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Introduction

This paper considers the identification of demand parameters over different periods with heterogenous

consumers and unobserved product characteristics. This paper thus follows the application of hedonic

models (see Rosen (1974), Brown and Rosen (1982), Epple (1987), Bartik (1987) among others).

These models allow to analyze the demand or the supply of quality associated for example to a

good, a job or environment. As noted by Ekeland, Heckman and Nesheim (2002), the problem of

identification in hedonic models constitutes a reference for the identification problem in a variety

of economic models in which the individual characteristics are unobservable to the econometrician.

Moreover, the recovery of the structural parameters that summarize the preferences allows researchers

to analyze the quantitative implications and the welfare effects that follow a policy change.

However, many things differentiate this paper from the literature on hedonic models. First, the

paper focuses on the demand side without any particular attention to the supply side of the market.

Second, it is essentially concerned with the identification of a summary of preferences, i.e. the price

elasticity of demand. Third, the identification issue is analyzed in a poor data set environment:

individual characteristics as well as product characteristics are not observed by the econometrician

(see Bajari and Benkard (2001) for a similar setup), individual total demand and total expenditure

are the only observable variables, the time period can be short and price variation may be small.

The identification of price elasticity of demand from cross section individual data is impossible due

to the lack of prices variation in the sample. Even if panel data are available, the slow modification of

tariffs and the usual small number of observed periods make very hazardous the estimation of prices

effects. In many cases however (see De Rycke, Florens and Marcy, 2001) artificial prices, different

over consumers, can be observed. These prices are computed as the ratio between the observed
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consumers’ expenditure and demand. However, these prices actually reflect some composition effects

of demand and expenditure for a differentiated product. Let us review some empirical results on mail

demand, as it is the focus of the empirical part of this paper. Cazals and Florens (2002) presented

a brief summary of the results in the existing literature about the estimation of price elasticities

of mail demand. They noted that the estimated price elasticities are lower in dynamic models –

where data comes from aggregation over individuals – than those estimated in cross–section demand

models – where data comes from aggregation over mail products –. They provided some simulation

experiments from a fully disaggregated model with heterogeneity that support these results and they

shew that this model mimics results from actual data – higher price elasticities with cross–section

data–. About the cross–section analysis, they mainly concluded that the use of an artificial mail

price for each consumer – defined as the ratio of expenditure over demand – is unsatisfactory for

empirical application because there exists an aggregation bias that they are not able to control.

The aim of this paper is to present a simple methodology for the treatment of this kind of data and to

show that the observation of choices between attributes of a product over periods may contain useful

information about the effect of price variations. The methodology is based on a hedonic structural

model of the consumer behavior. We choose to adopt a structural approach as the restrictions created

by the model allows to identify – under some conditions about the preferences and the change in

price – some structural parameters that summarize the consumers’behavior. Although any structural

and parametric modeling can suffer from a well known lack of robustness, a structural approach –

compared to descriptive one – allows to recover parameters of demand – or supply – at the realization

of the market equilibrium (see Reiss and Wolak (2003) for a discussion). The general principle of

our structural model is to consider several possible attributes of a product. A consumer selects a

vector of quantity of this product for each possible attribute by maximizing utility that depends on
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an unobservable – for the econometrician – heterogeneity factor, which is randomly generated across

consumers. The first order conditions of this program determine the demand functions from which

the total demand and the revenue are generated as a function of the heterogeneity factor. Using the

restrictions created by this structural model, we then consider the identification and the estimation

of the structural parameters (more precisely, the price elasticity of demand). In the one period

case, the structural parameters are not identified but parametric restrictions – although arbitrary –

about the distribution of the heterogeneity factor are sufficient to recover the identification of the

demand parameters. Another – less arbitrary and more robust – way to circumvent the identification

problem is to take into account for different time periods (see Brown (1983), Brown and Rosen (1982),

Kahn and Lang (1988), Berry, Levinsohn and Pakes (1995) and Tauchen and Witte (2001)). The

motivation of such an approach is that if preferences – or technology – and the distribution of tastes

– or productivities – remains constant over periods – or are the same across market –, exogenous

prices changes across periods allows to identify the preferences – technology – parameters and thus

recover the price elasticity. Although unexplained (see Ekeland, Heckman and Nesheim (2002) and

(2003) for a critical survey), shifts across time in technology when preferences are stable over periods

will offer an opportunity to identify the demand parameters.

The paper also considers other identification issues. They first concern the identification of the other

demand parameters and the effect of aggregate random shocks. Moreover, we show that demand

parameters can be identified even in the case of unstable preferences. The shift in demand includes

now two components: a change in price and a change in preferences. If the shift in preferences affects

the average demand behavior and the covariance structure of demand and expenditure, the price

elasticity of demand can be identified. An empirical illustration with mail data in a two period case

illustrates the potential of this approach. We then extend the original model to a multiple product
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case and we deliver new conditions for identification. This new conditions impose that the number

of periods must strictly exceed the number of observed goods. This result is a direct consequence

of asymmetry in the multiple goods demand function. Second, we investigate the case of non–linear

demand and we determine under which conditions, previous results about identification in the linear

case still apply.

The paper is organized as follows. In a first section, we introduce a simple structural hedonic model

of demand and we discuss some modeling issues. In section two, we determine the conditions for

identification of price elasticity of demand in a two period case. In section three, we present empirical

results with mail data. Section four considers two extensions of the benchmark model. A last section

offers some concluding remarks. Proofs are given in appendix.

1 The Structural Model

We use a simplified hedonic model and we determine the consumers’ total demand and expenditure

for a single and differentiated product. The model is standard and the functional form of the utility

function is chosen in order to yield an analytic solution from which we can deliver some conditions

for identification in the next section. We also discuss some empirical issues and various specifications

of the heterogeneity factor.

1.1 The Hedonic Model

The hedonic model is devoted to the identification of structural parameters – more precisely a sum-

mary of them – associated to a simple representation of consumers’preferences. The supply side is

exogenous and considered as given. Moreover, we assume that there is no price discrimination, so

every consumer faces the same price menu. Consumers and firms match on the vector of m < ∞

possible values for an attribute Q = (Q1, ..., Qm)
′. We denote p = (p1, ..., pm)

′ the associated vector
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of prices. The preferences are described by the following linear–quadratic utility function

U(Q) =
1

2
Q′AQ+Q′Θ+Xo

The matrix A is m × m symmetric and negative definite. It is the same for all consumers. The

variable Θ = (Θ1, ...,Θm)
′ represents shifts in preferences and enters linearly in the utility function.

It is assumed to be specific to each consumer and randomly generated. Consumers thus differ in

their preference vector Θ. Some elements of Θ can be observed by both the consumer and the

econometrician. In what follows, we consider that the elements of Θ are observed only by the

consumer. For the simplicity of the presentation, we omit for the moment individual i and time t

indexes. The mean and the variance of the vector Θ are denoted Θo and Vo.

The budget constraint is given by

Q′p+Xo = R

Xo represents all the other goods and enters linearly into the utility function. Total expenditure over

the m possible values for an attribute is given Q′p. R is the disposable income of consumers and the

price of Xo is normalized to one. After substitution for Xo, the utility function rewrites – up to a

constant term –

U(Q) =
1

2
Q′AQ+Q′Θ−Q′p

The first order condition of the maximization of utility is1

AQ+Θ− p = 0

The demand is thus deduced from the previous equation

Q = A−1 (p−Θ)

1The second order conditions are equal to A and are also negative definite.
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The demand is a linear function of the difference between the price p and the random variable Θ. Let

us now define B = A−1. The matrix B is thus negative definite and we deduce that the parameter

β =
∑m

j=1

∑m
j′=1 bj,j′ ≡ 1′

mB1m is negative. 1m = (1, . . . , 1)′ is the aggregator over the m possible

values for an attribute.

In order to illustrate the effect of price variations, suppose that all prices {p1, ..., pm} of Q increase

in the same amount, i.e. dp1 = ... = dpm ≡ dp > 0. It follows that the variation of total demand

∑m
j=1Qj = 1′

mQ ≡ x verifies

dx = (1′
mB)




dp1
...

dpm




= (1′
mB1m) dp

≡ βdp

Following the same increase in all prices, the total demand will decrease of −β > 0. This parameter

allows to measure the sensitivity of total demand to an uniform price variation and thus to determine

further the price elasticity. Note that the demand function introduces a non–additive error term Θ,

making the distance between the model and the data as the result of a structural random term2 – the

heterogeneity parameter in the utility function – (see, Brown and Walker (1989) and Lewbel (2001)

for models of consumer behavior and McElroy (1987) and Brown and Walker (1995) concerning the

production side). The structural models implies

∣∣∣∣
∂Q

∂p′

∣∣∣∣ =
∣∣∣∣
∂Q

∂Θ′

∣∣∣∣

The shift in the preference parameter Θ allows to measure the sensitivity of demand to price variation

as their derivatives – in absolute value – are equal. In what follows, we will take advantage from this

structural restriction.3

2Following Heckman (1974), Heckman and Willis (1977), Mc Fadden (1974) and Lancaster (1979), the introduction
of an unobservable random term within a model has received an increasing attention.

