2

)
+ 1− p

; t ≥ 0,

see Shiryayev (1978, §4.2.1). It is immediate from (11) that beliefs satisfy a non-crossing
property, in the sense that p+ > p− implies that P

p+

t > P
p−
t at any time t, P–almost surely.
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Using the characterizations provided in Propositions 1 and 2, we can now derive some
basic properties of the value function. From (5) and (6), note first that:

(12) G∗(v, p) = sup
τ∈T V

E
[
e−rτ

(
v +

∫ τ

0
P p

t dt + σW̄τ − I

)]
; (v, p) ∈ R× [0, 1].

From (12) and the non-crossing property of the belief process, we immediately obtain the
following monotonicity result.

Corollary 1.

(i) For any p ∈ [0, 1], the mapping v 7→ G∗(v, p) is increasing on R;

(ii) For any v ∈ R, the mapping p 7→ G∗(v, p) is non-decreasing on [0, 1].

Our next result follows immediately from (10) and the fact that the supremum of a family
of linear functions is convex.

Corollary 2.

(i) For any p ∈ [0, 1], the mapping v 7→ G∗(v, p) is convex on R;

(ii) For any v ∈ R, the mapping p 7→ G∗(v, p) is convex on [0, 1].

The decision-maker is thus ready to accept risky bets on the initial value v of the project,
for a fixed value of p, or on the probability p that the project has a high drift, for a fixed value
of v. The latter implies that costless information about µ, in the form of a mean-preserving
spread over p, always has a positive value for the decision-maker. However, it does not follow
from (10) that G∗ is convex with respect to the pair (v, p), and thus that the decision-maker
would be ready to accept risky bets on both v and p simultaneously. Indeed, we shall argue
in Section 6 that G∗ cannot be convex on its whole domain.

The last result of this section concerns the continuity of the value function with respect
to the initial conditions (v, p) and the variance σ of the observation-value process. In the
latter case, we denote the value function by G∗

σ instead of G∗.

Corollary 3.

(i) The mapping (v, p) 7→ G∗(v, p) is continuous on R× [0, 1];

(ii) The mapping σ 7→ G∗
σ(v, p) is continuous on R++.

4. The optimal investment region. As P is intrinsically a two-dimensional problem,
the standard partial differential equation approach to optimal stopping is of little help, since
no closed-form solution for G∗ is available. In particular, it is not clear whether the usual
smooth-pasting condition holds along the investment boundary (for a discussion of this point,
see Shiryayev 1978, §3.8.1). Instead of focusing on the value function, a task we shall return
to in Section 5, we first determine some properties of the investment boundary function. The
following result summarizes our findings.

Theorem 1. The investment boundary function v∗ : [0, 1] → R++ is continuous and
non-decreasing on [0, 1].

Before we proceed with the proof of Theorem 1, some comments are in order. The
monotonicity of the investment boundary function with respect to beliefs reflects the intuitive
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idea that, for any given current value of the project, the more optimistic the decision-maker
is about the drift of the value process, the more he is ready to experiment by delaying his
investment. This generalizes to our incomplete information setting the standard result that
the optimal investment trigger for a project whose value follows an arithmetic Brownian
motion with a constant and known drift is increasing in the value of the drift.

Since v∗(1) > v∗(0) and v∗ is continuous on [0, 1], the optimal strategy τ∗ for P is not
a trigger strategy, that is, a stopping time of the form τ(v̄) = inf {t ≥ 0 | Vt ≥ v̄} for some
threshold v̄. In contrast with predictions of standard models of irreversible investment under
uncertainty (Dixit and Pindyck 1994), the value of the project at the time of investment does
not therefore necessarily coincide with its maximum historic value. As pointed out in the
introduction, a rational decision-maker may even optimally decide to invest after a drop of
the value. The model thus allows some form of ex-post regret. For instance, the owner of
a house who sells it at a discount might regret not having accepted an earlier high quote
because he then anticipated a sustained boom of the housing market.

The path-dependency of the investment strategy reflects the fact that the innovations
of the belief process are positively correlated with the fluctuations of the value, as is easily
seen from (5). Specifically, the fluctuations of the value have two opposite effects on the
investment decision. On one hand, a positive shock on V increases the payoff from investing
immediately. This direct effect makes the decision-maker less willing to delay investment. On
the other hand, a positive shock on V increases the subjective probability that the unknown
drift µ is high, thus providing good news about the likelihood of further future increases of
V . This indirect effect makes the decision-maker more willing to delay investment. These
effects are reversed in the case of a negative shock on V .

Theorem 1 is established through a series of lemmas. Monotonicity and left-continuity of
v∗ follow from standard arguments (see for instance Villeneuve 1999, Proposition 3.2).

Lemma 3. v∗ is non-decreasing on [0, 1].

Proof. By Proposition 1, G∗(v, p) = v − I for any v ≥ v∗(p). Moreover, the mapping
p 7→ G∗(v, p) is non-decreasing according to Corollary 1. It follows that G∗(v, p0) = v− I for
any p0 ≤ p and v ≥ v∗(p), which implies that v∗(p0) ≤ v∗(p). ¤

Lemma 4. v∗ is left-continuous on (0, 1].

Proof. Let {pn} be a non-decreasing sequence in [0, 1] converging to p ∈ (0, 1]. From
Lemma 3, the sequence {v∗(pn)} is non-decreasing and bounded above by v∗(p), and therefore
converges to a limit v∗(p−). By definition, G∗(v∗(pn), pn) = v∗(pn) − I for any n ∈ N. By
Corollary 2, G∗ is continuous, so that G∗(v∗(p−), p) = v∗(p−) − I. Hence v∗(p) ≤ v∗(p−),
and thus v∗(p) = limn→∞ v∗(pn), which implies the result. ¤

The proof that v∗ is right-continuous is a bit more involved. We will need the following
lemma, which reflects the fact that the belief process is locally Lipschitzian with respect to
its initial condition.

Lemma 5. For any (p0, x) ∈ [0, 1)× R++, there exists p > p0 such that:

(13) sup
τ∈T V

E
[
e−rτ

[
x +

∫ τ

0
(P p

t − P p0
t ) dt

]]
= x.

We are now ready to complete the proof of Theorem 1.

Lemma 6. v∗ is right-continuous on [0, 1).

9



Proof. Let p0 ∈ [0, 1), and suppose that limp↓p0 v∗(p) = v∗(p+
0 ) > v∗(p0). Fix some

v ∈ (v∗(p0), v∗(p+
0 )). For any p ∈ (p0, 1], let τ∗v,p be the optimal stopping time given initial

conditions (v, p). Then, by (6) and (12),

G∗(v, p) = E

[
e−rτ∗v,p

(
v +

∫ τ∗v,p

0
P p

t dt + σW̄τ∗v,p
− I

)]

(14)

≤ v∗(p0)− I + E

[
e−rτ∗v,p

[
v − v∗(p0) +

∫ τ∗v,p

0
(P p

t − P p0
t ) dt

]]
,

where we have used the fact that G∗(v∗(p0), p0) = v∗(p0)− I. Since v − v∗(p0) > 0, Lemma
5 implies that there exists p > p0 such that:

E

[
e−rτ∗v,p

[
v − v∗(p0) +

∫ τ∗v,p

0
(P p

t − P p0
t ) dt

]]
≤ v − v∗(p0).

Hence, from (14), G∗(v, p) ≤ v − I and, since the reverse inequality always hold, G∗(v, p) =
v − I, so that v∗(p) ≤ v by definition of v∗. As v∗ is non-decreasing by Lemma 3, it follows
that v ≥ v∗(p+

0 ). This contradicts the fact that, by assumption, v < v∗(p+
0 ). ¤

5. Comparison with the average drift problem. In this section, we provide a
comparison between the unknown drift problem and the standard problem of finding an
optimal investment time for a project whose value follows an arithmetic Brownian motion
with constant and known drift. Specifically, we determine whether the decision-maker prefers
an investment project with unknown drift µ equal to 0 with probability 1− p and to 1 with
probability p, to an average drift project with a known drift equal to p.

5.1. The average drift problem. Suppose that the decision-maker has now the
opportunity to invest, at cost I, into an alternative project whose value is observable and
follows an arithmetic Brownian motion with known drift p ∈ [0, 1] and known variance σ,

(15) dV̂t = pdt + σdWt; t ≥ 0.

Assume that the two investment projects with values V and V̂ are mutually exclusive and
that the decision-maker must choose at date 0 the project he might later invest in. If he
chooses the project with value V̂ , we can state his decision problem as of finding a value
function Ĝ(·, p) : R→ R and a stopping time τ̂ ∈ T W such that:

(16) Ĝ(v, p) = sup
τ∈T W

E
[
e−rτ (V̂ v

t − I)
]
= E

[
e−rτ̂ (V̂ v

τ̂ − I)
]
; v ∈ R,

where v refers to the initial value of the project. We shall denote this average drift problem
by P̂, in contrast with the unknown drift problem P. The optimal strategy for P̂ is a trigger
strategy, that is, a stopping time of the form τ̂(v̄) = inf

{
t ≥ 0 | V̂ v

t ≥ v̄
}

for some threshold
v̄. We have the following result.

Lemma 7. For any p ∈ [0, 1], let f(p) =
√

p2 + 2rσ2 − p and v̂(p) = I + σ2/f(p). Then
τ̂(v̂(p)) is an optimal stopping time for P̂.

10



Lemma 7 is standard, and results from the fact that the Laplace transform of τ̂(v̄) is given
by E [e−rτ̂(v̄)] = exp((v− v̄)f(p)/σ2) (Karatzas and Shreve 1991, §3.5.C). The value function
for P̂ can then be written as:

(17) Ĝ(v, p) =





exp
(
−1 +

f(p)
σ2

(v − I)
)

σ2

f(p)
if v < I +

σ2

f(p)
,

v − I if v ≥ I +
σ2

f(p)
.

