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Abstract

We consider a two-period portfolio problem with predictable assets returns.
First-order (second-order) predictability means that an increase in the first
period return yields a first-order (second-order) stochastically dominated
shift in the distribution of the second period state prices. Mean reversion in
stock returns, Bayesian learning, stochastic volatilities and stochastic interest
rates (bond portfolios) belong to one of these two types of predictability. We
first show that a first-order stochastically dominated shift in the state price
density reduces the marginal value of wealth if and only if relative risk aver-
sion is uniformly larger than unity. This implies that first-order predictability
increases the initial optimal portfolio risk if this condition is satisfied. A sim-
ilar result is obtained with second-order predictability under the condition
that absolute prudence be uniformly smaller than twice the absolute risk
aversion. When relative risk aversion is constant, these two conditions are
equivalent. We also examine the effect of exogenous predictability, i.e., when
the information about the future opportunity set is conveyed by signals not
contained in past asset prices. In this latter case, markets are incomplete.



1 Introduction

Since Merton (1969,1971), it has been recognized that the uncertainty sur-
rounding the future opportunity set of investments should affect optimal
portfolios. A recent trend of the finance literature tends to suggest that
there is some predictability in the changes of the investment opportunity
set. Investors are now adviced to consider the possibility to hedge today
against bad news about their future opportunity set. This is usually possi-
ble if random shifts in this set are statistically related to current and past
returns. Several authors, considering various information structures about
the stochastic opportunity set, characterized the optimal dynamic portfolio
management. Pursuing operational goals, they did not often try to provide an
intuition to their results. It is usually mentioned that a change in the oppor-
tunity set has a substitution effect and a wealth effect which makes the global
effect ambiguous. Beside the fact that this argument is not really explicit, it
fails to explain why the sign of the hedging demand depends upon whether
relative risk aversion, assuming it to be constant, be smaller or larger than
unity. Systematically, the intuitively appealing sign of the hedging demand
is obtained when constant relative risk aversion is larger than unity. In other
words, the sign of the hedging demand counter-intuition when ”the investor
is less risk-averse than the logarithmic agent”. We believe that operational
rules can be helpful only if one can explain their intuition to the decision
makers. How could we explain to an investor with a constant relative risk
aversion less than unity that mean-reversion in stock returns should make
him to reduce, rather than to increase, his demand for stocks? Why is the
unity of relative risk aversion critical for the sign of the hedging demand?
Why can it be counter-intuitive? Why are we unable to determine the sign
of the hedging demand for some specific forms of information structure? The
main aim of this paper is to answer these questions.
We will provide a typology of the various concepts of predictability of

asset prices. For each type of predictability, we will explain the underlying
mechanisms affecting the optimal dynamic portfolio management. By doing
so, we will not limit the analysis to preferences exhibiting constant relative
(or absolute) risk aversion. It is useful not to rely on such condition in
order to be able to disentangle the various effects of the predictability of
returns. We consider the simplest dynamic structure to examine the effect
of predictability by using a three-date two-period economy. Our objective is
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to provide a structure and some intuition to this wide literature, rather than
to improve the existing operational rules.
One of the earliest practical example of predictability in future returns

is due to Detemple (1986) and Gennotte (1986) where some investors do
not know the size of the equity premium, but they learn about it over time
by observing stock returns. We can present the following simple parable to
illustrate the problem: in a casino, there is an urn of indistinguishable coins,
half of which are ”good” and half ”bad”. The good and bad coins land heads
with different probabilities that are known a priori. A single coin is picked at
random from the urn that is used for n plays of the game. At each play of the
game, you choose how much you want to bet. Because the same coin is tossed
in the n plays, the first outcomes convey information about the distribution
of future payoffs. In this specific example, a good (bad) draw in the first
round is a good (bad) news for the future opportunity set. Investors can
hedge against the risk on the future opportunity set by reducing their initial
stake. The question is whether they should do so. More generally, would one
adopt a different risk exposure in play 1 of the game if different coins would
be used for the various plays?1 Assuming constant relative risk aversion,
Gennotte (1986) showed that players should hedge the risk by reducing their
initial risk exposure if and only if relative risk aversion is larger than unity.
Brennan (1998) and Barberis (2000) estimate the effect of learning on the
optimal dynamic portfolio strategy.
Predictability can also come from the existence of serial correlation in

stock returns. The predictability of stocks and bonds returns has recently
been recognized. Barberis (2000) for example estimates significant pre-
dictability of US stocks returns. The implied standard deviation of ten-year
returns is 23.7 percent, much smaller than the 45.2 percent value implied by
the standard deviation of monthly returns.2 More precisely, there is mean-
reversion in stock returns: a high return of the risky portfolio today implies
a lower portfolio return in expectation tomorrow: a good news today means
a bad news for the future opportunity set. Because mean-reversion implies
that stocks are safer in the long run, the intuition suggests that a long hori-
zon agent should take more risk in the initial stage of the game. Kim and

1McCardle and Winkler (1992) raised this question to over 200 students and obtained
that most people prefer not to bet at first, in order to gather information about the coin.

2See also Poterba and Summers (1988), Campbell (1996), Campbell, Lo and MacKinlay
(1997) and Cochrane (2001).
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Omberg (1996) and Kogan and Uppal (2000) showed that this is indeed the
case if constant relative risk aversion is larger than unity. Campbell and
Viciera (1999) and Barberis (2000) numerically estimated this hedging de-
mand. The effect of return predictability on the optimal structure of the
initial portfolio is surprising large. For an agent with a relative risk aversion
equaling 10 and a ten-year time horizon, the optimal investment in stocks
is about 40% of current wealth without predictability. It goes up to 100%
when mean-reversion is taken into account. Cochrane (2001) argues that
this makes the equity premium puzzle even worse. This also shows that the
time horizon of the investor is an important element to take into account to
determine the optimal portfolio: when relative risk aversion is constant and
larger than unity, a longer time horizon should induce investors to take more
risk. The contrary is true if constant relative risk aversion is less than unity.
Predictability also arises from random time-varying volatility of stocks

returns. There is ample evidence that large negative returns tend to be asso-
ciated with increases in volatility over long periods of time (French, Schwert
and Stambaugh (1987)). Chacko and Viciera (2000) shows that when changes
in volatility are negatively correlated with excess stock returns, there is a neg-
ative (resp. positive) hedging demand when constant relative risk aversion
is larger (resp. smaller) than unity. They also show that this generates a
sizable hedging demand only when low frequency shocks to volatility exhibit
enough persistence.
A fourth example of predictability is provided by the analysis of bond

