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Abstract

Zero demands for some types of energy are frequently observed
in …rm level data sets. To deal with this problem, two alternative
solutions are retained in the literature: …rstly, it can be assumed that
the consumption of some kinds of energy is not allowed by the existing
technology; secondly one can suppose that …rms decide to use only
some of the di¤erent kinds of energy allowed by the technology. In this
paper we estimate the inter-fuel substitutions resulting from these two
di¤erent situations. We take into account that increasing the price of
an energy form possibly modi…es the number of energy used by the
…rm. We show that even in this case an estimation of the elasticity
of substitution can be obtained. The empirical results are based on a
French manufacturing energy consumption survey.
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1 Introduction

Firm-level panel data sets reveal a salient feature of energy consumption:
the great variability of energy uses. Examples of this variability include
simultaneous adoption and abandon of some energy forms and large di¤er-
ences in the level of energy consumption over time and across …rms. This
heterogenous behavior of …rms with regards to energy consumption is ob-
served even when relatively homogenous populations of …rms are considered
such as …rms in the same industry.

Most of the published research on industrial energy demand makes use
of aggregated data. Among them the most often cited are Fuss (1977),
Gri¢n (1977), Halvorsen (1977), Pindyck (1979), Hall (1983) and Magnus
and Woodland (1987).

Studies making use of individual data have most often focused on the
residential sector (see Madlener (1996) for a survey). While demand the-
ory commonly deals with situations where the demand is continuously vari-
able, empirical works on residential energy demand are based on continuous-
discrete choice models (Dubin and McFadden (1984)). In this framework,
the discrete fuel choice involves comparisons of indirect utility attached to
various fuel systems. Consistent with the theory of consumer behavior, con-
tinuous equation describing energy use are derived from the indirect utility
function by using Roy’s identity (Hanemann (1984)). For industrial energy
demand the di¢culty is similar but more severe because …rms choose di¤er-
ent fuel patterns (i.e. di¤erent combinations of di¤erent types of energy).
As noted by Woodland (1993), the possibility of corner solutions leading
to one or more zero values of some types of energy, can occur as a result
of two alternative situations. First, di¤erent fuel patterns are determined
by previous technology choice. In that case, for a given technology, some
energy forms are required while other are not allowed. Firm behavior in
the short run is restricted to the subset of energy forms allowed by …rms’
technology. Later in the paper we will call such a case “designated tech-
nology” where zero demand are the result of an exogenous rationing1. This
is precisely the hypothesis assumed by Woodland (op.cit.) who estimates
“conditional” production functions, that means as many production func-
tions as signi…cantly observed fuel patterns. Assuming that fuel patterns
are the result of technological constraints, Bjorner and Jensen (2002) follow
the same approach.

The second approach considers that zero consumptions may instead be
the result of cost minimization behavior leading to a corner solution. In this
framework all types of energy can potentially be used since the technology
is ‡exible enough to allow substitutions between energy forms. This case

1Given previous choice about the technology, ex-post the …rm is like in a situation of
exogenous rationing as some energy forms are not used whatever the level of energy prices.
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will be called hereafter “‡exible technology”; zero demand is the result of
an endogenous rationing. Both multiple-…red equipment and redundant
or backup equipment can contribute to the switching capabilities between
di¤erent kinds of energy. Then, if there is no switching costs, one or more
energy forms cannot be used when their prices are su¢ciently high relative
to their marginal contribution to output. Lee and Pitt (1987) and more
recently, Bousquet and al (1989) and (1998) develop such a model and apply
it on individual …rms’ data.

The objective of this paper is to compare the di¤erences in estimated
inter-fuel substitution possibilities as measured under the two alternative as-
sumptions about the energy technology leading to an energy demand system
with ex-post exogenous or endogenous rationing.

In section 2 we present the data base used in the econometric analysis.
The two possible assumptions about energy technology are discussed in light
of some empirical evidence. Section 3 deals with the two theoretical models
and shows how signi…cant is the di¤erence between the two modelling ap-
proaches. Section 4 and 5 are …nally devoted to the empirical part of the
analysis.

2 Heterogeneity in energy technology

Depending on energy market conditions and plant characteristics, energy
technologies di¤er by their input requirement set. The energy technology
is a varied collection of equipment, like boilers, ovens, heating apparatus,
power engines, steam generators, ... designed to consume a single fuel or
a combination of fuels. As a result, a given energy technology allows for a
certain fuel substitution capability.

As noted by Doms(1993) the literature on energy technology for manu-
facturing plants is scant. Without knowledge about plant’s energy technol-
ogy characteristics and the link with energy use, it is nevertheless possible
to consider two extreme assumption corresponding to either designated or
‡exible technology. It is then possible to explore one aspect of the manufac-
turing response to shocks in energy price and to highlight the importance
of technology assumptions made in energy demand modelling.

