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Introduction

The New Keynesian model has gained wide acceptance. As McCallum (1997) has remarked, it

is “[. . . ] the closest thing there is to a standard specification.” Nevertheless, the model has a

number of important implications that seem to be at variance with the empirical evidence.

Mankiw and Reis (2002) argue that it cannot produce plausible inflation and output dynam-

ics following a monetary shock, in particular, the delayed, hump shaped response of inflation

documented by Christiano, Eichenbaum and Evans (2001). That it is inconsistent with the

accelerator hypothesis (the positive relation between economic activity and the change in the

inflation rate). And that it cannot generate serial correlation in inflation forecast errors (Mankiw

et al (2003)). Gali (2003) shows that the model cannot generate a liquidity effect following a

monetary shock while Fuhrer and Moore (1995) claim that it cannot explain inflation persistence.

Several modification have been suggested in the literature with the aim of rectifying these

important weaknesses.

One involves the full or partial abandonment of rational expectations. For instance, Gali and

Gertler (1999) and Christiano, Eichenbaum and Evans (2001) assume non–optimal price in-

dexation schemes for a subset of the population. In particular, they assume that a fraction of

the population adjusts prices in a backward looking way1. Roberts (2001) and Ireland (2000)

recommend the use of adaptive expectations. Such specifications generate a Phillips curve that

contains lagged inflation. This gives rise to a delayed inflation response and inflation persistence.

Another approach, due to Mankiw and Reis (2002) maintains rational expectations but assumes

that information is sticky. Information disseminates slowly throughout the population with the

result that different agents’ expectations are based on different information sets. The resulting

Phillips curve contains past expectations of current economic conditions, which again gives rise

to inertial inflation behavior.

A third one, introduces modifications on the real side of the model in order to generate sluggish-

ness in real marginal costs. Christiano, Eichenbaum and Evans (2001) include various types of

adjustment costs, namely, habit formation, adjustment costs on investment, and variable capital

utilization. Even with these modifications, though, the new Keynesian model needs a backward

looking price indexation scheme to produce satisfactory empirical performance.

Finally, a forth approach, maintains rational expectations and the standard structure but em-

phasizes imperfect information about the shocks and learning (Dellas, 2004). This approach has

already been fruitfully applied to the study of exceptional inflation episodes: The great inflation

1Minford and Peel (2004) argue that allowing such agents to adjust prices based on expected rather than on
past inflation eliminates the new Phillips curve.
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of the 70s (Bullard and Eusepi, 2003, Collard and Dellas, 2003) and the disinflation of the 80s

(Erceg and Levin, 2003). These papers demonstrate how imperfect information can be a source

of output and inflation persistence, because the serial correlation in inflation forecast errors

adds a persistent, disturbance term to the Phillips. They do not address, however, the issue

of the dynamic effects of monetary shocks on inflation2. As Mankiw and Reis (2002) remark,

the key empirical failure of the new Keynesian model is not inflation persistence per se (which

can be generated by persistence in money growth) but rather the delayed response of inflation

to monetary policy shocks. More importantly, these papers focus exclusively on the ability of

the model to address a particular question and, consequently, stay short of assessing its overall

performance3. This is an important omission as often success at one front comes at the expense

of success along some other dimension. It thus remains an open question whether imperfect

information and learning can help the new Keynesian model not only better match some of the

important stylized facts described above but also achieve more satisfactory overall performance

(according, for instance, to standard validation criteria).

This paper addresses this issue. We add imperfect information and gradual learning to the

prototype new Keynesian model. In particular, we assume that the agents observe some variables

with error and can only gradually learn about the true values over time (based on the Kalman

filter). We then evaluate the ability of the model to reproduce the stylized facts –mentioned

above– that have proved too much of a challenge under perfect information. And also, its ability

to match various moments.

We find that a specification with a modest amount of imperfect information is considerably

superior to the standard, full information version. The model can produce a weak instantaneous

response to current shocks. A delayed, hump shaped response of inflation and output following

a monetary shock. Serially correlated inflation forecast errors. And a liquidity effect following a

monetary shock. Moreover, the model’s ability to match the data in terms of various moments

seems superior to that of the perfect information version.

The remaining of the paper is organized as follows. Section 1 presents the model. Section 2

discusses the calibration. Section 3 presents the main results. A last section concludes.

1 The model

The set up is the standard NNS model. The economy is populated by a large number of identical

infinitely–lived households and consists of two sectors: one producing intermediate goods and

2Dellas, 2004, is an exception. Note, though, that Woodford, 2002, examines the dynamic effects of nominal
shocks under gradual learning but in a model without price or wage staggering, a key feature of the new Keynesian
model.

3The same lack of overall evaluation is also found in the sticky information papers mentioned above.
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the other a final good. The intermediate good is produced with capital and labor and the final

good with intermediate goods. The final good is homogeneous and can be used for consumption

(private and public) and investment purposes.

1.1 The Household

Household preferences are characterized by the lifetime utility function:4

∞∑

τ=0

Etβ
τU

(
Ct+τ ,

Mt+τ

Pt+τ
, ℓt+τ

)
(1)

where 0 < β < 1 is a constant discount factor, C denotes the domestic consumption bundle, M/P

is real balances and ℓ is the quantity of leisure enjoyed by the representative household. The

utility function,U
(
C, M

P
, ℓ
)

: R+ × R+ × [0, 1] −→ R is increasing and concave in its arguments.

The household is subject to the following time constraint

ℓt + ht = 1 (2)

where h denotes hours worked. The total time endowment is normalized to unity.

In each and every period, the representative household faces a budget constraint of the form

Bt+1 + Mt + Pt(Ct + It + Tt) ≤ Rt−1Bt + Mt−1 + Nt + Πt + PtWtht + PtztKt (3)

where Wt is the real wage; Pt is the nominal price of the domestic final good;.Ct is consumption

and I is investment expenditure; Kt is the amount of physical capital owned by the household

and leased to the firms at the real rental rate zt. Mt−1) is the amount of money that the

household brings into period t, and Mt is the end of period t money holdings. Nt is a nominal

lump–sum transfer received from the monetary authority; Tt is the lump–sum taxes paid to the

government and used to finance government consumption.

