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Abstract

Should a durable good monopoly facing agents with different length of demand allow only
long term contracts? This paper studies an infinite horizon stationary model where a seller rents
(or sells) every period of time one good. The number of potential buyers is constant and these
buyers value the good differently according to the number of periods they need it (some want
the good for only one period, some for two, e.g.). The profit maximizing and efficient allocation
mechanism are derived when the monopoly commits to allocate the good for the whole length
required by agents. These mechanisms exhibit the (endogenous) cost of committing to allocate
the good for several periods, which does not allow the seller to benefit from potential high valu-
ation buyers during these periods. Moreover, both mechanisms are compared and discussed.

JEL codes: C73, D44, D82, L96
Keywords: Auctions, Durable good, Dynamic games, Mechanism design

This version is still preliminary.

1 Introduction

Owners of infrastructure must often choose between providing access to consumers who desire to
use it for different lengths of time. In this paper, we study this problem in a dynamic context and
compare the strategies that would be used by a profit maximizing monopolist and a social welfare
maximizing regulator.

We became interested in the problem while studying access to the Internet infrastructure. McKie-
Mason and Varian have proposed to use Vickrey auctions, which they call “smart markets”, to solve
this problem (see McKie-Mason and Varian 1995, 1996, 1997). These auctions allocate resources
efficiently and induce participants to reveal their true willingness to pay.1 However, if some sellers

1In a few words, the proposed implementation of “smart markets” consists of allocating access freely in non-
congested periods and, at each period of congestion, through standard Vickrey auctions. Customers attach a value
to each packet of their messages. If the router faces congestion, packets with the highest valuations are selected up to
the capacity. These packets are routed through the node of the network and their sender are required to pay the valuation
attached to the first rejected packet.
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want to use the network for an extended period of time, smart markets loose their efficiency inducing
property, as we have shown in Crémer and Hariton (1999). This problem is practically important
for applications such Internet video conferences where users want to be guaranteed a good quality
connection over an extended period of time. This guarantee requires no disruption by congestion
through the whole use of the service.

The transportation industry faces similar problems. For instance, an airport must arbitrate be-
tween leaving or lending slot available for charter flights or committing it to an airline which wants
to use it every day for regular flights. In some proposals for liberalizing railroads, the manager of
the network will have to arbitrate between freight, which has irregular demand, and passenger trains,
which have regular schedule and want a commitment that they will be allowed to use a specific time
slot. There is an extensive literature on congestion pricing in transportation industries (see Arnott,
de Palma and Lindsey 1999, for an extensive bibliography) but, as far as we know, no paper has
studied the problem of consumers with different lengths of use.

Similar problems arise in other network industries. For instance, in the gas and electricity indus-
tries, the manager of the transportation network must decide how much capacity to guarantee to a
user, knowing that this might prevent him from accepting the request of a future use, who may have
a higher willingness to pay.

In order to study this problem, we consider a durable good who can be used by only one agent
at the time. At each period where the good is not used, a number of potential users vie for the
right to use it. A user is defined by two characteristics: his willingness to pay and the length of
time for which he wants to use the good. The owner of the asset must choose one of the users,
or decide to leave the good unused in the hope of finding a “better” user in the next period. We
simplify the problem by assuming that the desired length of use of a user is public information, but
the willingness to pay is private information.

Our problem is clearly an auction problem and, in some sense, a multi-unit auction problem
(e.g. Branco 1995, 1996). Let say that the monopolist has two goods to sell (good 1 and good 2,
e.g.). In the multi-unit literature, an auctioneer wonders how it should compare separate offers for
each of the two goods to offers for the bundle of them. An analogy can be derived with the analysis
done in this paper: each of this good is sold in each period (good 1 at period 1 and good 2 at period
2, e.g.) and two consecutive periods correspond to a bundle. Thus, the two frameworks are linked
but also exhibit major differences, as explained in more detail in section6.2. In particular, in our
framework, the buyers of good 2 are not yet present when good 1 is sold!

This paper is organized the following way. Section2 proposes a model of congestion where an
auctioneer allocates access to an infrastructure. Section3 describes the objective of the auctioneer.
Section4 analyzes the benchmark case when there is no asymmetry of information and section5 the
case where asymmetry is present. The profit maximizing mechanism and the efficient mechanism
are exhibited and compared in section6. Finally, section7 concludes. All proofs are collected in the
appendix.

2 The model

In each periodt = 0, . . . ,+∞, N risk neutral agents compete to use one good. Each category (indexed
by i = 1, . . . , I ) of agents wants the good for onlyi periods (they are called typei-agents). There are
ni agents (indexed byj = 1, . . . ,ni) of each typei, with N = ∑I

i=1ni . To simplify the writing, agent
j of a typei is called agenti j .
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The valuation of agentj of type i for the good is writtenvi j ∈ [vi ,vi ] with ∆vi = vi −vi > 0 and
vi > 0. This valuation is private information of the agent, but not its type, which is assumed to
be common knowledge. Moreover, any typei-agent withi > 1 only wants the good fori periods,
i.e. his willingness to pay for less thani periods is zero. The valuationvi j of agenti j follows a type
dependent cumulative distribution functionF i

(
vi j
)
, with density f i

(
vi j
)

> 0. Finally, the virtual
valuation of an agent of typei and valuationvi j is noted

Ji (vi j
)
≡ vi j −

1−F i
(
vi j
)

f i
(
vi j
) ,

which we assume is increasing invi j . Furthermore, we assume that the types of all agents, i.e. the
vi j s, are independent from each others.

A risk neutral seller sells the use of the good. When selling the good to typei-agent at period
t, with i > 1, the seller commits to sell it fori periods and not to renegotiate its allocation rule at
periodst +1, . . . , t + i−1.

All agents, the buyers and the seller, have the same discount factorδ.

3 The problem of the auctioneer

The objective of the auctioneer is to identify an optimal stationary mechanism for the allocation of
the good.

The auctioneer designs a mechanism that can be described by functions{pi j , t i j}i, j where
pi j (vi j , v−i j ) is the probability that agenti j is given the object andt i j

(
vi j
)

is her paiement. She
obtains the good with an expected probabilityqi j

(
vi j
)
≡ Ev−i j

[
pi j (v)

]
.