2.1 Data description

The data set for this study is a cross-section of establishments built from
the “Enquête Annuelle sur les Consommations d’Energies de l’Industrie”. A
general description of the energy survey and global statistics about energy
consumption in the french industry are provided in the annual publication
of the Ministère de l’Industrie (see SESSI (1997)). The data set includes
approximately 13,000 observations. The survey reports energy consumptions
for 11 kinds of energy (3 types of coal or coke, 3 types of gas, 2 types of oil,
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electricity, heating, and others energies like wood, wastes,...). The quantity
of energy consumed is measured in toe and in current Euro. Then, the
energy prices are obtained by calculating the ratio of values over quantities.
That means that prices in our data set are average prices over one year.2

It should be recognized that average prices could be endogenous due to
decreasing block pricing in relation with quantity consumed. But taking into
account price endogeneity needs more information on …rm’s characteristics
than we have. Moreover, prices does not depend on quantities consumed
only, many other factors play an important role. Among them, peak-load
pricing and transportation costs are certainly the most important. But, in
a short term perspective, they can be considered as exogenous since …rm’s
location is given, as well as wether or not the …rms work in twenty four hours
shifts. Finally, as pointed out by Pudney (1989), in large samples, average
prices could be considered as approximately exogenous.

In the current study we focus on the substitution between three di¤erent
energy inputs:

² gas, a composite good including natural gas and lique…ed petroleum
gas (LPG);

² oil products, a composite good including heavy oil and domestic fuel
oil;

² electricity.

To measure electricity consumption by …rms, we use electricity pur-
chases; therefore, the own-production of electricity by …rms is not taken
into account in our study. Note that only 5% of plants produce electricity
by their own.

We neglect …rms that use coal, heating and other energy, since they are
very few. The …nal sample used for estimation includes 12745 observations.

From table 1 we can deduce the percentage of …rms using a given form
of energy. While all …rms use electricity, only one half of the sample use oil
and less than two third use gas.

One group of …rms uses all the three types of energy. This group rep-
resents less than one third of plants in the industry. Note that, as a conse-
quence, zero expenditure observations frequently occur in our sample. The
major pattern is a mix between gas and electricity. The case where electric-
ity is the only fuel or energy source used represents a signi…cant proportion
of the sample (see table 1).

2Of course, prices are not observable when a zero demand occurs.
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Table 1: Frequency of fuel patterns
Fuel pattern Frequency

gas, oil and electricity 27%
gas and electricity 38%
oil and electricity 21%
electricity 14%

2.2 Fuel pattern and assumption about the energy technol-
ogy

Bjorner and Jensen (2002) observe that companies over time do not change
frequently from one fuel pattern to another, and use this …nding to justify the
Woodland approach, assuming that fuel patterns are given in the short term.
The point of view is di¤erent in the empirical study of Doms (1993), who
shows clearly that …rms could change rapidly their energy technologies and
that a signi…cant part of the technologies are ‡exible. Moreover, the analysis
based on the U. S. Manufacturing Energy Consumption Survey (henceforth
MECS, see DOE/IEA (1994)), provides empirical evidence about the ability
of …rms to switch between di¤erent kinds of energy in the short run without
changing the technology. In 1991, for instance, around 20% of manufacturing
plants possess some capability to switch. The same year, the total capability
to switch is estimated at 2.8 quadrillion Btu, that is 14% of the primary
energy consumption in the manufacturing sector (which amounts to 20.3
quadrillion Btu). If necessary, 20% of Distillate Fuel Oil consumption could
be replaced by other energy sources, this proportion is greater than 40%
for LPG, coal and residual fuels. Natural gas appears to be an intermediate
case with 35%.3

This empirical evidence shows that substitution possibilities among en-
ergy sources could be very high for a minor but signi…cant part of the indus-
try and energy consumption. Switching capability is an important dimen-
sion of heterogeneity in energy technologies. For energy demand modelling
the consequence is that Woodland (1993) and Lee and Pitt (1987) are at
the same time right and wrong, because a zero consumption for one kind
of energy can be the result of an ex-post exogenous rationing as well as
of an endogenous rationing, depending on the characteristics of the energy
technology.

3For the MECS, manufacturers are said to have a fuel-switching capability if they are
able to meet their requirements for heat, power and electricty generation by substitut-
ing one energy source for another within 30 days without modifying the equipment that
consumes the fuel and resuming the same level of production following the switch.
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3 Models for inter-fuel substitution

3.1 Main assumptions

Following Hudson and Jorgenson (1974) and Gri¢n (1977), we assume that
the di¤erent energy inputs make up a separable and homogeneous energy
aggregate. For this study, we are obliged to make this hypothesis since data
on other inputs than energy, and output of the …rms are unavailable. Stated
alternatively, we are making an analysis focusing on substitution possibilities
between the di¤erent kinds of energy and we do not take into account others
forces driving energy demand. The substitution elasticities inside the energy
aggregate are independent of inputs prices outside the aggregate and also
independent of the production level. These assumptions allow us to estimate
separately the unit cost function of energy. Formally our model assumes that
the cost function is weakly separable between energy and the others inputs.

The …nal step toward the speci…cation of the econometric model is the
choice of a functional form to represent the energy technology. Among the
most popular ‡exible forms (the translog, generalized Leontief and symmet-
ric generalized McFadden), the translog is clearly the most convenient in
particular because it leads to a tractable econometric model in a context
where the decision variables are censored4.