There is no a priori obvious relationship between G∗ and Ĝ, except of course when p is equal
to 0 or 1, in which case the decision-maker in P knows with certainty the value of the drift,
so that G∗(·, 0) = Ĝ(·, 0) and G∗(·, 1) = Ĝ(·, 1). With a slight abuse of terminology, we will
refer to v̂ as the investment boundary function for the average drift problem.

5.2. The comparison result. Since the objective function in (16) is linear in the
drift p of V̂ , the value function Ĝ for the average drift problem P̂ is convex in p. This
implies that a risk-neutral decision-maker is ready to exchange the option to invest in the
average drift problem for an option to invest in a project with value V v

t = v + µt + σWt and
uncertain drift µ ∈ {0, 1} drawn according to P [µ = 1] = p, provided he is informed of the
value of µ immediately after its realization, and can thus take his investment decision under
complete information about µ. In the unknown drift problem P, the information structure
of the decision-maker is coarser, since he has only access to an imperfect learning technology,
namely, the observation of V . Nevertheless, we have the following result.

Theorem 2. For any (v, p) ∈ R× [0, 1],

G∗(v, p) ≥ Ĝ(v, p).

Thus the value of the unknown drift problem is higher than that of the average drift
problem, despite the fact that, in the former, the decision-maker has to acquire information
about the drift before taking his investment decision. Geometrically, in the value-belief space,
the investment boundary v∗ for the unknown drift problem P is to the right of the investment
boundary v̂ for the average drift problem P̂, that is v∗ ≥ v̂, see Figure 1 below.

The proof of Theorem 2 relies on standard discrete-time approximations of P and P̂. Let
Ψ be the space of continuous ψ : R × [0, 1] → R such that the family {ψ(V v

τ , P p
τ ) | τ ∈ T V }

is uniformly integrable, and let Ψ̂ be the space of continuous ψ̂ : R→ R such that the family
{ψ̂(V̂ v

τ ) | τ ∈ T W } is uniformly integrable. For any fixed δ > 0, interpreted as the duration
of a discrete-time period, define operators acting respectively on Ψ and Ψ̂ by:

(18) Qδ(ψ)(v, p) = max
{

ψ(v, p),E
[
e−rδψ(V v

δ , P p
δ )

]}
; ψ ∈ Ψ, (v, p) ∈ R× [0, 1],

and:

(19) Q̂δ(ψ̂)(v) = max
{

ψ̂(v),E
[
e−rδψ̂(V̂ v

δ )
]}

; ψ̂ ∈ Ψ̂, v ∈ R.

It is clear from these definitions that Qδ and Q̂δ map respectively Ψ and Ψ̂ into themselves.
Therefore, for any ψ ∈ Ψ, ψ̂ ∈ Ψ̂, and n ∈ N, one can define Qn

δ (ψ) and Q̂n
δ (ψ̂) recursively.

Two key properties are that Qδ is monotone, that is Qδ(φ) ≤ Qδ(ψ) whenever φ ≤ ψ, and
that Q̂δ preserves convexity by the convexity of the maximum operator and of the process
V̂ v with respect to its initial condition v.

11



For any v ∈ R, let ψ̂(v) = v−I, and let π1 : R× [0, 1] → R be the projection of elements of
R× [0, 1] on their first coordinate. It is immediate to check that ψ̂ ∈ Ψ̂ and ψ̂ ◦ π1 ∈ Ψ. Our
next result follows immediately from the characterization of the value function of an optimal
stopping problem as the smallest excessive upper bound of the reward function (Shiryayev
1978, §3.2.2, Lemma 3, and §3.3.1, Theorem 1).

Lemma 8. For any (v, p) ∈ R× [0, 1],

(i) limδ→0 limn→∞Qn
δ (ψ̂ ◦ π1)(v, p) = G∗(v, p);

(ii) limδ→0 limn→∞ Q̂n
δ (ψ̂)(v) = Ĝ(v, p).

The interpretation of this approximation result is clear. For any fixed δ > 0, the limit
with respect to n yields the value of the infinite-horizon, discrete-time problem, where the
investor is constrained to stopping times with range in {nδ | n ∈ N}. Letting then δ go to
0 yields the value of the continuous-time problem. Given Lemma 8, Theorem 2 is a direct
consequence of the following lemma.

Lemma 9. For any (δ, n) ∈ R++ × N,

Qn
δ (ψ̂ ◦ π1) ≥ Q̂n

δ (ψ̂) ◦ π1.

Proof. We proceed by induction. First, for any (v, p) ∈ R× [0, 1],

Qδ(ψ̂ ◦ π1)(v, p) = max
{

ψ̂(v),E
[
e−rδψ̂(v + µδ + σWδ)

]}

≥ max
{

ψ̂(v),E
[
e−rδψ̂(v + pδ + σWδ)

]}

= (Q̂δ(ψ̂) ◦ π1)(v, p),

where the inequality follows from the convexity of ψ̂ and the independence between µ and
W , together with Jensen’s inequality. Next, suppose that Qn

δ (ψ̂ ◦ π1) ≥ Q̂n
δ (ψ̂) ◦ π1 for some

n ∈ N. Then, for any (v, p) ∈ R× [0, 1],

Qn+1
δ (ψ̂ ◦ π1)(v, p) = Qδ(Qn

δ (ψ̂ ◦ π1))(v, p)

≥ Qδ(Q̂n
δ (ψ̂) ◦ π1)(v, p)

≥ (Q̂δ(Q̂n
δ (ψ̂)) ◦ π1)(v, p)

= (Q̂n+1
δ (ψ̂) ◦ π1)(v, p),

where the first inequality follows from the induction hypothesis and the monotonicity of Qδ,
and the second inequality from the first part of the proof together with the fact that Q̂δ

preserves convexity. Hence the result. ¤

5.3. A remark on trigger strategies. In the previous subsection, we have used
dynamic programming techniques to compare the unknown drift problem P with the average
drift problem P̂. Since the optimal stopping time in P̂ is a trigger strategy, one might wonder
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whether a more direct approach would not consist to restrict the strategy space in P to trigger
strategies conditional on the current value V of the project, and to compare the value of this
constrained problem to that of P̂. While this approach turns out not to be conclusive, it is
nevertheless instructive to understand why. To do so, let T̄ V be the subset of T V composed
of stopping times of the form τ(v̄) = inf{t ≥ 0 | Vt ≥ v̄} for some threshold v̄, and consider
the following constrained problem:

(20) Ḡ(v, p) = sup
τ∈T̄ V

E
[
e−rτ (V v

τ − I)
]
.

Using (10), a standard computation based on Girsanov’s theorem (Karatzas and Shreve 1991,
Corollary 3.5.2) and on the formula for the Laplace transform of the passage time to a level
v̄ for an arithmetic Brownian motion yields the following result.

Lemma 10. For any (v, p) ∈ R× [0, 1],

(21) Ḡ(v, p) = max
v̄≥v

Γ(v, p, v̄),

where, for any v̄ ∈ R,

(22) Γ(v, p, v̄) =
[
p exp

(
v − v̄

σ2
f(1)

)
+ (1− p) exp

(
v − v̄

σ2
f(0)

)]
(v̄ − I).

The expression (22) for the objective in (21) admits a natural interpretation. When
choosing an optimal trigger v̄ in P, the decision-maker maximizes a weighted average of the
payoffs he would get from playing τ(v̄) if he knew the true value of the drift, where the
weights 1−p and p reflect his prior beliefs about µ. It is clear from (22) that the choice of an
optimal trigger in (21) depends on the the initial value v of the project as well as on his prior
belief p. Thus this choice is not dynamically consistent, in the sense that a decision-maker
constrained to trigger strategies would like to revise his choice of a trigger strategy as the
value changes and new information about the drift becomes available. Formulas (21)–(22)
do not allow to derive a closed-form solution for the optimal trigger v̄(v, p) conditional on
the initial state (v, p). However, one can unambiguously compare v̄(v, p) with the optimal
trigger v̂(p) for the average drift problem, at least for specific values of v and p. Specifically,
let ṽ(p) = I + σ2/[pf(1) + (1− p)f(0)] for any p ∈ [0, 1]. Then one has the following result.

Proposition 3. For any p ∈ (0, 1) and v ≥ ṽ(p), v̄(v, p) = v.

Since f is convex and positive, ṽ(p) < v̂(p) whenever p ∈ (0, 1). Hence, for any such p and
v ∈ [ṽ(p), v̂(p)), v̄(v, p) < v̂(p) and thus Ḡ(v, p) = v − I < Ĝ(v, p). For these values of (v, p),
the decision-maker, when constrained to use trigger strategies, invests as if the drift were
constant and equal to f−1(σ2/(v − I)) < p, making him just ready to invest immediately.
This reflects an implicit risk-aversion due to the additional uncertainty generated by the
randomness of µ. Clearly, Proposition 3 does not us allow to compare P and P̂. In a sense,
this is not surprising, as the restriction to trigger strategies in P essentially amounts to
deprive the decision-maker from the benefits of learning about the unknown drift.

6. A local study of the investment boundary. While the comparison result of
Theorem 2 provides a useful lower bound for the value function G∗ of problem P, it says
little about the shape of the investment boundary function v∗, nor about the wedge between
the unknown drift problem and the average drift problem. We now address these and related
questions in the case in which the variance σ of the observation-value process is small.
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6.1. A strict comparison result. In the remaining of the paper, we systematically
index the value processes V and V̂ , the value functions G∗ and Ĝ, and the investment
boundary functions v∗ and v̂ by the variance parameter σ. Our objective in this section is to
compare G∗

σ and Ĝσ, as well as the investment boundaries v∗σ and v̂σ for small values of σ.
Specifically, consider the open domain D = (I, I + 1/r)× (0, 1). Our discussion will be based
on the following strict comparison result.