Assume furthermore that the current periodt is such that the good is not committed, and denote
π the infinite stream of expected profits at any such period. We will consider two different types of
owners of the asset. A “firm” maximizes its profits; its “period utility” in a period where the good
can be sold is equal to total expected payment it receives

∑I
i=1∑ni

j=1Evi j

[
t i j (vi j

)]
.

A “regulator” maximizes social welfare. His period utility when the good can be sold is

∑I
i=1∑ni

j=1Evi j

[
qi j (vi j

)]
.

The auctioneer cares about its future expected benefits. It has to take into account that, when it
allocates the good at periodt to a typei-buyer, it commits itself not to renegotiate this allocation for
the i following periods. Periodt + i is characterized by the same state for the good than at period
t: the good is not committed. The expected future benefits to be collected after periodt + i areπ,
which accounts forδiπ when discounted in periodt. Thus, selling the good to agenti j of valuation
vi j yields, on top of the current period profit, a benefit ofδiπ.

Using the revelation principle and Belman’s principle of optimality,π is the solution of problem
(P1)

π = max
{pi j (.),t i j (.)} i=1,...,I

j=1,...,ni

[
∑I

i=1∑ni
j=1

{
Evi j

[
Xi j
(
vi j
)]

+Ev
[
pi j (v)δiπ

]}
+
(

1−∑I
i=1∑ni

j=1Ev
[
pi j (v)

])
δπ

]
(1)

3



under the constraints2
∀vi j ,∀i,∀ j, U i

(
vi j
)

= qi j
(
vi j
)

vi j − t i j
(
vi j
)

> 0
(
IRi j

)
∀vi j ,∀i,∀ j, vi j = argmax̃vi j

{
qi j
(
ṽi j
)

vi j − t i j
(
ṽi j
)} (

ICi j
)

∀v,∀i,∀ j, pi j (v) ∈ [0,1]
(
Pi j
)

∀v, ∑i, j pi j (v) 6 1 (P0)

whereXi j
(
vi j
)

is equal tot i j
(
vi j
)

for a firm and tovi j qi j
(
vi j
)

for a regulator.
The main differences between this problem and the traditional one of an optimal single-unit

auction, as studied by Myerson (1981), are of three kinds. First, the set of allocation probabilities
is restrained, in the same way as Branco (1995) e.g., because allocation rules cannot display more
units than the auctioneer currently has. Second, there are extra terms related to the dynamics of the
allocation process. Third, there are in fact two different optimization problems, one for the mecha-
nism itself (allocation probabilities and transfers givenπ) and another for the level of profits. This is
due to the approach taken in this work to study infinite horizon model and stationary mechanisms.

4 Perfect information case

When valuations of potential buyers are public information, the incentive compatibility constraints
drop out and problem(P1) becomes problem(P2).

Maximizing profits induces the auctioneer to extract as much as possible from agents, making
the individual rationality constraint

(
IRi j

)
binding

∀i,∀vi j , U i (vi j
)

= 0 ⇔ t i j (vi j
)

= vi j q
i j (vi j

)
. (2)

The objective function becomes

π = max
{pi j (.)} i=1,...,I

j=1,...,ni

[
I

∑
i=1

ni

∑
j=1

{
Ev
[[

vi j −δ
(
1−δi−1)π

]
pi j (v)

]
+δπ

}]
(3)

A regulator has the same objective function. The solution of(P2) is described by the following
lemma, proved in the appendix.

Lemma 1. Let
{

pi j∗ (.)
}

i, j andπ∗ be the solutions of the problem W (π)≡max{pi j (.)} i=1,...,I
j=1,...,ni

[
∑I

i=1∑ni
j=1Ev

[[
vi j −δ

(
1−δi−1

)
π
]

pi j (v)
]]

+δπ

W (π) = π
(4)

under the constraints {
∀v,∀i,∀ j, pi j (v) ∈ [0,1]

(
Pi j
)

∀v, ∑i, j pi j (v) 6 1 (P0)

2There areN individual rationality constraints, N incentive compatibility constraints and(2N+1) constraints on the
allocation probabilities.
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-

maxp1 j (.) ∑ni
j=1Ev

[
v1 j p1 j (v)

]

maxpi j (.) ∑I
i=1∑ni

j=1Ev
[
vi j pi j (v)

] 6

π�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
(1−δ)π

W (π)−δπ

π∗

Figure 1: Optimal stationary profit with perfect information

with, ∀vi j ,∀i,∀ j,

t i j∗ (vi j
)

= Ev−i j

[
vi j p

i j∗ (v)
]
. (5)

Then
{

pi j∗ (.) , t i j∗ (.)
}

i, j solves the maximization program(P2).

For a givenπ, the maximization problem is a simple sum of known coefficients multiplied by the
probability that the mechanism designer has to choose. Therefore, at givenπ, the buyer for whom
vi j − δ

(
1−δi−1

)
π is the highest obtains the good with probability 1. To determineπ, we will use

the following lemma, also proved in the appendix.

Lemma 2. The expected per period benefit[W (π)−δπ] is decreasing and convex, with W(0) > 0.

As shown in figure1, lemma2 implies that[W (π)−δπ] crosses once the strictly increasing
function(1−δ)π, for π = π∗. We have proved the following proposition.

Proposition 1. Under perfect information, the mechanism set by a profit maximizing seller or a so-
cial planner allocates the good to (one of) the agents among the highest positive[vi j −δ

(
1−δi−1

)
π∗].

If [vi j −δ
(
1−δi−1

)
π∗] is strictly negative for all i j, then the good is not sold in this period.

This mechanism is further studied in section6.

5 Asymmetric information case

How will the presence of asymmetric information change the conclusions of the last section? Using
Myerson’s (1981) methodology, the set of individual rationality and incentive compatibility con-
straints of problem(P1) can be rewritten as described in the following lemma.

Lemma 3. A mechanism is incentive compatible and individually rational if and only if

∀i,∀ j,∀vi j ,∀si j ,
(
vi j −si j

)[
qi j (vi j

)
−qi j (si j

)]
> 0 (6)

∀i,∀vi j , U i (vi j
)

= U i (vi)+
∫ vi j

vi

qi j (x)dx (7)

∀i, U i (vi) > 0 (8)
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Using lemma3, the problem(P1) can be rewritten as described in the following lemma, whose
proof is in the appendix.