The three kinds of energy inputs included in our model are indexed
i = 1; 2; 3.5 pi and xi (i = 1; 2; 3) are respectively the price and the quantity
consumed of energy i. The total cost of energy is given by,

pEE =
X

i=1;2;3

pixi

where pE and E denotes respectively the price index and the quantity in-
dex of the energy aggregate. Finally "i (i = 1; 2; 3) are disturbance terms
assumed to be distributed N(0;§).

The translog form of the unit cost function of energy, pE = CE (p1; p2; p3),
is then given by,

ln(pE) = ®0 +
3X

i=1

®i ln pi +
1

2

3X

i=1

3X

j=1

¯ij ln pi ln pj +
3X

i=1

"i lnpi (1)

where,
4Our analysis could be made with other quadratic ‡exible forms, but at a higher cost

in term of estimation. The existing comparison between ‡exible functional forms concerns
monotonicity and concavity restrictions (see Terrel (1996)), not the properties with respect
to zero demands.

5Energy 1, 2 and 3 are respectively gas, oil and electricity.
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¯ij = ¯ji 8i; j = 1; 2; 3: (2)

The linearly homogenous property in input prices of the unit cost func-
tion implies the following additional parameters restrictions,

3X

i=1

®i = 1;
3X

j=1

¯ij = 0 8i = 1; 2; 3: (3)

From Shepard’s lemma the value share of inputs are given by,

wi = ®i +
3X

j=1

¯ij lnpj + "i i = 1; 2; 3: (4)

Note that under (2) and (3), we necessarily have
3P
i=1

"i = 0 and
3P
i=1

wi = 1.

3.2 The case of designated technologies

Following Woodland (1993), we assume here that observed fuel patterns
are simply the consequence of a previous choice among a set of designated
technologies. This previous choice restricts the set of energy forms that can
be used. Then the problem of the …rm is to determine the optimal allocation
of its energy needs over a given subset of the di¤erent kinds of energy.

3.2.1 The technology allows the …rm to use all energy forms

The parameters of the translog unit cost function (1) are estimated using
the Zellner iterative method applied to the system of cost share equations,

w1 = ®1 + ¯11 ln
p1
p3

+ ¯12 ln
p2
p3

+ "1;

w2 = ®2 + ¯12 ln
p1
p3

+ ¯22 ln
p2
p3

+ "2:

Table 2 below gives the empirical results.
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Table 2: Estimation when all energy forms are used
parameter estimate standard error

®1 0.24 0.0140
®2 0.11 0.0123
¯11 -0.23 0.0273
¯12 0.14 0.0191
¯22 -0.17 0.0247q

E
¡
"21

¢
0.17 0.0129q

E
¡
"22

¢
0.18 0.0111

E ("1"2) -0.20 0.0122

3.2.2 The technology excludes one form of energy

The translog unit cost function of energy includes only 2 types of energy.
Consequently, the system of value share equations is reduced to a single
equation,

wi = ®i + ¯ii ln
pi
p3

+ "i;

where i = 1 when gas is excluded and 2 when oil is excluded.
The empirical results are given in table 3 and 4.

Table 3: Estimation when oil is excluded
parameter estimate standard error
®1 0.26 0.0124
¯11 -0.20 0.0325q

E
¡
"21

¢
0.14 0.0070

Table 4: Estimation when gas is excluded
parameter estimate standard error

®2 0.25 0.0199
¯22 -0.14 0.0382q

E
¡
"22

¢
0.16 0.0099

3.2.3 The technology excludes two forms of energy

In this case there is no need for an econometric estimation; the only energy
used is electricity (energy 3) then, w1 = w2 = 0 and w3 = 1:
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3.3 The case of a ‡exible technology

With a ‡exible technology, each …rm is able to meet its requirements for
heat, power etc. by substituting one energy form for another without mod-
ifying the equipment that consumes the fuel and obtaining the same level
of production after the switch. The ‡exible technology assumption corre-
sponds to the case where the energy technology allows the …rm to change
one kind of energy by another kind of energy at no cost6 and for a constant
production level. In this case a zero demand for one or more energies is the
result of an endogenous rationing. Following Wales and Woodland (1983)
and later on Lee and Pitt (1986) and (1987), the approach to the zero cor-
ner solution problem is based on the use of virtual prices. Virtual prices are
those prices at which non-negativity constraints on input demands solve the
analogous unconstrained cost minimization problem; in other words, they
are prices at which the …rm would be on the margin of consuming non used
inputs. At that prices, the so called “notional” demand of input and the ob-
served demand are the same whatever the observed demand is. If the market
price is higher than the virtual price, the notional input demand is negative,
which results in zero observed demand.7 This approach characterizes a fuel
pattern by a set of inequality and equality conditions where for each zero
demand virtual prices are lower than market prices and respectively for each
positive demands virtual prices and market prices are the same.

A complete treatment of the theory of virtual prices can be found in
Neary and Roberts (1980) and in Pudney (1989). Their models provide
directly the econometric speci…cation which enters the generalized Tobit-
type model. The main di¤erence with a multiple censored regression is that
virtual prices are endogenous thresholds explaining zero demands. These
thresholds depend on the parameters of the model and are speci…c to each
fuel pattern.