3This will appear clearer from the covariance structure of demand and expenditure, provided some additional
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1.2 Modeling Issues

Let us consider now the more general case of many consumers i = 1, ..., N for different time periods

t = 1, ..., T . The total demand – or the aggregate demand over the m possible values for an attribute

– of each consumer at any period t is given by

xi,t =
m∑

j=1

Qj(i, t) ≡ 1′
mQi,t

whereas the total expenditure is

yi,t =
m∑

j=1

pj(t)Qj(i, t) ≡ p′tQi,t

In what follows, we assume that total demand xi,t and total expenditure yi,t are observable by the

econometrician for each individual i at any period t. Conversely, them demands {Qj(i, t)}mj=1 and the

m prices {pj(i, t)}mj=1 are not observable. However, in some cases, the different prices that compose

the menu can be partially observable. For example, the tariffs of many postal services are known

(for example, the prices associated to weight or type of pre–sorting). The observation of all prices of

a menu over periods is not essential as our identification of price elasticity relies on the observation

of aggregate demand and expenditure. Nevertheless, the observation of prices allows to evaluate

the empirical relevance of conditions for identification.4 Finally, the structural model shows that

different and artificial prices over consumers can be obtained dividing the total expenditure by the

total demand (whenm > 2). Nevertheless, these artificial prices only reflect some composition effects

of demand and expenditure for a differentiated product.

The important modeling issue that we consider in this paper concerns the specification of the pref-

erence parameter Θ. In order to determine total demand and revenue, we have now to specify this

random variable – or heterogeneity factor – for each consumer at any period. Let the heterogeneity

conditions on preferences or on the nature of changes in price.
4See the discussion about the conditions for identification in section 2.
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factor Θj(i, t) represents the preference of consumer i at period t for the product j. For illustrative

purpose, we use the following series of examples.

Example 1.1: Individual effect only

In this first example, we consider that the random factor is only composed of an unobserved – by

the econometrician – individual effect:

Θj(i, t) = Θj(i)

The aggregation over m yields:

xi,t = 1′
mBpt − 1′

mBΘi

where Θi = (Θ1,i, . . . ,Θm,i)
′. Note that this random variable is time invariant. The average demand

is:

E(xi,t) = 1′
mBpt − 1′

mBΘo

It follows that the average change in demand over consumers results only in change in price over

periods.

E(∆xi,t) = 1′
mB∆pt

Figure 1 illustrates the effect of change in price on average demand. This figure represents the

demand with respect to the heterogeneity factor. For simplicity, the figure assumes that all prices

of the menu vary in the same direction and the same amount. It follows that the average change in

demand rewrites:

E(∆xi,t) = 1′
mB1mdp ≡ βdp

The decrease in price implies an upward shift in demand but change in average demand does not

depend on the average value of Θ. The non–stationarity of demand over periods is the direct conse-

quence of the non–stationarity of the price.
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.................................................................

.....................................................

.....................................................

}

I

pt′ − pt < 0

ΘiΘo

E(xi,t)

E(xi,t′)

xi,t



βdp

Figure 1: Change in demand and price

Example 1.2: Individual effect + Aggregate random shock

The random factor includes now an unobserved aggregate shock, denoted εt. This shock is common

to all consumers:

Θj(i, t) = Θj(i) + 1mεt

The aggregate shock is assumed to be iid with zero mean. The aggregation yields

xi,t = 1′
mBpt − 1′

mBΘi − 1′
mB1mεt

The average demand is exactly the same as in example 1 as E(εt) = 0 ∀t

E(xi,t) = 1′
mBpt − 1′

mBΘo

Again, the average change in demand over consumers results only in change in price over periods.

Example 1.3: (Individual effect + Aggregate random shock) × Trend

We introduce now a multiplicative trend in the specification of the heterogneity factor. This trend
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shifts upward – or downward – the preference shocks of all individuals:

Θj(i, t) = µt−1 (Θj(i) + 1mεt)

The trend component is normalized to one in first period. When µ 6= 1, this specification of the

heterogeneity factor accounts for increase (decrease) in demand independently from price variations.

This trend summarizes a set of omitted and unexplained – by the simple structural model – variables

that shift demand over periods. Note that the specification of the trend component implies an

exponential growth5 (µ > 1). Moreover, the growth factor µt−1 can be replaced by µ(t) =
∏t−1

i=1 µi.

In this case, the trend component is not imposed to be regular. The aggregate demand rewrites:

xi,t = 1′
mBpt − µt−11′

mBΘi − µt−11′
mB1mεt

The average demand is

E(xi,t) = 1′
mBpt − µt−11′

mBΘo

and change in average demand is now

E(∆xi,t) = 1′
mB∆pt − µt−2(µ− 1)1′

mBΘo

Now, consider the normalization of the growth factor in first period and the change in demand

between periods 1 and 2. As in example 1.1, assume for simplicity that all prices of the menu varies

in the same direction and the same amount. The average demand rewrites:

E(∆xi,t) = βdp− (µ− 1)1′
mBΘo

As illustrated by figure 2, the change in demand has now two components: a change in price over

periods βdp and a change in preferences over periods (µ− 1)1′
mBΘo.

5In the case of a linear trend, we have Θi,t = µ(t − 1) (Θi + 1mεt). In a two period case, these two specifications
provide the same result.
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}

I

pt′ − pt < 0

ΘiΘo

E(xi,t)





(µ− 1)1′BΘo



βdp

...

...

...

...

...

...

...

...

..........................................................
E(xi,t′)

xi,t

I
µ > 1

Figure 2: Change in demand and price with a trend

We do not pursue here our discussion about the specification of the heterogeneity factor as many other

empirical issues may be worth considering. For example, as previously mentioned, the econometrician

can observe some individual data (for example, individual characteristics) that allow to usefully

represent the preferences. In the same way, the distribution of tastes can be specified as a function

of aggregate observed variables (see Petrin (2002), Berry, Levinsohn, and Pakes (2003)). Moreover,

various functional forms of the heterogeneity factor can also be considered. We do not consider these

situations of a richer data environment, where some characteristics about the differentiated product

and/or the consumer are available. In what follows, we use example 1.1 as a benchmark for the

detailed study of the identification of demand parameters (see section 2.1), whereas example 1.3 is

discussed in section 2.2 and is used in the empirical application (see section 3).
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2 Identification

In this section, we determine conditions that allow to identify the demand parameters. Two types

of conditions6 are considered in a two period case (t = 1, 2). The first condition imposes some –

rather weak – restrictions on preferences, without any restriction about the change in price, except

that at least one price in the menu must vary. The second one imposes strong restriction on the

change in price, i.e all the prices of the menu must vary in the same direction and in the same

amount. Conversely, no restriction about preferences is introduced. However, these two conditions

share the same aggregate implication, that is relative co–movement over periods between demand

and expenditure can be represented by a single common factor.

2.1 Identification in a Basic Setup

A suggested way to identify the structural parameters in hedonic models is to take into account

for different time periods. Brown (1983), Brown and Rosen (1982), Kahn and Lang (1988), Berry,

Levinsohn and Pakes (1995) and Tauchen and Witte (2001) consider the hedonic price model either

with mutlimarket data with a single period data or single market with multiperiod data. The

motivation of such an approach is that if preferences – or technology – and the distribution of tastes

– or productivities – remains constant over periods – or are the same across market –, exogenous

prices changes across periods allows to identify the preferences parameters and thus recover the price

elasticities. Although unexplained (see Ekeland, Heckman and Nesheim (2002) and (2003) for a

critical survey), shifts across time in technology when preferences are stable across time will offer

an opportunity to identify preference parameters. Note that figures 1 and 2 illustrate this issue.

Following a change in price, the average demand shifts and thus allows to determine the sensitivity

of average demand to price variation. Nevertheless, change in demand that follows a change in price

6In a the single period case, these conditions do not allow to identify the structural parameter (see the discussion
at the end of section 2.2).
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is not sufficient for identification of structural parameters. The relative co–movements over periods

between demand and expenditure have to be considered. We now exploit this idea in the specific

case of example 1.1, where only individual heterogeneity matters. The demand and expenditure for

t = 1, 2 are given by

xi,t = αt − 1′
mBΘi

yi,t = γt − p′tBΘi

where αt = 1′
mBpt = p′tB1m (by symmetry of B) and γt = p′tBpt. Let the moment conditions

associated to demand and expenditures

E(xi,t) = αt − 1′
mBΘo

E(yi,t) = γt − p′tBΘo

V (xi,t) = 1′
mBVoB1m

V (yi,t) = p′tBVoBpt

Cov(xi,t, yi,t) = 1′
mBVoBpt

Cov(xi,t, xi,t′) = 1′
mBVoB1m

Cov(yi,t, yi,t′) = p′tBVoBpt′

Cov(xi,t, yi,t′) = 1′
mBVoBpt′

where t 6= t′ and t = 1, 2.

It is worth noting that we are not concerned with the identification and the estimation of all the

parameters that describe the demand behavior. In other words, all the parameters that enter in

the m ×m matrices B and Vo and in the m × 1 vectors Θo and pt are not identified, except if we

assume very particular forms of the demand function. This is a direct consequence of the lack of

observation by the the econometrician of the vector of prices pt. Only the aggregation over m of
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demand and expenditure are observed. As we are interested in the identification of the price elasticity,

the empirical methodology that we propose is essentially concerned with the identification of the

parameter αt for each period. Indeed, this parameter represents a useful summary of the demand

behavior, as previously shown in examples 1.1–1.3. From the identification of this parameter, we can

identify and estimate the price elasticity for every period:

Ept =
∂E(xi,t)

∂pt

pt
E(xi,t)

=
1′
mBpt
E(xi,t)

=
αt

E(xi,t)

Note that this elasticity is computed using the average demand over consumers. The average demand

can be obtained either from the actual data or from the structural model.

We formulate now the following conditions for identification. These two conditions concern primary

the parameter αt, but the remaining parameters can be directly identified from αt. Note that only

one of these two conditions has to be satisfied.