Theorem 3. For any compact set K ⊂ D, there exists σK > 0 such that for any
(σ, v, p) ∈ (0, σK ]×K,

G∗
σ(v, p) > Ĝσ(v, p).

The proof of Theorem 3 is based on three uniform convergence lemmas. First, we study
the solution to the average drift problem P̂ as σ goes to 0. Next, we introduce an auxiliary
problem P̃ which yields a value uniformly close to that of P as σ goes to 0. We conclude by
proving that P̃ yields a strictly higher value than P̂ as σ goes to 0.

First, we study the behavior of Ĝσ when the variance σ of V̂σ becomes arbitrarily small.
When σ = 0, solving P̂ simply amounts to finding a maximum of t 7→ e−rt(v+pt−I), yielding
t̂0(v, p) = max{0, (I − v)/p + 1/r} whenever p > 0 and t̂0(v, 0) = 0 whenever v > I. It is
then straightforward to check that, for any (v, p) ∈ D,

(23) Ĝ0(v, p) =





exp
(
−1 +

r

p
(v − I)

)
p

r
if v < I +

p

r
,

v − I if v ≥ I +
p

r
.

A key observation is that, for any initial value v, Ĝ0(v, p) is convex in p. In particular,

(24) pĜ0(v, 1) + (1− p)Ĝ0(v, 0) > Ĝ0(v, p); (v, p) ∈ D.

One has the following result.

Lemma 11. limσ→0 Ĝσ(v, p) = Ĝ0(v, p) uniformly in (v, p) on any compact set K ⊂ D.

To compare G∗
σ and Ĝσ, it will be helpful to consider an auxiliary optimal stopping

problem that differs from P only in that the Gaussian component of the value is omitted in
the decision-maker’s payoff:

(25) G̃σ(v, p) = sup
τ∈T Vσ

E
[
e−rτ (v + µτ − I)

]
.

We shall denote this problem by P̃. Note that the information structure is the same in P
and P̃. This leads to the following result.

Lemma 12. limσ→0 G∗
σ(v, p)− G̃σ(v, p) = 0 uniformly in (v, p) on R× [0, 1].

It should be noted that the decision-maker can secure the payoff Ĝ0(v, p) in P or P̃ by
mimicking the optimal strategy in P̂ when σ = 0, that is, by delaying investment by the
deterministic time amount t̂0(v, p). This follows immediately from the linearity of the payoff
functions in (6) and (25) with respect to µ. We now prove that, as σ goes to 0, G̃σ converges
uniformly to the function v 7→ pĜ0(v, 1) + (1 − p)Ĝ0(v, 0), which implies Theorem 3 given
Lemmas 11 and 12 and inequality (24).

Lemma 13. limσ→0 G̃σ(v, p) = pĜ0(v, 1) + (1 − p)Ĝ0(v, 0) uniformly in (v, p) on any
compact set K ⊂ D.
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The intuition is as follows. As already mentioned, the decision-maker can always secure
the payoff Ĝ0(v, p) in P̃. In fact, he can do strictly better by first waiting a deterministic
time amount ε > 0 and only then playing the optimal strategy in P̂ for σ = 0, conditional
on the expected value of (v + µε, µ) at time ε. The delay ε corresponds to a learning phase,
during which the decision-maker accumulates information about µ before taking his decision.
As σ goes to 0, the accuracy of Vσ as a signal of µ becomes infinite, so this learning phase
can be made arbitrarily short. In the limit, everything happens as if the decision-maker knew
exactly the value of µ at date 0, which implies pointwise convergence.

The fact that convergence is uniform in (v, p) on any compact subset of D follows from a
time-change argument. For a fixed duration ε of the learning phase, reducing the variance of
the observation process effectively amounts to increasing the duration of the learning phase
while keeping the variance constant. Since beliefs follow a martingale, this generates a mean-
preserving spread in the beliefs of the decision-maker. As his expected gain at the end of the
learning phase is convex in (v + εPε, Pε), the payoff from this investment strategy increases
as σ decreases to 0, which implies the result.

6.2. Comments and interpretations. An immediate consequence of Lemmas 11,
12, and 13 is that limσ→0 G∗

σ(v, p)−[pĜσ(v, 1)+(1−p)Ĝσ(v, 0)] = 0 uniformly on any compact
subset of D. This means that, as σ goes to 0, the value of the unknown drift problem P
converges uniformly to the value of an investment problem in which the drift µ of the value
process is first selected according to a lottery on 0 and 1 with respective probabilities 1−p and
p, and immediately revealed to the decision-maker, who then takes his investment decision
under complete information about µ. The loss in value arising from the need to learn about
the drift vanishes as the variance of the observation process converges to 0. The fact that
the unknown drift problem P is strictly preferred by the decision-maker to the average drift
problem P̂ for small values of σ simply reflects the fact that the value function Ĝσ of P̂ is
convex on D with respect to p, and that learning about µ in P is fast when σ is small.

From Lemma 7, the optimal investment strategy in the average drift problem P̂ with drift
p consists to delay investment until the value V̂ hits the threshold v̂σ(p). It is easy to check
that, as σ goes to 0, v̂σ converges monotonically from above to the mapping p 7→ I + p/r.
This implies that any pair (v, p) ∈ D′ = {(v, p) ∈ D | v > I + p/r} satisfies Ĝσ(v, p) = v − I
for σ close enough to 0. It follows then from Theorem 3 that G∗

σ(v, p) > v − I, that is, (v, p)
belongs to the continuation region of P for σ close enough to 0. Moreover, this reasoning can
be made uniform on compact subsets of D.

Corollary 4. For any compact subset K ⊂ D′, there exists σK > 0 such that for any
(σ, v, p) ∈ (0, σK ]×K,

G∗
σ(v, p) > v − I = Ĝσ(v, p).

We can actually characterize exactly the asymptotic behavior of the investment boundary
function v∗σ as σ converges to 0.

Corollary 5.

(i) limσ→0 v∗σ(0) = I;

(ii) For any p ∈ (0, 1], limσ→0 v∗σ(p) = I + 1/r.

The optimal investment boundary function v∗σ converges pointwise to the discontinuous
function v∗0 = I +1(0,1]/r as σ goes to 0. The proof simply consists to apply Corollary 4 to an
increasing sequence {Kn} of compact subsets of D′ such that

⋃∞
n=0 Kn = D′. To interpret this
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result, consider the limit problem arising from P when the Gaussian component is omitted
both in the information structure of the decision-maker and in his payoff:

(26) G∗
0(v, p) = sup

τ∈T V0

E
[
e−rτ (v + µτ − I)

]
.

As the signal V0 is perfect, all learning about µ takes place at date 0, and the belief process
jumps instantaneously to one of its absorbing barriers, 0 with probability 1 − p, or 1 with
probability p. If v ≥ I then, in the first case, it is optimal to invest immediately, while in
the second, it is optimal to wait until the value reaches the threshold I + 1/r. Thus v∗0 can
be interpreted as the investment boundary for the limit problem (26). It should be noted
that G∗

0(v, p) = pĜ0(v, 1) + (1 − p)Ĝ0(v, 0), in line with Lemma 13. The triangular area
D′ therefore represents the discrepancy between the unknown drift problem and the average
drift problem as σ goes to 0. Our results are illustrated on Figure 1.

D′

-

6
p

v

1

I I + 1/rv∗σ(0)

v∗σ(1)

v̂σ

¾ v∗σ

PPPq

Figure 1. Local comparison between P and P̂.

While v̂σ is unambiguously convex, the concave shape of v∗σ is only meant to be suggestive.
However, in virtue of Corollary 5, v∗σ cannot be globally convex on [0, 1] when σ is small.
This implies in particular that the value function G∗

σ is not globally convex with respect
to the value-belief pair. Indeed, if it were, then, for any two points (v, p) and (ṽ, p̃) on the
investment boundary, and for any convex combination (vλ, pλ) of these points, we would have
G∗

σ(vλ, pλ) ≤ λG∗
σ(v, p) + (1− λ)G∗

σ(ṽ, p̃) = vλ − I, so that G∗
σ(vλ, pλ) = vλ − I and (vλ, pλ)

would belong to the investment region as well. But this can only hold if v∗σ is globally convex
on [0, 1], a contradiction.

The convergence of the investment boundary v∗σ to the discontinuous function v∗0 as σ goes
to 0 has a striking consequence. Indeed, consider some (v, p) ∈ D′ such that, for some σ > 0,
G∗

σ(v, p) = v−I, and thus it is optimal to invest in the state (v, p) when the observation-value
process has variance σ. It is clearly possible to find a triple (v, p, σ) satisfying this condition,
since v∗σ is continuous with respect to p and v∗σ(0) is close to I for small enough σ. But since
v < I + 1/r and p > 0, Corollary 5 implies that, for all σ̃ < σ that are close enough to
0, v∗σ̃(p) > v and thus G∗

σ̃(v, p) > v − I. In other terms, the value of problem P can be a
decreasing function of the variance σ of the value process, at least locally. Our findings are
illustrated on Figure 2. Here, σ̃ < σ, and, on the hatched zone, G∗

σ̃(v, p) > G∗
σ(v, p) = v − I.

Again, the exact shapes of v∗σ and v∗σ̃, as well as the fact that they cross only twice, are only
meant to be suggestive.
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Figure 2. Non-monotonocity with respect to σ.

This non-monotonicity result contrasts sharply with the predictions of standard real option
models (Dixit and Pindyck 1994, §5.4). There, a greater uncertainty (in the sense of a higher
σ) typically increases the value of a firm’s investment opportunity, and increases the critical
value at which investment takes place by raising the opportunity cost of exercising the option
to invest. A similar result also holds for the average drift problem, as v̂σ and therefore Ĝσ are
clearly increasing in σ. The intuition is that when the variance increases, the decision-maker
can achieve a higher exposition to upside realizations of the value by increasing his investment
trigger, while being protected from downside risk.