Lemma 4. Let
{

pi j∗∗ (.)
}

i, j andπ∗∗ be the solutions of the following problem V (π)≡max{pi j (.)} i=1,...,I
j=1,...,ni

[
∑I

i=1∑ni
j=1Ev

[[
Yi
(
vi j
)
−δ
(
1−δi−1

)
π
]

pi j (v)
]]

+δπ

V (π) = π
(9)

under the constraints
∀i,∀ j,∀vi j ,∀si j ,

(
vi j −si j

)[
qi j
(
vi j
)
−qi j

(
si j
)]

> 0
(

IC
′
i j

)
∀v,∀i,∀ j, pi j (v) ∈ [0,1]

(
Pi j
)

∀v, ∑i, j pi j (v) 6 1 (P0)

where Yi
(
vi j
)

is equal to Ji
(
vi j
)

for a firm and to vi j for a regulator, and∀vi j ,∀i,∀ j,

t i j∗∗ (vi j
)

= Ev−i j

[
vi j p

i j∗∗ (v)−
∫ vi j

vi

pi j∗∗ (x,v−i j
)

dx

]
. (10)

Then
{

pi j∗∗ (.) , t i j∗∗ (.)
}

i, j solves the maximization program(P1) and yields a levelπ∗∗ of benefits.

As in the perfect information case, for a givenπ, the maximization problem ends up to be a
simple sum of known coefficients multiplied by the probability that the mechanism designer has to
choose. Thus, the agent with the highest positive coefficient is allocated the object and the following
lemma proves the existence of an overall solution.

Lemma 5. The expected per period benefit[V (π)−δπ] is decreasing and convex for both cases of
function Yi

(
vi j
)
, with V(0) > 0.

Thus, depending on its objective function, the solution to the auctioneer allocation problem is
given by the following rules.3

Proposition 2. Under asymmetric information, a profit maximizing seller allocates the good to (one
of) the agents within the highest positive[Ji

(
vi j
)
−δ
(
1−δi−1

)
π∗∗]. If [Ji

(
vi j
)
−δ
(
1−δi−1

)
π∗∗] is

strictly negative for all i j, it does not sell the good in this period.

Proposition 3. Under asymmetric information, a social planner allocates the good the same way as
under public information to (one of) the agents within the highest positive[vi j −δ

(
1−δi−1

)
π∗]. If

[vi j −δ
(
1−δi−1

)
π∗] is strictly negative for all i j, he does not sell the good in this period.

Notice that the first best efficient policy can easily be implemented, even when the regulator does
not know buyers’ valuations (but still assuming that bidders cannot lie with respect to the number of
periods for which they require the good). It is sufficient to organize a second price auction, with the
bidders being charged for the rental rate from period 2 toi. This implies that short run buyers, who
want the good only for one period, are not charged any rental.

Let now turn to the analysis of the properties of the allocation mechanisms.

3If the problem is not regular, one should be able to extend this result by “making it regular”, as done in Myerson
(1981).
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6 Properties of the allocation mechanisms

At first sight, the lesson given by propositions1 to3 is that, when comparing two potential buyers, the
auctioneer compares their valuations minus, first, their respective cost of inducing truthful revelation
(if necessary) and, second, the relative cost of the commitment to deliver the good during the required
number of periods. The first cost is embodied in the virtual valuations. The second is related to the
additional termδ

(
1−δi−1

)
π, which is increasing ini, the length of the demand, and inδ, the

discount factor. In this section, we discuss in more details the allocation rules.

6.1 Efficient mechanism

Proposition3 tells that information gathering for the regulator does not interfere with its allocation
procedure, meaning that all the discussion can focus on the perfect information case. Indeed, trans-
fers are both benefits for the regulator and costs for bidders and, as monetary transfers are costless,
the regulator sums up both terms with equal weight and, eventually, they do not appear in the objec-
tive function. Transfers are still meaningful to secure incentive compatibility constraints, which is
always the case with the mechanism proposed in proposition3.

Assuming that there is no asymmetry of information, section4 shows that profit maximizing and
efficient mechanisms are identical. Remember thatπ∗ is the discounted social welfare associated
with the infinite repeated allocation of the good, starting from a period in which the good is available.
Then, when it has to choose one user, i.e. in a period when the good is available, proposition1 tells
the auctioneer either to allocate the good to (one of) the bidder with the highest

vi j +δiπ∗

if this quantity is higher thanδπ∗ or not to allocate the good if this quantity is smaller thanδπ∗.
Note that, given that we have assumed thatvi j is always positive, if there is at least on buyer of

type 1, the good will always be allocated.
Note that ˜v1 j = v1 j−(1−δ)π∗. Therefore, given that we have assumed thatvi j is always positive,

if there is at least on buyer of type 1, the good will always be allocated.

6.1.1 Rental rate and exclusion of bidders with low valuations

Now, choosing the buyer with the greatestvi j + δiπ∗ is equivalent to choosing the one with the
highest

ṽi j ≡ vi j − [π∗]+δiπ∗ = vi j −
(
1+δ+ . . .+δi−1)(1−δ)π∗. (11)

Thus, the seller rents the good at a price of(1−δ)π∗ per period, and chooses the agent whose
willingness to pay yields the highest profit above the discounted sum of therental rate over the
whole duration of its need. Notice that it is not the profit per period which is taken into account.

The condition

vi j +δiπ∗ ≥ δπ∗

is equivalent to

ṽi j ≥−(1−δ)π∗.
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This expression can easily be interpreted. By not renting the good, the auctioneer incurs a cost (a
loss of benefits) of(1−δ)π∗, the one period rental rate. Thus, the total surplus obtained by renting
the good to agenti j must be greater than this loss, otherwise bidders are systematically excluded
from the allocation procedure.