portfolios. Suppose that there is a short bond and a long bond, and that
there is uncertainty about the future risk free rate. In such a situation, a
good news in the second period (high risk free rate) is compatible only with
bad news in the first period (low return of the long bond) because of the
negative relationship between the interest rate and the price of the long-
term bond. Again, because of the negative correlation between the current
and the future return of long-term bonds, the intuition is that investors
should hedge the future risk by raising their demand for the long-term bond.
Brennan, Schwartz and Lagnado (1997) solve numerically a simple version of
this model to motivate their paper. They show that the intuition is correct
only if the constant relative risk aversion is larger than unity. Campbell and
Viciera (2001) calibrated a more complex version of this model to quantify
the optimal mix of short-term and long-term bonds.
Our contribution to this literature has two main components. First, we
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propose a typology of the stochastic nature of the opportunity set. We
show that its effect on optimal portfolios is in fact much different depending
upon the type of predictability faced by investors. In spite of their ap-
parent unity, the above-mentioned results relying on whether relative risk
aversion is larger or smaller then unity hide a diversity of underlying phe-
nomena. Following Lehmann (1966), we define two types of predictability,
namely First-order Stochastic Dominance (FSD) predictability, and Mean-
Preserving-Spread (MPS) predictability. The predictability of long-term
bonds is in the class of FSD predictability. Predictability coming from ei-
ther mean-reversion of stock returns, stochastic volatility of these returns, or
learning about the size of the equity premium belongs to the class of MPS
predictability. It is important to recognize this typology because, contrary to
what is suggested in the above-mentioned literature, the necessary and suf-
ficient conditions for an unambiguous effect of predictability have different
natures depending upon the class to which they belong.
Our second contribution comes from extending the existing results that

are limited to CRRA preferences to any increasing and concave utility func-
tion. This is not done for the beauty of the theoretical exercise. Rather, we
show that allowing of more flexible functional forms is very helpful to ex-
tract intuition. In particular, we show how to disentangle the three possible
effects of predictability: substitution effects, wealth effects and precaution-
ary effects. These effects are not apparent with CRRA preferences because
of their very specific properties.3

The choice of the initial portfolio risk is driven by the marginal value of
wealth at the end of the initial period. This marginal value of wealth depends
upon the future opportunity set. If predictability reduces the marginal value
of wealth in states where it is large, and if it raises it in states where it is
small, predictability has intuitively the same effect than a reduction in risk
aversion. It must then raise the optimal portfolio risk. In consequence, we see
that the central step of the analysis is to determine the effect of the change
in the opportunity set on the marginal value of wealth. We have seen that
this change in the opportunity set takes the form of a FSD or MPS shift in
the distribution of the state contingent prices. We show that the mechanisms
relating the shift in the distribution of prices and the marginal value of wealth

3In particular, the fact that relative prudence equals relative risk aversion plus one in
the case of CRRA makes it difficult to separate the effects of risk aversion and prudence.
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are much different depending upon whether we examine MPS shifts or FSD
shifts. Their respective intuitions are much different.
In the case of a FSD-dominated shift in the distribution of state returns,

there is a pure substitution effect and a wealth effect. Because wealth yields
smaller returns in all states, its marginal value is smaller (substitution effect).
But the shift also reduces the final consumption in each state. This raises the
marginal utility of consumption and thereby it raises the marginal value of
wealth (wealth effect). The strength of this wealth effect is proportional to
the degree of concavity of the utility function. The net effect on the marginal
value of wealth is negative only if relative risk aversion is sufficiently large.
It happens that this is the case if it is larger than unity.
In the case of a MPS shift, there is a different wealth effect, and a pre-

cautionary saving effect. The MPS provides more risk taking opportunities.
It therefore raises the expected final consumption, otherwise these additional
risks would not be taken. This reduces the marginal value of wealth. The
strength of this wealth effect is increasing with absolute risk aversion. But if
the marginal utility of consumption is convex (prudence), the increased risk
taking also raises the marginal value of wealth. This precautionary saving
effect is increasing in the degree of absolute prudence. Thus a MPS shift in
the distribution of state prices reduces the marginal value of wealth only if
the ratio of absolute risk aversion to absolute prudence is sufficiently large.
It happens that the critical level of this ratio is 2.
An interesting point is that in the case of constant relative risk aversion

(CRRA), these two conditions are equivalent: under CRRA, the ratio of
absolute risk aversion to absolute prudence is larger than 2 if and only if
relative risk aversion is larger than unity! This is why the existing literature
did not need to establish a typology of the predictability of returns in the
various models. The conditions for an unambiguous effect of predictability
are the same for MPS predictability and FSD predictability when relative
risk aversion is constant. This is not the case for other preferences, as when
absolute risk aversion is constant (CARA). For CARA preferences, MPS pre-
dictability yields an unambiguous hedging demand, but FSD predictability
is ambiguous.
In section 2, we present the general model. In section 3, we show how to

categorize the different predictability models that have been examined in the
past. Section 4 is devoted to the analysis of FSD predictability. The effect of
MPS predictability is characterized in section 5.
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Up to know, we assumed that the future opportunity set is perfectly cor-
related with the first-period return, which implies that markets are complete.
However, the assumption of perfect correlation is not empirically plausible.
In section 6, we examine the effect of this market incompleteness on the
hedging demand. More precisely, we examine the case where the informa-
tion about the future opportunity set is conveyed by signals that are not
contained in past returns. We say in this case that we have exogenous pre-
dictability. To illustrate, Fama and French (1988) showed that past dividend
yields on common stocks is a good predictor of future asset returns. We
can infer from the existing literature that investors with constant relative
risk aversion should be myopic to exogenous predictability. We examine the
effect of exogenous predictability for other preference functionals.

2 Description of the general problem

We consider the simplest model to deal with this question. There are two
periods indexed t = 0, 1. Consumption takes place only at the end of the
second period (investment problem). In each period, there is a complete set
of markets contingent to the state of the world that will be revealed at the
end of the period. eπt is the price kernel in period t. At the end of the first
period, not only eπ0 is revealed, but also a signal em is received. Thus, the
distribution of eπ1 is conditional to the pair (eπ0, em). This is the predictability
hypothesis.
We solve the dynamic problem by backward induction. In the second

period, given the realization (π0,m) observed at the end of the first period,
the investor selects his portfolio that maximizes the expected utility of his
final consumption:

v(z;π0,m) = max
c(.)

E [u(c(eπ1)) | π0,m] (1)

s.t. E [eπ1c(eπ1)) | π0,m] = z, (2)

where z is the accumulated wealth at the beginning of the second period,
and v(z;π0,m) is the maximum expected utility that one can obtain with
wealth z, given information (π0,m). The optimal final consumption plan is
given by c(π1, z;π0,m). The maximum expected utility that one can extract
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in turn from z prior to signal em is thus equal to V (z;π0), which is given by

V (z;π0) = Ev(z;π0, em). (3)

At the beginning of the first period, the investor selects the portfolio c0(.)
which maximizes V :

max
c0(.)

EV (c0(eπ0); eπ0) s.t. Eeπ0c0(eπ0) = w0, (4)

where w0 is the initial wealth of the investor. Notice that c0(π) is not a level
of consumption, but rather the wealth accumulated at the end of the first
period in all states of nature whose state price is π.
The aim of this paper is to examine the effect of the predictability hy-

pothesis on the optimal risk exposure in the first period. The amount of
risk borne by an agent is measured by the sensitivity of his state-contingent
consumption to differences in the corresponding state prices. Of course, in
the standard static Arrow-Debreu model, optimal consumption is larger in
states with a lower price π. We say that a state-contingent consumption plan
c0(.) is riskier than another plan c

∗
0(.) if curve c0 is steeper than curve c

∗
0.