By contrast, in the incomplete information problem, the decision-maker is not protected
from downside risk, since the investment boundary is not flat in p. An increase in σ has thus
an ambiguous effect on the value of the option to invest, because of the interplay between two
opposite effects. On the one hand, an increase in σ raises the variance of the payoff of the
decision-maker at the time of investment, which tends to increase the value of the option to
invest. One might call this standard effect the real option effect by analogy with the complete
information case. On the other hand, a raise in σ decreases the variance of the belief process,
which tends to impede learning about µ, and thus to reduce the opportunity cost to exert the
option to invest. One might call this countervailing effect the inefficient learning effect. On
the hatched zone in Figure 2, the inefficient learning effect clearly dominates. In this zone,
a reduction in σ is likely to delay investment. This casts some doubt on the effectiveness of
policies aiming at promoting investment by reducing the level of uncertainty, at least when
such a reduction in uncertainty facilitates learning.

Overall, the impact of an increase in σ on the value of the option to invest depends on
which of the real option and the inefficient learning effects dominates. It is difficult to map
precisely the parameter space in terms of this distinction. Note however that, since v∗σ(0) and
v∗σ(1) are both increasing functions of σ and v∗σ(p) is a continuous non-decreasing function
of p, v∗σ(p) must at least be locally increasing in σ in neighborhoods of 0 and 1, as well as
G∗

σ(v, p) for v close enough to v∗σ(p) (see Figure 2 for an illustration of this effect). Intuitively,
if the decision-maker is already fairly confident in his estimate of µ, an increase in σ will only
have a marginal impact on the efficiency of learning, since his beliefs are unlikely to change
very fast anyway. The increased variance of his payoff make him however willing to delay his
investment further, thereby increasing the value of his option to invest. In that case, the real
option effect compensates for the decreased efficiency of learning.
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7. Extensions. In this section, we discuss some extensions of our model. First, we
allow the unknown drift of the value process to take an arbitrary finite number of possibly
negative values. Next, we discuss the problems arising when the drift is allowed to take
an infinite number of values. Last, we study the robustness of our results to a geometric
Brownian motion specification of the value process.

7.1. Finitely many drift values. Our basic assumptions are unchanged, except that
µ can now take any of M ≥ 2 values m1 ≤ . . . ≤ mM in R. For any i = 1, . . . ,M , we
denote by pi = P [µ = mi] the prior belief of the decision-maker that µ = mi, and we let
p = (p1, . . . , pM ). At any time t, the belief of the decision-maker about µ is represented by a
vector Pt = (P 1

t , . . . , PM
t ), where P i

t = P [µ = mi | FV
t ] for any i = 1, . . . , M . From Liptser

and Shiryaev (1977, Theorems 7.12 and 9.1), the belief process (P,FV ) satisfies the following
filtering equation:

(27) dP i
t =

P i
t

(
mi −∑M

j=1 P j
t mj

)

σ
dW̄t; t ≥ 0, i = 1, . . . , M,

where the innovation process (W̄ ,FV ) is a standard Wiener process given by:

(28) dW̄t =
dVt −

∑M
j=1 P j

t mjdt

σ
; t ≥ 0.

The recursive formulation of the problem is again given by (6), bearing in mind that (P p,FV )
is now a vector-valued process with values in the unit simplex ∆ of RM . The following result
parallels Proposition 1.

Proposition 4.

(i) There exist a value function G∗ and a stopping time τ∗ ∈ T V that solve (6);

(ii) The coincidence set S∗ = {(v, p) ∈ R×∆ | G∗(v, p) = g(v, p)} for (6) is non-empty and
satisfies S∗ =

⋃
p∈∆{p} × [v∗(p),∞), where v∗(p) = inf{v ∈ R | (v, p) ∈ S∗} < ∞ for

any p ∈ ∆.

A key difference with Proposition 1 is that the optimal stopping time is no longer P–
almost surely finite if the drift can take negative values. The investment boundary function
v∗ now determines a surface in R ×∆, and it is optimal to invest whenever the value-belief
process crosses this surface. The characterization of the value function G∗ is analogous to that
provided in Section 3. Specifically, the Girsanov transformation extends straightforwardly
to the multiple drift case, as well as Lemma 2, which leads to the following corollary of
Proposition 2.

Corollary 6. For any (v, p) ∈ R×∆,

(29) G∗(v, p) = sup
τ∈T B

EQ

[
e−rτ

M∑

i=1

pi exp

((
mi

σ

)
Bτ − 1

2

(
mi

σ

)2

τ

)
(v + σBτ − I)

]
.

As in (11), the belief process can be represented in terms of the value process:

(30) P i,p
t =

piHt(mi)∑M
j=1 pjHt(mj)

=

pi exp

((
mi

σ

)
V v

t − v

σ
− 1

2

(
mi

σ

)2

t

)

M∑

j=1

pj exp

((
mj

σ

)
V v

t − v

σ
− 1

2

(
mj

σ

)2

t

) ; t ≥ 0,
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and the analogue of (12) is:

(31) G∗(v, p) = sup
τ∈T V

E

[
e−rτ

(
v +

∫ τ

0

M∑

i=1

P i,p
t mi dt + σW̄τ − I

)]
; (v, p) ∈ R×∆.

From (29) and (31), it is clear that Corollary 1(i) and Corollary 2 still hold, as well as the
continuity properties of Corollary 3. The multi-dimensional analogue of Corollary 1(ii) can
be stated as follows.

Corollary 7. Suppose that p and p̃ are ordered in the sense of the monotone likelihood
ratio property, that is, pi/p̃i is increasing in i = 1, . . . , M . Then G∗(v, p) ≥ G∗(v, p̃).

The proof is an immediate consequence of (31) together with the fact that Bayesian
updating preserves the monotone likelihood property. The comparison result with the average
drift problem is unaffected. To see this, redefine the dynamics of V̂ as:

(32) dV̂t =
M∑

i=1

pimidt + σdWt; t ≥ 0.

Lemmas 8 and 9 remain true, provided p is replaced by the prior expectation of the drift∑M
i=1 pimi. Thus Theorem 2 holds for an arbitrary finite number of values for the drift.

Our approach of the strict comparison result can be extended provided the largest possible
value for the drift, mM , is strictly positive. One needs only to redefine the domain D as
(I, I + mM/r)×∆, and the key inequality (24) is replaced by:

(33)
M∑

i=1

piĜ0(v,mi) > Ĝ0

(
v,

M∑

i=1

pimi

)
; (v, p) ∈ D.

The analogues of Lemmas 11, 12 and 13 are easily derived, from which Theorem 3 follows.
The asymptotic behavior of the investment boundary function v∗σ as σ converges to 0 can
then be straightforwardly characterized along the lines of Subsection 6.2. For instance, if the
drift can take three values −1, 0 and 1, one has limσ→0 v∗σ(1, 0, 0) = limσ→0 v∗σ(0, 1, 0) = I
and limσ→0 v∗σ(p) = I + 1/r for any p ∈ ∆ \ {(1, 0, 0), (0, 1, 0)}.

7.2. Infinitely many drift values. The situation is significantly more complex when
µ can take an infinite number of values. LetM be the probability measure on the Borel σ–field
B(R) describing the probability law of µ, and suppose that µ ∈ L1(R,B(R),M). Proceeding
as in Subsection 3.2, one can construct a probability measure Q under which V and µ are
independent, and whose restriction to Fµ,W

t has a Radon–Nikodym derivative with respect
to P given by (7). The process (B,Fµ,W ) given by (8) remains a Brownian motion under Q.
A direct application of Bayes’ rule (Karatzas and Shreve 1991, Lemma 3.5.3) yields that:

E
[
µ | FV

t

]
=
EQ

[
exp

((µ

σ

)V v
t − v

σ
− 1

2

(µ

σ

)2
t

)
µ | FV

t

]

EQ
[
exp

((µ

σ

)V v
t − v

σ
− 1

2

(µ

σ

)2
t

)
| FV

t

] = Φ(t, V v
t ); t ≥ 0,

where, by definition:

Φ(t, x) =

∫

R
exp

((m

σ

)x− v

σ
− 1

2

(m

σ

)2
t

)
mM(dm)

∫

R
exp

((m

σ

)x− v

σ
− 1

2

(m

σ

)2
t

)
M(dm)

; x ∈ R.
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One can then decompose the value process in its own filtration and obtain:

(34) dV v
t = Φ(t, V v

t )dt + σdW̄t; t ≥ 0,

where (W̄ ,FV ) is a standard Wiener process. The investment problem (2) can then be
rewritten as follows:

(35) sup
τ∈T V

E
[
e−rτ

[
v +

∫ τ

0
Φ(s, V v

s ) ds + σW̄τ − I

]]
.

In contrast with (5)–(6), a key feature of (34)–(35) is that it does not allow in general a finite-
dimensional Markov representation. This represents a challenging problem that is beyond
the scope of the present paper.

7.3. Geometric Brownian motion. Returning for simplicity to the case in which
µ can take only the values 0 and 1, suppose now that the value of the project follows a
geometric Brownian motion with unknown drift µ and known variance σ,

(36) dVt = µVtdt + σVtdWt; t ≥ 0.

We denote by v ≥ 0 the initial value of the project. To avoid confusion with P, we denote
by Pg the corresponding investment problem. To ensure the existence of a solution to Pg,
we assume that r > 1. From Liptser and Shiryaev (1977, Theorems 7.12 and 9.1), the
belief process (P,FV ) satisfies again (3), where the innovation process (W̄ ,FV ) is a standard
Wiener process given by:

(37) dW̄t =
dVt/Vt − Ptdt

σ
; t ≥ 0.