Capital accumulates according to the law of motion

Kt+1 = It −
ϕ

2

(
It

Kt
− δ

)2

Kt + (1 − δ)Kt (4)

where δ ∈ [0, 1] denotes the rate of depreciation. The second term captures the existence of

capital adjustment costs. ϕ > 0 is the capital adjustment costs parameter.

The household determines her consumption/savings, money holdings and leisure plans by max-

imizing her utility (1) subject to the time constraint (2), the budget constraint (3) and taking

the evolution of physical capital (4) into account.

4Et(.) denotes mathematical conditional expectations. Expectations are conditional on information available
at the beginning of period t.
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1.2 Final sector

The final good is produced by combining intermediate goods. This process is described by the

following CES function

Yt =

(∫ 1

0
Xt(i)

θdi

) 1
θ

(5)

where θ ∈ (−∞, 1). θ determines the elasticity of substitution between the various inputs. The

producers in this sector are assumed to behave competitively and to determine their demand

for each good, Xt(i), i ∈ (0, 1) by maximizing the static profit equation

max
{Xt(i)}i∈(0,1)

PtYt −

∫ 1

0
Pt(i)Xt(i)di (6)

subject to (5), where Pt(i) denotes the price of intermediate good i. This yields demand functions

of the form:

Xt(i) =

(
Pt(i)

Pt

) 1
θ−1

Yt for i ∈ (0, 1) (7)

and the following general price index

Pt =

(∫ 1

0
Pt(i)

θ
θ−1 di

) θ−1
θ

(8)

The final good may be used for consumption — private or public — and investment purposes.

1.3 Intermediate goods producers

Each firm i, i ∈ (0, 1), produces an intermediate good by means of capital and labor according to

a constant returns–to–scale technology, represented by the Cobb–Douglas production function

Xt(i) = AtKt(i)
αht(i)

1−α with α ∈ (0, 1) (9)

where Kt(i) and ht(i) respectively denote the physical capital and the labor input used by firm

i in the production process. At is an exogenous stationary stochastic technology shock, whose

properties will be defined later. Assuming that each firm i operates under perfect competition

in the input markets, the firm determines its production plan so as to minimize its total cost

min
{Kt(i),ht(i)}

PtWtht(i) + PtztKt(i)

subject to (9). This leads to the following expression for total costs:

PtStXt(i)

where the real marginal cost, S, is given by
W 1−α

t zα
t

χAt
with χ = αα(1 − α)1−α
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Intermediate goods producers are monopolistically competitive, and therefore set prices for the

good they produce. We follow Calvo, 1983, in assuming that firms set their prices for a stochastic

number of periods. In each and every period, a firm either gets the chance to adjust its price

(an event occurring with probability γ) or it does not. In order to maintain long term money

neutrality (in the absence of monetary frictions) we also assume that the price set by the firm

grows at the steady state rate of inflation. Hence, if a firm i does not reset its price, the latter

is given by Pt(i) = πPt−1(i). A firm i sets its price, p̃t(i), in period t in order to maximize its

discounted profit flow:

max
p̃t(i)

Π̃t(i) + Et

∞∑

τ=1

Φt+τ (1 − γ)τ−1
(
γΠ̃t+τ (i) + (1 − γ)Πt+τ (i)

)

subject to the total demand it faces

Xt(i) =

(
Pt(i)

Pt

) 1
θ−1

Yt

and where Π̃t+τ (i) = (p̃t+τ (i)−Pt+τSt+τ )X(i, st+τ ) is the profit attained when the price is reset,

while Πt+τ (i) = (πτ p̃t(i)−Pt+τSt+τ )Xt+τ (i) is the profit attained when the price is maintained.

Φt+τ is an appropriate discount factor related to the way the household values future as opposed

to current consumption. This leads to the price setting equation

p̃t(i) =
1

θ

Et

∞∑

τ=0

[
(1 − γ)π

1
θ−1

]τ
Φt+τP

2−θ
1−θ

t+τ St+τYt+τ

Et

∞∑

τ=0

[
(1 − γ)π

θ
θ−1

]τ
Φt+τP

1
θ−1

t+τ Yt+τ

(10)

Since the price setting scheme is independent of any firm specific characteristic, all firms that

reset their prices will choose the same price.

In each period, a fraction γ of contracts ends, so there are γ(1 − γ) contracts surviving from

period t−1, and therefore γ(1−γ)j from period t−j. Hence, from (8), the aggregate intermediate

price index is given by

Pt =

(
∞∑

i=0

γ(1 − γ)i
(

p̃t−i

πi

) θ
θ−1

) θ−1
θ

(11)

1.4 The monetary authorities

We use two alternative specifications of monetary policy: (i) an exogenous money supply rule

and (ii) a standard Henderson–McKibbin–Taylor (HMT) rule. Under the former, the money

supply is assumed to evolve according to

Mt = exp(µt)Mt−1 (12)
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where the gross growth rate of the money supply, µt, is assumed to follow an exogenous stochastic

process whose properties will be defined later.

Under the latter, the growth of the money supply is selected in order to satisfy

R̂t = ρrR̂t−1 + (1 − ρr)[kπEt(π̂t+1 − π) + ky(ŷt − y⋆
t )] (13)

where π̂t and ŷt are actual output and expected gross inflation in logs respectively and π and

y⋆
t are the inflation and output targets respectively. The output target is set equal to potential

output and the inflation target to the steady state rate of inflation. Potential output is not

observable and the monetary authorities must learn about it.