Or, more precisely, if curve c0 single-crosses curve c
∗
0 from above.

4 When the
distribution of eπ0 is binary, or when the risk on eπ0 is small, this implies that
the variance of c0 is larger than the variance of c

∗
0.

In the next three sections, we will assume that eπ1 is independent of m.
Section 6 is devoted to the case where eπ1 is correlated to em. When the
distribution of eπ1 is correlated to eπ0, we use the following definition.
Definition 1 There is positive (negative) predictability when a worse news
for the first period is a better (worse) news for the future opportunity set.

A good news for the first period is equivalent to the realization of a
cheaper state (π0 low), since it implies a better first-period return. Under
positive predictability, this implies that there opportunity set for the second
period is improved. The intuition suggests that the hedging demand should
be positive because of the time diversification that this negative correlation

4In the static Arrow-Debreu portfolio problem, this is the necessary and sufficient
condition for plan c0 to be selected by an agent that is less risk-averse than the one that
selects plan c∗0. See Franke, Stapleton and Subramanyam (2001) and Gollier (2001).
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provides. At this stage, it is useful to observe that there are two ways to
improve the opportunity set in period t. The first one is to deteriorate the
distribution of eπ1 in the sense of first-order stochastic dominance (FSD). This
would imply that all contingent plans become less costly. The second one is to
increase the riskiness of the distribution of eπ1 in the sense of Rothschild and
Stiglitz. This means introducing mean-preserving spreads (MPS), or zero-
mean noises, to eπ1. Because investors can always hedge these noises at an
actuarially fair price, adding these noises enlarges the risk-taking opportunity
set.

Definition 2 There is FSD predictability if the conditional distributions ofeπ1 can be ordered according to the first-order stochastic dominance order.
There is MPS predictability if the conditional distributions of eπ1 can be or-
dered according to the Rothschild-Stiglitz increase in risk order.

3 A typology of existing predictability mod-

els

All existing models of portfolio management with predictability take the
distribution of returns, rather than the distribution of state prices, as their
primitive random variables. We hereafter show that what really matters to
determine the effect of predictability on the demand for assets is whether
the conditional distributions of state prices can be ordered according one of
the standard stochastic orders. If we want to link this work to the existing
literature, we need to show how a shift in the conditional distribution of
returns affects the conditional distribution of state prices. To do this, let us
consider the simplest case with two states of nature in the second period. Let
us denote them a and b, respectively with probability pa and pb, pa+ pb = 1.
This is an interesting case since the market is completed with only one risk
free asset with gross return Rf , and a risky asset whose contingent gross
returns are Ra and Rb. We assume without loss of generality that Ra ≤
Rf ≤ Rb and ER = paRa + pbRb ≥ Rf .
Using the standard arbitrage method, we easily derive the state price πa

and πb:

πa =
Rb −Rf

paRf(Rb −Ra) and πb =
Rf −Ra

pbRf(Rb −Ra) .
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Observe that πa is larger than πb and that paπa + pbπb = R
−1
f . Suppose now

that Ra, Rband Rf can be affected by the first period return x of the risky
asset. Let us consider in particular the following four examples.

1. Ri(x) = ri + g(x), i = a, b, f, g
0 < 0 : this is a case where the excess

return is stable, but the risk free rate is stochastic. One can check that

pi
∂πi
∂x

= −g0(x)piπi
Rf

> 0, i = a, b.

Thus, when the excess return is constant, but the risk free rate is
stochastic, the distribution of state prices can be ordered according to
the FSD order. This is an example of positive FSD predictability that
is typical of bond portfolios, since the instantaneous return of the long
bond is negatively correlated to the future risk free rate.

2. Ri(x) = ri + g(x), i = a, b, g
0 < 0, and Rf is constant. This is the case

of mean-reversion in stock returns. One can again show that

pa
∂πa
∂x

=
g0(x)

Rf(Ra −Rb) < 0, and pb
∂πb
∂x

=
−g0(x)

Rf(Ra −Rb) > 0.

Because Rf = (paπa+pbπb)
−1 is left unchanged, mean-reversion in stock

returns implies that an increase in the first period return (good news)
yields a mean-preserving contraction in eπ1 (bad news). Thus, mean-
reversion in stock returns is an example of positive MPS predictability.

3. Ra(x) = ra−p−1a g(x), Rb(x) = rb+p−1b g(x), Rf constant, g0 < 0: when
the first period return is larger, volatility is reduced, whereas both the
risk free rate and the excess return remain the same. This is the case
of stochastic volatility. Observe that

−pa∂πa
∂x

= pb
∂πb
∂x

= g0(x)
E eR−Rf

papbRf(Ra −Rb)2 < 0.

The observed negative correlation between instantaneous returns and
future volatility implies that an increase in the first-period return yields
a mean-preserving spread in eπ1, which is a good news. Stochastic
volatility is a case of negative MPS predictability.
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Figure 1: First-order predictability with negative correlation of returns.

4. In the learning case, Ra, Rb and Rf are constant, but the observed first
period return x in period 0 affects state probabilities pa(x) = 1− pb(x)
in period 1. Under Bayesian learning, a larger x reduces the likelihood
of the bad state a : p0a < 0. Because

∂πa
∂x

= −p
0
a(x)πa(x)

pa(x)
> 0, and

∂πb
∂x

=
p0a(x)πb(x)
1− pa(x) < 0,

Bayesian learning is an example of negative MPS predictability.

4 First-order predictability

We assume here that em and eπ1 are independent, which implies that V ≡ v,
and that an increase in π0 generates a FSD-dominated shift in the distribution
of eπ1. Because this implies in particular that the second period risk-free rate
(Eeπ1)−1 be decreasing in the first period market return, this assumption is
not compatible with a model where stock returns are mean-reverting but
with a constant risk free rate. In this section, when the first period market
return is larger, all second period Arrow-Debreu securities have a smaller
return. Figure 1 illustrates positive FSD predictability.
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As seen in the previous section, we get positive first-order predictability
by considering the management of a portfolio of short and long bonds. A
downward shift in the distribution of the future risk free rate is compatible
with an upward jump in the current return of long bonds. The optimal in-
vestment in the short and long bonds must take account of the difference
in current returns, but also of the recognition that long bonds have larger
short-term returns when future short-term rates are expected to be lower.
Thus, long bonds can hedge against changes in the future investment oppor-
tunity set. The hedging demand for long bonds is measured by the additional
demand from a rational investor in comparison to what would demand a my-
opic investor treating the long bond as simply another risky asset. Brennan,
Schwartz and Lagnado (1997) solve this problem by using a power utility
function, together with assuming the pure expectations hypothesis.