6.1.2 Comparative statics related to distribution functions

We now show that if the distribution function of an agent changes so as to increase the auctioneer’s
welfare, then in some sense which will be made precise, the auctioneer favors short run buyers.
Let us callF̃ i

(
vi j
)

andF i
(
vi j
)

two cumulative distributions such thatF̃ i first degree stochastically
dominatesF i : F̃ i

(
vi j
)

6 F i
(
vi j
)

for all vi j . The natural interpretation is that by moving fromF i to
F̃ i , bidders with high valuations show up more frequently. Asvi j −δ

(
1−δi−1

)
π is increasing invi j

for a givenπ,

Evi∼F̃ i

[
vi j −δ

(
1−δi−1)π

]
> Evi∼F i

[
vi j −δ

(
1−δi−1)π

]
.

Thus, the valuation the regulator attaches to bidderi is in average higher with the cumulative distri-
bution F̃ i .4 Clearly, a shift fromF i to F̃ i improves the welfare of the auctioneer, and we must have
W̃ (π) > W (π) for all π, where we denote by a ˜ the quantities corresponding to the distributionF̃ i .
From figure1, it is straightforward that̃π∗ > π∗.5

We are now ready to prove the following proposition.

Proposition 4. Assume that when the distribution function of i-type buyers is Fi , and when the
vector of types of other agents is v−kl, agent kl of type vkl gets the good with probability zero, either
because it is not allocated or because it is allocated to an agent with asmallertype. Then, when the
distribution of the valuation i-type buyers is̃F i , which first degree stochastically dominates Fi , in
the same state of nature, agent kl obtains the good with probability zero.

Note that the proposition puts no constraint on the relationship betweeni andk. Its proof is
straightforward. First,vkl 6 δ

(
1−δk−1

)
π∗ impliesvkl 6 δ

(
1−δk−1

)
π̃∗, which implies that is the

good is not allocated to agentkl with F i , it is not with F̃ i . Second,

vkl −δ
(

1−δk−1
)

π∗ 6 vrs−δ
(
1−δr−1)π∗

for some elementsvrs of v−kl with r < k implies

vkl −δ
(

1−δk−1
)

π̃∗ 6 vrs−δ
(
1−δr−1) π̃∗

which concludes the proof.

Corollary 1. If in a state of nature v the good is not allocated when the distribution function of i-type
agents is Fi , then it is not when the distribution is̃F i .

4In the firm’s allocation procedure, bidders are valued through virtual valuations minus the cost of allocation commit-
ment. In this case, there is nothing that guaranteesa priori that bidderi’s virtual valuation computed with the cumulative
distribution functionF̃ i is in average larger for the firm than the average ofF i .

5Formally: (1−δ) π̃∗ = W̃ (π̃∗)− δπ̃∗ > W (π̃∗)− δπ̃∗, and because(1−δ)π is increasing inπ while W (π)− δπ is
decreasing, the result is straightforward.
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6.2 Profit maximizing mechanism

6.2.1 Another rental rate

In the presence of asymmetry of information, proposition2 tells the seller to chooses the buyeri j
who maximizes

Ji (vi j
)
−δ
(
1−δi−1)π∗∗

as long as this quantity is positive. This is equivalent to choosing agenti j so as to maximize

˜̃vi j ≡ Ji (vi j
)
− [(1−δ)π∗∗]−δ

(
1−δi−1)π∗∗

= Ji (vi j
)
−
(
1+δ+ . . .+δi−1)(1−δ)π∗∗, (12)

as long as this quantity is at least equal to−(1−δ)π∗∗.
The interpretation parallels the one of the efficient solution without asymmetry of information,

with the valuation replaced by the virtual valuation which includes the cost of extracting from the
buyer information about its willingness to pay.

It may be worthwhile noting that, with asymmetry of information, the rental rate is not deducted
from the willingness to pay of the agent, but from the virtual valuation. In particular, the formula is
of the form

[
Ji
(
vi j
)
−Rental

]
and not

[
Ji
(
vi j −Rental

)]
.

6.2.2 Exclusion of buyers

As usual in optimal auctions, agents with low valuations may never get the good. If there exists some
vmin

i such thatJi
(
vmin

i

)
= δ

(
1−δi−1

)
π∗ > 0, then any agent of typei with vi j < vmin

i is excluded
from the market. This phenomenon is nevertheless stronger than what occurs in standard static
auctions. Indeed, in a standard case without reservation valuation, virtual valuations must be positive
in order for the good to be allocated. Thus, this limit is less stringent thanδ

(
1−δi−1

)
π∗ which is

strictly positive fori > 1. This is due to the cost of the commitment not to renegotiate the allocation
awarded to any agent, even long term ones.

6.2.3 Comparison with optimal multi-unit auctions

In the multi-unit problem, such as the work done by Branco, an auctioneer wonders how it should
compare offers for different goods (good 1 and good 2, e.g.) to offers for some bundle of them. An
analogy can be derived between the allocation of goods 1 and 2 in the multi-unit framework and the
allocation of a good at period 1 and the same good at period 2 in the dynamic context studied in this
chapter.

In the multi-unit auction, the seller faces three potential competitors: the buyer who wants the
good at the first period (which corresponds to agent of type 1 att = 1 in the dynamic model), the
buyer who wants the good at the second period (agent of type 1 att = 2) and the buyer who only
values the bundle (that is having the good at both periods, thus agent of type 2 att = 1). The main
result of Branco is that one can extend the use of virtual valuations introduced by Myerson (1981)
in order to compare those three buyers even if they do not bid for the same object.

The main difference with the multi-unit framework lies in the dynamics of the model developed
in this chapter which introduces another type of competition: att = 2, the seller could also sell the
good to agent of type 2, willing the good att = 2 andt = 3, who appears att = 2. This additional
potential buyer complicates the comparison of the bundle and the two stand-alone bids.
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Next sections entail to discuss how the regulator and the firm compare short run and long run
buyers.

6.3 Short vs Long term buyers: Perfect information case

It is convenient to begin this investigation by considering the choice between two agentsvi j andvkl

such that the following assumption holds.

Assumption 1. Agents vi j and vkl have willingness to pay vi j and vkl for the good such that{
vi j =

(
1+δ+ . . .+δi−1

)
v

vkl =
(
1+δ+ . . .+δk−1

)
v

for some v.