To derive the likelihood function for this model, we need to distinguish
the di¤erent fuel patterns. A fuel switching technology could lead to 23¡1 =
7 possible fuel patterns. As all …rms in the sample use electricity we may
observe 23¡1 = 4 fuel patterns only. To characterize these 4 di¤erent cases,
we introduce the following notations:

² wi and ~wi are respectively the observed and the notional value shares
of input;

² PXXX
E is the unit cost of energy when all energy forms are used (XXX

means gas, oil and electricity are used);

6Excepted of course the di¤erence between the cost of energy purchase after and before
the switch.

7 In this paper, since we use a translog speci…cation of the unit cost function, we estimate
value share of inputs. Thus, the di¤erent fuel patterns will be characterized through the
concept of notional value share of input instead of notional demand of input.
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² POXX
E , PXOX

E and POOX
E are similarly de…ned (“O” means not used).

3.3.1 Fuel pattern XXX: No binding non negativity constraint

This case corresponds to an interior solution of the producer’s optimization
program. All types of energy are used, then notional demands coincide with
observed demands, from (4) we have,

ewi (p1; p2; p3) ´ wi = ®i +
3X

j=1

¯ij ln pj + "i 8i = 1; 2; 3: (5)

Similarly we have from (1),

ln pXXXE ´ CE (p1; p2; p3) =

®0 +
3P
i=1

®i ln pi +
1
2

3P
i=1

3P
j=1

¯ij ln pi ln pj +
3P
i=1

"i ln pi:
(6)

3.3.2 Fuel patterns OXX or XOX: One binding non negativity
constraint

There is now one corner solution only. The observed zero demand is the
result of an endogenous rationing. When zero demand occurs for input 1,8

the virtual price of input 1, denoted by ´1, is solution to,

ew1 (´1; p2; p3) = w1 = 0:

This fuel pattern occurs when the price of energy 1 is too high, the condition
is, p1 ¸ ´1. Then in this case, provided that ¯11 < 0, it can be shown that
we have ew1 (p1; p2; p3) < 0.

Substituting ´1 for p1 into the notional cost share for input 2 and 3
de…ned by (5) gives after straightforward computations the analytical ex-
pression of the cost shares of input 2 and 3,

ew2 (´1; p2; p3) = w2 = (®2 + ²2 ¡ ¯12
¯11

(®1 + ²1)) + (¯22 ¡ ¯212
¯11

) ln
p2
p3

;

ew3 (´1; p2; p3) = w3 = 1 ¡ w2:

Similar computations gives the expression of the unit cost function of energy
for this fuel pattern9,

8The case where zero demand occurs for input 2 can be derived by symetry.
9Virtual prices are used in the same way by Thomsen (2000) to determine the short

run restricted cost function in a quasi-…xed capital model.
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ln pOXXE = CE (´1; p2; p3) =

®0 ¡ 1
2
(®1+²1)2

¯11
+ (®2 + ²2 ¡ ¯12

¯11
(®1 + ²1)) ln p2

p3
+ ln p3 + 1

2(¯22 ¡ ¯212
¯11

)
³
ln p2

p3

´2
:

(7)

Note that the constant term of this conditional cost function comprises
the term ¡1

2
(®1+²1)

2

¯11
> 0 as ¯11 < 0. This re‡ects the cost of the binding

non-negativity constraint on input 1.

3.3.3 Fuel pattern OOX: Two binding non negativity constraints

We consider here the case with two corner solutions. The virtual prices
of input 1 and input 2 are obtained by solving the simultaneous equations
system,

~w1 (´1; ´2; p3) = w1 = 0

ew2 (´1; ´2; p3) = w2 = 0;

and this fuel pattern occurs when prices for energy 1 and 2 are such that
p1 ¸ ´1 and p2 ¸ ´2.

As input 3 is the only input used we necessarily have10

~w3 (´1; ´2; p3) = w3 = 1.

The energy unit cost function under OOX regime is given by the price of
energy 3 up to a constant term,

ln pOOXE = CE (´1; ´2; p3) =

®0 ¡ 1
2

³
(®1+²1)2¯22¡2(®1+²1)(®2+²2)¯12+(®2+²2)2¯11

¯11¯22¡¯212

´
+ lnp3:

(8)

To understand why there is a constant term in (8), we must remember
that when the only input used is input 3, the optimal demands for input 1
and 2 are negative. Then, zero demands for input 1 and 2 are not necessarily
optimal in our model. The constant in (8) re‡ects the cost resulting from
the fact that the non negativity constraints on input 1 and 2 are binding.

3.3.4 Estimation

The estimation is based on the method of maximum likelihood. Our model
is a discrete/continuous choice model but, contrary to most of the models
of this type, the discrete choice (the choice of the fuel pattern) and the

10Of course, substituting the expressions giving virtual prices for input 1 and 2 into the
notional cost share for input 3 gives ~w3 = 1.
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continuous choice (the level of demand) are here derived from the same cost
minimization problem. Consequently, the decision rules for the discrete and
continuous choices depend on the same set of parameters and errors terms.