From (3)–(37), the joint value-belief process can be rewritten as:

(38) d

[
V v

t

P p
t

]
=

[
P p

t V v
t

0

]
dt +

[
σV v

t

P p
t (1− P p

t )/σ

]
dW̄t; t ≥ 0.

We denote by G∗g and τ∗g the value function and the optimal stopping time for the unknown
drift problem Pg. One can then restate Pg as in (6), with the sole difference that G∗g is now
defined over R+ × [0, 1]. Existence of an optimal stopping time τ∗g and of an investment
boundary function v∗g follows along the same lines as in the proof of Proposition 1, bearing
in mind that r > 1. The extension of Lemma 2 to the case of geometric Brownian motion is
straightforward, and one obtains the following characterization of the value function.

Corollary 8. For any (v, p) ∈ R+ × [0, 1],

(39) G∗g(v, p) = sup
τ∈T B

EQ
[
e−rτ

{
1 + p

[
exp

(
Bτ

σ
− τ

2σ2

)
− 1

]}[
v exp

(
σBτ − σ2

2
τ

)
− I

]]
.

The analogue of (12) is:

(40) G∗g(v, p) = sup
τ∈T V

E
[
e−rτ

[
v exp

(∫ τ

0
P p

t dt + σW̄τ − σ2

2
τ

)
− I

]]
; (v, p) ∈ R+ × [0, 1].

From (39) and (40), it is easy to check that Corollary 1, 2 and 3 hold for the value function
G∗g. Using the same arguments as those provided for Lemmas 3 and 4, it follows that the
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investment boundary function v∗g is non-decreasing on [0, 1] and left-continuous on (0, 1].
For any t ≥ 0, let Mt = exp(σW̄t − σ2t/2). By analogy with Lemma 5, the proof that v∗g is
right-continuous on [0, 1) requires the following auxiliary result.

Lemma 14. For any (p0, x) ∈ [0, 1)× (1,∞), there exists p > p0 such that:

(41) sup
τ∈T V

E
[
e−rτMτ

[
x exp

(∫ τ

0
P p

t dt

)
− exp

(∫ τ

0
P p0

t dt

)]]
= x− 1.

One has then the following analogue of Lemma 6.

Lemma 15. v∗g is right-continuous on [0, 1).

Proof. Let p0 ∈ [0, 1), and suppose that limp↓p0 v∗g(p) = v∗g(p+
0 ) > v∗g(p0). Fix some

v ∈ (v∗g(p0), v∗g(p+
0 )). For any p ∈ (p0, 1], let τ∗gv,p be the optimal stopping time given initial

conditions (v, p). Then, by the analogue of (6) and (40),

G∗g(v, p) = E

[
e−rτ∗g

v,p

[
v exp

(∫ τ∗g
v,p

0
P p

t dt + σW̄τ∗g
v,p
− σ2

2
τ∗gv,p

)
− I

]]

≤ v∗g(p0)− I(42)

+ v∗g(p0)E

[
e−rτ∗g

v,p Mτ∗g
v,p

[
v

v∗g(p0)
exp

(∫ τ∗g
v,p

0
P p

t dt

)
− exp

(∫ τ∗g
v,p

0
P p0

t dt

)]]
,

where we have used the fact that G∗g(v∗g(p0), p0) = v∗g(p0)−I. Since v/v∗g(p0) > 1, Lemma
14 implies that there exists p > p0 such that:

E

[
e−rτ∗g

v,p Mτ∗g
v,p

[
v

v∗g(p0)
exp

(∫ τ∗g
v,p

0
P p

t dt

)
− exp

(∫ τ∗g
v,p

0
P p0

t dt

)]]
≤ v

v∗g(p0)
− 1.

Hence, from (42), G∗g(v, p) ≤ v− I and, since the reverse inequality always hold, G∗g(v, p) =
v − I, so that v∗g(p) ≤ v by definition of v∗g. As v∗g is non-decreasing, it follows that
v ≥ v∗g(p+

0 ). This contradicts the fact that, by assumption, v < v∗g(p+
0 ). ¤

We have thus proved the following result.

Theorem 4. The investment boundary function v∗g : [0, 1] → R++ is continuous and
non-decreasing on [0, 1].

We now check the robustness of our comparison result. In the average drift problem, the
value is observable and follows a geometric Brownian motion with known drift p ∈ [0, 1] and
known variance σ,

(43) dV̂t = pV̂tdt + σV̂tdWt; t ≥ 0.

We denote by Ĝg(·, p) and τ̂ g(v̂g(p)) the value function and the optimal stopping time for the
average drift problem P̂. One can restate P̂g as in (16), with the sole difference that Ĝg(·, p)
is now defined over R+. The following result is standard (Dixit and Pindyck 1994, §5.2).

Lemma 16. For any p ∈ [0, 1], let β = 1/2 − p/σ2 +
√

(1/2− p/σ2)2 + 2r/σ2 and

v̂g(p) = βI/(β − 1). Then τ̂ g(v̂g(p)) is an optimal stopping time for P̂.
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The comparison between G∗g and Ĝg when the value processes V and V̂ follow geometric
Brownian motions can be reduced to the arithmetic Brownian motion case by observing that
Lemmas 8 and 9 remain valid when the unknown drift in (1) can take the values −σ2/2 and
1 − σ2/2 with respective probabilities 1 − p and p, and when the payoff function ψ̂ is given
by ψ̂(v) = exp(v) − I for any v ∈ R. The key property in that respect is that the operator
Q̂δ preserves convexity. It therefore follows that:

sup
τ∈T V

E
[
e−rτ

[
exp

(
ln(v) +

(
µ− σ2

2

)
τ + σWτ

)
− I

]]

≥ sup
τ∈T W

E
[
e−rτ

[
exp

(
ln(v) +

(
p− σ2

2

)
τ + σWτ

)
− I

]]
; (v, p) ∈ R+ × [0, 1],

and one has the following result.

Theorem 5. For any (v, p) ∈ R+ × [0, 1],

G∗g(v, p) ≥ Ĝg(v, p).

The above discussion suggests that the only difference between the arithmetic and the
geometric Brownian motion cases lies in the payoff function, which is linear in the arithmetic
case, and exponential in the geometric case. This additional element of convexity makes
the comparison result less surprising in the geometric than in the arithmetic case. Strict
comparison results analogous to Theorem 3 and Corollary 4 are easy to derive, and are
therefore omitted.

8. Concluding remarks. This paper has focused on the qualitative properties of the
optimal decision to invest in a project whose value is observable but driven by a parameter
that is unknown to the decision-maker ex-ante. In the case where the drift can take only two
values, we have shown that the optimal investment strategy is characterized by a continuous
and non-decreasing boundary in the value-belief state space. The presence of learning implies
that the optimal investment strategy is path-dependent. In particular, the value of the project
at the time of the investment does not necessarily coincide with its historic maximum.

We have shown that the decision-maker always benefit from being uncertain about the
drift of the value process, in the sense that he prefers the option to invest in a project
with unknown drift to that of investing in a project with a constant drift equal to the prior
expectation of the drift in the first option. Thus one might expect the value of claims on
structurally risky assets, for instance in an emerging sector in which future growth prospects
are uncertain, to be higher than that of claims on assets in more traditional sectors with
otherwise identical risk characteristics.

A significant point of departure with standard real option models is that the value of
the option to invest is not everywhere increasing with respect to the volatility of the value
process. Thus, while drift uncertainty always benefit a risk-neutral investor, non-structural
uncertainty might prove harmful. As we argued, this non-monotonicity can be interpreted in
terms of two countervailing effects, the real option effect and the inefficient learning effect.

Appendix.

Proof of Lemma 1. For any t ≥ 0, P 0
t =

∫ t
0 P 0

s (1− P 0
s ) dW̄s satisfies:

E
[
(P 0

t )2
]
=

∫ t

0
E

[
(P 0

s )2(1− P 0
s )2

]
ds ≤

∫ t

0
E

[
(P 0

s )2
]
ds.
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Thus, by Gronwall’s lemma, E [(P 0
t )2] = 0, and therefore P 0

t = 0, P–almost surely. Since
1 − P 1

t =
∫ t
0 P 0

s (1 − P 0
s ) dW̄s, this also implies that P 1

t = 1, P–almost surely. Hence (i)
follows. (ii) is a direct application of Feller’s test for explosions (Karatzas and Shreve 1991,
Theorem 5.5.29). ¤

Proof of Proposition 1. Note first that, since inf{t ≥ 0 | V v
t ≥ I} ∈ T V , the

supremum in (6) must be non-negative. Next, from (5) and the definition of g, it follows
that, for any (v, p) ∈ R× [0, 1],

G∗(v, p) = sup
τ∈T V

E
[
e−rτ

(
v +

∫ τ

0
P p

t dt + σW̄τ − I

)]
≤ sup

τ∈T V

E
[
e−rτ

(
v + τ + σW̄τ − I

)]

(44)
= G∗(v, 1),

where the last equality follows from the fact that W̄ is a Brownian motion under FV . In
particular, G∗ is well-defined. Let C∗ = {(v, p) ∈ R × [0, 1] | G∗(v, p) > g(v, p)} be the
continuation region for our problem, and let τ∗ = inf{t ≥ 0 | Xv,p

t 6∈ C∗}. Since the family of
random variables {e−rτW̄−

τ | τ ∈ T V } is uniformly integrable as supτ∈T V E [e−2rτW 2
τ ] < ∞,

a sufficient condition for:

G∗(v, p) = E
[
e−rτ∗g(Xv,p

τ∗ )
]
= E

[
e−rτ∗

(
v +

∫ τ∗

0
P p

t dt + σW̄τ∗ − I

)]

is that τ∗ be P–almost surely finite (Øksendal 2000, Theorem 10.1.9, and discussion p. 205).
To prove this, note that τ∗ ≤ T v(v∗(1)) = inf{t ≥ 0 | V v

t ≥ v∗(1)}, P–almost surely. Indeed,
if not, then with positive P–probability,

G∗
(
v∗(1), P p

T v(v∗(1))