4.1 FSD shifts and the marginal utility of wealth

The optimal portfolio at date 0 is governed by the comparison of the marginal
value of wealth at date 1 in the various states. Because the first period state
affects the distribution of the second period prices, it is useful to start with
the analysis of the effect of a change in the distribution of eπ1 on ∂v/∂z =
∂V/∂z.
At this stage, we simplify the above notation by considering the primitive

problem
v(z) = max E [u(c(eπ))] s.t. E [eπc(eπ))] = z. (5)

Its first-order condition is written as

u0(c(π)) = ξπ. (6)

Using the envelope theorem, we also obtain that the Lagrangian multiplier
associated to the budget constraint is equal to the marginal value of wealth:
ξ = v0(z). We are interested in determining the effect of a shift in the distri-
bution of eπ on this marginal value of wealth. We have the following result
which relies on relative risk aversion R defined as R(c) = −cu00(c)/u0(c).
Proposition 1 A first-order stochastically dominated shift in the distribu-
tion of state prices per unit of probability reduces (resp. increases) the marginal
value of wealth if and only if relative risk aversion is uniformly larger (resp.
smaller) than unity: R(c) ≥ (≤)1 for all c in the domain of u.
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Proof: The value of ξ = v0(z) can be obtained by combining the first-order
condition (6) and the budget constraint. This yields

Eeπφ( 1
ξeπ ) = z, (7)

where function φ is defined as φ(y) = u0−1(1/y). Under risk aversion, this
function is increasing in its argument. Define χ(ξ,π) = πφ(1/ξπ). We have
that χ is decreasing in ξ and

∂χ

∂π
(ξ,π) = φ(

1

ξπ
)− 1

ξπ
φ0(

1

ξπ
). (8)

Now, observe that relative risk aversion larger than unity is equivalent to
the right-hand side of the above equality to be nonnegative. Indeed, because
u0(φ(y)) = y−1, φ0(y) = −u02(φ(y))/u00(φ(y)), we have that

∂χ

∂π
(ξ,π) = φ(y)− 1

u0(φ(y))
−u02(φ(y))
u00(φ(y))

= φ(y) +
u0(φ(y))
u00(φ(y))

(9)

= T (φ(y)) [R(φ(y))− 1] , (10)

with y = 1/ξπ. T (φ) = −u0(φ)/u00(φ) is the degree of absolute tolerance
evaluated at wealth φ. Thus χ is increasing in π if and only if relative risk
aversion is larger than unity.
Suppose that eπb is dominated by eπa in the sense of first-order stochastic

dominance. We have to show that ξb ≤ ξa if R ≥ 1. Suppose by contradiction
that ξb be larger than ξa. If relative risk aversion is larger than unity, we
would have a contradiction, since condition (7) yields

z = Eχ(ξb, eπb)
< Eχ(ξa, eπb)
≤ Eχ(ξa, eπa) = z. (11)

The first inequality comes from the assumption that ξb > ξa, whereas the
second inequality comes from the definition of first-order stochastic domi-
nance together with the property that χ is increasing in π if R ≥ 1. This
proves that R ≥ 1 is sufficient for the result. The proof of necessity follows
the standard method to prove necessity in the theory of stochastic dominance
and is therefore omitted.¥
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The intuition of the result is best understood by considering the two-
period saving-portfolio problem. The agent faces uncertainty about the state
of nature that will prevail in the second period. We assume that there exists
a complete set of contingent markets. In period 0, the agent is endowed with
wealth w0 from which he consumes w0−s and saves s. Savings in period 1 is
used to purchase a portfolio of Arrow-Debreu securities as described above.
The problem is to maximize u0(w0 − s) + βv(s) where v is defined by (5).
Obviously, under the concavity of the u0 function, anything that reduces the
marginal value of savings, v0(s), also reduces the optimal savings in period
0. Thus Proposition 1 implies that a FSD-dominated shift in the distribution
of state-prices reduces the optimal saving if and only if relative risk aversion
is larger than unity.
Here is our intuition about Proposition 1: a FSD-dominated shift in

the state-price density has a substitution effect and a wealth effect. The
substitution effect comes from the increased efficiency of savings due to the
reduction in state prices, i.e., to the increase in the rate of return on savings.
It raises the marginal value of wealth. But for a given s, the FSD-dominated
shift in the state-price density increases consumption in all states in period
1. Because the marginal utility on consumption is decreasing (u00 < 0), this
tends to reduce the marginal value of wealth. The wealth effect is increasing
with the speed at which u0 is decreasing, i.e., it is increasing in the degree
of relative risk aversion. Thus, if we want the wealth effect to dominate the
substitution effect, we need to put a lower bound to relative risk aversion
in order to guarantee that a FSD-dominated shift in the state price density
reduces the marginal value of wealth.

4.2 The investment problem with first-order predictabil-
ity

We can now go back to the three-date two-period investment problem pre-
sented in section 2. We assume that

eπ1 | π0 =d g(π0, eε), (12)

where eε is independent of eπ0. Function g is decreasing in its first argument,
which implies that eπ1 | π0 is FSD-dominated by eπ1 | π00 whenever π0 is larger
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than π00. The initial portfolio problem in this predictable world is written as

max
c0(.)

Ev(c0(eπ0); eπ0) s.t. Eeπ0c0(eπ0) = w0, (13)

where function v is defined by program (1). The first-order condition for
program (13) yields

v0(cp0(π0);π0) = λpπ0 ∀π0. (14)

The superscript p is to refer to the solution for the predictable world. The
prime is used for the derivative of the function with respect to its first argu-
ment.
We compare the optimal portfolio cp0(.) in the predictable world to the

optimal portfolio cu0(.) in an unpredictable world. In the unpredictable world,
the second period distribution of price is independent of the first period
state: the investment set is fixed. Without loss of generality, let us suppose
that there exists bπ such that eπ1 in the unpredictable economy is distributed
as eπ1 | bπ in the predictable economy. Equivalently, this means that eπ1 is
distributed as g(bπ, eε). It implies that the date-0 portfolio problem in the
unpredictable world can be written as

max Ev(c0(eπ0); bπ) s.t. Eeπ0c0(eπ0) = w0. (15)

It yields the first-order condition

v0(cu0(π0); bπ) = λuπ0 ∀π0, (16)

where cu0(.) is the optimal portfolio in the unpredictable world and λu is the
associated Lagrangian multiplier of the budget constraint. Combining the
two first-order conditions (14) and (16) yields

v0(cp0(π0);π0) =
λp

λu
v0(cu0(π0); bπ) (17)

The intuition suggests that FSD predictability should induce risk-averse
investors with R > 1 to take more risk in period 0. This would be true if
cp0(.) single-crosses c

u
0(.) from above. Since Merton (1971), we know that this

property certainly holds in the case of preferences with constant relative risk
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aversion: u0(c) = c−γ. Indeed, it is well-known that the value function in-
herits this property from the original utility function: v0(z;π0) = h(π0)u0(z).
Condition (17) is then rewritten as

u0(cp0(π0))h(π0) =
λp

λu
u0(cu0(π0))h(bπ). (18)

Then, define π∗ such that h(π∗) = λph(bπ)/λu. The above equality is thus
equivalent to

u0(cp0(π0))h(π0) = u
0(cu0(π0))h(π

∗). (19)

Obviously, if h is decreasing (increasing), cp single-crosses cu from above
(below) at π∗. But using Proposition 1, we know that h is increasing when
relative risk aversion γ is less than 1, whereas h is decreasing when γ > 1.
Combining these remarks yields the following well-known result.