Following Van Soest and Kooreman (1990), it is well known that this
econometric model is correctly speci…ed only if certain coherency conditions
are satis…ed. In generalized Tobit models, a model is de…ned to be coherent
if, for each possible values of the regressors and the errors terms, there exists
a unique value for the endogenous variables. Coherency is clearly a minimal
requirement for model speci…cation. For binding non-negativity constraint,
Van Soest and Kooreman show that coherency conditions are necessarily sat-
is…ed when the cost function is globally concave. In our case, the cost shares
and fuel pattern are unambiguously de…ned and the likelihood function is
well de…ned over the disjoint regimes of demand.

OXO

XOO ~w1

~w2

¯23 ~w1 ¡ ¯13 ~w2 = ¡¯13

¯23 ~w1 ¡ ¯13 ~w2 = ¯23

XXO

XXX

10

XOXOOX

~w1 ¡ ¯12
¯22

~w2 = 1~w1 ¡ ¯12
¯22

~w2 = 0

OXX

~w2 ¡ ¯12
¯11

~w1 = 0

~w2 ¡ ¯12
¯11

~w1 = 1

1

6

-

Figure 1 Coherency conditions.

Figure 1 is like a map of the di¤erent fuel pattern, given possible values
of notional cost shares. Another look at coherency conditions could be
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provided by the comparison of conditional unit cost functions across the
di¤erent fuel patterns. It is easy to show that coherency conditions ensure
that …rms are able to minimize cost over the di¤erent fuel patterns. As a
consequence, the …rm can choose a (unique) fuel pattern corresponding to
the lower cost among the set of alternatives. This means that we need a
globally concave cost function to be sure that the discrete choice model gives
us the optimal cost (see Blundell and Smith 1994).

We do not illustrate here the way to build the likelihood function of
this model, a complete description is given by Bousquet and Ivaldi (1998).
As in generalized Tobit models, the likelihood function involves for each
fuel pattern the product of a probablility and a conditional density function
corresponding to the discrete and continous choice among the three energies
we consider. Assuming a bivariate normal distribution for the additive error
terms in the relative costs shares (²1; ²2), the likelihood function could be
written in a closed form.

As the prices associated to zero demands are not observable, we need an
additional hypothesis. We consider that non-observed prices are equal to
the maximum price from the observed distribution of energy prices.11

Table 5 : Estimation results for a ‡exible technology
parameter estimate standard error
®1 0.22 0.0028
®2 0.01 0.0033
¯11 -0.47 0.0073
¯12 0.26 0.0077
¯22 -0.51 0.0076q

E
¡
"21

¢
0.21 0.0036q

E
¡
"22

¢
0.23 0.0046

E ("1"2) -0.50 0.0228

As in the previous estimations, all the parameters are here highly signif-
icant. Another way to check the quality of the estimates is to compare the
observed fuel patterns with the one predicted by the model. Table 6 below
shows that the prediction is globally acceptable; 98% of …rms using a mix
of gas and electricity and 94% of …rms using a mix of oil and electricity are
correctly predicted.

The prediction is less good for …rms using all the three energy inputs,
since only 39% of these …rms are predicted in this fuel pattern. For these

11A similar solution is taken in labor supply models where the wage for an unemployed
is taken as the minimum value found in the observed wage distribution. Here, we have
replicated the estimation when, instead of the maximum price, we use the upper centile
of the price distribution; we have found very little di¤erences in the estimation results.
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…rms, the model often predicts that the optimal fuel pattern is a mix be-
tween gas and electricity. When electricity is the unique energy source the
prediction is only correct for 56%; 44% of …rms using electricity alone are
predicted to use also oil.

Table 6: Predicted fuel patterns vs observed one
predicted patterns

observed patterns Gas+Oil+Elec. Gas+Elec. Oil+Elec. Elec. Total
Gas+Oil+Elec. 1342 1675 429 25 3471
Gas+Elec. 34 4769 3 62 4868
Oil+Elec. 0 0 2526 168 2694
Elec. 9 0 747 956 1712
Total 1385 6444 3705 1211 12745

4 Price Elasticities

Price elasticities are de…ned by,

eij =
@ lnxi
@ ln pj

¯̄
¯̄
dE=0;dpk=0 8k 6=j

(9)

Using Shephard’s lemma, it can be easily shown that (9) is equivalent
to,

eij =
pjCij
Ci

8i; j = 1; 2; 3: (10)

where Ci and Cij are respectively given by,

Ci ´ @ ln pE
@ lnpi

; i = 1; ¢ ¢ ¢ ; 3

Cij ´ @2 ln pE
@ ln pi@ ln pj

; i; j = 1; ¢ ¢ ¢ ; 3:

Using (10), straightforward computations show that in the translog case
we have,

eij =
¯ij + ŵiŵj

wi
; i 6= j; (11)

eii =
¯ii + ŵ2i ¡ ŵi

ŵi
; (12)
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where ŵi is the expected value of the relative share of energy i.
We can easily use (11) and (12) to determine price elasticities in the case

of a designated technology.
In the case of a ‡exible technology a marginal change of an input price

can move consumption smoothly within a single fuel pattern, or yields to a
drastic change in consumption when the …rm changes its fuel pattern. This
discontinuity of the demand behavior complicates signi…cantly the analytical
expression of the price elasticities. Nevertheless, we can get an approxima-
tion of these elasticities. Our method is the following:

² the observed price of a given energy form is increased at the margin;

² this implies new values of the relative prices from which we can deter-
mine the optimal fuel pattern chosen by each …rm12

² the partial derivatives appearing in (10) are evaluated by using the
GRADP and HESSP routines of the GAUSS software applied to the
unit cost function given by (6), (7) or (8) depending on the fuel pattern
the …rm has chosen.