1.5 The government

The government finances government expenditure on the domestic final good using lump sum

taxes. The stationary component of government expenditures is assumed to follow an exogenous

stochastic process, whose properties will be defined later.

1.6 The equilibrium

We now turn to the description of the equilibrium of the economy.

Definition 1 An equilibrium of this economy is a sequence of prices {Pt}
∞
t=0 = {Wt, zt, Pt, Rt,

Pt(i), i ∈ (0, 1)}∞t=0 and a sequence of quantities {Qt}
∞
t=0 = {{QH

t }∞t=0, {Q
F
t }

∞
t=0} with

{QH
t }∞t=0 = {Ct, It, Bt,Kt+1, ht,Mt}

{QH
t }∞t=0 = {Yt,Xt(i),Kt(i), ht(i); i ∈ (0, 1)}∞t=0

such that:

(i) given a sequence of prices {Pt}
∞
t=0 and a sequence of shocks, {QH

t }∞t=0 is a solution to the

representative household’s problem;

(ii) given a sequence of prices {Pt}
∞
t=0 and a sequence of shocks, {QF

t }
∞
t=0 is a solution to the

representative firms’ problem;

(iii) given a sequence of quantities {Qt}
∞
t=0 and a sequence of shocks, {Pt}

∞
t=0 clears the markets

Yt = Ct + It + Gt (14)

ht =

∫ 1

0
ht(i)di (15)

Kt =

∫ 1

0
Kt(i)di (16)

Gt = Tt (17)
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and the money market.

(iv) Prices satisfy (10) and (11).

2 Parametrization

The model is parameterized on US quarterly data for the post WWII period. The data are

taken from the Federal Reserve Database.5 The parameters are reported in table 1.

β, the discount factor is set such that households discount the future at a 4% annual rate,

implying β equals 0.988. The instantaneous utility function takes the form

U

(
Ct,

Mt

Pt
, ℓt

)
=

1

1 − σ



((

Cη
t + ζ

Mt

Pt

η
) ν

η

ℓ1−ν
t

)1−σ

− 1




where ζ capture the preference for money holdings of the household. σ, the coefficient ruling

risk aversion, is set equal to 1.5. ν is set such that the model generates a total fraction of time

devoted to market activities of 31%. η is borrowed from Chari et al. (2000), who estimated it

on postwar US data (-1.56). The value of ζ, 0.0649, is selected such that the model reproduces

the average ratio of M1 money to nominal consumption expenditures.

γ, the probability of price resetting is set in the benchmark case at 0.25, implying that the

average length of price contracts is about 4 quarters. The nominal growth of the economy, µ,

is set such that the average quarterly rate of inflation over the period is π = 1.2% per quarter.

The quarterly depreciation rate, δ, is set equal to 0.025. θ in the benchmark case is set such

that the level of markup in the steady state is 15%. α, the elasticity of the production function

to physical capital, is set such that the model reproduces the US labor share — defined as the

ratio of labor compensation to GDP — during the sample period (0.575).

The stochastic technology shock, at = log(At/A), is assumed to follow a stationary AR(1)

process of the form

at = ρaat−1 + εa,t

with |ρa| < 1 and εa,t  N (0, σ2
a). We set ρa = 0.95 and σa = 0.008.

The government spending shock6 is assumed to follow an AR(1) process

log(gt) = ρg log(gt−1) + (1 − ρg) log(g) + εg,t

5URL: http://research.stlouisfed.org/fred/
6The –logarithm of the– government expenditure series is first detrended using a linear trend.
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Table 1: Calibration: Benchmark case

Preferences

Discount factor β 0.988
Relative risk aversion σ 1.500
Parameter of CES in utility function η -1.560
Weight of money in the utility function ζ 0.065
CES weight in utility function ν 0.344

Technology

Capital elasticity of intermediate output α 0.281
Capital adjustment costs parameter ϕ 2.000
Depreciation rate δ 0.025
Parameter of markup θ 0.850
Probability of price resetting γ 0.250

Shocks and policy parameters

Persistence of technology shock ρa 0.950
Standard deviation of technology shock σa 0.008
Persistence of government spending shock ρg 0.970
Volatility of government spending shock σg 0.020
Persistence of money growth ρm 0.500
Volatility of money shock σm 0.007
Steady state money supply growth (gross) µ 1.012
Inflation coefficient in Taylor rule kp 1.500
Output gap coefficient in Taylor rule ky 0.150
Persistence in interest rate rule ρ 0.750
Share of government spending g/y 0.200
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with |ρg| < 1 and εg,t ∼ N (0, σ2
g). The persistence parameter is set to, ρg, of 0.97 and the

standard deviation of innovations is σg = 0.02. The government spending to output ratio is set

to 0.20.

When the monetary authorities are assumed to stick to an exogenous money supply rule, gross

money growth is assumed to be of the form

µt = (1 − ρm)µ + ρmµt−1 + ǫmt

where |ρm| < 1, µ = E(µt) and ǫmt is a gaussian white noise process.

When an HTM rule is assumed, we use the values of ρr = 0.75, kπ = 1.5 and ky = 0.15 suggested

by Clarida, Gali and Gertler, 2000.

In order to investigate the role of information imperfection, we will assume that some of the

variables are observed with error by the agents. In particular, for mis–measured variable x

x⋆
t = xT

t + ξt

where xT
t denotes the value of the variable under perfect information and ξt is a noisy process

that satisfies E(ξt) = 0 for all t; E(ξtεa,t) = E(ξtεg,t) = 0; and

E(ξtξk) =

{
σ2

ξ if t = k

0 Otherwise

We assume symmetric information for the government and the private agents. Their learning is

based on the Kalman filter.

In order to facilitate the interpretation of σξ we set its value in relation to the volatility of the

technology shock. More precisely, we define ς as ς = σξ/σa. We experiment with different values

but end up reporting results with two values of ς, namely, ς = {1, 3}. The latter value is close

to that used elsewhere in the literature, for instance by Woodford, 2002.