Condition (a): 1m is eigenvector of VoB and 1′
mB (p2 − p1) 6= 0

Condition (b): p2 = (1 + δ)p1 and δ1′
mBp1 6= 0

These two conditions appeal several remarks. We first concentrate on the first part of each condition.

Condition (a) says that the aggregator 1m must be the eigenvector of the scaled sensitivity of demand

to change in price VoB, where the scaling factor Vo is the inverse of the precision matrix of the

heterogeneity factor. The condition (a) rewrites

VoB1m = k1m

where k is a scalar.
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We may question whether this condition is restrictive about the specification of preferences. The

matrices Vo and B include both m(m + 1)/2 parameters and condition (a) implies that m − 1

restrictions must be satisfied. As we are not interested in the identification and the estimation of

all the parameters that enter in B and Vo, but rather in a useful summary αt of preferences, this

means that there exist many representations of preferences in the linear-quadratic setup and many

configurations of the covariance matrix that satisfy this restriction. It follows that the restrictions

about B and Vo are rather weak if we are essentially concerned with the identification of the price

elasticity of demand. As illustrations, we present three examples that satisfy the first part of condition

(a).

Example 2.1: Assume that Vo takes the form:

Vo = vo




1 . . . 1
...

...
1 . . . 1


 ≡ vo1m1′

m

with vo > 0. This form of the covariance matrix implies that there is no heterogeneity about the

variance of the random factor over the m possible values for an attribute. Using this form, condition

(a) rewrites

VoB1 = vo1m1′
mB1m

= βvo1m

where β =
∑m

j=1

∑m
j′=1 bj,j′ < 0. The eigenvalue is given by

k = βvo < 0

In this example, we introduce a particular form for the covariance matrix.7 Conversely, we do not

introduce additional restrictions on the other parameters that describe the preferences, except that

B must be negative definite and symmetric.
7In this example, Vo is not inversible.
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Example 2.2: Assume now that Vo takes the form:

Vo = voIm

and denote

b(1) =
m∑

k=1

b1,k, . . . , b(m) =
m∑

k=1

bm,k

the sum of the elements of the rows (or the lines by symmetry) of the matrix B. The condition (a)

rewrites

b(1) = . . . = b(m) = k/vo

The condition (a) imposes stronger restrictions on the matrix B, compared to example 2.1. To see

this, assume for simplicity that B is diagonal. Condition (a) imposes

b1,1 = . . . = bm,m ≡ b = k/vo

This restriction implies that the sensitivity of each {Q1, . . . , Qm} to each price {p1, . . . , pm} must be

the same.

Example 2.3: Assume that Vo takes the form:

Vo =




σ21 0 . . . 0

0 σ22
...

...
. . .

...
0 . . . . . . σ2m




In this example, the variances of the heterogeneity factor over the m values of a attribute differs.

The condition (a) rewrites:

σ21b(1) = . . . = σ2mb(m) = k

where b(j) (j = 1, . . . ,m) is defined as in example 2.2. Note that this example differs from the

previous one as it does not impose that the elements b(j) have to be equal. For example, when B is

diagonal, the restriction becomes:

σ21b1,1 = . . . = σ2mbm,m = k

17



In these three examples, the parameters that compose the matrix B cannot be separately identified,

except in very particular cases. Example 2.1 involves the sum of all the elements of B and example

2.3 the sum of the diagonal elements. Conversely, in example 2.2 where B has identical diagonal

elements, the lack of heterogeneity over m allows to identify the single parameter b.

Let us now consider the first part of condition (b). This condition imposes that all prices {p1, ..., pm}

of the menu must change in the same direction and the same proportion

p2,1
p1,1

= . . . =
p2,m
p1,m

= 1 + δ

This condition thus eliminates heterogeneity among the m values for an attribute, but it does not

introduce any restriction about the specification of preferences.

The first part of the two conditions can be summarize as follows:

(i) Condition (a) imposes some restrictions about the preferences and the variance of the hetero-

geneity factor Θ without any conditions on uniform price changes. This means that preferences

and the heterogeneity factor must be specified such that demand over {Q1, Q2, ..., Qm}′ must

change uniformly with respect to changes in prices {p1, p2, ..., pm}′, i.e. the aggregator 1m must

be the eigenvector of the scaled demand parameters.

(ii) Condition (b) imposes restrictions on price changes without any conditions on preferences.

Conversely, prices {p1, p2, ..., pm}′ must change uniformly over periods.

(iii) Conditions (a) and (b) are rather similar in the sense that they eliminate any composition

effect in the covariance structure of demand and expenditure over periods.

Let us concentrate now on the second part of conditions (a) and (b). For condition (a), we have

1′
mB (p2 − p1) 6= 0
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Provided b(k) 6= 0 (∀k ∈ [1,m]), this conditions means that if one price variation in the menu is

non–zero, the condition for identification holds. In this case, this condition writes

b(k) (p2,k − p1,k) 6= 0

In condition (a), we do not need that all the prices of the menu must change in the same direction. We

only need that only one price in the menu must vary. To be more precise, consider again the simple

case where B is diagonal. As B is definite negative, bj,j is strictly negative for j = 1, . . . ,m. It follows

that if one price k ∈ [1,m] in the menu satisfies (p2,k − p1,k) 6= 0, the condition for identification is

verified. Note that if there exists some extra information about the modification of the menu over

periods, this condition can be easily checked.

For condition (b), we have

δ1′
mBp1 6= 0

It follows immediately that a sufficient condition for a lack of identification is δ = 0, i.e. there is no

uniform price variation in the menu. In other words, all the prices of the menu must uniformly vary.

The observation of prices of the menu for successive periods allows again to evaluate the empirical

relevance of this condition.

Given these two conditions and their related discussions, we turn now to the identification of the

price elasticity of demand.

Theorem 1 Under condition (a) or condition (b), the price elasticity of demand is identified for

each period.

A simple sketch of proof relies on the following linear and time invariant relationship:

Cov(xi,t, yi,t) = kαt
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This relation is directly deduced from condition (a) or (b) and the moment conditions. The covariance

structure over individual demands xi,t and expenditures yi,t is a linear function of the price effect

on demand αt for all periods t = 1, 2. If Cov (xi,t, yi,t) is a linear and time invariant function of

αt, the ratio of the covariance for two successive periods is equal to the ratio αt/αt−1. Moreover,

as the change in average demand over periods 1 and 2 (see the example 1.1 for an illustration) is

equal to αt − αt−1, the parameters α1 and α2 are identified. In the case of condition (a), the time

invariant relationship results in restriction of matrix Vo and B, whereas condition (b) implies that

the covariance ratio over the two periods is equal to the uniform price change.

Using the condition (a), the structural model delivers a simple expression of the price elasticity of

demand:

Ep1 =

(
1′
mBp1

1′
mBp2 − 1′

mBp1

)
E(xi,2 − xi,1)

E(xi,1)

Ep2 =

(
1′
mBp2

1′
mBp2 − 1′

mBp1

)
E(xi,2 − xi,1)

E(xi,2)

= εp1
1′
mBp2

1′
mBp1

E(xi,2)

E(xi,1)

The price elasticity of demand in period 1 – structurally – corresponds to the relative change in

demand following a relative change in price. The price elasticity in period 2 is equal to the one of

period 1 after correcting for change in price and demand.8

8Under condition (b), the expression is simpler although it provides a similar interpretation:

Ep1 =
1

δ

E(xi,2 − xi,1)

E(xi,1)

Ep2 = εp1(1 + δ)
E(xi,2)

E(xi,1)
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2.2 Discussion

We now discuss various econometric issues. They concerns the identification of demand parameters,

other specifications of the heterogeneity factor and the introduction of over–identifying restrictions.

Identification of the structural parameters

Theorem 1 states that the parameters αt for t = 1, 2 are identified from the moment conditions if we

use either condition (a) or condition (b). Note that the other parameters that summarize preferences

are also identified. Under condition (a), the moment conditions on demand and expenditure rewrite

E(xi,t) = αt − η

E(yi,t) = λt

V (xi,t) = kβ

V (yi,t) = ω2
t

Cov(xi,t, yi,t) = kαt

Cov(xi,t, xi,t′) = kβ

Cov(yi,t, yi,t′) = ρt,t′

Cov(xi,t, yi,t′) = kαt′

The parameters {λt, ω2
t , ρt,t′} for t, t′ = 1, 2 and t 6= t′ in these moment conditions are of less interest

for the representation of demand behavior. These parameters are directly identified from their

associated moment conditions: λt is obtained from the average expenditure E(yi,t), ω
2
t is given by

the variance of expenditure V (yi,t) and ρt,t′ corresponds to the cross-covariance of expenditure over

periods. The other parameters {αt, η, k, β, } are more structural as they represent a summary of

preferences. The parameter β < 0 is the sum of all the elements of the matrix B and it represents
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the sensitivity of aggregate demand to uniform price changes. As previously mentioned, αt allows

to quantify the price elasticity of demand each period. The parameter k is a direct consequence of

condition (a) and it corresponds to the eigenvector of VoB. Finally, the parameter η is proportional to

the average value of the heterogeneity factor – or preference shock – over m. These parameters enter

simultaneously in different moment conditions and this creates cross–equation restrictions. However,

the identification of αt allows to identify the others demand parameters. First, the parameter η is

obtained from the average demand

η = αt − E(xi,t) ≡
Cov(xi,t−1, yi,t−1)E(xi,t)− Cov(xi,t, yi,t)E(xi,t−1)

Cov(xi,t, yi,t)− Cov(xi,t−1, yi,t−1)

Second, the parameter k is deduced from the covariance of demand and expenditure

k =
Cov(xi,t, yi,t)

αt
≡ Cov(xi,t, yi,t)− Cov(xi,t−1, yi,t−1)

E(xi,t − xi,t−1)

Finally, the parameter β is identified from the variance of demand

β =
V (xi,t)

k
≡ V (xi,t)

E(xi,t − xi,t−1)

Cov(xi,t, yi,t)− Cov(xi,t−1, yi,t−1)

Note that we can use other moment conditions in order to determine these parameters. This simply

suggests to introduce over–identifying restrictions (see the discussion below).