Tables 7 and 8 give the estimated price elasticities averaged over …rms
having the same fuel pattern under the hypothesis of designated and ‡exible
technologies respectively. Tables 9 and 10 give these elasticities averaged
over the whole sample.13

Two main conclusions arise from tables 7 and 8. Firstly, it appears
that inter-fuel substitution possibilities are higher for …rms using the three
energy forms compared to …rms using two kinds of energy only, whatever
the technology is supposed to be: designated or ‡exible. In table 7, oil-
price elasticity is ¡6:83 when …rms use all kinds of energy while it is ¡1:36
when …rms use oil and electricity only. The same elasticities in table 9 are
respectively ¡11:50 and ¡5:30.

Secondly, the two alternative models we use give very di¤erent results
about the substitution possibilities between energy forms. For instance, own-
price-elasticities for gas, oil and electricity are respectively ¡1:81, ¡6:83 and
¡0:68 when …rms have a designated technology while they are respectively
¡5:23, ¡11:50 and ¡1:07 when …rms have a ‡exible technology (this when
all kinds of energy are used).

A last comment applies to both tables, oil is clearly much more sensitive
to its own price than gas and electricity.

12As few …rms are located at the frontier between two fuel patterns, in practice a
marginal increase in the energy price is not su¢cient to induce a change in the fuel pattern.
But, as we will see in the next section, this e¤ect could be highligted for signi…cant changes
in energy prices.

13Of course, when the fuel pattern is given, the price elasticity of an energy form not
used by the …rm is zero.
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Comparing tables 9 and 10 shows that in the model where the technol-
ogy is considered as ‡exible, the elasticities are, of course, bigger in absolute
value, than in the model where the technology is considered as designated.
The empirical 95 % con…dence intervals of the elasticities appearing in tables
9 and 10 call for several remarks. First they are smaller in the designated
case than in the ‡exible one. This of course is the result of the less con-
strained model we use in the ‡exible case. Something strange, a priori, is the
very high absolute value of the elasticities in some cases. This is a feature of
the Translog model that the elasticities explode when factor share approches
zero (see equations (12) (11)).

We can check on our sample that, for a given energy form, the larger
is the elasticity (in absolute value) the smaller is the share of this kind of
energy in the total energy consumption of the …rm. It means that the elas-
ticities do not allow to conclude from the point of view of how the industrial
sector reacts, as a whole, to a variation of the relative energy prices. But
aggregated …rm’s behaviour in response to relative energy price variations
can be simulated as proposed in section 5.

These simulations are also useful for another reason. We know that
elasticities, by de…nition, give the input demand response to a marginal
price increase. In the ‡exible model, when a given price is increased only at
the margin, the …rms changing their fuel pattern are very few. Then, the
estimation of price elasticities does not allow us to measure the consequences
on energy demand of a drastic change in the relative prices of energy forms.
Such a change is however possible, for instance to implement an energy
policy aiming at reducing CO2 emissions.

Table 7: Price elasticities in the case of designated technologies
within a given fuel pattern

fuel pattern
Gas+Oil+Electricity Gas+Electricity Oil+Electricity
gas oil elec. gas oil elec. gas oil elec.

Gas ¡1:81 0:59 1:22 ¡1:45 - 1:45 - - -
Oil 4:01 ¡6:83 2:82 - - - - ¡1:36 1:36
Elec. 0:47 0:21 ¡0:68 0:62 - ¡0:62 - 0:45 ¡0:45

Table 8: Price elasticities in the case of ‡exible technologies
within a given fuel pattern

fuel pattern
Gas + Oil + Electricity Gas + Electricity Oil + Electricity
gas oil elec. gas oil elec. gas oil elec.

Gas ¡5:23 2:64 2:58 ¡2:10 - 2:10 - - -
Oil 5:81 ¡11:50 5:69 - - - - ¡5:30 5:30

Elec. 0:55 0:51 ¡1:07 0:80 - ¡0:80 - 0:64 ¡0:64
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Table 9: Price elasticities in the case
of designated technologies

Gas Oil Elec.

Gas
¡1:10

]¡3:16; 0[
0:18

]0; 1:10[
0:92

]0; 2:30[

Oil
0:37

]0; 2:64[
¡1:01

]¡4:59; 0[
0:63

]0; 1:98[

Electricity
0:36

]0; 0:76[
0:15

]0; 0:53[
¡0:52

]¡0:82; 0[

Table 10: Price elasticities in the case
of ‡exible technologies

Gas Oil Elec.

Gas
¡1:62

]¡6:11; 0[
0:27

]0; 2:22[
1:34

]0; 4:19[

Oil
0:61

]0; 6:53[
¡2:79

]¡20:93; 0[
2:18

]0; 15:18[

Electricity
0:46

]0; 1:08[
0:24

]0; 0:97[
¡0:71

]¡1:31; 0[

5 The consequences of a carbon tax

Following Bousquet and al. (2004), we use a tax of 30 Euro per ton of
carbon. Using the carbon content of the di¤erent kinds of energy, we can
translate the carbon tax in price increase for each form of energy as shown
in table 11.