One expects that the choice of the noisy variables would affect the properties of the model.

While some variables are more likely to be observed with error than others, there is nothing in

the literature that could help us operationalize the incidence and degree of mis-measurement.

In the case of activistic policy, it seems natural to assume that potential output is observed

with noise. This is a standard assumption in the literature. In the case of monetary targeting,

potential output does not enter the system at all, so other signal(s) must be selected. Imperfect

observation of aggregate money was the key building block of the imperfect information rational

expectations model. But few would accept nowadays that money supply misperceptions play a
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key role in business cycles so we have decided against using it. In the analysis below we have

used alternative noisy variables. Encouragingly, the results are quite robust with regard to the

location of the noise, which indicates that the key element is the existence of noise in the system

rather than its exact location.

3 The results

The model is log–linearized around its deterministic steady state and solved according to the

method detailed in appendix B. We first discuss the dynamic properties of the model following

a monetary shock (in particular of inflation, output and the nominal interest rate) and then

turn to its general properties.

3.1 The Transmission of Monetary Shocks

In this section we analyze the transmission of money supply shocks in our benchmark economy.

Hence, monetary authorities are assumed to supply money according to the exogenous rule (12).

The results reported below have been obtained under the assumption that actual output and

the technology shock are measured with error. We later present evidence that the results are

quite robust to the choice of the noisy variables.

Figure 1 presents the response of inflation, output, the nominal and the real interest rate to a

1% shock to the growth rate of the money supply under perfect and imperfect information.7

These figures confirm the well known fact that price staggering does not suffice to make the

standard version of the new Keynesian model produce plausible dynamics. As can be seen from

panel (a) of the figure, under perfect information, the response of inflation is monotonic and

lacks persistence. Furthermore, the model does not generate a liquidity effect.

The results are considerably more realistic under imperfect information (panel (b)). Several

features are worth noting. First, the model can generate persistent, hump–shaped dynamics for

inflation and output. The degree of persistence depends on the degree of noise, with more noise

translating into more persistence (compare to figure 28 which uses both a low (ς = 1) and a

high (ς = 10) degree of noise.). The model predicts a peak effect on inflation (and output) that

occurs somewhat sooner than that in the real world (see Christiano, Eichenbaum and Evans,

2001). While this peak could be pushed further out by selecting a higher degree of imperfect

information we are reluctant to increase this value to much higher levels because of two reasons.

First, such values may be more likely to be thought of as implausibly high (in spite of the fact

7Figure 4 in the appendix reports the IRFs with regard to a supply and fiscal shock.
8The figures pertaining to sensitivity analysis are reported in appendix A.
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Figure 1: IRF to a money supply shock
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(b) Imperfect Information (ζ = 3) with signals (y, a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Quarters

%
 d

ev
.

Output

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Quarters

%
 d

ev
.

Inflation

5 10 15 20
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Quarters

%
 d

ev
.

Nominal Interest Rate

5 10 15 20
−0.25

−0.2

−0.15

−0.1

−0.05

0

Quarters

%
 d

ev
.

Real Interest Rate



The NNK model with Imperfect Information and Learning 13

that we do not really know what constitutes a plausible degree of noise and what does not). And

second and more important, larger values for noise create a trade off in performance, as they

improve the dynamic paths but at the expense of a worse overall model fit, as will be shown

later.

Second, inflation and economic activity are strongly positively correlated. While inflation and

output peak at the same time, unlike in the data, where output peaks slightly ahead of inflation

(Christiano, Eichenbaum and Evans (2001)) the path of output is steeper than that of inflation,

that is, inflation is more inertial than economic activity. Moreover, an acceleration phenomenon

obtains. When economic activity is strong, inflation tends to rise. Third, both the ex–post

real and the nominal interest rate decrease persistently following a positive innovation in money

growth, hence the model has no difficulty generating a liquidity effect. This is an important

finding because no other version of the NK model has been able to capture this effect. And

fourth, inflation forecast errors are serially correlated.

We have also examined whether the choice of the variable(s) that are subject to measurement

error plays a critical role. It turns out that it does not. Namely, the hump shape in inflation

and output as well as the timing patterns obtain even under alternative assumptions about the

noisy variables. Likewise, the liquidity effect survives a change in the signals. This is shown in

figure 3 which records, in panel (a), the IRF of inflation and output to a money shock under

the assumption that output and inflation are measured with error, and in panel (b) which uses

capital and employment as signals.

3.2 Business Cycle Properties

The ability to capture the dynamics of inflation, output and nominal interest rates is an im-

portant accomplishment. But is not sufficient to establish the superiority of the imperfect

information version over its perfect information counterpart. We now carry out a more general

evaluation that is based on standard moment criteria. We report volatility, procyclicality and

persistence for the key variables under alternative assumptions about the degree of imperfect

information and the location of mis-measurement in the economy. In order to have a more

realistic representation of monetary policy in the model we follow standard practice and adopt

the interest policy rule (2) à la Henderson–McKibbin–Taylor described in section 1.4.