The valuationv represents the identical per period willingness to pay of agentsi j andkl. For
concreteness, and without loss of generality, assumei < k so that agenti j is the short term buyer and
it has the smallest horizon (kl is the long term agent and has the longest horizon).

The regulator is indifferent between renting the good to agentsi j and kl if, following (11),
ṽi j = ṽkl, i.e.

vi j − (1+δ+ . . .+δi−1)(1−δ)π∗ = vkl −
(

1+δ+ . . .+δk−1
)

(1−δ)π∗ (13)

i.e.

(1+δ+ . . .+δi−1) [v− (1−δ)π∗] =
(

1+δ+ . . .+δk−1
)

[v− (1−δ)π∗]

i.e.

v = (1−δ)π∗ ≡ v∗.

Suchv∗ always exists but it may not lie within the support of agentsi j or kl valuations.
Moreover, facing agents characterized by valuations equal tov∗, the regulator would decide to

allocate the good to agenti j or kl rather than not renting it. Indeed, following the definition proposed
in (11), ṽi j = ṽkl = 0 >−(1−δ)π∗.

Finally, because(1+δ+ . . .+δi−1) is smaller than(1+δ+ . . .+δk−1), the equal sign in equation
(13) is replaced by a greater sign ifv < v∗ and a smaller sign otherwise. This yields the following
proposition.

Proposition 5. If two agents have the same per period willingness to pay v (assumption1), the reg-
ulator prefers to rent the good to the agent with the shortest horizon if v< v∗, where v∗ = (1−δ)π∗
is the per period rental rate of the good at the optimum. If, on the contrary, v> v∗, the regulator
would rather allocate the good to the agent with the largest horizon.

Thus, in the absence of asymmetric information, all what counts for the regulator is to secure its
rental rate for each period of allocation. Indeed, as this later commits to its allocation procedure, it
prefers to allocate for a longer time if the valuation is higher than the per period average benefits it
gets and, otherwise, it would rather allocate the good for a shorter period.

It is possible to get a sense of the critical valuev∗ by deriving a lower bound on the value
of π∗. In order to do so, notice that the regulator could use the following suboptimal allocation
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policy: pick the bidder of typei such that the expected per period valuation is the largest, i.e.i ∈
argmaxj

[
Ev j

[
v j
]
/
(
1+δ+ . . .+δ j−1

)]
. By doing so, the regulator secures an expected per period

social welfare of Ev j

[
v j
]
/
(
1+δ+ . . .+δ j−1

)
at each period and for ever. Thus,

π∗ > max
j

[
Ev j

[
v j
]

(1+δ+ . . .+δ j−1)(1−δ)

]
= max

j

[
Ev j

[
v j
]

1−δ j

]
.

and the critical valuev∗ has the following lower bound

v∗ > max
j

[
Ev j

[
v j
]

(1+δ+ . . .+δ j−1)

]
.

If two agents have the same per period valuation, and this per period valuation is smaller than the
maximum expected per period valuation of any type of agents, then agents’ valuation is lower than
v∗ and the auctioneer prefers to allocate the good to the agent with the shortest horizon. Loosely
speaking, this shows a trend in the allocation mechanism in favor of short horizon agents which will
be founded in the majority of cases.

Let now turn to a more general case. Denote the per period willingness to pay of any agenti j by

v̂i j ≡
vi j

1+δ+ . . .+δi−1 .

Then, following previous analysis, the regulator compares agentsi j andkl by comparing ˜vi j andṽkl,
that is

ṽi j ≷ ṽkl i.i.f.
[
v̂i j −v∗

]
≷

1−δk

1−δi [v̂kl −v∗] .

As i is assumed to be lower thank, the fraction in the right-hand side of the inequality is greater
than 1. Whenever ˆvkl > v̂i j > v∗, the auctioneer favors the long run buyerkl and, if v̂kl < v̂i j < v∗,
the short run buyeri j is preferred by the auctioneer. In the two remaining cases, ˆvi j > v̂kl > v∗ and
v̂i j < v̂kl < v∗, there is noa priori systematic preference over one or another agent. In the former one,
one could think that because the per period valuation of agenti j is the highest, the auctioneer will
favor it but, in fact for this to be case, the difference in valuation must be high enough to compensate
the auctioneer for thek− i−1 periods following agenti j use of the good that it could have secured
with a benefitvkl higher than the rental rate. In the later, the same situation occurs with the auctioneer
securing the least loss under the rental rate.

6.4 Short vs Long term buyers: Asymmetric information case

With asymmetry of information, the comparison between two potential buyers of capacity depend
not only on their horizon and their valuation, but also on their distribution of types, as it influences
virtual valuations. In order to obtain some results, it is assumed, first, that agentsi j andkl have
the same per period willingness to pay, second, that support of valuations are interrelated in the
following way

∀i ∈ [1, I ] , vi =
(
1+δ+ . . .+δi−1)v1, vi =

(
1+δ+ . . .+δi−1)v1

11



and, third, that distributions are such that

∀v∈ [v1,v1] , Pr
[
vi j <

(
1+δ+ . . .+δi−1)v

]
= Pr

[
vkl <

(
1+δ+ . . .+δk−1

)
v
]

.

The last two conditions are equivalent to the following assumption.

Assumption 2. There exists a distribution functioñ̃F, with support in[v1,v1] and an associated
density function˜̃f , such that ∀vi j ∈ [vi ,vi ] , F i

(
vi j
)

= ˜̃F
(

vi j

1+δ+...+δi−1

)
∀vkl ∈ [vk,vk] , Fk (vkl) = ˜̃F

(
vkl

1+δ+...+δk−1

)
.