Table 11: Carbon content of the di¤erent energy forms14

tC/toe Price increase
Gas 0:65 +19%
Oil 0:89 +26%
Electricity 0:00 0%

Table 12 gives the changes in energy consumption and in CO2 emissions
in the industrial sector resulting from the carbon tax.

14The 0 carbon content of electricity is explained by both the high level of nuclear share
in the electricity production in France and because industrial demand is mainly base load
demand.
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Table 12: CO2 Emissions
Designated technology Flexible technology

Gas ¡17% ¡25%
Oil ¡24% ¡45%
Electricity +8% +11%
CO2 emissions ¡20% ¡33%

This table shows that CO2 emissions reductions can be misestimated
by one third if the hypothesis on the technology, ‡exible or designated, is
wrong. For oil demand, the most pollutant energy, the misestimation is close
to 50%.

When the technology is considered as ‡exible of course, the way the …rms
are distributed among the di¤erent energy patterns plays an important role.
As shown in table 13, there is a very important change in the fuel pattern
frequencies when a carbon tax is imposed. The number of …rms changing
their fuel pattern is particularly high for those using all energy form before
the energy prices changes. There are 2 times less …rms using all forms of
energy after the tax than before. Clearly, …rms substitutes oil to gas and
electricity.

Table 13: Number of …rms following the di¤erent energy
patterns

energy pattern estimated before tax estimated after tax
Gas+ Oil + Elec. 1385 783
Oil + Elec. 3705 3021
Gas + Elec. 6444 6907
Elec. 1211 2034

From these results, the model choice appears as having an important
consequence on the measurement of substitution possibilities between en-
ergy forms. Certainly more important than it is generally considered in the
literature. As we know the level of ‡exibility of the technology is certainly
between the two extremes assumptions we have studied in this paper. This
calls for future research aiming at …nding a new way for building model of
producer behavior, and at including data on technology characteristics in
energy demand modelling.

6 Conclusion

The present study is to our knowledge the …rst attempt to evaluate the
consequences on individual data of the usual assumptions made on energy
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technology. Using a unique data set, the French manufacturing energy con-
sumption survey, we estimate energy technology under two extreme assump-
tions depending on the assumed ‡exibility of the technology. In the litera-
ture about energy demand modeling it is well known that …rms do not use
in general all kinds of energy. Zero demands could be interpreted as zero
corner solution derived from a ‡exible technology (Lee and Pitt 1987) or
could be simply determined by the technology (Woodland 1993).

Under these two possible assumptions about the energy technology, this
paper shows by how much the estimated inter-fuel substitution di¤ers. The
di¤erences between the inter-fuel substitution elasticities in the two models
induce large di¤erences in the predicted energy mix as a response to a change
in the relative price between electricity, natural gas and oil products. This
research outlines the importance of a proper estimation of inter-fuel elastic-
ities and the consequences for greenhouse gas abatement policies.

In the real world energy technology is probably in between the two ex-
treme assumption made in this paper. It is di¢cult to keep the same frame-
work to test a mix of these two assumptions. The reason for that is quite
simple and could be shown through an example. Consider a particular …rm
with positive demands on electricity and gas. Since oil is not consumed we
could consider that oil is not used because its price is too high if the technol-
ogy is ‡exible, or we could consider alternatively that the technology do not
allows the use of oil. Clearly, we have not considered all the possible cases
of the underlying technology. A zero demand for oil, could occur when the
…rm have a dual …red equipment using oil or gas and a speci…c equipment
using electricity only. This example corresponds to an intermediate case of
a ‡exible technology between oil and gas and a designated technology for
electricity.

We know that with three inputs we may have seven fuel patterns. If we
consider that the technology are designated, perfectly ‡exible with respect
to all inputs, or partially ‡exible (with respect to two inputs in our case),
then it is easy to see that all the observed fuel patterns could come from 14
di¤erent technologies.

A problem with the Lee and Pitt’s approach is that it is di¢cult to extend
these kinds of models when the number of inputs is larger than three. This
dimension problem could be solved through simulation techniques, at the
frontier of recent development in econometrics methods. But it seems to us
that the main problem is that price at the individual level is not observable
when the demand is zero. One way to alleviate this problem consists to
extend the model and to include price estimates as function of individual
characteristics.

The Woodland’s approach is more simple but correct only for the estima-
tion of short term price elasticities for …rms owning energy technology with
limited ‡exibility. Moreover, results depend on the observed fuel patterns.
Since estimations are realized over each empirically relevant fuel patterns,
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results may be particularly sensitive to the level of aggregation between dif-
ferent kinds of energy. Finally, if fuel patterns are …xed given the energy
technology, the question about the optimal choice between some energy
technologies remains. In fact, separated estimations by fuel patterns do not
ensure that energy cost is optimal. Clearly in the Woodland approach’s,
the observed fuel pattern does not necessarily correspond to the optimal
designated technology. A qualitative choice model must also be considered
in order to understand how …rms choose energy technologies in a …rst step,
and energy use in a second one.