Aggregate shocks

The original model with individual effect only can be easily extended to the case of aggregate random

shocks in the line of example 1.2. This shock is assumed to be iid with zero mean and variance σ2
ε .

Taking into account for aggregate shocks, the moment conditions rewrite:

E(xi,t) = αt − 1′
mBΘo

E(yi,t) = γt − p′tBΘo
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V (xi,t) = 1′
mBVoB1m + β2σ2ε

V (yi,t) = p′tBVoBpt + α2
tσ

2
ε

Cov(xi,t, yi,t) = 1′
mBVoBpt + αtβσ

2
ε

Cov(xi,t, xi,t′) = 1′
mBVoB1m

Cov(yi,t, yi,t′) = p′tBVoBpt′

Cov(xi,t, yi,t′) = 1′
mBVoBpt′

where t 6= t′ and t, t′ = 1, 2. As previously mentioned in example 2.1, the average demand is left

unaffected by the introduction of the aggregate shock. Using condition (a), these moment conditions

become9

E(xi,t) = αt − η

E(yi,t) = λt

V (xi,t) = kβ + β2σ2ε

V (yi,t) = ω2
t + α2

tσ
2
ε

Cov(xi,t, yi,t) = αt
(
k + βσ2ε

)

Cov(xi,t, xi,t′) = kβ

Cov(yi,t, yi,t′) = ρt,t′

Cov(xi,t, yi,t′) = kαt′

As the average demand is left unaffected by the introduction of the aggregate random shock, the

change in the average demand is always equal to αt−αt−1. Moreover, the covariance of demand and

expenditure is always a proportional and time invariant function of αt. The ratio of the covariance

over the two periods is thus equal to αt/αt−1. The other parameters can thus be deduced from the

9We choose to present the results with condition (a). Results are the same with condition (b).
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other moment conditions.

Heteroscedasticity

Comments about Theorem 1 state that demand parameters are identified if the covariance of demand

and expenditure is a linear and time invariant relation of the price. However, the lack of time invariant

relationship between Cov(xi,t, yi,t) and αt is not really problematic if the covariance matrix of xi,t and

yi,t is appropriately scaled. To see this, consider the case where the aggregate shock is heteroscedastic,

i.e. V (εt) = σ2ε,t. The moment conditions are the same, except for V (xi,t), V (yi,t) and Cov(xi,t, yi,t).

Using condition (a), these moment conditions rewrite

V (xi,t) = β
(
k + βσ2t,ε

)

V (yi,t) = ω2
t + α2

tσ
2
t,ε

Cov(xi,t, yi,t) = αt
(
k + βσ2t,ε

)

The covariance is now a time varying function of αt because of heteroscedasticity of εt. However, the

covariance in period t scaled by the variance of demand at the same period is time invariant

Cov(xi,t, yi,t)

V (xi,t)
=
αt
β

It follows that the ratio of the scaled covariance over the two periods is equal to αt/αt−1.

Accounting for growth

In example 1.3, we introduce a growth component that accounts for change in demand independently

from price variation. The growth component µ(t) captures a set of unobserved variables that affects

the consumers’behavior. This model can be useful in order to identify demand parameters, even

when preferences are not necessary stable across periods. Recall that demand and expenditure are
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given by

xi,t = αt − µ(t)1′
mBΘo − µ(t)1′

mB1mεt

yi,t = γt − µ(t)p′tBΘo − µ(t)p′tB1mεt

The aggregate shock is again assumed to be iid with zero mean and constant variance σ2
ε . The

moment conditions are

E(xi,t) = αt − µ(t)1′
mBΘo

E(yi,t) = γt − µ(t)p′tBΘo

V (xi,t) = µ(t)2
(
1′
mBVoB1m + β2σ2ε

)

V (yi,t) = µ(t)2
(
p′tBVoBpt + α2

tσ
2
ε

)

Cov(xi,t, yi,t) = µ(t)2
(
1′
mBVoBpt + βαtσ

2
ε

)

Cov(xi,t, xi,t′) = µ(t)µ(t′)1′
mBVoB1m

Cov(yi,t, yi,t′) = µ(t)µ(t′)p′tBVoBpt′

Cov(xi,t, yi,t′) = µ(t)µ(t′)1′
mBVoBpt′

where t 6= t′ and t, t′ = 1, 2. Note that the growth factor µ(t) enter both in the mean and the variance.

The model implies heteroscedasticity as in the previous example, but the specification of the growth

component takes advantage from the cross–equation restrictions because shifts in preferences over

the two periods both affect the mean and the variance of demand and expenditure.

Proposition 1 Under condition (a) or condition (b), the price elasticity of demand is identified for

each period .

The demonstration of Proposition 1 closely follows the one of Theorem 1, except that we need to

identify the growth factor in order to correct for the change in demand between period 1 and 2. The
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growth factor µ can be easily identified from the variance of demand in period 1 and 2, given the

normalization in first period.

The specification choice of the growth factor is of importance for identification purpose. In example

1.3, we take advantage from that µ(t) enters both in the mean and the variance od demand and

expenditure, as the average value and the variance of Θ will change over periods. Now, assume that

the growth factor is separable:

Θj(i, t) = Θj(i) + 1mµ(t) + 1mεt

The average demand will again change independently from price variation, but the variance of demand

will remain constant over periods. In this case, we cannot identify the parameter µ(t) and thus the

other parameters of demand.

Identification in a single period case

We assume for identification purpose that the number of period strictly exceed one. We may assess

if our conditions for identification are sufficient in a single period case. The moment conditions asso-

ciated to demand and expenditures are E(xi) = α− 1′BΘo, E(yi) = γt − p′BΘo, V (xi) = 1′BVoB1,

V (yi) = p′BVoBp and Cov(xi, yi) = 1′BVoBp. Under condition (a), these moment conditions

rewrite10 E(xi) = α − η, E(yi) = λ, V (xi) = kβ, V (yi) = ω2 and Cov(xi, yi) = kα. It appears

that the number of parameters is six and exceeds the number of moment conditions. Condition (a)

does not allow to identify the demand parameters. Consider now a more restrictive case where the

parameter Θ is the same over j = 1, . . . ,m

Θi = θi1m

where E(θi) = θo and V (θi) = vo. It is worth noting that the variance of Θi corresponds to the one

10Obviously, we do not use condition (b) as it assumes that the number of periods exceeds strictly one.
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of example 2.1, i.e. V (Θi) = V (θi)1
′
m1m ≡ vo1

′
m1m. This specification of Θi thus verifies condition

(a). The moment conditions rewrites E(xi) = α− βθ0, E(yi) = γ − αθo, V (xi) = β2vo, V (yi) = α2vo

and Cov(xi, yi) = αβvo. We have now to identify the following five parameters

ψ = {α, β, γ, θo, vo}

from five moment conditions. Condition for identification appears at a first glance verified. This is

not the case. First note that the parameters θo and γ are only identified from equations about the

mean of demand and expenditure. So we discard these two parameters from identification study.

The identification of the other parameters ψ̃ = {α, β, vo} is thus based on the remaining moment

conditions. The condition for identification relies on the rank of f(ψ̃) where

f(ψ̃) =




β2Vo − V (xi)
α2Vo − V (yi)

βαVo − Cov(xi, yi)




Let the first derivative of f(ψ̃) with respect to ψ̃

∂f(ψ̃)

∂ψ̃′
=




0 2βV0 β2

2αVo 0 α2

βVo αVo αβ




The determinant of ∂f(ψ̃)/∂ψ̃′ is zero and thus f(ϕ̃) is not full rank. It follows that conditions for

identification are not fulfilled.11

Over–identifying restrictions

Finally, in the series of examples, we introduce a set of moment conditions, but only some of them are

essentials for identification. In each example, the number of moment conditions exceeds the number

11Note that the demand parameters can be identified when particular assumptions about the distribution of the
heterogeneity factor are formulated Consider for example an exponential distribution. Let θi ∼ fθo

where f is an
exponential distribution of parameter θo > 0. Moreover, we assume here for simplicity that m = 1. The moments
are E(θi) = θo and V (θi) = θ2

o. It follows that E(xi) = α − βθo and V (xi) = β2θ2
o. We obtain σxi

= −βθo
and after substitution into the mean of demand, we obtain α = E(xi) − σxi

. The price elasticity is thus given by
E = 1− σxi

/E(xi). This approach relies on arbitrary choice of the distribution and it is not robust (see Cazals, Feve,
Feve and Florens (2003) for a discussion in a simple setting)
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of parameters to be estimated. This suggests to implement a GMM (see Hansen (1982)) and thus to

introduce over–identifying restrictions in order to estimate the demand parameters. Moreover if the

model is extended to a larger number of period, the number of moment conditions increases rapidly

compared to the number of moment to be estimated. To see this, consider only the identification of

the parameter αt in a three period case. For t = 1, 2, the parameters α1 and α2 are given by

α1 =
Cov(xi,1, yi,1)

Cov(xi,2, yi,2)− Cov(xi,1, yi,1)
E(xi,2 − xi,1)

α2 =
Cov(xi,2, yi,2)

Cov(xi,2, yi,2)− Cov(xi,1, yi,1)
E(xi,2 − xi,1)

and for t = 2, 3

α2 =
Cov(xi,2, yi,2)

Cov(xi,3, yi,3)− Cov(xi,2, yi,2)
E(xi,3 − xi,2)

α3 =
Cov(xi,3, yi,3)

Cov(xi,3, yi,3)− Cov(xi,2, yi,2)
E(xi,3 − xi,2)

There exists two ways to estimate α2 and this imposes an additional moment condition that can be

the basis of a global specification test of the structural model. Table 1 reports the number of moment

conditions, the number of parameters and the associated number of over–identifying restrictions with

respect to the number of periods T for various cases we discussed previously (see the examples 1.1,1.2

and 1.3, aggregate shock, growth). The fast increase with T of the number of moment conditions is

essentially due to the covariance of demand and expenditure. Conversely, the condition (a) or (b)

for identification of the price elasticity lower the number of structural parameters that represent the

covariance structure of demand and expenditure.