)
> v∗(1)− I = G∗(v∗(1), 1),

which contradicts (44). Since T v(v∗(1)) ≤ inf{t ≥ 0 | v + σWt ≥ v∗(1)} which is P–almost
surely finite, (i) follows. Furthermore, S∗ = R× [0, 1]\C∗ 6= ∅. Suppose now that (v, p) ∈ S∗,
so that G∗(v, p) = v−I. For any h > 0, discounting implies that G∗(v+h, p) ≤ G∗(v, p)+h =
v+h−I. Since the reverse inequality always holds as immediate stopping is a feasible strategy,
one has G∗(v + h, p) = v + h− I, hence (v + h, p) ∈ S∗. As τ∗ ≤ T v(v∗(1)), (ii) follows . ¤

Proof of Lemma 2. For any t ≥ 0, let Yt = e−rt(Vt − I). The following holds.
(i) limt→∞ Yt = 0, P– and Q–almost surely. (ii) The sequence {|Yn|} converges to 0 in
L1(Ω,F ,P) as E[e−rn|Wn|] ≤ e−rn

√
2n/π for any n ∈ N. (iii) The sequence {Hn(µ)|Yn|}

converges to 0 in L1(Ω,F ,Q) as EQ [Hn(µ)|Yn|] = E [|Yn|]. (iv) Finally supτ∈T V E [|Yτ |] < ∞
as supτ∈T V E [e−rτ |Wτ |] ≤ supτ∈T W E [e−rτ |Wτ |] < ∞, where the first inequality follows from
the inclusion FV ⊂ Fµ,W and the independence of µ and W , and the second from standard
optimal stopping theory. For any τ ∈ T V and n ∈ N, one has E [Yτ∧n] = EQ [Hτ∧n(µ)Yτ∧n],
or, equivalently,

(45) E
[
Yτ1{τ≤n}

]
+ E

[
Yn1{τ>n}

]
= EQ

[
Hτ (µ)Yτ1{τ≤n}

]
+ EQ

[
Hn(µ)Yn1{τ>n}

]
.

We study the convergence of each term in (45) as n goes to infinity. Since E [|Yτ |] < ∞ by
(iv), the dominated convergence theorem implies that the sequence {E [Yτ1{τ≤n}]} converges
to E [Yτ1{τ<∞}], which is equal to E [Yτ ] by (i). By (ii), the sequence {|Yn1{τ>n}|} converges
to 0 in L1(Ω,F ,P) and thus the sequence {E [Yn1{τ>n}]} converges to 0. To apply the same
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reasoning to the right-hand side of (45), one simply needs to prove that EQ [Hτ (µ)|Yτ |] < ∞.
To see this, note that, by Fatou’s lemma and (iv):

EQ [Hτ (µ)|Yτ |] = EQ
[
lim inf
n→∞ Hτ∧n(µ)|Yτ∧n|

]
≤ lim inf

n→∞ EQ [Hτ∧n(µ)|Yτ∧n|]

= lim inf
n→∞ E [|Yτ∧n|]= E [|Yτ |] < ∞,

where the first equality follows from (i), and the last from an argument similar to the one
used to prove that the left-hand side of (45) converges to E[Yτ ]. Thus, letting n go to infinity
in (45) yields E [Yτ ] = EQ [Hτ (µ)Yτ ] for any τ ∈ T V , which implies the result by (8). ¤

Proof of Corollary 3. First, note from (6) that, for any (v, v0, p) ∈ R2 × [0, 1],

(46) |G∗(v, p)−G∗(v0, p)| ≤ |v − v0|.
For any (v, p) ∈ R × [0, 1], let τ∗v,p be the optimal stopping time for problem P given initial
conditions (v, p). Using (10) and the fact that the mapping p 7→ G∗(v, p) is non-decreasing
by Corollary 1, simple manipulations imply that for any (v, p, p0) ∈ R× [0, 1]2,
∣∣∣∣
G∗(v, p)−G∗(v, p0)

p− p0

∣∣∣∣ ≤ max
p1∈{p,p0}

EQ
[
e−rτ∗v,p1

(
v + σBτ∗v,p1

− I
)[

exp
(

Bτ∗v,p1

σ
− τ∗v,p1

2σ2

)
− 1

]]

≤ sup
τ∈T V

EQ
[
e−rτ (v + σBτ − I)

[
exp

(
Bτ

σ
− τ

2σ2

)
+ 1

]]
(47)

≤ G∗(v, 0) + G∗(v, 1),

where the second inequality follows from the fact that both v +σBτ∗v,p
− I and v +σBτ∗v,p0

− I

must be non-negative P–almost surely, and the third from (10), applied respectively to p = 0
and p = 1. Using the two uniform upper bounds (46) and (47), we obtain that for any
(v, v0, p, p0) ∈ R2 × [0, 1]2,

|G∗(v, p)−G∗(v0, p0)| ≤ |G∗(v, p)−G∗(v0, p)|+ |G∗(v0, p)−G∗(v0, p0)|

≤ |v − v0|+ [G∗(v0, 0) + G∗(v0, 1)]|p− p0|,
which implies (i). To prove (ii), let Nt = exp(Bt/σ− t/(2σ2))− exp(Bt/σ0− t/(2σ2

0)) for any
t ≥ 0, where (B,FB) is a Brownian motion on (Ω,F ,Q) independent of µ. Using (10) and
proceeding as for (47), we obtain that for any (v, p, σ, σ0) ∈ R× [0, 1]× R2

++,

∣∣G∗
σ(v, p)−G∗

σ0
(v, p)

∣∣≤ |σ − σ0| max
σ1∈{σ,σ0}

sup
τ∈T B

∣∣∣∣EQ
[
e−rτ

{
1 + p

[
exp

(
Bτ

σ1
− τ

2σ2
1

)
− 1

]}
Bτ

]∣∣∣∣
(48)

+ p max
σ1∈{σ,σ0}

sup
τ∈T B

∣∣EQ
[
e−rτNτ (v + σ1Bτ − I)

]∣∣.

Let σ1 ∈ {σ, σ0}. Along the lines of Subsection 3.2, one can show that there exists a unique
probability measure Pσ1 on (Ω,F) such that:

Pσ1 [A] = EQ
[
1A exp

(
Bt

σ1
− t

2σ2
1

)]
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for any A ∈ FB
t , and a direct application of Girsanov’s theorem (Karatzas and Shreve 1991,

Corollary 3.5.2) implies that the process (Bσ1 ,FB) defined by Bσ1
t = Bt− t/σ1 is a Brownian

motion on (Ω,F ,Pσ1). Using the fact that T B = T Bσ1, and an argument similar to Lemma
2, it is then easy to check that:

sup
τ∈T B

∣∣∣∣EQ
[
e−rτ

{
1 + p

[
exp

(
Bτ

σ1
− τ

2σ2
1

)
− 1

]}
Bτ

]∣∣∣∣ ≤ sup
τ∈T Bσ1

EPσ1

[
e−rτ |Bσ1

τ |
]
+

1
σ1

sup
t≥0

e−rtt.

From standard optimal stopping theory, the first term on the right-hand side of this inequality
is finite and independent of σ1, and the second is bounded for σ in a neighborhood of σ0 as
σ0 > 0. It follows that the first term on the right-hand side of (48) converges to 0 as σ
converges to σ0. Consider now the second term on the right-hand side of (48). Proceeding
as above, it is straightforward to check that:

sup
τ∈T B

∣∣EQ
[
e−rτNτ (v + σ1Bτ − I)

]∣∣≤ 2 max
σ2∈{σ,σ0}

sup
τ∈T Bσ2

EPσ2

[
e−rτ

∣∣∣∣v +
σ1

σ2
τ + σ1B

σ2
τ − I

∣∣∣∣
]
,

which is easily seen to be finite. The dominated convergence theorem implies then that:

(49) lim
n→∞ sup

τ∈T B

∣∣EQ
[
e−rτNτ (v + σ1Bτ − I)1{τ>n}

]∣∣= 0.

Next, for any (τ, n) ∈ T B × N, we obtain, from Jensen’s and Cauchy–Schwartz inequalities:
∣∣EQ

[
e−rτNτ (v + σ1Bτ − I)1{τ≤n}

]∣∣≤ EQ
[
e−rτ

∣∣Nτ (v + σ1Bτ − I)1{τ≤n}
∣∣]

≤
√
EQ

[
N2

τ 1{τ≤n}
]
EQ

[
(v + σ1Bτ − I)21{τ≤n}

]
(50)

≤ 2
√
EQ[N2

n]
[
(v − I)2 + 4

√
n |v − I|σ1 + 4σ2

1

]
,

where the last step follows from:

EQ
[
sup
t≤n

Bt

]
≤

√
EQ

[
sup
t≤n

B2
t

]

together with Doob’s inequality applied to the martingales B and N . It is easy to check from
the definition of N that Nn =

∫ n
0 [(1/σ− 1/σ0) exp(Bt/σ− t/(2σ2)) + Nt/σ0] dBt. From Itô’s

isometry and Gronwall’s inequality, we get, after some straightforward computations:

(51) EQ
[
N2

n

]≤ σ

σ0
σ

(
1
σ
− 1

σ0

)[
(σ + σ0)

(
en/σ2 − 1

)
− 2σ0(en/(σσ0) − 1)

]
en/σ2

0 .