Theoretical development in energy demand modelling will try to solve
this kind of problems in the future. Moreover, a particular attention must
be paid on technology characteristics in energy consumption surveys. In the
same time, we need to pursue our analysis by industry sector subdivision
and …rm size, to see more precisely where the di¤erences between existing
alternative approaches to measure inter-fuel substitutions matter.

20



7 References

Blundell, R. and, R.J. Smith (1994). Coherency and Estimation in Simul-
taneous models with Censored or Qualitative Dependent Variables. Journal
of Econometrics, 64, 355-373.

Bjorner, T.B. and, H.H. Jensen (2002). Interfuel Substitution within
Industrial Companies: an analysis based on panel data at company level.
Energy Journal, 23(2), 27-50.

Bousquet, A., M. Ivaldi and, N. Ladoux (1989). La demande d’énergie
des industries laitières: une analyse micro-économique. Economie et Prévi-
sion, 91(5), 75-90.

Bousquet, A. and, M. Ivaldi (1998). An Individual Choice of Energy
Mix. Resource and Energy Economics, 20, 263-286.

Bousquet A., R. Chakir and, N. Ladoux (2004). Modellling Corner So-
lutions with Panel Data: Application to the Industrial Energy Demand in
France. forthcomming Empirical Economics.

Browning, M. J. (1983). Necessary and Su¢cient Conditions for Condi-
tional Cost Functions. Econometrica, 51(3), 851-856.

DOE / IEA (1994). Manufacturing Consumption of Energy 1991. En-
ergy Information Administration, U.S. Department of Energy.

Doms, M. E. (1993). Interfuel Substitution and Energy Technology Het-
erogeneity in U.S. Manufacturing, Working paper 93(5), Center for Eco-
nomic Studies.

Dubin, J.A. and, D.L. McFadden (1984). An Econometric analysis of
residential Electric Appliance Holdings and Consumption. Econometrica
52(2), 345-362.

Fuss, M.A. (1977). The Demand for Energy in Canadian Manufactur-
ing: an example of the estimation of production function with many inputs.
Journal of Econometrics 5, 89-116

Gri¢n, J.M. (1977). Inter-fuel Substitution Possibilities: a translog ap-
plication to intercountry data. International Economic Review 18(3), 755-
770.

Hall, V.B. (1983). Industrial Sector Interfuel Substitution Following the
First Major Oil Shock. Economics Letters 12, 377-382.

21



Halvorsen, R. (1977). Energy Substitution in U.S. Manufacturing. Re-
view of Economics and Statistics 59(4), 381-388.

Hanemann, W.M. (1984). Discrete/Continuous Models of Consumer
Demand. Econometrica 52(3), 541-561.

Hudson, E.H. and, D. W. Jorgenson (1974). U.S. Energy Policy and
Economic Growth 1975-2000. Bell Journal 5, 461-514.

Johnson, N.L. and, S. Kotz (1973). Distributions in Statistics: Contin-
uous Multivariate Distributions. Wiley.

Lee, L.F. and, M.M. Pitt (1986). Microeconometric Demand Systems
with Binding Nonnegativity Constraints: The dual approach. Econometrica
54(5), 1237-1242.

Lee, L.F. and, M.M. Pitt (1987). Microeconometric Models of Rationing,
Imperfect Markets, and Non-Negativity Constraints. Journal of Economet-
rics, 36, 89-110.

Madlener, R. (1996). Econometric Analysis of Residential Energy De-
mand: A Survey. The Journal of Economic Literature, 2(2), 3-32.

Magnus, J.R. and A.D. Woodland, 1987, ”Inter-Fuel Substitution in
Dutch Manufacturing”, Applied Economics, Vol.19, 1639-1644.

Neary, J. P. and, K.W.S. Roberts (1980). The theory of household be-
havior under rationing. European Economic Review 13, 25-42.

Pindyck, R.S. (1979). Inter-fuel Substitution and the Industrial Demand
for Energy: an international comparison. Review of Economics and Statis-
tics 61(2), 169-179.

Pudney, S. (1989). Modelling Individual Choice: The Econometrics of
Corners, Kinks and Holes. Oxford, Blackwell.

SESSI (1997). Les consommations d’énergie de l’industrie française.
Service des Statistiques Industrielles, Ministère de l’Economie des Finances
et de l’Industrie.

Squires, D. (1994). Firm Behavior Under Input Rationing. Journal of
Econometrics, 61, 235-257.

Terrell, D. (1996). Incorporating Monotonicity and Concavity Conditions
in Flexible Functional Forms. Journal of Applied Econometrics. 11, 179-
194.

22



Thomsen, T. (2000). Short cuts to dynamic factor demand modelling.
Journal of Econometrics 97, 1-23.

Van Soest, A. V., and P. Kooreman, 1990, ”Coherency of Indirect Translog
Demand System with Binding Non-Negativity Constraints”, Journal of Econo-
metrics, 44, 391-400.

Wales, T.J. and, A.D. Woodland (1983). Estimation of consumer de-
mand systems with binding non-negativity constraints. Journal of Econo-
metrics 21, 263-285.

Woodland, A.D. (1993). A Micro-Econometric Analysis of the Industrial
Demand for Energy in NSW. The Energy Journal, 14(2), 57-89.

23