3 Application with Mail Data

In order to illustrate the potential of the approach, we present empirical results about the estimation

of price elasticity of mail demand in a very short – two years – panel. We first briefly describe the
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Table 1: Over–identifying restrictions

Number of Number of Number of
Moment Parameters over–identifying

Conditions restrictions

Example 1.1 2T 2 + 3T 6+5T+T 2

2
3T 2+T−6

2

Example 1.2 (a) 2T 2 + 3T 8+5T+T 2

2
3T 2+T−8

2

(b) 2T 2 + 3T 6+7T+T 2

2
3T 2−T−6

2

Example 1.3 (a) 2T 2 + 3T 10+5T+T 2

2
3T 2+T−10

2

(b) 2T 2 + 3T 6+7T+T 2

2
3T 2−T−6

2

Note : T denotes thne number of periods. Example 1.2 (a) corresponds to the case
of homoscedastic aggregate random shock, Example 1.2 (b) corresponds to the case of
heteroscedastic aggregate random shock, Example 1.3 (a) corresponds to the case of regular
growth, Example 1.3 (a) corresponds to the case of irregular growth.

data and the econometric method. We then present the empirical results.

3.1 Data and Method

The original data set include 200 observations on mail data.12 We discard some observations –

associated to unexplained and/or unknown zero price or non available quantities – from the original

data set, so the final data set includes 186 observations for two successive periods – end of year

1999/begin of year 2000 and end of year 2000/begin of year2001 –, denoted hereafter period 1 and

period 2. The estimations are performed using moment conditions associated to means and the

covariance matrix across quantities and expenditures and across periods. Tables 2 and 3 report these

moments.

Table 2: Sample Mean

Period xi,t yi,t
1 0.87316 0.21784
2 0.92571 0.23212

12The strategic component of the results bans us to communicate the true origin of the data, although estimation
of the demand parameters are obtained from real mail data. We choose to work with this data set as it displays the
empirical features that we have discussed (observation of demand ans expenditure, only). It is worth noting that many
other data sets may display similar empirical features. We apologize the reader for this lack of information.

29



Table 3: Covariance Matrix

xi,1 xi,2 yi,1 yi,2
xi,1 3.65737
xi,2 3.74976 3.92211
yi,1 0.89949 0.92157 0.22444
yi,2 0.92374 0.96670 0.23002 0.24156

Table 2 shows that the average demand and expenditure increase over the two periods. The problem is

that the non–stationarity in the mean – if considered alone – is not sufficiently informative about the

nature of change, i.e the change can result either in change in price or shift in preferences. However,

the covariance matrix (see table 3) shows that the variances of demand and revenues increase over

periods. This suggests to use the model with a trend that affects the random factor (see example

3.1). Given the chosen structural model, the set of parameters to be estimated are

ψ =
{
α1, α2, µ, η, λ̃1, λ̃2, k, β, ω1, ω2, σε, ρ1,2

}

so, the number of parameters is equal to 12. The moment conditions we use in a two period case are

the theoretical counterparts of the empirical moments in tables 2 and 3. The moment conditions are

the following:

fN (xi,t, yi,t;ψ) =




xi,1 − α1 + η
xi,2 − α2 + µη

yi,1 − λ̃1
yi,2 − λ̃2
x2i,1 − (kβ + β2σ2ε)− (α1 − η)2

x2i,2 − µ2 (kβ + β2σ2ε)− (α2 − η)2

y2i,1 − (ω2
1 + α2

1σ
2
ε)− λ̃21

y2i,2 − µ2 (ω2
2 + α2

2σ
2
ε) λ̃

2
2

xi,1yi,1 − (kα1 + βα1σ
2
ε)− (α1 − η) λ̃1

xi,2yi,2 − µ2 (kα1 + βα1σ
2
ε)− (α2 − η) λ̃2

xi,1xi,2 − µkβ − (α1 − η) (α2 − η)

yi,1yi,2 − µρ12 − λ̃1λ̃2
xi,1yi,2 − µkα2 − (α1 − η) λ̃2
xi,2yi,1 − µkα1 − (α2 − η) λ̃1




The number13 of moment conditions is equal to 14. We define these moment conditions in a more
13Without aggregate shocks, the number of moment conditions is equal to 13.
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compact form

gN (ψ) =
1

N

N∑

i=1

fN (xi,t, yi,t;ψ)

The GMM estimate ψ̂N of ψ minimizes the following loss function

ψ̂N = argmin
ψ
g′NWNgN

where WN is a weighting matrix given by

WN = V (fN (xi,t, xi,t;ψ))
−1

Given an estimate of ψ, the price elasticity for each period is computed as follows:

Ept =
αt

E(xi,t)
t = 1, 2

where the average demand can be either obtained from the data – E(xi,t) = (1/N)
∑N

i=1 xi,t (t = 1, 2)

– or from the model – E(xi,1) = α1 − η and E(xi,2) = α2 − µη–. For identification sake, we impose

that the number of moments exceeds the number of parameters. This enables us to conduct a global

specification test (Hansen (1982)), which is asymptotically distributed as a chi–square, with the

number degrees of freedom equals to the number of over–identifying restrictions.

3.2 Empirical Results

Table 4 reports the parameters estimates of the structural model and the global specification test

statistic (J–stat). First of all, the model is not globally rejected by the data, as the p–values

associated to the J–stat are 96.18% for the model without aggregate shock and 86.95% for the model

with aggregate shock. A second feature that emerges from the table is that the sign of each estimated

parameter is in accordance with the theory. Third, the parameters are precisely estimated, notably

for the model without aggregate shock. The parameter µ exceeds significantly unity, indicating the

relevance of the growth factor in order to estimate consistently the preferences parameters. We can
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thus decompose the change in demand that is due to change in price and change in preferences. We

present this decomposition when there is no aggregate shock:

E(xi,2 − xi,1)︸ ︷︷ ︸ = α2 − α1︸ ︷︷ ︸ − η(µ− 1)︸ ︷︷ ︸
Change in demand Change in price Change in preferences

0.055 = −0.002 + 0.057

It appears that the price change is relatively small compared to the shift in the preferences between

period 2 and 1. Beyond the global specification test, we also look at each moment separately in order

Table 4: Parameters Estimates

Without aggregate shock With aggregate shock

ψ ψ̂ σ̂(ψ) t-stat ψ̂ ψ̂(ψ) t-stat
α1 -0.3570 0.045840 -7.7888 0.4114 0.5465 -0.7528
α2 -0.3590 0.045948 -7.8122 -0.4138 0.5510 -0.7509
µ 1.0468 0.01401 74.7121 1.0453 0.0200 52.383
η -1.2140 0.1881 -6.4548 -1.2666 0.5511 -2.2986

λ̃1 0.2144 0.0395 5.4180 0.2140 0.0316 6.7816

λ̃2 0.2297 0.0418 5.4946 0.2294 0.0333 6.8839
k -2.4076 0.1777 -8.1787 -2.0816 2.8839 -0.7206
β -1.4458 0.1767 -8.1787 -1.6652 2.2052 -0.7551
ω1 0.4642 0.0907 5.1162 0.4635 0.0707 6.5589
ω2 0.4664 0.0916 5.0996 0.4658 0.0712 6.5410
σε - - - 0.1055 0.1408 0.7489
ρ12 0.2163 0.0848 2.5499 0.2156 0.0659 3.27323
J − stat 0.2907 0.2798
P-value 96.18% 86.95%

Note : N=186, standard–errors computed from heteroscedastic–consitent matrix.

to locate some potential failures of the structural model in reproducing empirical moments. The main

idea is that each element of gN(ψ) measures the discrepancy between the moments computed from

the data and those computed from the model. A small value for a given element in gN indicates that

the structural model is able to account for this specific feature of the data, while large values may

reveal some failures. This simple diagnostic is constructed from the following vector of t-statistics

TN =
{
diag [ΩN}−1/2

}√
NgN

(
ψ̂N

)
, which is asymptotically distributed as a N (0, 1). The test

statistics is computed replacing ΩN = W−1
N by a consistent estimate. Table 5 reports observed
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and theoretical values of moments and the diagnostic test. First of all, all observed moments are

significant, making this set of historical moments demanding for the model. Second, the theoretical

moments match well their empirical counterparts. This is confirmed by the last column of the table 5

that reports the diagnostic test. It clearly indicates that, when taken one by one, the model generates

moments that are significantly equal to those observed on actual data.