The behavior of the model as a function of imperfect information is reported in table 2. Panel

(a) reports standard HP–filtered second order moments of the main aggregates of our model

economy under perfect information. Panel (b) records the same moments obtained when agents

are imperfectly informed. As can be seen from the table, the results are quite similar across the

two cases. Therefore, the improvement in the ability of the imperfect information assumption



The NNK model with Imperfect Information and Learning 14

Table 2: HP–filtered second order moments

Var. Std Rel. Std ρ(·, y) ρ(1) ρ(2)

Data

y 1.49 1.00 1.00 0.88 0.70
c 0.80 0.54 0.86 0.87 0.69
i 6.03 4.04 0.92 0.83 0.61
h 1.88 1.26 0.83 0.92 0.73
π 0.16 0.11 0.32 0.33 0.24
Rnom 0.40 0.27 0.21 0.81 0.57
Rreal 0.33 0.22 0.10 0.73 0.50

(a) Perfect Information

y 1.38 1.00 1.00 0.69 0.45
c 0.87 0.63 0.80 0.76 0.53
i 4.55 3.30 0.96 0.68 0.44
h 0.70 0.51 0.77 0.55 0.31
π 0.04 0.03 0.07 0.46 0.24
Rnom 0.03 0.02 0.21 0.89 0.71
Rreal 0.03 0.02 0.13 0.35 0.12

(b) Imperfect Information (ζ=3)

y 1.41 1.00 1.00 0.68 0.44
c 0.86 0.61 0.90 0.69 0.45
i 4.45 3.16 0.88 0.68 0.44
h 1.49 1.06 0.68 0.40 0.13
π 0.16 0.11 0.42 0.33 0.06
Rnom 0.07 0.05 0.16 0.77 0.46
Rreal 0.12 0.08 -0.47 0.20 -0.06

Note: All series are HP–filtered. Data cover the period 1960:1–2002:4, except for
aggregate weekly hours that run from 1964:1 to 2002:4. Output is defined as C+I+G.
C is nondurables and services, I includes investment and durables. π is the CPI based
inflation rate, Rnom is the federal fund rate, and Rreal = Rnom − π. Std. is standard
deviation, Rel. Std is standard deviation of the variable relative to that of output,
ρ(·, y) is its correlation with output and ρ(1) and ρ(2) the first and second order
autocorrelation.
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to explain the joint dynamics of inflation, output and the nominal interest rate does not come

at the cost of a deterioration of the overall ability of the model to account for the business

cycle. The main differences are to be found in the volatility and cyclicality of inflation and the

interest rates. In fact, the imperfect information model outperforms the full information model.

The model can generate a volatility of hours worked greater than that of output without the

need of indivisible labor, whereas the full information version of the model yields a volatility of

hours of about half of that of output. The volatility of nominal interest rate is twice that in the

full information model, but it still remains too low compared to the data. The same pattern

obtains for the ex–post real interest rate whose volatility is 4 times greater in the imperfect

information model. Of particular interest is the behavior of inflation. Inflation volatility is

magnified under imperfect information, as its standard deviation (0.16) is 4 times greater than

under perfect information. Here again, the imperfect information model outperforms the perfect

information model as the data suggest a standard deviation of inflation around 0.16. Likewise,

under imperfect information, inflation is much more procyclical than under perfect information,

and the output–inflation correlation comes closer to the data. For instance, this correlation

is about 0 under perfect information, while it reaches 0.42 under imperfect information (ζ=3)

when it is 0.3 in the data.

Table 3: HP–filtered second order moments (Sensitivity analysis)

Var. Std Rel. Std ρ(·, y) ρ(1) ρ(2)

(a) Imperfect Information (ζ=1)

y 1.44 1.00 1.00 0.68 0.43
c 0.89 0.62 0.88 0.72 0.49
i 4.58 3.18 0.90 0.68 0.43
h 1.15 0.80 0.70 0.43 0.19
π 0.11 0.07 0.33 0.30 0.11
Rnom 0.05 0.03 0.24 0.79 0.55
Rreal 0.08 0.06 -0.30 0.20 0.01

(b) Imperfect Information (ζ=10)

y 1.18 1.00 1.00 0.66 0.42
c 0.77 0.65 0.85 0.67 0.43
i 3.59 3.05 0.82 0.68 0.46
h 1.66 1.41 0.60 0.48 0.21
π 0.20 0.17 0.39 0.48 0.20
Rnom 0.11 0.09 0.05 0.85 0.60
Rreal 0.14 0.12 -0.53 0.31 0.02

Note: All series are HP–filtered. Std. is standard deviation, Rel. Std is standard
deviation of the variable relative to that of output, ρ(·, y) is its correlation with
output and ρ(1) and ρ(2) the first and second order autocorrelation.

Table 3 illustrates the role of information imperfection in the overall behavior of the economy,
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and makes it clear that the greater the degree of imperfection, the larger the volatility of nominal

aggregates. In particular, the volatility of the nominal interest rate comes closer to that in the

data, although it remains too low (0.11 with ζ = 10 against 0.40 in the data).

In order to investigate the ability of the model to generate an empirically meaningful Phillips

curve, we now compute the correlation between detrended output9 and changes in the inflation

level. Following Mankiw and Reis, we use two timing conventions by correlating detrended

output with πt+2 − πt−2 (one–year change in inflation) and with πt+4 − πt−4 (two years change

in inflation). As indicated in table 4, this correlation is clearly positive in the US (0.39 for i=2,

0.51 for i=4). This illustrates what Mankiw and Reis (2002) call the acceleration phenomenon,

which suggests that periods of sustained economic activity are associated with an acceleration

of inflation. As can be seen from the table, the standard sticky price model fails to account for

Table 4: The acceleration Phenomenon

ρ(yt, πt+2 − πt−2) ρ(yt, πt+4 − πt−4)

Data 0.39 0.51

Perfect Info. -0.34 -0.31
Imp. Info. (ζ = 1) -0.01 -0.07
Imp. Info. (ζ = 3) 0.17 0.12
Imp. Info. (ζ = 10) 0.24 0.24

the acceleration phenomenon as it predicts that high activity is associated with slower inflation.

Mankiw and Reis show that this is an internal property of the sticky price model. But this is

reinforced in this model since monetary authorities increase the nominal interest rate in face

any shock driving up the activity. This therefore acts against any inflation acceleration. As

soon as imperfect information is introduced in the model, the correlation drops dramatically,

and even a small degree of imperfection (ζ = 1) drives it to zero. In our benchmark case, ζ = 3,

the correlation is clearly positive (0.17 for a one year change in inflation, 0.12 for a two years

change). As the degree of noise increases in the economy the acceleration effect is magnified.