Let ε > 0. By (49), supτ∈T B |EQ [e−rτNτ (v + σ1Bτ − I)1{τ>n}]| < ε/2 for large enough n.
Similarly, from (50) and (51), supτ∈T B |EQ [e−rτNτ (v + σ1Bτ − I)1{τ≤n}]| < ε/2 for σ close
enough to σ0. It follows that the second term on the right-hand side of (48) converges to 0
as σ converges to σ0, which concludes the proof of (ii). ¤

Proof of Lemma 5. Suppose first that p0 ∈ (0, 1), and let p ∈ (p0, 1]. Then, from (11),
the process P p − P p0 can be written as (p − p0)f(H(1), p, p0), where H(1) is defined as in
(9), and for any h ∈ R+,

(52) f(h, p, p0) =
h

pp0(h− 1)2 + (p + p0)(h− 1) + 1
.
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It is easy to check from (52) that the mapping h 7→ f(h, p, p0) reaches a maximum on R+

at h(p, p0) =
√

(1− p)(1− p0)/pp0, and that the mapping p 7→ f(h(p, p0), p, p0) is bounded
above by some positive constant C(p0) in a neighborhood of p0. Thus,

(53) sup
t≥0

|P p
t − P p0

t | ≤ C(p0)|p− p0|

for all p in a neighborhood of p0, P–almost surely. It follows from (53) that:

sup
τ∈T V

E
[
e−rτ

[
x +

∫ τ

0
(P p

t − P p0
t ) dt

]]
≤ sup

t≥0
e−rt[x + C(p0)(p− p0)t].

The mapping t 7→ e−rt[x + C(p0)(p− p0)t] is decreasing on R+ if C(p0)(p− p0) ≤ rx. Since
the supremum in (13) is greater or equal than x, the result follows. Suppose now that p0 = 0.
Then, by Lemma 1, P p0

t = 0 P–almost surely, and, for any τ ∈ T V ,

(54) E
[
e−rτ

(
x +

∫ τ

0
P p

t dt

)]
≤ E

[
e−rτx +

∫ τ

0
e−rtP p

t dt

]
=

p

r
+E

[
e−rτx−

∫ ∞

τ
e−rtP p

t dt

]
,

where the equality follows from the monotone convergence theorem. Next,

E
[∫ ∞

τ
e−rtP p

t dt

]
= E

[
E

[∫ ∞

τ
e−rtP p

t dt | FV
τ

]]

= E
[
e−rτ E

[∫ ∞

0
e−rtP p

t+τ dt | FV
τ

]]

= E
[
e−rτ

∫ ∞

0
e−rt E

[
P p

t+τ | FV
τ

]
dt

]

= E
[
e−rτ P p

τ

r

]
,

where the third equality follows from the monotone convergence theorem and the fourth from
the strong Markov property together with the fact that P p is a martingale. From (54), we
thus need only to prove that there exists some p > 0 such that:

(55) G◦(p) = sup
τ∈T V

E
[
e−rτ

(
x− P p

τ

r

)]
= x− p

r
.

If rx ≥ 1, G◦(p) = x−p/r since x−P p/r is then a positive martingale. If rx < 1, a standard
computation (see for instance Bolton and Harris 1999) yields that a solution to (55) is given
by τ◦ = inf{t ≥ 0 | P p

t ≤ p◦}, where p◦ = (γ − 1) rx/(γ − 2rx + 1) > 0 with γ =
√

1 + 8rσ2.
Hence G◦(p) = x− p/r if p ≤ p◦, which implies the result. ¤

Proof of Proposition 3. For any (v, p) ∈ R× [0, 1] and for any v̄ ≥ v, one gets, using
(22) and the definitions of v̂ and f :

∂Γ(v, p, v̄)
∂v̄

=
pf(1)

σ2
exp

(
v − v̄

σ2
f(1)

)
[v̂(1)− v̄] +

(1− p)f(0)
σ2

exp
(

v − v̄

σ2
f(0)

)
[v̂(0)− v̄].

Thus argmaxv̄≥v Γ(v, p, v̄) = {v} whenever v ≥ v̂(1), and argmaxv̄≥v Γ(v, p, v̄) ⊂ [v̂(0), v̂(1))
otherwise. From now on, we focus on the latter case. Let us first show that v̄ 7→ Γ(v, p, v̄) is
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quasi-concave on [v, v̂(1)]. If ∂Γ(v, p, v̄)/∂v̄ < 0 whenever v̄ ∈ [v, v̂(1)], the result is immediate
and argmaxv̄≥v Γ(v, p, v̄) = {v}. Otherwise, let v̄ ∈ [v, v̂(1)] such that ∂Γ(v, p, v̄)/∂v̄ = 0.
Then, one has:

∂2Γ(v, p, v̄)
∂v̄2

∝ [v̂(1)− v̄][v̄ − v̂(0)]
f(0)− f(1)

σ2
− [v̂(1)− v̂(0)]

(56)

≤ [v̂(1)− v̂(0)]
{

[v̂(1)− v̂(0)][f(0)− f(1)]
4σ2

− 1
}
.

A direct computation reveals that the right-hand side of (56) is negative for all (r, σ) ∈ R2
++,

which implies the strict quasi-concavity of v̄ 7→ Γ(v, p, v̄) on [v, v̂(1)]. For any v ∈ [ṽ(p), v̂(1)),

∂Γ(v, p, v̄)
∂v̄

∣∣∣∣
v̄=v

= 1 +
I − v

ṽ(p)− I
< 0,

so that ∂Γ(v, p, v̄)/∂v̄ < 0 for any v̄ ∈ [v, v̂(1)) by strict quasi-concavity of v̄ 7→ Γ(v, p, v̄) on
[v, v̂(1)]. Therefore argmaxv̄≥v Γ(v, p, v̄) = {v} in that case as well. ¤

Proof of Lemma 11. Pointwise convergence follows immediately from (17) and (23)
together with the fact that limσ→0 σ2/fσ(p) = p/r by L’Hôpital rule. Next, for any p ∈ [0, 1],
the quantity σ2/fσ(p) is an increasing function of σ. Since Ĝ0 is continuous and the mapping
x 7→ exp(−1 + (v − I)/x) is increasing on [v − I,∞) for any v ∈ R, the result follows
immediately from Dini’s theorem. ¤

Proof of Lemma 12. From (6) and (25), we have, for any (v, p) ∈ R× [0, 1],
∣∣∣G∗

σ(v, p)− G̃σ(v, p)
∣∣∣ ≤ σ sup

τ∈T Vσ

E
[
e−rτ |Wτ |

] ≤ σ sup
τ∈T W

E
[
e−rτ |Wτ |

]
,

where the second inequality follows from the inclusion FVσ ⊂ Fµ,W and the independence
of µ and W . Since supτ∈T W E[e−rτ |Wτ |] < ∞ from standard optimal stopping theory, the
result follows. ¤

Proof of Lemma 13. Note first that, for any σ > 0 and for any prior belief p ∈ [0, 1]
that µ = 1, we have, from (25) and the inclusion FVσ ⊂ Fµ,W ,

G̃σ(v, p) ≤ sup
τ∈T µ,W

E
[
e−rτ (v + µτ − I)

]
= pĜ0(v, 1) + (1− p)Ĝ0(v, 0).

It follows that lim supσ→0 G̃σ(v, p) ≤ pĜ0(v, 1) + (1 − p)Ĝ0(v, 0) for any (v, p) ∈ R × [0, 1].
To prove the converse, consider the following strategy in P̃. First, wait for a deterministic
time amount ε ∈ (0, t̂0(v, p)). Next, delay further investment by t̂0(v + εP p

ε , P p
ε ), that is, the

amount of time that is optimal in P̂ in the state (v + εP p
ε , P p

ε ). We have:

G̃σ(v, p) ≥ E
[
e−r[ε+t̂0(v+εP p

ε ,P p
ε )]{v + µ

[
ε + t̂0 (v + εP p

ε , P p
ε )

]− I
}]

= E
[
e−rε E

[
e−rt̂0(v+εP p

ε ,P p
ε )

[
v + µε + µt̂0(v + εP p

ε , P p
ε )− I

] | FVσ
ε

]]
(57)

= E
[
e−rεĜ0(v + εP p

ε , P p
ε )

]
,
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where the last equality follows from the definition of Ĝ0 and the fact that E [µ | FVσ
ε ] = P p

ε .
Rewriting (11) and making the dependence of P p on σ explicit, we obtain:

P p
ε (σ) =

p exp

(
σWε + (µ− 1

2)ε
σ2

)

p exp

(
σWε + (µ− 1

2)ε
σ2

)
+ 1− p

,

from which we get that limσ→0 P p
ε (σ) = µ, P–almost surely. As Ĝ0(v + εP p

ε (σ), P p
ε (σ)) is

positive and bounded above by Ĝ0 (v + ε, 1) for any σ > 0, it follows from (57) and the
dominated convergence theorem that:

lim inf
σ→0

G̃σ(v, p) ≥ E
[
e−rεĜ0(v + µε, µ)

]
= e−rε

[
pĜ0(v + ε, 1) + (1− p)Ĝ0(v, 0)

]
.