Table 5: Moments from both Observed Data and Model

Without aggregate shock Without aggregate shock
Actual data Model Test Model Test

E(xi,1) 0.8732 0.8569 0.0085 0.8552 0.0093
(0.1129)

E(xi,1) 0.9257 0.9118 0.0070 0.9103 0.0078
(0.1171)

E(yi,1) 0.2178 0.2144 0.0073 0.2140 0.0081
(0.0279)

E(yi,2) 0.2321 0.2297 0.0050 0.2294 0.0056
(0.0290)

E(x2i,1) 4.4001 4.2460 0.0082 4.2285 0.0091
(1.069)

E(x2i,2) 4.7579 4.6794 0.0039 4.6496 0.0053
(1.1645)

E(y2i,1) 4.5379 4.4250 0.0058 4.4017 0.0071
(1.1045)

E(y2i,2) 0.2707 0.2634 0.0062 0.2625 0.0070
(0.0676)

E(xi,1yi,1) 0.2941 0.2932 0.0008 0.2917 0.0019
(0.0742)

E(xi,2yi,2) 0.2793 0.2756 0.0030 0.2745 0.0040
(0.0699)

E(xi,1xi,2) 1.0848 1.0510 0.0072 1.0471 0.0081
(0.2677)

E(yi,1yi,2) 1.1764 1.1648 0.0023 1.1582 0.0036
(0.2921)

E(xi,1yi,2) 1.1215 1.1014 0.0041 1.0964 0.0052
(0.2768)

E(xi,2yi,1) 1.1183 0.7043 0.0048 0.7003 0.0089
(0.2762)

Note : N=186, standard–errors computed from heteroscedastic–consitent matrix, standard–erros in parentheses.

From the parameters estimates, we compute the price elasticity for the two periods. Table 6 reports
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these estimated elasticity. Note that the estimates of price elasticity are very similar when the average

demand is computed from the model or the actual data. This is explained by the very good match by

the model of the mean of demand for period 1 and 2. The price elasticity of demand is relatively low

– in absolute values – especially if we compare them to previous estimations conducted on individual

data set. For comparison purpose, we briefly present some of the previous results with mail data.

Using US annual data for households from 1986 to 1994, Wolak (1997) obtains values of estimated

price elasticity of demand for postal delivery services that vary between -0.758 (in 1986) and -1.27

(in 1994). Santos and Lagoa (2001) focus on direct mail demand from firms in Portugal. The value

of the price elasticity is estimated as being -0.84. De Rycke, Florens and Marcy (2001) estimate a

mail demand model using cross-section data for a sample of small French firms observed in 1998.

They also consider the demand for two classes of mail (first and second class). The estimated price

elasticity of demand for firms using only first class letters is -0.8. For firms using both classes of mail,

the estimated own-price elasticities are -0.82 for first class letters and -0.17 for second-class mail.

Table 6: Estimates of Price Elasticities

Without aggregate shock With aggregate shock
Average demand Period 1 Period 2 Period 1 Period 2
Data -0.4089 -0.3878 -0.4712 -0.4470

Model -0.4167 -0.3937 -0.4811 -0.4545

4 Extensions

We use examples 1.1–1.3 as benchmarks for the study of identification. We first extend the original

model to a multiple product case and we deliver new conditions for identification. Second, we

investigate the case of non–linear demand and we determine under which conditions, previous results

about identification in the linear case still hold.
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4.1 Multiple Goods

We consider a multi–period case (t = 1, ..., T with T ≥ 2) and we introduce now n different types of

goods, denoted {Q1, . . . , Qn} with n ≥ 2. The demands and expenditures about these n goods are

observable by the econometrician. This model with n goods is a natural extension of the structural

model of section 1. Note, that this framework is the same as in section 1, if we partition Q in n

subsets and we assume that each of them is observable. The demand function is now



Q1
...
Qn


 =




B11 . . . B1n
...

...
Bn1 . . . Bnn







p1 −Θ1

pn −Θn




where each demand is given by Q1 = (Q1,1, ..., Q1,m1
)′ , ... , Qn = (Qn,1, ..., Qn,mn

)′, where m =

∑n
l=1ml. ml is not constrained to be equal to ml′ for l, l

′ = 1, .., n and l 6= l′. The associated vector

of prices is given by p1 = (p1,1, ..., p1,m1
)′ , ... , pn = (pn,1, ..., pn,mn

)′. As previously, we first omit for

simplicity the individual i and time t index. We express demand and expenditure in the following

matrix notation:

X = A1n −MBΘ

Y = C − PBΘ

where X and Y are composed of the different demands and expenditures for the n goods,

X =




Q1
...
Qn


 ≡




x1
...
xn


 Y =




p′1Q1
...

p′nQn


 ≡




p′1x1
...

p′nxn




C is an unimportant – for the purpose of identification of the price elasticity – n × 1 vector. The

matrix A is given by:

A =




α11 α12 . . . . . . α1n

α21 α22 . . . . . . α2n
...

...
αn1 αn2 . . . . . . αnn




where

αll′ = 1′
ml
Bll′Pl′ l, l′ = 1, ..., n
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This matrix A is not symmetric as we do not impose that ml = ml′ for l, l
′ = 1, ..., n and l 6= l′.

Moreover, as Pl 6= Pl′ , the matrix is not symmetric even if ml = ml′ . We will discuss further this

point as it represents the key identification issue of the model with multiple goods. The matrix M

is composed of the different aggregators over the different values of an attribute for the different

observed goods:

M =




1′m1
0 0 0

0 1′m2
0 0

...
...

0 0 0 1′mn




The matrix B corresponds to the matrix of the demand functions for the n goods

B =




B11 . . . B1n
...

...
Bn1 . . . Bnn




where Bll is a ml ×ml′ matrix. The vector Θ is given by

Θ′ = (Θ1,1, ...,Θ1,m1︸ ︷︷ ︸ , . . . , Θn,1, ...,Θn,mn︸ ︷︷ ︸)
Θ1 Θn

This vector is randomly generated. As previously, the mean and the variance of the vector Θ are

denoted Θo and Vo. We consider here only an individual effect. Finally, the matrix P is composed

of the different prices of goods

P =




p′1 0 . . . 0
0 p′2 . . . 0
...

. . .
...

0 . . . 0 p′n




Let us consider again many consumers i = 1, ..., N for different time periods t = 1, . . . , T . Demand

and expenditure rewrite:

Xi,t = At1n −MBΘi

Yi,t = Ct − PBtΘi

Consider the linear regression of Yi,t on Xi,t

Ψt = V (Xi,t)
−1Cov (Xi,t, Yi,t)
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= (MBVoBM)−1MBVoBPt

where Ψt is an n× n matrix. Now, express this matrix for two successive periods as follows:

Ψ−1
t Ψt−1 = (MBVoBPt)

−1MBVoBM (MBVoBM)−1MBVoBPt

= (MBVoBPt)
−1MBVoBPt−1

This equation shows immediately that if price variation is zero (i.e. if Pt = Pt−1), then Ψt = Ψt−1

and the covariance ratio remains identical over periods. In a such a case, the change in the covariance

ratio over periods does not contain any information about the demand behavior. Conversely, when

price variation is not zero, the model introduces a structural link between the actual and model

moment conditions, provided some additional restrictions on structural parameters or on the prices

change. We use the following useful property.

Theorem 2 (a) If M is the eigenvectors matrix of MBVo and the associated eigenvalues matrix is

inversible or (b) if Pt = (1 + δt)Pt−1, then

Ψ−1
t Ψt−1 = A−1

t At−1

Theorem 2 states that if we impose some restrictions – again rather weak – on preferences or on the

change in prices (as in Theorem 1), we can express the moments in terms of the structural parameters

that compose the matrix A. Theorem 2 is just an extension to the multiple good case of Theorem

1. Given this property, we can deduce the following moments for the n demands and n expenditures

for different time period t = 1, . . . , T . The change in mean over two periods is given by

(AT −AT−1) 1n = DT,T−1

(AT −AT−2) 1n = DT,T−2

...
...

(AT −A1) 1n = DT,1
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where DT,T−t = E(Xi,T )−E(Xi,T−t) for t = 1, ..., T − 1. The ratio of scaled covariances over periods

is given by CT,T−t = Ψ−1
T ΨT−t for t = 1, . . . , T − 1 and from Theorem 2 we deduce

CT,T−1 = A−1
T AT−1

CT,T−2 = A−1
T AT−2

...
...

CT,1 = A−1
T A1

From these moment conditions, we can thus determine the necessary conditions for identification of

A1, . . . ,AT . Because A is in general not symmetric, each matrix At (t = 1, ..., T ) involves n × n

parameters. The number of parameters to be identified is thus equal to T × n2. The number of

moments that we can use is equal to the sum of (T − 1)×n for the change in mean and (T − 1)×n2

for the covariance ratio. This implies that a necessary condition for identification of the sequence

{A1, . . . ,AT} is

(T − 1)× n+ (T − 1)× n2 ≥ T × n2

or equivalently

T ≥ n+ 1

This means that the number of periods must strictly exceed the number of goods. In order to

illustrate this new condition for identification, consider for example a two good model. This implies

that the two period case of the previous section does not allow to identify the demand parameter. In

this case, a necessary condition for identification is that the number of period must be equal to three.

This result comes from the asymmetry of the matrices A1 and A2. If these matrices are symmetric,

the number of parameters that composes each matrix At is equal to n(n + 1)/2. It follows that in

this – very restrictive – case, a necessary condition for identification is satisfied as the number of

periods verifies T ≥ 2, i.e. the number of periods must be at least equal to the number of goods.
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However, a two period case does not allow in general to identify the demand parameters in a two

good model, because of the asymmetry of the matrix A.

The identification of {A1, . . . ,AT} imposes additional restriction on the covariance structure over

goods and periods. First note that we have only to determine under which condition the matrix AT

is identified, as the sequence of matrices {A1, . . . ,AT−1} can be directly deduced from

AT−1 = ATCT,T−1

Using the previous equation, we thus deduce

AT (In − CT,T−1)1n = DT,T−1

...
...