Assumption2 yields some structure on the virtual valuations functions

Ji (vi j
)

= vi j −
1− ˜̃F

(
vi j

1+δ+...+δi−1

)
˜̃f
(

vi j

1+δ+...+δi−1

) .
(
1+δ+ . . .+δi−1)

=
(
1+δ+ . . .+δi−1) ˜̃J

(
vi j

1+δ+ . . .+δi−1

)

where ˜̃J(v) ≡ v− 1− ˜̃F(v)
˜̃f (v)

is the virtual valuation computed from the distribution function˜̃F and its

associated densitỹ̃f . If virtual valuations are increasing, so is˜̃J.
Under assumptions1 and2, the auctioneer is indifferent between allocating the good to agents

i j andkl if, following (12), ˜̃vi j = ˜̃vkl, i.e. if v is such that(
1+δ+ . . .+δi−1)[ ˜̃J(v)− (1−δ)π∗∗

]
=
(

1+δ+ . . .+δk−1
)[

˜̃J(v)− (1−δ)π∗∗
]

, (16)

that isv= v∗∗ such that˜̃J(v∗∗) = (1−δ)π∗∗. It may well be the case that suchv∗∗ does not exist, that
is ∀v∈ [v1,v1] , ˜̃J(v) < (1−δ)π∗∗. Then, it is assumed thatv∗∗ = +∞. The following proposition is
then a straightforward consequence of equation (16).

Proposition 6. If two agents have the same per period willingness to pay v (assumption1) and share
the same probability distribution over their respective per period valuation (assumption2), the profit
maximizing seller prefers to rent the good to the agent with the shortest horizon if v< v∗∗. If, on the
contrary, v> v∗∗, the good would rather be allocated to the agent with the largest horizon.

The comparison arises in the same term than without asymmetric information: the firm wants to
secure the average per period revenues˜̃J(v∗∗). If the per period valuations of both bidders is larger
thanv∗∗, then the firm gets an “extra benefits” for each period of allocation. Consequently, it prefers
to secure this later for as long as possible and allocates the good to the long term bidder. If, on
the contrary, both bidders per period willingness to pay is lower thanv∗∗, then the regulator incurs
a “loss”, with respect to its expected per period profits, if it allocated the good to any of the two
bidders. In order to limit this loss, the good is given to the shorter horizon bidder.

It is also possible to get some lower bound ofπ∗∗. As for the perfect information case, the firm
could sub-optimally allocate the good to agent of typei with the highest average virtual valuation,

12



i.e. i ∈ argmaxj Ev j

[
J j
(
v j
)
/
(
1+δ+ . . .+δ j−1

)]
and

π∗∗ > max
j

Ev j

[
Ev j

[
J j
(
v j
)]

1−δ j

]
.

Nevertheless, the comparison withv∗∗ is not easily possible because of the virtual valuations.
Turning to the more general case with per period willingness to pay ˆv, the firm compares agents

i j andkl by comparing˜̃vi j and ˜̃vkl the following way

˜̃vi j ≷ ˜̃vkl i.i.f.
[

˜̃J
(
v̂i j
)
− ˜̃J(v∗∗)

]
≷

1−δk

1−δi

[
˜̃J(v̂kl)− ˜̃J(v∗∗)

]
.

As in the absence of asymmetric information, but with a different boundary, the fraction in the right-
hand side of the inequality is greater than 1 and whenever ˆvkl > v̂i j > v∗∗,6 the firm prefers the long
run buyerkl and, if v̂kl < v̂i j < v∗∗, the short run buyeri j is favored by the auctioneer. In the two
remaining cases, ˆvi j > v̂kl > v∗∗ andv̂i j < v̂kl < v∗∗, there is noa priori systematic preference over
one or another agent, for the same reasons as in the perfect information case.

Thus, with asymmetry of information, the influence of the horizon of the agents on the optimal
allocation has the same general structure than in the efficient case discussed higher, with a different
cut-off value. For small per period valuations, short horizon buyers will be preferred. For larger per
period valuations, long horizon buyers will be favored.

It is in general impossible to state whetherv∗∗ is greater or smaller thanv∗, even in simple
case where all the probability distribution functions satisfy properties such as the one described by
assumption2.

Next section compares the allocation strategies of the firm and the regulator.

6.5 Efficient vs Profit maximizing allocation mechanisms

To compare both allocation procedures, this section compares the longest horizon bidder with a
strictly positive allocation probability for each mechanism.

6.5.1 Longest horizon bidder to be allocated the good

A bidder is given a strictly positive expected probability to be allocated the good if and only if the
highest value the auctioneer attaches to this bidderi is higher than all values this later attaches to the
lowest value attached to other bidders. Using the following notations{

K i
(
vi j
)

= vi j −δ
(
1−δi−1

)
π∗,

Li
(
vi j
)

= Ji
(
vi j
)
−δ
(
1−δi−1

)
π∗∗

and, recalling that virtual valuations are assumed to be increasing, a bidder of typei has a positive
expected allocation probability by the firm or the regulator i.i.f., respectively{

K i (vi) > maxk
[
Kk (vk)

]
,

Li (vi) > maxk
[
Lk (vk)

]
.

(17)

6If the problem is regular, then all virtual valuations are increasing as well as˜̃J.
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Notice thatK1(v1) = L1(v1) = v1 > 0. Thus, both maxima must be strictly positive and bidders
satisfying (17) will indeed have a strictly positive probability to be allocated the good.

Let R andF be the longest horizon bidders that are given a strictly positive probability to be
allocated the good by, respectively, the regulator and firm. That is{

R= sup
[
i|K i (vi) > maxk

[
Kk (vk)

]]
,

F = sup
[
i|Li (vi) > maxk

[
Lk (vk)

]]
.

The lack of structure of the valuations makes it difficult to play with these definitions. For example,
if i < j, thenK j

(
v j
)

is a priori not lower thanK i (vi). Indeed, notice that

K j (v j
)

=
(
v j −vi

)
+K i (vi)−δi (1−δ j−i)π∗∗.

Thus,K j
(
v j
)

< K i (vi) requiresv j < vi + δi
(
1−δ j−i

)
π∗∗. Thus, one cannota priori think atR as

the last bidder such thatKR(vR) > maxk
[
Kk (vk)

]
> KR+1(vR+1). The same argument induces that

there may exist biddersi < R, with shorter demand than bidderR (or F if i < F), that are never
allocated the good by the regulator (respectively the firm).

Nevertheless, one can still show the two following properties. First, leti be a “long term” bidder
which is never allocated the good by the firm, i.e.F < i. Then, it must be the case that there exists a
bidder j 6 F < i such that any bidder of typei has a lower value for the auctioneer than the lowest
value provided by biddersj. As virtual valuations are assumed to be increasing, this is equivalent to
bidderv j raising more value for the auctioneer than biddervi

Ji (vi)−δ
(
1−δi−1)π∗∗ 6 J j (v j

)
−δ
(
1−δ j−1)π∗∗.