This can be easily understood from the impulse response analysis that shows that the higher the

degree of noise in the economy, the longer is the period of increase in the inflation rate following

a positive shock on economic activity.

Table 5 reports moments for expectation errors on inflation. We consider two measures of

expectation errors. The first one pertains to the ability of the agents to forecast the future.

The expectation errors is then defined as πt − Et−1πt. The second measure corresponds to the

ability of the agents to predict inflation based on the signals they are given, and is therefore

only relevant in the imperfect information framework. This is computed as πt − πt|t. The table

9Output is detrended using the Hodrick–Prescott filter.
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Table 5: Moments on Inflation Expectation errors

Std. ρ(1) ρ(2) ρ(3) ρ(4)

πt − πt|t−1

Perf. Info 0.04 0.00 0.00 -0.01 -0.02
Imp. Info. ζ = 1 0.14 0.57 0.42 0.33 0.26
Imp. Info. ζ = 3 0.22 0.60 0.46 0.37 0.31
Imp. Info. ζ = 10 0.29 0.73 0.59 0.49 0.40

πt − πt|t

Perf. Info – – – – –
Imp. Info. ζ = 1 0.14 0.58 0.42 0.32 0.25
Imp. Info. ζ = 3 0.21 0.68 0.50 0.39 0.32
Imp. Info. ζ = 10 0.29 0.79 0.64 0.53 0.44

reports both the standard deviation and the autocorrelation function of the inflation expectation

errors. As expected, the forecast errors is greater the greater information imperfection. More

interesting is that contrary to the perfect information case for which expectation errors are

white noise, the latter display strong positive serial correlation. As suggested by the impulse

response analysis, the noisier the signals, the greater is serial correlation. This is in line with

the empirical evidence as the first order autocorrelation for US CPI inflation expectation errors

is ρ(1) = 0.39.10

Additional features, such as habit persistence, variable capitalization etc. . . can be easily added

to the model in order to further improve its empirical performance, Nonetheless, this goes beyond

our simple objective of examining the performance of the new Keynesian model as a function

of the degree of imperfect information that is present in the decision of the agents and the

policymakers.

4 Concluding remarks

The new Keynesian model has provided a popular framework for the analysis of monetary

policy. Nevertheless, in spite of its overall success, the model has had difficulties accounting for

the empirical behavior of key monetary variables such as inflation and nominal interest rates.

In this paper we have argued that there is no need to abandon the rational expectations as-

sumption or to introduce other types of irrational behavior in order to help the model fit the

data. A plausible assumption, namely that the true values of some macroeconomic variables are

10Forecast errors were computed by subtracting median forecasts obtained from from the Survey of Professional

Forecasters from the actual CPI inflation rate. The quarterly series runs from 1981:3 to 2002:4 and can be obtained
from http://www.phil.frb.org/econ/spf/index.html.
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imperfectly observed, together with gradual learning suffice to resolve the empirical difficulties

of the new Keynesian model. With a modest amount of imperfect information, both inflation

and output dynamics follow hump shaped paths, inflation in persistent, a money shock has a

liquidity effect and inflation expectations errors are serially correlated.

There exists another rational expectations version of the NK model that has similar properties,

namely the sticky information model of Mankiw and Reis (2002). A fruitful course of research

would be to undertake a systematic comparison of the imperfect information and sticky infor-

mation versions of the NK in order to determine which variant –if any– fits the data better and

which one seems more plausible.
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A Sensitivity Analysis

Figure 2: IRF to a money supply shock: Sensitivity to noise
(a) Low degree of imperfect information (ς = 1)

5 10 15 20
0

0.5

1

1.5

Quarters

%
 d

ev
.

Output

5 10 15 20
0

0.1

0.2

0.3

0.4

Quarters

%
 d

ev
.

Inflation

5 10 15 20
−20

−15

−10

−5

0

5
x 10

−3

Quarters

%
 d

ev
.

Nominal Interest Rate

5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

Quarters

%
 d

ev
.

Real Interest Rate

(b) High degree of imperfect information (ς = 10)
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Figure 3: IRF to a money supply shock: Sensitivity to signals (ς = 3)
(a) Signals: (y,π)
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(b) Signals: (k,h)
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Figure 4: IRF to other shocks: Imperfect information (ς = 3, signals=(y, a))
(a) Technology shocks
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(b) Fiscal shocks

5 10 15 20
−0.2

0

0.2

0.4

0.6

Quarters

%
 d

ev
.

Output

5 10 15 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

Quarters

%
 d

ev
.

Inflation

5 10 15 20
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Quarters

%
 d

ev
.

Nominal Interest Rate

5 10 15 20
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Quarters

%
 d

ev
.

Real Interest Rate



The NNK model with Imperfect Information and Learning 24

B Solution Method

The log–linear version of the system of dynamic equation characterizing the equilibrium may be

written as

MccYt = Mcs

(
Xb

t

Xf
t

)
+ Mce

(
Xb

t|t

Xf
t|t

)
(B.1)

Mss0

(
Xb

t+1

Xf
t+1|t

)
+Mss1

(
Xb

t

Xf
t

)
+Mse1

(
Xb

t|t

Xf
t|t

)
= Msc0Yt+1|t +Msc1Yt+

(
Meut+1

0

)
(B.2)

St = C0

(
Xb

t

Xf
t

)
+ C1

(
Xb

t|t

Xf
t|t

)
+ vt (B.3)

Y is a vector of ny control variables, S is a vector of ns signals used by the agents to form

expectations, Xb is a vector of nb predetermined (backward looking) state variables (including

shocks to fundamentals), Xf is a vector of nf forward looking state variables, finally u and v are

two Gaussian white noise processes with variance–covariance matrices Σuu and Σvv respectively

and E(uv′) = 0.