AT (In − CT,1)1n = DT,1

These later equations form a system of T − 1 × n equations with n × n unknown parameters that

enter in AT . Denote ICT,T−1 = In − CT,T−1 and

ICT−1,n =




1′
nICT,T−1

1′
nICT,T−2

...
1′
nICT,1




The system of equations rewrites

CT−1,n




α•1,T

α•2,T
...

α•n,T


 =




DT (1)
DT (2)

...
DT (n)




where the matrix CT−1,n has the form

CT−1,n =




ICT−1,n 0 . . . 0
0 ICT−1,n . . . 0

0 0
. . .

0 0 0 ICT−1,n



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whereas DT (l) for l = 1, ..., n are given by

DT (l) = (DT,T−1(l), DT,T−2(l), . . . , DT,1(l))
′ l = 1, . . . , n

and finally the vectors α•l,T for l = 1, ..., n are

α•l,T = {α1,l, α2,l, . . . , αn,l} l = 1, . . . , n

As CT−1,n is block–diagonal, its determinant reduces to the determinant of ICT−1,n

|CT−1,n| = |ICT−1,n|n

Provided At 6= A′
t t 6= t′ ∈ [1, T ] – the prices must vary –, a necessary and sufficient condition for

identification is that the rank of ICT−1,n must be greater than the number of goods:

rank (ICT−1,n) ≥ n

When T = n+1, the condition for identification imposes |ICn,n| 6= 0. This means that there does not

exist colinearity over periods in the covariance structure of the n goods, i.e the changes over periods

in the covariance structure of the all demands and expenditures must be sufficiently informative.

Finally, given the identification of the sequence of {A1, . . . ,AT−1}, we can determine the own price

and the cross-price elasticity of demand for each period t = 1, ..., T . The own price elasticity is given

by

Epll,t =
∂E(xi,l,t)

∂pl,t

pl,t
E(xi,l,t)

l = 1, ..., n

=
αll,t

E(xi,l,t)

whereas the cross price elasticity for l, l′ = 1, ..., n, l 6= l′ is

Epll′,t =
∂E(xi,l,t)

∂pl′,t

pl′,t
E(xi,l,t)

=
αll′,t

E(xi,l,t)
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where αll′,t are obtained from the matrix

At =




α11,t α12,t . . . . . . α1n,t

α21,t α22,t . . . . . . α2n,t
...

...
αn1,t αn2,t . . . . . . αnn,t




4.2 Non–Linear Model

The structural model assumes for simplicity that preferences are describe by a linear–quadratic utility

function. This specification choice has the attractive feature of simplicity. However, this utility

function has also unattractive properties. It does not exclude that negative quantities are demanded

for many individual when the heterogeneity factor Θ is close to the price p and the variance of Θ is

sufficiently large. Moreover, the linear–quadratic utility and the linear demand can be viewed has a

local approximation of a more general model with non–linear demand. The question we investigate

now, is to verify if our previous results about identification still holds if the demand function is

non–linear.

Consider now that the demand takes the form

Q = ϕ (p−Θ)

This type of non–linear demand function with non–additive error term imposes some restrictions

about the representation of preferences. The specification of the utility function must be of the form

U(Q) = F(Q) +Q′Θ−Q′p

In this case of separability of the herteogeneity factor, the non–linear demand function is given by

ϕ = F−1
Q , provided some inversibility conditions on F(Q).

We now turn to the identification of demand parameters in the non–linear case. The following

theorem states new conditions for identification.
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Theorem 3 If the price variation is small and if 1m is eigenvector of

V (ϕ (pt −Θ))−1E

(
∂ϕ (pt −Θ)

∂p′t

)

then the previous results with linear demand still apply.

Beyond the eigenvector condition that is similar to condition (a), the most important restriction

is that this condition must hold every period. In the linear case, because of the linearity of the

demand function, condition (a) imposes restriction on preferences parameters independently from

price variation (except that price variation should not be zero). Here, the average derivative and the

variance of demand are both indexed by time, because they depend on prices. This essentially means

that the price variation must be sufficiently small in order to extend our previous to the non–linear

case. We illustrate now these new conditions for identification.

Example 4.1 Let us consider the following non–linear model with m = 2 in a two period case

(t = 1, 2). The utility function is given by:

U(Q) =
2∑

j=1

(ai logQj + θjQj − pjQj)

where aj > 0,∀j = 1, 2. The utility is assumed for simplicity to be separable across Q1 and Q2. The

first order conditions of the maximization of the utility is

aj
Qj

+ θj − pj = 0 j = 1, 2

whereas the second order conditions verify

− aj
Q2
j

< 0 j = 1, 2

We assume for tractability that each random factor θj is uniformly and independently distributed

θj ∼ U[0,θ̄j ] j = 1, 2
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where θ̄j < pj,t, ∀t and ∀j. The average derivative over individuals for j = 1, 2 and t = 1, 2 is given

by

E

(
∂Qi,j,t

∂pj,t

)
=

1

θ̄j

∫ θ̄j

0

− aj

(pj,t − θi,j)
21[0,θ̄j ](θi,j)

=
1

θ̄j

(
− aj
pj,t − θ̄j

+
aj
pj,t

)

= − aj

pj,t
(
pj,t − θ̄j

)

We deduce the (2× 2) matrix of average derivative:

E

(
∂ϕ (pt −Θ)

∂p′t

)
=

( − a1

p1,t(p1,t−θ̄1)
0

0 − a2

p2,t(p2,t−θ̄2)

)

The average demand over individuals for j = 1, 2 and t = 1, 2 is given by

E (Qi,j,t) = E

(
aj

pj,t − θi,j

)

=
1

θ̄j

∫ θ̄j

0

aj
pj,t − θi,j

1[0,θ̄j ](θi,j)

= −aj
θ̄j

(
log (pj,t − θ̄j)− log pj,t

)

=
aj
θ̄j

log
pj,t

pj,t − θ̄j

Using the average demand, the average variance of individual demands for j = 1, 2 and t = 1, 2 is

V (Qi,j,t) = E
(
Q2
i,j,t

)
− E (Qi,j,t)

2

=
a2j
θ̄j

∫ θ̄j

0

1

(pj,t − θi,j)
21[0,θ̄j ](θi,j)− E (Qi,j,t)

2

=
a2j
θ̄j

(
1

pj,t − θ̄j
− 1

pj,t

)
− E (Qi,j,t)

2

=
a2j

pj,t
(
pj,t − θ̄j

) − E (Qi,j,t)
2

From the expressions of the average derivatives, the variance of demand rewrites

V (Qi,j,t) = −
(
ajE

(
∂Qi,j,t

∂pj,t

)
+ E (Qi,j,t)

2

)
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The variance of total demand at periods 1 and 2 is given by the following diagonal matrix:

V (Qi,t) =


 −

(
a1E

(
∂Qi,1,t

∂p1,t

)
+ E (Qi,1,t)

2
)

0

0 −
(
a2E

(
∂Qi,2,t

∂p2,t

)
+ E (Qi,2,t)

2
)



Let denote dj,t = E
(
∂Qi,j,t

∂pj,t

)
. Using the eigenvector condition of Theorem 2, we have to verify

(
−
(
a1d1,t + E (Qi,1,t)

2) 0

0 −
(
a2d2,t + E (Qi,2,t)

2)
)−1(

d1,t 0
0 d2,t

)
=

(
k
k

)

for each period t = 1, 2. This implies that the following six restrictions for t = 1, 2 must hold:

d1,t
(
a2d2,t + E (Qi,2,t)

2) = d2,t
(
a1d1,t + E (Qi,1,t)

2)

d1,t−1

(
a2d2,t−1 + E (Qi,2,t−1)

2) = d2,t−1

(
a1d1,t−1 + E (Qi,1,t−1)

2)

1

Dt
d1,t
(
a2d2,t + E (Qi,2,t)

2) =
1

Dt−1

d1,t−1

(
a2d2,t−1 + E (Qi,2,t−1)

2)

1

Dt
d2,t
(
a1d1,t + E (Qi,1,t)

2) =
1

Dt−1

d2,t−1

(
a1d1,t−1 + E (Qi,1,t−1)

2)

1

Dt
d1,t
(
a2d2,t + E (Qi,2,t)

2) =
1

Dt−1

d2,t−1

(
a1d1,t−1 + E (Qi,1,t−1)

2)

1

Dt
d2,t
(
a1d1,t + E (Qi,1,t)

2) =
1

Dt−1

d1,t−1

(
a2d2,t−1 + E (Qi,2,t−1)

2)

where Dt =
(
a1d1,t + E (Qi,1,t)

2) (a2d2,t + E (Qi,2,t)
2). These 6 restrictions are verified as the model

implies 8 free parameters: a1, a2, θ̄1, θ̄2, p1,t, p1,t−1, p2,t, p2,t−1. Note that additional free parameters can

be included, as the utility is separable over the quantities, the covariance matrix of the heterogeneity

factor is assumed to be diagonal and the lower bound of the uniform distribution is set to zero.