As Ji (vi) = vi andJ j
(
v j

)
= v j −1/ f j

(
v j

)
< v j , this implies7

vi −δ
(
1−δi−1)π∗∗ < v j −δ

(
1−δ j−1)π∗∗

i.e. vi −v j < δ j (1−δi− j)π∗∗ 6 δ j (1−δi− j)π∗.

Rewriting this last inequality yieldsK i (vi) < K j
(
v j

)
. Thus, bidderi is allocated the good with

probability zero by the regulator.
Second, bidderR is such that, for all biddersi,

vR−δ
(
1−δR−1)π∗ > vi −δ

(
1−δi−1)π∗

i.e.

vR−vi +
1

f i (vi)
> vR−vi > δi (1−δR−i)π∗

i.e.

LR(vR) > Li (vi)+δi (1−δR−i)(π∗−π∗∗) .

7Recall that the profit maximizing firm gets an expected profit notedπ∗∗ and the social welfare maximizing regulator
gets social welfareπ∗ such thatπ∗ > π∗∗.
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For bidder’s typei 6 R, this yieldsLR(vR) > Li (vi). For bidder’s typei > R, one cannot secure the
same result and bidderRmay end up being such that there exists one typei such thatLR(vR) < Li (vi),
that is with no chance to be allocated the good by the firm. Combining both results, bidderR is
at most one candidate for the bidder with the longest horizon for the firm allocation mechanism,
i.e.R6 F .

This two properties are summarized in the following proposition.

Proposition 7. A profit maximizing firm distorts allocation decisions in favor of bidders with longer
horizon, that is the bidder with the longest horizon that is given a strictly positive probability by the
efficient allocation mechanism has a shorter horizon than the corresponding bidder under the profit
maximizing allocation procedure.

This result may be helpful in understanding the main differences in terms of allocation between
the essential facility being ruled by a profit maximizing firm or a social welfare maximizing regu-
lator. As the firm incurs a cost of gathering information, the value this later attaches to any bidder
may end to be lower than the one of the regulator. This makes more plausible for long-run agents,
for whom the commitment cost is higher, to get the object when the firm is ruling the allocation.
Loosely speaking, by allowing such long term bidders, the firm is putting more pressure on shorter
term bidders.

6.5.2 Other elements of comparison

Let assume that bidders’ valuation distribution verify assumption2. Following the analysis done in
section6.3, the regulator prefers bidderi j to bidderkl if ṽi j > ṽkl, that is when

[
v̂i j −v∗

]
>

1−δk

1−δi [v̂kl −v∗] .

Then, recalling section6.4, the firm prefers bidderi j to bidderkl if ˜̃vi j > ˜̃vkl, that is if[
˜̃J
(
v̂i j
)
− ˜̃J(v∗∗)

]
>

1−δk

1−δi

[
˜̃J(v̂kl)− ˜̃J(v∗∗)

]
.

Notice that whereas the efficient allocation requires a constant gap between average valuations of
two biddersi and j, this is nota priori the case for the firm’s mechanism. Moreover, whenk > i, the
fraction is higher than 1 while when both are very large, it is equal to 1. It is nevertheless difficult to
discuss in more details these comparisons.

7 Conclusion

This chapter develops an analysis of congestion problems based on a new stationary approach of
the pricing of capacity on networks. First, it shows thata priori well-behaved standard Vickrey
allocation mechanisms do not work in the context of goods exhibiting short-term and long-term
demands. Then, it develops tractable infinitely repeated allocation models of an identical good,
without resale market between agents, when the auctioneer commits not to reallocate a good awarded
for several periods. Both optimal and efficient allocation mechanisms are described.

There are five main insights raised by this chapter. The first lesson is that one has to carefully
take into account the difficulty raised by the difference in length of customers demands in order
to tackle the analysis of congestion problems in a proper way. Second, the rules of the allocation
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mechanism, either the optimal or the efficient one, are highly different from standard static ones
but in the same line of techniques. Third, the optimal mechanism is characterized by, first, the
exclusion of customers with low virtual valuations, as usual, and, second, by a cost attached to long
term buyers. This cost corresponds to the lack of flexibility induced by the commitment of the
seller not to renegotiate its allocation mechanism, i.e. not to rule out long term agents during their
consumption of the good were a better offer to show up. Fourth, whereas the allocation procedure of
any auctioneer is not based on per period bidders’ valuation, the comparison between bidders can be
based on their per period willingness to pay. Roughly, when two bidders show up with identical per
period valuation that is higher than a threshold, then the auctioneer favors long-term buyers while
it favors short-term buyers if the reverse holds. The threshold value is different for the firm and
the regulator. Fifth, the firm tends to allocate the good to bidder with longer time horizon than the
regulator.

Nevertheless, many problems are left open regarding the primary study of the pricing of the In-
ternet: asymmetry of information with respect with the length of demand, the possibility of queuing
or resale, for example.
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A Appendix

A.1 Proof of lemma1

This follows directly from equation (2) and (3). Thus,
{

pi j∗ (vi j
)
, t i j∗ (vi j

)}
is a solution to the

maximization problem in this case. Note that there is no need for the social planner to specify
the transfer functiont i j

(
vi j
)

to be equal tot i j∗ (vi j
)
, as long as it satisfies individual rationality

constraints. On the contrary, the firm must set the transfers tot i j∗ (vi j
)
. The proof relies only on the

linearity of

A.2 Proof of lemma2

Let define

W̃ (π, p)≡
I

∑
i=1

ni

∑
j=1

Ev
[[

vi j −δ
(
1−δi−1)π

]
pi j (v)

]
where p is the vector made of allpi j . This function is clearly decreasing inπ. The convex-
ity results from the fact that functioñW is linear with respect toπ. Simple computations show
thatW̃ (απ1 +(1−α)π2, p) = αW̃ (π1, p)+ (1−α)W̃ (π2, p) for α between 0 and 1. Then, define
p(v|π) the vector made of probability functions that maximizeW (π) for a givenπ. It must be the
case thatW (π) = W̃ (π, p(v|π)) and thatW (π) > W̃ (π, p(v| π̃)) for π̃ 6= π. Combining the linearity
of W̃ with respect toπ and the relationship betweeñW (π, p), W (π) andp(v|π) yields

W̃ (απ1 +(1−α)π2, p(v|απ1 +(1−α)π2))
= αW̃ (π1, p(v|απ1 +(1−α)π2))+(1−α)W̃ (π2, p(v|απ1 +(1−α)π2))
6 αW̃ (π1, p(v|π1))+(1−α)W̃ (π2, p(π2)) .