Since Ĝ0 is continuous, we get that lim infσ→0 G̃σ(v, p) ≥ pĜ0(v, 1)+(1−p)Ĝ0(v, 0) by letting
ε go to 0. Since the reverse inequality holds for the lim sup, pointwise convergence follows.
To prove that this convergence is uniform, note first that:

{
x ∈ R |

∫ ε

−ε

σ2dy

(x + y)2(1− x− y)2
= ∞ for any ε > 0

}
= {0, 1},

so that, by the Engelbert–Schmidt criterion (Karatzas and Shreve 1991, Theorem 5.5.7), the
stochastic differential equation (3) has a unique solution P p(σ) in the sense of probability
law for any initial condition p ∈ [0, 1]. Thus, from the time-change theorem for diffusion
processes (Øksendal 2000, Theorem 8.5.7), P p

t (σ) coincides in law with P p
t/σ2(1) for any t ≥ 0

and σ > 0. It follows that:

E
[
e−rεĜ0(v + εP p

ε (σ̃), P p
ε (σ̃))

]
= E

[
e−rεĜ0

(
v + εP p

ε/σ̃2(1), P p
ε/σ̃2(1)

)]

= E
[
E

[
e−rεĜ0

(
v + εP p

ε/σ̃2(1), P p
ε/σ̃2(1)

)
| FV1

ε/σ2

]]

≥ E
[
e−rεĜ0

(
v + εP p

ε/σ2(1), P p
ε/σ2(1)

)]

= E
[
e−rεĜ0(v + εP p

ε (σ), P p
ε (σ))

]
,

for any ε ∈ (0, t̂0(v, p)) and σ > σ̃ > 0, where the first and last equalities follow from the
above time-change argument, and the inequality from the fact that P p(1) is a martingale and
Ĝ0 is convex as the supremum of linear functions of (v, p), together with Jensen’s inequality.
Hence, the mapping σ 7→ E [e−rεĜ0(v + εP p

ε (σ), P p
ε (σ))] is decreasing. Since the mapping

(v, p) 7→ E[e−rεĜ0(v + µε, µ)] = pĜ0(v, 1) + (1− p)e−rεĜ0(v, 0) is continuous, it follows from
Dini’s theorem that:

(58) lim
σ→0

E
[
e−rεĜ0(v + εP p

ε (σ), P p
ε (σ))

]
= E

[
e−rεĜ0(v + µε, µ)

]

uniformly on every compact set K ⊂ D. Note that this holds for every ε ∈ (0, t̂0(v, p)). As ε
goes to 0, the right-hand side of (58) converges uniformly to pĜ0(v, 1) + (1 − p)Ĝ0(v, 0) on
every compact set K ⊂ D. The result follows. ¤
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Proof of Proposition 4. Following the same steps as in the proof of Proposition 1, it
is easy to see that G∗ is well-defined, with (44) replaced by:

G∗(v, p) = sup
τ∈T V

E
[
e−rτ

(
v +

∫ τ

0
P p

t dt + σW̄τ − I

)]
≤ sup

τ∈T V

E
[
e−rτ

(
v + mMτ + σW̄τ − I

)]

(59)
= G∗(v, eM ),

where eM = (0, . . . , 0, 1) ∈ ∆. Let C∗ = {(v, p) ∈ R × ∆ | G∗(v, p) > g(v, p)} be the
continuation region for our problem, and let τ∗ = inf{t ≥ 0 | Xv,p

t 6∈ C∗}. From optimal
stopping theory, the process {e−r(t∧τ∗)G∗(V v

t∧τ∗ , P
p
t∧τ∗); t ≥ 0} is a martingale under FV (El

Karoui 1981). Hence, for any n ∈ N,

G∗(v, p) = E
[
e−r(n∧τ∗)G∗(V v

n∧τ∗ , P
p
n∧τ∗)

]

= E
[
e−rτ∗G∗(V v

τ∗ , P
p
τ∗)1{τ∗≤n}

]
+ E

[
e−rnG∗(V v

n , P p
n)1{τ∗>n}

]
(60)

= E
[
e−rτ∗(V v

τ∗ − I)1{τ∗≤n}
]
+ E

[
e−rnG∗(V v

n , P p
n)1{τ∗>n}

]
.

Since e−rτ∗(V v
τ∗ − I) ≥ 0 and e−rτ∗(V v

τ∗ − I) = 0 P–almost surely on {τ∗ = ∞}, the first
term on the last line of (60) converges to E [e−rτ∗(V v

τ∗ − I)] as n goes to infinity. By (59),
the second term is smaller than E [e−rnG∗(V v

n , eM )]. An explicit computation similar to (17)
reveals that this is less than E [e−rn max{V v

n , C}] for some positive constant C, and this in
turns converges to 0 as n goes to infinity. Thus we have G∗(v, p) = E [e−rτ∗(V v

τ∗ − I)], and
τ∗ is an optimal stopping time, which implies (i). (ii) then follows along the same lines as in
the proof of Proposition 1. ¤

Proof of Lemma 14. Suppose first that p0 ∈ (0, 1), and let p ∈ (p0, 1]. Proceeding as
in Subsection 3.2, one can show that there exists a unique probability measure P̃ on (Ω,F)
such that P̃ [A] = E [1AMt] for any A ∈ FV

t . Using this change of measure together with
r > 1, x > 1 and (53), one obtains:

sup
τ∈T V

E
[
e−rτMτ

[
x exp

(∫ τ

0
P p

t dt

)
− exp

(∫ τ

0
P p0

t dt

)]]

≤ sup
τ∈T V

E
[
e−(r−1)τMτ

[
x exp

(∫ τ

0
P p

t dt−
∫ τ

0
P p0

t dt

)
− 1

]]

≤ sup
t≥0

e−(r−1)t[x exp(C(p0)(p− p0)t)− 1].

The mapping t 7→ e−(r−1)t[x exp(C(p0)(p− p0)t)− 1] is decreasing on R+ if C(p0)(p− p0) ≤
(x−1)(r−1)/x. Since the supremum in (41) is greater or equal than x−1, the result follows.
Suppose now that p0 = 0. Then, by Lemma 1, P p0

t = 0 P–almost surely, and, for any τ ∈ T V ,

E
[
e−rτMτ

[
x exp

(∫ τ

0
P p

t dt

)
− 1

]]
= EP̃

[
e−rτ

[
x exp

(∫ τ

0
P p

t dt

)
− 1

]]

(61)

≤ EP̃

[
e−ρτ

(
x− 1 + x

∫ τ

0
P p

t dt

)]
,
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where ρ = r−1 > 0 and the inequality follows from the convexity of the exponential function
together with the fact that P p ≤ 1. In turn, the right-hand side of (61) is bounded above by:

EP̃

[
e−ρτ (x− 1) + x

∫ τ

0
e−ρtP p

t dt

]
= xEP̃

[∫ ∞

0
e−ρtP p

t dt

]

+ EP̃

[
e−ρτ (x− 1)− x

∫ ∞

τ
e−ρtP p

t dt

]
,

where the equality follows from the monotone convergence theorem. Note that, as P p ∈ [0, 1],
the expectation EP̃ [

∫∞
0 e−ρtP p

t dt] is well-defined and finite. Next,

EP̃

[∫ ∞

τ
e−ρtP p

t dt

]
= E

[
EP̃

[∫ ∞

τ
e−ρtP p

t dt | FV
τ

]]

= EP̃

[
e−ρτ EP̃

[∫ ∞

0
e−ρtP p

t+τ dt | FV
τ

]]

= EP̃

[
e−ρτ

∫ ∞

0
e−ρt EP̃

[
P p

t+τ | FV
τ

]
dt

]

= EP̃

[
e−ρτ

∫ ∞

0
e−ρtf(t, P p

τ ) dt

]
,

where the third inequality follows form the monotone convergence theorem and the fourth
from the strong Markov property, with the notation f(t, p) = EP̃ [P p

t ]. From (61), we thus
need only to prove that there exists some p > 0 such that:

(62) G•(p) = sup
τ∈T V

EP̃

[
e−ρτ

(
x− 1− x

∫ ∞

0
e−ρtf(t, P p

τ ) dt

)]
= x−1−xEP̃

[∫ ∞

0
e−ρtP p

t dt

]
.

Note that (62) is a Markovian optimal stopping problem. From optimal stopping theory,
the process {e−ρ(t∧τ•)G•(P p

t∧τ•); t ≥ 0} is a martingale under FV , where by definition τ• =
inf{t ≥ 0 | G•(P p

t ) = x − 1 − x
∫∞
0 e−ρtf(t, P p

t ) dt} (El Karoui 1981). Using Feller’s test
for explosions (Karatzas and Shreve 1991, Theorem 5.5.29), it is easy to check that for
any p ∈ (0, 1), inf{t ≥ 0 | P p

t 6∈ (0, 1)} = ∞, P̃–almost surely. Suppose that τ• = ∞,
or equivalently, that the optimal stopping region for (62) is reduced to {0}, which is not
attainable in finite time. Then the process {e−ρtG•(P p

t ); t ≥ 0} is a martingale. Thus for
any p > 0 and t ≥ 0, G•(p) = EP̃ [e−ρtG•(P p

t )] ≤ e−ρt(x− 1) and therefore G•(p) = 0 for any
p > 0. However, for any such p,

(63) G•(p) ≥ x− 1− x

∫ ∞

0
e−ρtf(t, p) dt = x− 1− xEP̃

[∫ ∞

0
e−ρtP p

t dt

]
.

We shall get a contradiction by showing that limp↓0 EP̃ [
∫∞
0 e−ρtP p

t dt] = 0. A standard
application of Doob’s inequality and Gronwall’s lemma imply that for any n ∈ N, there exists
a positive constant Cn such that:

EP̃

[
sup
t≤n

(P p
t )2

]
≤ Cnp2

for any p > 0. Using Cauchy–Schwartz inequality, it follows that:
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EP̃

[∫ ∞

0
e−ρtP p

t dt

]
= EP̃

[∫ n

0
e−ρtP p

t dt

]
+ EP̃

[∫ ∞

n
e−ρtP p

t dt

]

≤
√
EP̃

[
sup
t≤n

(P p
t )2

]∫ n

0
e−2ρt dt +

e−ρn

ρ
(64)

≤
√

Cn

2ρ
p +

e−ρn

ρ

for any p > 0. Since x > 1, there exists ε > 0 such that x(1 − ε) − 1 > 0. Choosing n such
that e−ρn/ρ ≤ ε/2 and p > 0 such that

√
Cn/2ρ p ≤ ε/2, it follows from (63) and (64) that

G•(p) ≥ x(1 − ε) − 1 > 0, a contradiction. It thus follows that the optimal stopping region
for (62) is not reduced to {0} and that there exists p > 0 such that (62) holds. Hence the
result. ¤
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