Xt+i|t = E(Xt+i|It) for i > 0 and where It denotes the information set available to the agents at

the beginning of period t. The information set available to the agents consists of i) the structure

of the model and ii) the history of the observable signals they are given in each period:

It = {St−j , j > 0,Mcc,Mcs,Mce,Mss0,Mss1,Msc0,Msc1,Mse1,Me, C
0, C1,Σuu,Σvv}

Therefore, it is when we specify the signals that we may impose the information structure of

the agents.

Before solving the system, note that, from (B.1), we have

Yt = B0

(
Xb

t

Xf
t

)
+ B1

(
Xb

t|t

Xf
t|t

)
(B.4)

where B0 = M−1
cc Mcs and B1 = M−1

cc Mce, such that

Yt|t = B

(
Xb

t|t

Xf
t|t

)
(B.5)

with B = B0 + B1.
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B.1 Solving the system

Step 1: We first solve for the expected system:

Mss0

(
Xb

t+1|t

Xf
t+1|t

)
+ (Mss1 + Mse1)

(
Xb

t|t

Xf
t|t

)
= Msc0Yt+1|t + Msc1Yt|t (B.6)

Plugging (B.5) in (B.6), we get

(
Xb

t+1|t

Xf
t+1|t

)
= W

(
Xb

t|t

Xf
t|t

)
(B.7)

where

W = − (Mss0 − Msc0B)−1 (Mss1 + Mse1 − Msc1B)

After getting the Jordan form associated to (B.7) and applying standard methods for eliminating

bubbles, we get

Xf
t|t = GXb

t|t

From which we get

Xb
t+1|t = (Wbb + WbfG)Xb

t|t = W bXb
t|t (B.8)

Xf

t+1|t = (Wfb + WffG)Xb
t|t = W fXb

t|t (B.9)

Step 2: We go back to the initial system to get and write

Then, (B.2) rewrites

Mss0

(
Xb

t+1

Xf
t+1|t

)
+ Mss1

(
Xb

t

Xf
t

)
+ Mse1

(
Xb

t|t

Xf
t|t

)
= Msc0B

(
Xb

t+1|t

Xf
t+1|t

)
+ Msc1B

0

(
Xb

t

Xf
t

)

+Msc1B
1

(
Xb

t|t

Xf
t|t

)
+

(
Meut+1

0

)

Taking expectations, we have

Mss0

(
Xb

t+1|t

Xf

t+1|t

)
+ Mss1

(
Xb

t|t

Xf

t|t

)
+ Mse1

(
Xb

t|t

Xf

t|t

)
= Msc0B

(
Xb

t+1|t

Xf

t+1|t

)
+ Msc1B

0

(
Xb

t|t

Xf

t|t

)

+Msc1B
1

(
Xb

t|t

Xf

t|t

)

Substracting, we get

Mss0

(
Xb

t+1 − Xb
t+1|t

0

)
+ Mss1

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
= Msc1B

0

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
+

(
Meut+1

0

)

(B.10)
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which rewrites
(

Xb
t+1 − Xb

t+1|t

0

)
= W c

(
Xb

t − Xb
t|t

Xf
t − Xf

t|t

)
+ M−1

ss0

(
Meut+1

0

)
(B.11)

where, W c = −M−1
ss0(Mss1 −Msc1B

0). Hence, considering the second block of the above matrix

equation, we get

W c
fb(X

b
t − Xb

t|t) + W c
ff (Xf

t − Xf
t|t) = 0

which gives

Xf
t = F 0Xb

t + F 1Xb
t|t

with F 0 = −W c
ff

−1W c
fb and F 1 = G − F 0.

Now considering the first block we have

Xb
t+1 = Xb

t+1|t + W c
bb(X

b
t − Xb

t|t) + W c
bf (Xf

t − Xf
t|t) + M2ut+1

from which we get, using (B.8)

Xb
t+1 = M0Xb

t + M1Xb
t|t + M2ut+1

with M0 = W c
bb + W c

bfF 0, M1 = W b − M0 and M2 = M−1
ss0Me..

We also have

St = C0
b Xb

t + C0
t Xf

t + C1
b Xb

t|t + C1
fXf

t|t + vt

from which we get

St = S0Xb
t + S1Xb

t|t + vt

where S0 = C0
b + C0

fF 0 and S1 = C1
b + C0

fF 1 + C1
fG

Finally, we get

Yt = B0
b Xb

t + B0
t Xf

t + B1
b Xb

t|t + B1
fXf

t|t

from which we get

Yt = Π0Xb
t + Π1Xb

t|t

where Π0 = B0
b + B0

fF 0 and Π1 = B1
b + B0

fF 1 + B1
fG

B.2 Filtering

Since our solution involves terms in Xb
t|t, we would like to compute this quantity. However, the

only information we can exploit is a signal St that we described previously. We therefore use a

Kalman filter approach to compute the optimal prediction of Xb
t|t.
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In order to recover the Kalman filter, it is a good idea to think in terms of expectation errors.

Therefore, let us define

X̂b
t = Xb

t − Xb
t|t−1

and

Ŝt = St − St|t−1

Note that since St depends on Xb
t|t, only the signal relying on S̃t = St − S1Xb

t|t can be used to

infer anything on Xb
t|t. Therefore, the policy maker revises its expectations using a linear rule

depending on S̃e
t = St − S1Xb

t|t. The filtering equation then writes

Xb
t|t = Xb

t|t−1 + K(S̃e
t − S̃e

t|t−1) = Xb
t|t−1 + K(S0X̂b

t + vt)

where K is the filter gain matrix, that we would like to compute.

The first thing we have to do is to rewrite the system in terms of state–space representation.

Since St|t−1 = (S0 + S1)Xb
t|t−1, we have

Ŝt = S0(Xb
t − Xb

t|t) + S1(Xb
t|t − Xb

t|t−1) + vt

= S0X̂b
t + S1K(S0X̂b

t + vt) + vt

= S⋆X̂b
t + νt

where S⋆ = (I + S1K)S0 and νt = (I + S1K)vt.