Thus,

W (απ1 +(1−α)π2)−δ [απ1 +(1−α)π2] 6 αW (π1)+(1−α)W (π2)

andW (π)−δπ is convex.

Moreover,W (0)−0 = max{pi j (.)}i, j

[
∑I

i=1∑ni
j=1Ev

[[
vi j
]

pi j (v)
]]

must be positive if the overall

problem has any economic sense: the right-hand side represents social welfare in a static optimal
auction with perfect information.

Eventually, limπ→+∞ [W (π)−π] = max{p1 j (.)} j

[
∑n1

j=1Ev
[[

v1 j
]

p1 j (v)
]]

which must also be pos-

itive and lower thanW (0)−0.

A.3 Proof of lemma3

Constraints
(
ICi j
)

are equivalent, for any agenti, all vi j andṽi j , to

U i (vi j
)

> qi j (ṽi j
)

vi j − t i j (ṽi j
)

U i (ṽi j
)

> qi j (vi j
)

ṽi j − t i j (vi j
)
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or

qi j (vi j
)(

vi j − ṽi j
)

> U i (vi j
)
−U i (ṽi j

)
> qi j (ṽi j

)(
vi j − ṽi j

)
(18)

Thus, equation (6) follows. This requires that the expected probabilityqi j
(
vi j
)

must be non-
decreasing as well asU i

(
vi j
)
. Dividing (18) by

(
vi j − ṽi j

)
and taking the limit as ˜vi j → vi j yields,

almost everywhere and for alli

dUi
(
vi j
)

dvi j
= qi j (vi j

)
> 0. (19)

Integrating (19) betweenvi j andvi j gives (7). Moreover,U i
(
vi j
)

being non-decreasing and
(
IRi j

)
induce (8).

Conversely, combining (7) and (6) yields (18) which is equivalent to
(
ICi j
)
. Moreover,qi (vi) is

non-decreasing, so combining (7) and (8) implies
(
IRi j

)
.

A.4 Proof of lemma4

Lemma3 sets that the maximization of both auctioneers can be written as maximizing (1) under
constraints (6), (7), (8),

(
Pi j
)

and(P0). According to (7), the expected payment of a bidder can be
written as

t i j (vi j
)

= qi j (vi j
)

vi j −U i (vi j
)

= qi j (vi j
)

vi j −
∫ vi j

vi

qi j (x)dx−U i (vi)

Moreover, standard manipulation of the integral yields

Evi j

[∫ vi j

vi

qi j (x)dx

]
=

∫ vi

vi

∫ vi j

vi

qi j (x) f i (vi j
)

dxdvi j =
∫ vi

vi

∫ vi

x
qi j (x) f i (vi j

)
dvi j dx

=
∫ vi

vi

qi j (x)
[
1−F i (x)

]
dx= Evi j

[
qi j (vi j

) 1−F i
(
vi j
)

f i
(
vi j
) ]

,

For a profit maximizing seller, the objective is to maximize the bidders’ expected payments while
preserving individual rationality, so that the optimal mechanism is characterized byU i (vi) = 0 which
gives equation (10). Then, expected payment by agenti j becomes

Evi j

[
t i j (vi j

)]
= Evi j

[(
vi j −

1−F i
(
vi j
)

f i
(
vi j
) )

qi j (vi j
)]

. (20)

Finally, current expected benefits can be rewritten

∑
i, j

Evi j

[(
vi j −

1−F i
(
vi j
)

f i
(
vi j
) −δ

(
1−δi−1)π

)
qi j (vi j

)]
+δπ.

This is the expression given in (9) for a profit maximizing seller.
When dealing with efficiency, transfers are not taken into account in the objective function as

far as they respect the incentive compatibility constraint. Thus, the objective function of the social
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planner can be rewritten

∑
i, j

Evi j

[[
vi j −δ

(
1−δi−1)π

]
qi j (vi j

)]
+δπ.

which corresponds to (9) with Y
(
vi j
)

= vi j .
Thus, the auctioneer’s problem is to maximize (9) under constraints (6), (7), (8), (Pi j ) and(P0).

What is left to be proved is that constraints (8) and (7) are all satisfied by the proposed transfer
functiont i∗∗ (vi). Simple computations show that this is the case. Eventually, the proposed solution
of program (9) is a solution to program (1).

Note that, for the regulator, expression (20) about transfers holds but there is no obligation to set
U i (vi) = 0. Nevertheless, the particular transfer functiont i j∗ (vi j

)
is a (non-unique) solution to the

maximization problem (1).

A.5 Proof of lemma5

Define the following function

Ṽ (π, p)≡
I

∑
i=1

ni

∑
j=1

Ev
[[

Yi (vi j
)
−δ
(
1−δi−1)π

]
pi j (v)

]
whereYi

(
vi j
)

corresponds toJi
(
vi j
)

when maximizing profits orvi j when taking care about effi-
ciency. Then, functioñV is clearly decreasing inπ. The proof for convexity then follows the same
line as the proof of lemma2 because functioñV is also linear inπ. The result inπ = 0 is also a
consequence for the problem parameters to be economically meaningful in presence of asymmetric
information.

A.6 Proof of proposition 3

What needs to be proved is that the level of final benefits for the regulator is identical with asymmet-
ric information and perfect information. In the presence of asymmetric information, the regulator
has to solve problem(P1). Nevertheless, transfers appear both as benefits for the regulator and costs
for bidders, summing up to zero in the objective function. The role of transfers shrinks to secur-
ing incentive compatibility constraints, which is always the case with the mechanism proposed in
proposition3. Thus,π∗ = π∗∗.
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