Proposition 2 Assume FSD predictability with negative serial correlation of
returns and constant relative risk aversion. If relative risk aversion is larger
than unity, the initial optimal risk exposure is larger than in the unpredictable
economy: for any pair (a, b) such that a ≤ b, cu0(a) ≥ cp0(a) implies cu0(b) ≥
cp0(b). The opposite result holds when relative risk aversion is uniformly less
than unity.

In the limit case, the logarithmic investor has no hedging demand at all,
as first proved by Mossin (1968).
When relative risk aversion is not constant, we cannot guarantee the

single-crossing property anymore. But we get a similar property, which is
presented in the next Proposition. This property states that if cu0 is already
above cp0 at bπ, it must remain above cp0 to the right of bπ. Reciprocally, if cu0
is still below cp0 at bπ, it must remain below cp0 to the left of bπ.
Proposition 3 Assume FSD predictability with negative correlation of re-
turns. Suppose also that relative risk aversion is uniformly larger than unity.
Then, for any pair (a, b) such that a ≤ bπ ≤ b, cu0(a) ≥ cp0(a) implies
cu0(b) ≥ cp0(b). The opposite result holds when relative risk aversion is uni-
formly less than unity.

Proof: Suppose that relative risk aversion is uniformly larger than unity.
Using Proposition 1, we know that v0(c; b) ≤ v0(c; bπ) ≤ v0(c; a) for all c.
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Suppose by contradiction that cu0(a) ≥ cp0(a), but cp0(b) > cu0(b). Because v0
is decreasing in its first argument, we have that

v0(cp0(a); a)
v0(cu0(a); bπ) ≥ v

0(cu0(a); a)
v0(cu0(a); bπ) ≥ 1. (20)

Similarly, we obtain that

v0(cp0(b); b)
v0(cu0(b); bπ) < v0(cu0(b); b)

v0(cu0(b); bπ) ≤ 1. (21)

This is a contradiction, since the first-order condition (17) implies that

v0(cp0(a); a)
v0(cu0(a); bπ) = v0(cp0(b); b)

v0(cu0(b); bπ) . (22)

This concludes the proof.¥
This result is weaker than what we obtained in the CRRA case, as it may

be possible in the general case with R(.) ≥ 1 that cp0 crosses cu0 more than
once either to the right or to the left of bπ. We hereafter propose two solutions
to this problem. A first solution is provided in the following Corollary, where
we make the additional assumption that the initial propensity to consume is
unaffected by predictability. This means that λp = λu. In that case, we get
exactly the same single crossing property than in the CRRA case.

Corollary 1 Suppose that there is FSD predictability with negative correla-
tion and that the initial marginal propensity to consume is the same in the
predictable economy and in the unpredictable economy. If relative risk aver-
sion is larger than unity, the initial optimal risk exposure is larger than in
the unpredictable economy: for any pair (a, b) such that a ≤ b, cu0(a) ≥ cp0(a)
implies cu0(b) ≥ cp0(b) . The opposite result holds when relative risk aversion
is uniformly less than unity.

Proof: Observe that when λp = λu, cu0 and c
p
0 cross at bπ. Applying the

property of Proposition 3 respectively for a = bπ and b = bπ yields that the
two curves cannot cross anywhere else. And cp0 must cross c

u
0 from above atbπ. ¥

Forcing the preservation of the initial marginal propensity to consume in
the two economies can be seen as a ceteris paribus assumption. It requires to
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properly select the distribution of eπ1 in the unpredictive economy. A more
natural ceteris paribus assumption would be to consider that the distribution
of eπ1 in the unpredictive world be equal to the unconditional distribution ofeπ1 of the predictive world. However, it is a complex problem to determine
the effect of predictability on the initial marginal propensity to consume in
that case. An alternative solution is to consider the case where eπ0 has a
two-point distribution.

Corollary 2 Suppose that there is FSD predictability with negative corre-
lation and that there are only two possible states (π0 = a or π0 = b > a)
in the first period. If relative risk aversion is larger than unity, the initial
optimal risk exposure is larger than in the unpredictable economy: cp0(a) ≥
cu0(a) ≥ cu0(b) ≥ cp0(b). The opposite result holds when relative risk aversion
is uniformly less than unity.

Proof: By the concavity of v with respect to its first argument, we know
that cu0(a) is larger than c

u
0(b). Suppose by contradiction that cu0(a) > c

p
0(a),

which implies that cp0(b) > c
u
0(b) in order to satisfy the budget constraints in

the first period. This case is prohibited by Proposition 1.¥
After these technicalities, it is noteworthy to recall our main results and

their basic intuition. When relative risk aversion is larger than unity, the
presence of mean-reversion in the return of capital induces agents with a
long time horizon to take more risk. This is intuitive, since taking risk in
period 1 is a way to reduce the risk taken in period 0. For example, in the
bond portfolio problem presented earlier, investors will raise their demand
for the long-term bond due to recognition of the negative correlation of its
immediate return with future returns. However, when relative risk aversion
is constant and less than one, the hedging demand is negative, thereby
inducing investors to reduce his risk exposure at date 0. This is a case
where agents want to be wealthier when markets perform badly in the first
period, because of the expectation of a larger return on that wealth in the
second period. Indeed, remember that the substitution effect (which raises
the marginal value of wealth) is larger than the wealth effect (which reduces
v0) in this case.
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Figure 2: Positive MPS predictability.

5 Second-order predictability

In this section, we examine the effect of second-order predictability, or MPS
predictability. We assume that a change in the first period state transforms
the distribution of eπ1 according to a mean-preserving spread (MPS). This
is possible only if the risk-free rate is unaffected by the first period return.
The classical example of positive second-order predictability is obtained

with the one-riskfree-one-risky-asset portfolio problem with a constant risk
free rate r and a risky asset whose returns exhibit mean-reversion, as in
Kim and Omberg (1996) and Campbell and Viciera (1999). The intuition
suggests that positive MPS predictability should induce investors to take
more portfolio risk initially, because of the positive time diversification effect.
Merton (1973) shows that this is correct when constant relative risk aversion
is larger than unity. Positive MPS predictability is depicted in Figure 2.
A second example of MPS predictability comes from a learning process in

dynamic portfolio decisions, as studied by Gennotte (1986), Brennan (1998),
Brennan and Xia (1999), Barberis (2000) and Xia (2000). In this case we
say that we have a negative MPS predictability. The intuition suggests that
negative MPS predictability should induce agents to be more prudent in the
initial stage in order to hedge against bad news. Gennotte (1986) shows that
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this is true when constant relative risk aversion is larger than unity. Negative
predictability is also present when there is a negative correlation between the
current asset return and the future volatility, in which case more prudence
is often suggested (Chacko and Viciera (2000)).
Kandel and Stambaugh (1996), Barberis (2000) and Xia (2000) combine

different forms of MPS predictability by looking at models where there is
mean-reversion in stock returns, but with some estimation risk on the pa-
rameters of the mean-reversion. Barberis (2000) shows that the negative
MPS predictability due to the learning process may dominate the positive
MPS predictability due to the mean reversion. In that case, the overall MPS
predictability reduces the initial demand for stocks when constant relative
risk aversion is larger than unity.