This simple example illustrates that the eigenvector condition for every period can be verified rather

easily as there exist many free structural parameters. As we are not concerned with the identification

of all structural parameters but rather with a summary of them, conditions for identification and

restriction on preferences can be easily satisfied.
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5 Concluding Remarks

In this paper, we propose a simple structural model that allows to identify and estimate the price

elasticity of demand. The paper delivers conditions for identification and discusses various modeling

issues. These conditions impose either some restrictions – although not restrictive – on preferences

without any conditions on price change or on uniform price change without any conditions on pref-

erences. The structural approach is especially useful when available data set concerns a very short

panel. An empirical application illustrates the potential of this approach. Moreover, various exten-

sions – multiple goods and non–linear demand – are introduced and new conditions for identification

are determined. However, several issues may be then worth considering. First, we can mix some

models that we study separately – shift in preferences, multiple goods, non-linear demand – and thus

deliver their associated conditions for identification. Second, the models we consider do not take

advantage either from individual or aggregate information in the specification of the heterogeneity

factor. Finally, the model only considers an exogenous supply and obviously we must deliver new

conditions for identification when supply is endogenous and random.
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Appendix

A Proof of Theorem 1

Proof:

Under condition (a):

Using VoB1 = k1, the moment conditions on demand and expenditure rewrite E(xi,t) = αt − η, E(yi,t) =
λt, V (xi,t) = kβ, V (yi,t) = ω2

t , Cov(xi,t, yi,t) = kαt, Cov(xi,t, xi,t′) = kβ, Cov(yi,t, yi,t′) = ρt,t′ and
Cov(xi,t, yi,t′) = kαt′ . First subtract the demand between two successive periods t and t− 1

E(xi,t)− E(xi,t−1) ≡ E(xi,t − xi,t−1) = αt − αt−1

This equation determines the change in demand due to change in price. Second, divide the covariance
between demand and expenditure between two successive periods t and t− 1

Cov(xi,t, yi,t)

Cov(xi,t−1, yi,t−1)
=

αt
αt−1

This equation represents the change in demand and expenditure co–movement due to change in price. These
two equations allow to identify the two parameters αt and αt−1:

αt−1 =
Cov(xi,t−1, yi,t−1)

Cov(xi,t, yi,t)− Cov(xi,t−1, yi,t−1)
E(xi,t − xi,t−1)

αt =
Cov(xi,t, yi,t)

Cov(xi,t, yi,t)− Cov(xi,t−1, yi,t−1)
E(xi,t − xi,t−1)

The other parameters can be deduced directly from the other moment conditions.

Under condition (b):

Using pt = (1 + δ)pt−1 (t = 1, 2), the moment conditions on demand and revenues are

E(xi,t) = (1 + δ)αt−1 − 1BΘo
Cov(xi,t, yi,t) = (1 + δ)Cov(xi,t−1, yi,t−1)

It follows that
E(xi,t − xi,t−1) = δαt−1

and
Cov(xi,t, yi,t)

Cov(xi,t−1, yi,t−1)
= 1 + δ

These two equations allow to identify the parameter αt−1. The parameter αt is obtained from αt = (1 +
δ)αt−1.

2
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B Proof of Proposition 1

Proof:

Under condition (a):
Using VoB1 = k1, the moment conditions on demand and expenditure rewrite E(xi,t) = αt − µ(t)η,
E(yi,t) = λ̃t, V (xi,t) = µ(t)2kβ + β2σ2ε , V (yi,t) = µ(t)2(ω2

t + α2
tσ

2
ε), Cov(xi,t, yi,t) = µ(t)2(kαt + βαtσ

2
ε),

Cov(xi,t, xi,t′) = µ(t)µ(t′)kβ, Cov(yi,t, yi,t′) = µ(t)µ(t′)ρt,t′ and Cov(xi,t, yi,t′) = µ(t)µ(t′)kαt′ . The growth
factor is normalized to one in first period, i.e. µ(1) = 1. First, divide the variance of demand the two
successive periods:

V (xi,2)

V (xi,1)
=

µ(2)2

µ(1)2

From the normalization to one of the growth factor in first period, we deduce

µ(2)2 =
V (xi,2)

V (xi,1)

Second, subtract the demand between period 1 and 2

E(xi,2)− E(xi,1) = α2 − α1 − η (µ(2)− 1)

This equation determines the change in demand between period 1 and 2 due to change in price and the
change in preferences. From the average demand in period 1, we deduce:

−η = E(xi,1)− α1

After replacement of η into the change in average demand, we obtain

E(xi,2)− µ(2)E(xi,1) = α2 − µ(2)α1

where µ(2) =
√
V (xi,2)/V (xi,1). Third, divide the covariance between demand and expenditure by the

variance of demand
Cov(xi,t, yi,t)

V (xi,t)
=

αt
β

and form the ratio for two periods 1 and 2

Cov(xi,2, yi,2)/V (xi,2)

Cov(xi,1, yi,1)/V (xi,1)
=

α2

α1

This later equation together with the change in average demand allow to identify the two parameters α1

and α2:

α1 =
E(xi,2)− (σxi,2

/σxi,1
)E(xi,1)

Cov(xi,2, yi,2)/V (xi,2)− (σxi,2
/σxi,1

)Cov(xi,1, yi,1)/V (xi,1)

Cov(xi,1, yi,1)

V (xi,1)

α2 =
E(xi,2)− (σxi,2

/σxi,1
)E(xi,1)

Cov(xi,2, yi,2)/V (xi,2)− (σxi,2
/σxi,1

)Cov(xi,1, yi,1)/V (xi,1)

Cov(xi,2, yi,2)

V (xi,2)

The other parameters can be deduced directly from the other moment conditions.
Under condition (b):
Using pt = (1 + δ)pt−1, the change in average demand between period 1 and 2 is

E(xi,2)− E(xi,1) = δα1 − η(µ(2)− 1)
= δα1 − (E(xi,1)− α1)(µ(2)− 1)
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and the covariance
Cov(xi,2, yi,2)/V (xi,2)

Cov(xi,1, yi,1)/V (xi,1)
= 1 + δ

These two equations allows to identify α1, provided µ(2) = σxi,2
/σxi,1

. Given α1, the parameter α2 is
deduced using α2 = (1 + δ)α1.

2

C Proof of Theorem 2

Proof:

Under condition (a):
M is eigenvector of BVo rewrites as MBVo = KM where K is the matrix of eigenvalues. We assume that
each eigenvalue is different from zero. Now using this condition, we deduce:

Ψ−1
t Ψt−1 = (MBVoBPt)

−1MBVoBPt−1

= (KMBPt)
−1KMBPt−1

= (KAt)−1KAt−1

= A−1
t At−1

Under condition (b):
Condition (b) imposes Pt = (1 + δt)Pt−1 and we deduce

Ψ−1
t Ψt−1 = (MBVoBPt)

−1MBVoBPt−1

=
1

1 + δt
(KMBPt−1)

−1KMBPt−1

=
In
1 + δt

= A−1
t At−1

2

D Proof of Theorem 3

Proof:

Let first introduce the average sensitivity to change in price of the non–linear demand function:

αt = 1
′
mE

(
∂ϕ (pt −Θ)

∂p′t

)
pt

= −1
′
mE

(
∂ϕ (pt −Θ′)

∂Θ′

)
pt

= −1
′
m

(∫

Ω

∂ϕ (pt −Θ)
∂Θ′

f (Θ) dΘ

)
pt

Note also that if
lim

||Θ||→∞
ϕ (pt −Θ) f (Θ) = 0
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the average sensitivity rewrites:

αt = 1
′
m

(∫

Ω
ϕ (pt −Θ)

∂f (Θ)

∂Θ′
dΘ

)
pt

= 1
′
m

(∫

Ω
ϕ (pt −Θ)

(
∂f (Θ)

∂Θ′
/ f (Θ)

)
f (Θ) dΘ

)
pt

≡ 1
′
mE

(
ϕ (pt −Θ) g (Θ)′

)
pt

Second, we determine the average change in demand

E(xi,t)− E(xi,t−1) = 1
′
m

∫

Ω
ϕ (pt −Θ) f (Θ) dΘ− 1

′
m

∫

Ω
ϕ (pt−1 −Θ) f (Θ) dΘ

= 1
′
m

∫

Ω
(ϕ (pt −Θ)− ϕ (pt−1 −Θ)) f (Θ) dΘ

' 1
′
m

∫

Ω

∂ϕ (pt−1 −Θ)
∂p′t−1

(pt − pt−1) f (Θ) dΘ if ∆pt is small

' 1
′
m

(∫

Ω

∂ϕ (pt−1 −Θ)
∂p′t

f (Θ) dΘ

)
pt − 1

′
m

(∫

Ω

∂ϕ (pt−1 −Θ)
∂p′t−1

f (Θ) dΘ

)
pt−1

≡ αt − αt−1

For small price variations, this simply means that the linear approximation of the demand function is
accurate.
Now, recall that condition (a) for identification requires that the – standardized – covariance between demand
and expenditure must be proportional to the average derivative αt for each and every periods

Cov (xi,t, yi,t) = καt

The covariance matrix is given by

Cov (xi,t, yi,t) = 1
′
mV (ϕ (pt −Θ)) pt

We deduce from the above expression

1
′
mV (ϕ (pt −Θ)) pt = κ1′mE

(
∂ϕ (pt −Θ)

∂p′t

)
pt

A sufficient condition for identification is

1
′
mV (ϕ (pt −Θ)) = κ1′mE

(
∂ϕ (pt −Θ)

∂p′t

)

that is equivalent to

V (ϕ (pt −Θ))−1E

(
∂ϕ (pt −Θ)

∂p′t

)
1m = κ1m

i.e 1m must be an eigenvector of

V (ϕ (pt −Θ))−1E

(
∂ϕ (pt −Θ)

∂p′t

)

Now, using the change in average demand

E(xi,t)− E(xi,t−1) = αt − αt−1

and the ratio of the covariances between demand and expenditure over two periods

Cov (xi,t, yi,t)

Cov (xi,t−1, yi,t−1)
=

αt
αt−1

from which we can identify the parameters αt and αt−1 and thus the price elasticity of demand every period.
2
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