Now, consider the law of motion of backward state variables, we get

X̂b
t+1 = M0(Xb

t − Xb
t|t) + M2ut+1

= M0(Xb
t − Xb

t|t−1 − Xb
t|t + Xb

t|t−1) + M2ut+1

= M0X̂b
t − M0(Xb

t|t + Xb
t|t−1) + M2ut+1

= M0X̂b
t − M0K(S0X̂b

t + vt) + M2ut+1

= M⋆X̂b
t + ωt+1

where M⋆ = M0(I − KS0) and ωt+1 = M2ut+1 − M0Kvt.

We therefore end–up with the following state–space representation

X̂b
t+1 = M⋆X̂b

t + ωt+1 (B.12)

Ŝt = S⋆X̂b
t + νt (B.13)

For which the Kalman filter is given by

X̂b
t|t = X̂b

t|t−1 + PS⋆′(S⋆PS⋆′ + Σνν)
−1(S⋆X̂b

t + νt)
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But since X̂b
t|t is an expectation error, it is not correlated with the information set in t− 1, such

that X̂b
t|t−1 = 0. The prediction formula for X̂b

t|t therefore reduces to

X̂b
t|t = PS⋆′(S⋆PS⋆′ + Σνν)

−1(S⋆X̂b
t + νt) (B.14)

where P solves

P = M⋆PM⋆′ + Σωω

and Σνν = (I + S1K)Σvv(I + S1K)′ and Σωω = M0KΣvvK
′M0′ + M2ΣuuM2′

Note however that the above solution is obtained for a given K matrix that remains to be

computed. We can do that by using the basic equation of the Kalman filter:

Xb
t|t = Xb

t|t−1 + K(S̃e
t − S̃e

t|t−1)

= Xb
t|t−1 + K(St − S1Xb

t|t − (St|t−1 − S1Xb
t|t−1))

= Xb
t|t−1 + K(St − S1Xb

t|t − S0Xb
t|t−1)

Solving for Xb
t|t, we get

Xb
t|t = (I + KS1)−1(Xb

t|t−1 + K(St − S0Xb
t|t−1))

= (I + KS1)−1(Xb
t|t−1 + KS1Xb

t|t−1 − KS1Xb
t|t−1 + K(St − S0Xb

t|t−1))

= (I + KS1)−1(I + KS1)Xb
t|t−1 + (I + KS1)−1K(St − (S0 + S1)Xb

t|t−1))

= Xb
t|t−1 + (I + KS1)−1KŜt

= Xb
t|t−1 + K(I + S1K)−1Ŝt

= Xb
t|t−1 + K(I + S1K)−1(S⋆X̂b

t + νt)

where we made use of the identity (I+KS1)−1K ≡ K(I+S1K)−1. Hence, identifying to (B.14),

we have

K(I + S1K)−1 = PS⋆′(S⋆PS⋆′ + Σνν)
−1

remembering that S⋆ = (I + S1K)S0 and Σνν = (I + S1K)Σvv(I + S1K)′, we have

K(I+S1K)−1 = PS0′(I+S1K)′((I+S1K)S0PS0′(I+S1K)′+(I+S1K)Σvv(I+S1K)′)−1(I+S1K)S0

which rewrites as

K(I + S1K)−1 = PS0′(I + S1K)′
[
(I + S1K)(S0PS0′ + Σvv)(I + S1K)′

]−1

K(I + S1K)−1 = PS0′(I + S1K)′(I + S1K)′
−1

(S0PS0′ + Σvv)
−1(I + S1K)−1

Hence, we obtain

K = PS0′(S0PS0′ + Σvv)
−1 (B.15)
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Now, recall that

P = M⋆PM⋆′ + Σωω

Remembering that M⋆ = M0(I + KS0) and Σωω = M0KΣvvK
′M0′ + M2ΣuuM2′, we have

P = M0(I − KS0)P
[
M0(I − KS0)

]′
+ M0KΣvvK

′M0′ + M2ΣuuM2′

= M0
[
(I − KS0)P (I − S0′K ′) + KΣvvK

′
]
M0′ + M2ΣuuM2′

Plugging the definition of K in the latter equation, we obtain

P = M0
[
P − PS0′(S0PS0′ + Σvv)

−1S0P
]
M0′ + M2ΣuuM2′ (B.16)

B.3 Summary

We finally end–up with the system of equations:

Xb
t+1 = M0Xb

t + M1Xb
t|t + M2ut+1 (B.17)

St = S0
b Xb

t + S1
b Xb

t|t + vt (B.18)

Yt = Π0
bX

b
t + Π1

bX
b
t|t (B.19)

Xf
t = F 0Xb

t + F 1Xb
t|t (B.20)

Xb
t|t = Xb

t|t−1 + K(S0(Xb
t − Xb

t|t−1) + vt) (B.21)

Xb
t+1|t = (M0 + M1)Xb

t|t (B.22)

to describe the dynamics of our economy.

This may be recasted as a standard state–space problem as

Xb
t+1|t+1 = Xb

t+1|t + K(S0(Xb
t+1 − Xb

t+1|t) + vt+1)

= (M0 + M1)Xb
t|t + K(S0(M0Xb

t + M1Xb
t|t + M2ut+1 − (M0 + M1)Xb

t|t) + vt+1)

= KS0M0Xb
t + ((I − KS0)M0 + M1)Xb

t|t + KS0M2ut+1 + Kvt+1

Then (
Xb

t+1

Xb
t+1|t+1

)
= Mx

(
Xb

t

Xb
t|t

)
+ Me

(
ut+1

vt+1

)

where

Mx =

(
M0 M1

KS0M0 ((I − KS0)M0 + M1)

)
and Me =

(
M2 0

KS0M2 K

)

and

Yt = My

(
Xb

t

Xb
t|t

)

where

My =
(

Π0
b Π1

b

)