5.1 MPS shifts and the marginal value of wealth

As seen before, the analysis of the effect of predictability on the initial port-
folio requires first to examine the effect of the shift in the distribution of
state prices on the marginal value of wealth in a static framework. Consider
again the static portfolio problem (5). We examine the effect of a mean-
preserving spread of the state price density on the marginal value of wealth,
ξ = v0(z). Let us assume that eπb is a mean-preserving spread of eπa, i.e.,
that eπb is obtained from eπa by adding a white noise to it, as defined by
Rothschild and Stiglitz (1970). The following result determines the neces-
sary and sufficient condition for ξb ≤ ξa. It relies on absolute risk aversion
A defined as A(c) = −u00(c)/u0(c) and on absolute prudence P defined as
P (c) = −u000(c)/u00(c), a concept introduced by Kimball (1990).

Proposition 4 A mean-preserving spread in the of state-price density re-
duces (resp. increases) the marginal value of wealth if and only if the ratio of
absolute prudence to absolute risk aversion is uniformly smaller (resp. larger)
than 2: 2A(c) ≥ (≤)P (c) for all c in the domain of u.

Proof: Consider again function χ with χ(ξ,π) = πφ(1/ξπ). Differentiat-
ing equation (8) yields

∂2χ

∂π2
(ξ,π) =

1

ξ2π3
φ00(

1

ξπ
). (23)
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Now, observe that from φ0(y) = −u02(φ(y))/u00(φ(y)), we have that

φ00(y) = φ0(y)
·−2u0(φ)(u00(φ))2 + (u0(φ))2u000(φ)

(u00(φ))2

¸
= [φ0]2 [−2A(φ) + P (φ)] .

(24)

Thus, φ and χ are concave in π when 2A ≥ P. Suppose now that eπb is a
mean-preserving spread of eπa, which means that Ef(eπb) ≤ Ef(eπa) for all
concave real-valued function f . We have to show that ξb ≤ ξa. Suppose
by contradiction that ξb be larger than ξa. If 2A ≥ P , we would have a
contradiction, since

z = Eχ(ξb, eπb)
< Eχ(ξa, eπb)
≤ Eχ(ξa, eπa) = z. (25)

The first inequality comes from the assumption that ξb > ξa, whereas the
second inequality comes from the definition of a mean-preserving spread to-
gether with the property that χ is concave in π if 2A ≥ P . This proves
sufficiency. Again, the proof of necessity is omitted.¥
The intuition of this result is best understood in the framework of the

saving-portfolio problem. If the distribution of state prices per unit of proba-
bility undergoes a mean-preserving spread, the consumer will consume more
in the first period if 2A > P.5 The intuition of this is easier to extract for
the special case where the initial distribution is degenerated. Suppose that
we start with eπa = 1 almost surely. The agent will consume z with certainty
in that case. The agent does not face any risk. Consider alternatively state
prices eπb, with Eeπb = 1. It is optimal for the agent to select a consumption
plan c(.) that is negatively correlated with π in that new risky environment.
This has two effects on the marginal propensity to consume. First, because
the agent consumes more in cheaper states, the mean consumption in the
second period will be larger than in the risk free environment. Because the
agent wants to smooth consumption over time, this induces him to increases
his consumption in the first period. The size of this wealth effect is approx-
imately proportional to the degree of aversion to consumption fluctuations

5Gollier and Kimball (1996) obtained a similar result by considering the one-riskfree-
one-risky-asset portfolio problem. They showed that the introduction of the risky asset
raises initial consumption if and only if 2A > P .
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over time, which is given by A. But there is a second effect, which is a precau-
tionary saving effect. Because the agent takes risk in the second period, he
wants to accumulate precautionary saving in the first period. This negative
effect on early consumption is approximately proportional to P , as shown
by Kimball (1990). The net effect of the introduction of risk-taking oppor-
tunities on early consumption is positive only if the wealth effect is larger
than the precautionary effect, i.e., if 2A is larger than P . We see that the
mechanisms acting in the case of a MPS shift of eπ are quite different than in
the case of a FSD shift.
What can we say about whether 2A be larger or smaller than P? This

is a difficult question, because of the absence of any estimation of absolute
prudence. However, the following result is helpful for solving this problem.

Proposition 5 Suppose that absolute risk aversion tends to infinity when
consumption tends to zero. Then, 2A > P uniformly implies that relative risk
aversion is uniformly larger than unity, whereas 2A < P uniformly implies
that relative risk aversion is uniformly less than unity.

Proof: A(0) = +∞ is equivalent to T (0) = 0, where T is the degree
of absolute risk tolerance. Observe that T 0(c) = −1 + (P (c)/A(c)). Thus,
2A(c) > P (c) is equivalent to T 0(c) < 1. Combining this with T (0) = 0
implies that T (c) < c, or that relative risk aversion is larger than unity.¥
Of course, the opposite results are not true. In particular, if relative risk

aversion is uniformly larger than unity, that does not implies that absolute
prudence is uniformly less than twice the degree of absolute risk aversion.
In the special case of constant relative risk aversion 2A > P is equivalent

to R > 1. It is widely believed that relative risk aversion is larger than unity.
Thus, in this special case, FSD-shifts and mean-preserving spreads of state
prices have the same qualitative effect to raise early consumption, in spite
of the important differences of the underlying mechanisms leading to these
results.

5.2 The investment problem with MPS predictability

In this section, we reexamine the two-period investment problem that we
presented in section 4.2. In that section, we assumed that an increase in
π0 yields a FSD-dominated shift in eπ1. We now alternatively assume that
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it yields a mean-preserving spread in the distribution of state prices. This
is what we called a positive MPS predictability, as in the learning process.
Remember that the case of mean reversion in stock returns corresponds to
a negative MPS predictability. The next results can be proved by using
the same method as in section 4.2. The first Proposition is specific to the
HARA case. The second Proposition provides the best characterization of the
solution when we only make the assumption that 2A is uniformly larger (or
smaller) than P . The two Corollaries show that positive MPS predictability
raises the optimal portfolio risk when 2A ≥ P in two special cases: (i) when
the initial marginal propensity to consume is preserved, or (ii) when the first
period distribution of state prices is binary.

Proposition 6 Assume positive MPS predictability and HARA preferences:

u0(c) =
h
η + c

γ

i−γ
. If γ is larger than unity, the initial optimal risk exposure

is larger than in the unpredictable economy: for any pair (a, b) such that
a ≤ b, cu0(a) ≥ cp0(a) implies cu0(b) ≥ cp0(b). The opposite result holds when γ
is less than unity, or when there is negative MPS predictability.

Proposition 7 Consider the case of a positive MPS predictability. Suppose
also that 2A ≥ P uniformly. Then, for any pair (a, b) such that a ≤ bπ ≤ b,
cu0(a) ≥ cp0(a) implies cu0(b) ≥ cp0(b). The opposite result holds when 2A ≤ P
uniformly, or under negative MPS predictability.

Corollary 3 Suppose that there is positive MPS predictability and that the
initial marginal propensity to consume is the same in the predictable economy
and in the unpredictable economy. If 2A ≥ P uniformly, the initial optimal
risk exposure is larger than in the unpredictable economy: for any pair (a, b)
such that a ≤ b, cu0(a) ≥ cp0(a) implies cu0(b) ≥ cp0(b) . The opposite result
holds when 2A ≤ P, or when there is negative MPS predictability.
Corollary 4 Suppose that there is positive MPS predictability and that there
are only two possible states (π0 = a or π0 = b > a) in the first period. If
2A ≥ P uniformly, the initial optimal risk exposure is larger than in the
unpredictable economy: cp0(a) ≥ cu0(a) ≥ cu0(b) ≥ cp0(b). The opposite result
holds when 2A ≤ P uniformly, or under negative MPS predictability.
It is noteworthy that Proposition 6 is more general than Proposition 2

since the former covers all HARA functions whereas the latter covers only
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the subset of CRRA functions (η = 0). In particular, Proposition 6 covers the
case with constant absolute risk aversion (CARA) that has been examined
by Merton (1971). When absolute risk aversion is constant, the ratio of abso-
lute risk aversion to absolute prudence is equal to unity, which implies that
the mean reversion of stock returns induces long term CARA investors to
increase their demand for stock. For the sake of comparison, notice that the
effect of FSD predictability is ambiguous in the CARA case, since relative
risk aversion goes from zero to infinity when wealth increases. It cannot be
uniformly larger than unity.
We also conclude that there is some fallacy in claiming that positive

MPS predictability raises the demand for stock if investors are more risk-
averse than log utility investors, as stated for example by Brennan (1998)
and Barberis (2000). This statement is true only when relative risk aversion
is assumed to be constant. When relative risk aversion is not constant,6

the relevant condition is that the ratio of absolute risk aversion to absolute
prudence be larger than 2. The intuition of this condition is easy to under-
stand. Under this condition, a low return in the first period reduces the large
marginal value of wealth due to the mean-preserving spread in eπ1, because
the precautionary effect of the increased risk-taking is not large enough to
compensate for the wealth effect. The value function is therefore in a sense
less concave in the first period, thereby inducing investors to increase their
demand for stocks. It is not possible to get this intuition when, limiting
the analysis to power utility functions, we end up with the condition that
”investors must be more risk-averse than log utility investors”.

5.3 A simple numerical illustration with learning

To illustrate the effect of second-order predictability on the optimal risk-
taking strategy, let us examine the learning problem of the gambler who
does not know the probability of heads (H) and tail (T). Consider an urn of
coins, half of which are ”good” and half ”bad”. The good coins land heads
with probability 0.5 + k,whereas the bad coins land heads with probability
0.5 − k, k ∈ [0, 0.5] . A single coin is picked at random from the urn at the
beginning of the game, and is not changed afterwards. At each play of the

6Detemple, Garcia and Rindisbacher (2001) are among the few who examines the struc-
ture of optimal portfolios when investors have wealth-dependent relative risk aversion.
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game, the gambler choose how much he wants to bet (positive or negative).
If the coin lands heads, the gambler gets 300% (a = 2) of the initial stake
back. But if it lands tail, he looses his stake (b = −1). We assume that
the agent has a constant relative risk aversion equaling 2. This problem is
formally equivalent to the one-riskfree-one-risky-asset model with negative
MPS predictability.
Because of constant relative risk aversion, we know that myopia is opti-

mal in the unpredictable world, i.e., in a world where a different coin is taken
for each repetition of the game. Because the agent has the choice between
two assets in this game with two states of the world, this is an Arrow-Debreu
portfolio problem (5). The distribution of eπ0 is (2/3, 1/2; 4/3, 1/2). Indeed,
the probability of H and T are 1/2. The price of the contingent claim associ-
ated to H is 1/3, because of the 300% payoff per dollar invested in that state.
The state price per unit of probability is thus 2/3. A similar computation
yields a state-price per unit of probability 4/3 for state T. For γ = 2, it is
straightforward to check that the optimal stake when one may gamble only
on the first draw is equal to 12,1% of total wealth. The same strategy would
be followed by the long horizon gambler when different coins are used for
each play, because we know that myopia is optimal in that case.
Suppose alternatively that the agent can gamble on the first two draws

of the same coin. Should he revise how much to invest on the first draw?
Using Bayes’ rule, one can check that the updated probabilities of H are
0.5 + 2k2 and 0.5− 2k2 respectively if H or T is observed at the first draw.
For example, for k = 0.25, the underlying conditional distributions of eπ1 are

H : eπ1 | π0 = 2/3 ∼ (0.533, 5/8; 1.777, 3/8)

T : eπ1 | π0 = 4/3 ∼ (0.888, 3/8; 1.066, 3/8).

Obviously, the increase in π0 from 2/3 to 4/3 generates a mean-preserving
contraction in the conditional distribution of eπ1. From Proposition 6, this
predictability should induce a reduction in the optimal risk exposure, i.e.,
a reduction in the bet. Using Mathematica c°, we obtain that the optimal
initial bet is 9.49% of initial wealth, which is less than the original 12.1% of
the unpredictable economy.
The intensity of predictability is here measured by parameter k: when

k = 0, there is no predictability at all, as all coins are unbiased. On the
contrary, when k = 0.5, there is full predictability, since the observation of
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Figure 3: Optimal stake as a percentage of wealth at the initial draw of the
coin.

the first draw eliminates the uncertainty for the second draw. In Figure 3,
we represented the optimal percentage of wealth gambled on the first draw
as a function of the degree of predictability. We see that a low degree of
predictability has almost no effect on the optimal initial risk exposure. But
introducing a sizeable degree of predictability (k > 0.4) should induce the
gambler not to take any risk at the initial stage of the game. It is better to
wait the next round to get information about the type of the coin.

6 Exogenous predictability and incomplete mar-

kets

Up to now, we assumed that the future opportunity set is perfectly corre-
lated to the first-period return. In this section, we take the extreme view
that the source of predictability is exogenous to financial markets, i.e., that
there is no serial correlation in assets returns. This is a model where the
investor does not know the true distribution of returns. But he obtains ex-
ogenous information about it over time. This information is not conveyed
by the observation of past returns. For example, the exogenous information
about future returns could be the outcome of an election, the occurrence of
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a technical innovation, or some signal contained in recent dividends.7 Signalem summarizes this information. How does the existence of such uncertainty
about the distribution of future returns affect the optimal portfolio prior
to the observation of the information? Because em and eπ0 are not statisti-
cally related, there is no way to hedge the risk of change of the opportunity
set. Markets are thus incomplete. It is thus a priori unclear how exogenous
predictability should affect the first period portfolio.
We solve this problem by backward induction. At date t = 1, the investor

observes signal m. He then solves his second period portfolio problem:

v(z;m) = max E [u(c(eπ1)) | m] s.t. E [eπ1c(eπ1)) | m] = z. (26)

The maximum expected utility that one can extract in turn from z prior to
signal em is thus equal to V (z), which is given by

V (z) = Ev(z; em). (27)

At the beginning of the first period, the investor selects the portfolio c0(.)
which maximizes EV (c0(eπ0)) subject to the budget constraint E [eπ0c0(eπ0))] =
w0. We compare the optimal first period portfolio risk to the one that would
be optimal in an unpredictable economy where the distribution of eπ1 is sig-
nal independent and is equal to the unconditional distribution of eπ1 of the
predictable world.
To solve this problem, we just have to examine how the concavity of the

single-variable function V is affected by this uncertainty. Fully differentiating
the first order condition u0(c(π1, z;m)) = ξ(z;m)π1 with respect to z yields

∂c(π1)

∂z
= T (c(π1))

−∂ξ/∂z
ξ

,

where T (c) = −u0(c)/u00(c) is the degree of absolute tolerance. We know
from the budget constraint that Eeπ1 ∂c∂z = 1, which implies that the degree of
absolute risk tolerance of the value function equals

Tv(z;m) = − v
0(z;m)
v00(z,m)

= − ξ(z;m)
∂ξ
∂z
(z;m)

= E [eπ1T (c(eπ1, z;m)) | m] . (28a)

7Fama and French (1988) showed that the dividend yield on common stocks is a good
predictor of stock returns. Several recent papers examine the effect of this kind of pre-
dictability on the optimal dynamic portfolio management. See for example Campbell
(1996), Brenan, Schwartz and Lagnado (1997) and Barberis (2000).
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Suppose first that u is CRRA, i.e., that T (c) = c/γ. It yields

Tv(z;m) = γ−1E [eπ1c(eπ1, z;m) | m] = z/γ.
Notice that it is independent of m. Since V is a weighted sum of the same
function v, we conclude that the absolute risk tolerance of the value function
V is independent of the structure of future information. We conclude that
the information structure has no effect on the optimal portfolio ex ante in
the CRRA case. The CRRA agent is myopic to exogenous predictability.
The treatment of the more general HARA case is more tricky. When T (c) =
η + c/γ, condition (28a) implies that

Tv(z;m) = E [eπ1 | m]T (E [eπ1c(eπ1, z;m) | m]
E [eπ1 | m] ) = E [eπ1 | m]T ( z

E [eπ1 | m]).
We see that we need to assume that signal em does not affect the risk free rate
[Eeπ1]−1 to obtain optimal myopia to exogenous predictability in the HARA
case.

Proposition 8 CRRA investors are myopic to exogenous predictability. HARA
investors are myopic to exogenous predictability which does not affect the risk
free rate.

It is noteworthy that several authors as Campbell (1996) and Barberis
(2000) derived optimal portfolio strategies for CRRA investors when future
returns are predictable by using the dividend yield as a predictor. The above
Proposition claims that information contained in future dividends have no
effect on the portfolio strategy of these investors. However, because the div-
idend yield is correlated with realized returns, using the dividend yield has
a predictor combines exogenous predictability to a positive MPS predictabil-
ity. Only this second form of predictability matters for CRRA investors to
determine the hedging demand.8 The existence of the potential innovation
contained in the dividend yield that is not in realized returns has no impact
on the hedging demand.

8When the level of the exogenous signal follows an autoregressive process emt+1 =
a+ bemt + eεt, the level of the signal at t = 0 may affect the optimal initial portfolio. But
it is not different from what a myopic agent would do.
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In the remaining of this section, we explore exogenous predictability when
preferences are not HARA. We claim that convex (concave) absolute risk tol-
erance is necessary for exogenous predictability to raise (reduce) the optimal
exposure to risk ex ante. To show this, we consider the special case where
the unconditional distribution is degenerated to a single value which is nor-
malized to unity. This is equivalent to say that the unconditional expected
excess return of stocks is zero. It implies that in the unpredictable world,
investors do not take any risk in the second period, and V u(z) = u(z). In the
predictable world, the distribution of eπ1 will generally not be degenerated
ex post. Assuming the convexity of absolute risk tolerance on consumption,
Jensen inequality yields

Tv(z;m) = E [eπ1T (c(eπ1, z;m)) | m] ≥ E [eπ1 | m]T (E [eπ1c(eπ1, z;m) | m]
E [eπ1 | m] ).

Consider the case of an exogenous predictability which preserves the risk free
rate: E [eπ1 | m] = 1 for all m. It implies that

Tv(z;m) ≥ T (z).
This is true for all m. Because V is a weighted average of functions v(.;m)
whose degree of absolute risk tolerance is larger than T, the absolute risk
tolerance must be larger than T, the degree of absolute risk tolerance of the
value function in the unpredictable world. It implies that this predictability
raises the initial portfolio risk.

Proposition 9 Consider the case of exogenous predictability which preserves
the risk free rate. Suppose also that the unconditional expected excess return
of stocks is zero. This exogenous predictability raises (resp. reduces) the
initial optimal portfolio risk if the absolute risk tolerance on final consumption
is convex (resp. concave).

Treich (1997) obtained a similar result in the special case of small stan-
dard portfolio risks. Gollier (2000) and Guiso and Paiella (2000) provide
arguments for and against the convexity of absolute risk tolerance with re-
spect to the level of consumption. The intuition for the above result is as
follows: because in the unpredictable world, the investor does not take any
portfolio risk in the second period, introducing predictability in this model
is equivalent to enlarging his time horizon of risky investment. Gollier and
Zeckhauser (1999) showed that doing so makes agent more risk prone if and
only if their absolute risk tolerance is convex.
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7 Conclusion

The analysis of dynamic risk taking is a fascinating area of research. How
does the opportunity to take risk in the future affect the willingness to take
risk today? This question is particularly difficult when there is time varia-
tion in the distribution of assets returns. All papers addressing this question
since the seminal work by Merton (1973) focussed on the special case of
power, logarithm and exponential utility functions. By relaxing this con-
straint, we have been able to provide additional insights to the solution of
this problem. First, we have shown that the kind of optimal dynamic risk
management depends upon whether the predictability of future returns is
of the first stochastic order or of the second stochastic order. In the case
of FSD predictability, we only need to know whether relative risk aversion
is uniformly smaller or uniformly larger then unity to determine the sign of
the hedging demand for risk. But if we have MPS predictability, we need to
compare the intensity of absolute prudence to absolute risk aversion to get
an equivalent comparative statics property. It is only by chance that the two
conditions are equivalent in the standard case of constant relative risk aver-
sion. They differ in all other cases, as preferences exhibit constant absolute
risk aversion. More importantly, our analysis allows us to provide simple
intuitions for the comparative statics of the various forms of predictability.
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