Ambiguity, Learning, and Asset Returns

Nengjiu Ju¹ Jianjun Miao²

¹Department of Finance HKUST

²Department of Economics Boston University

²Department of Finance HKUST

September 2008

ヘロア 人間 アメヨア 人口 ア

ъ

Rational Expectations Hypothesis

- There exists an objective probability law governing the state process
- Economic agents know this law which coincides with their subjective beliefs
- Imposing rational expectations removes from the need for separately specifying subjective probabilities, thereby simplifying model specification.
- Learning to be rational

ヘロン 人間 とくほ とくほ とう

What can go wrong?

- Knight (1921) and Keynes (1936)
- Ellsberg Paradox and ambiguity
- An urn contains 30 red balls and 60 white and black balls

	R	В	W
f	10	0	0
g	0	10	0
f′	10	0	10
g'	0	10	10

- EU implies $f \succ g \Rightarrow f' \succ g'$
- But experiment evidence reveals that *f* ≻ *g* but *g*′ ≻ *f*′

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

What can go wrong?

- Model misspecification
- Statistical ambiguity
- Averse to model ambiguity (uncertainty)
- Robustness
- Hansen and Sargent

くロト (過) (目) (日)

ъ

What can go wrong?

- Asset pricing puzzles and empirical failure
 - Equity premium, riskfree rate and equity volatility puzzles
 - Countercyclical variation of equity premia and equity volatility
 - Procyclical variation of price-dividend ratio
 - Long-horizon predictability and serial correlation of excess returns

くロト (過) (目) (日)

What we do?

- Set up a Lucas-style model by departing from REH
- Apply the smooth ambiguity model developed by Klibanoff et al (2005, 2008)
- Analyze quantitative asset pricing implications of learning under ambiguity
- Provide a new explanation of asset pricing puzzles

ヘロト ヘアト ヘビト ヘビト

Main model ingredients

- Assume hidden Markov switching consumption process
 - The agent learns about hidden states under ambiguity
 - Posterior state beliefs are a state variable driving asset return dynamics
 - Non-Bayesian approach: irreducibility of compound distributions
- Assume the agent is ambiguous about hidden states
 - Recursive smooth ambiguity utility (Klibanoff et al. (2005, 2008))
 - It is tractable and permits separation between ambiguity and ambiguity aversion
 - Ambiguity aversion helps propagate and amplify shocks to the dynamics of asset returns

くロト (過) (目) (日)

Main results

- Propose and analyze two tractable parametric specifications: log-exponential and power-power
- Under reasonable calibration, both can match first moments of equity premium and riskfree rate
- Only power-power specification can generate dynamic asset pricing phenomena observed in data
- The standard Bayesian learning model may worsen asset pricing puzzles
- Ambiguity aversion is not simply reinforcement of risk aversion

ヘロト 人間 ト ヘヨト ヘヨト

Related literature

- Decision theory: Gilboa and Schmeidler (1989), Epstein and Schneider (2003), Klibanoff et al. (2005, 2008), Segal (1987)
- Applications of multiple-priors model: Chen and Epstein (2002), Epstein and Miao (2003), Epstein and Schneider (2007), Epstein and Wang (1994), Leippold et al. (2007)
- Robustness approach: Anderson et al. (2002), Hansen (2007), Hansen and Sargent (2007, 2008)
- **Distorted beliefs:** Abel (2002), Brandt et al. (2004), Cecchetti et al. (2000)
- Other explanations: Campbell and Cochrane (1999) and Bansal and Yaron (2004)

Setup

- A representative-agent Lucas-style pure exchange model
- The agent trades one aggregate stock and one bond
- Hidden Markov switching dividend process

$$\log\left(\frac{D_{t+1}}{D_t}\right) = \kappa_{z_{t+1}} + \sigma \varepsilon_{t+1}, \ D_0 \text{ given,}$$

where ε_t is iid standard normal and the state $z_t \in \{1, 2, ..., N\}$ follows a *N* state Markov chain with transition matrix (λ_{ij})

- Assume $\kappa_1 > \kappa_2 > \ldots > \kappa_N$
- In equilibrium aggregate consumption is equal to dividends

ヘロト ヘアト ヘビト ヘビト

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative rei

State beliefs

- Let $\mu_t(j) = \Pr(z_{t+1} = j | s^t)$
- Prior beliefs μ_0 given
- Bayesian updating

$$\mu_{t+1} = B\left(\log\left(D_{t+1}/D_t\right), \mu_t\right)$$

for some vector of functions B

- The standard Bayesian approach implies that the posterior and likelihood can be reduced to a predictive distribution
- The key idea of learning under ambiguity is irreducibility of compound distributions

イロン 不同 とくほう イヨン

Preferences Asset pricing implications Calibration and quantitative results

Static smooth ambiguity preferences

Utility function

$$\phi^{-1}\left(\int_{\Pi}\phi\left(\mathbb{E}_{\pi}u\left(\mathcal{C}\right)\right)d\mu\right), \ \forall \mathcal{C}: \mathcal{S} \to \mathbb{R}_{+},$$

- *u*: risk attitude
- φ: ambiguity attitude
- Π: set of prob measures or models
- *µ*: subjective prior over possible models

くロト (過) (目) (日)

æ

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative results

Ambiguity attitude

- Use expected utility as the ambiguity neutrality benchmark
- DM is ambiguity averse iff ϕ is concave
- constant absolute ambiguity aversion (CAAA) utility:

$$\phi(\mathbf{x}) = -\mathbf{e}^{-\frac{\mathbf{x}}{\theta}}, \ \theta > \mathbf{0},$$

where $1/\theta$ is the parameter of CAAA.

• constant relative ambiguity aversion (CRAA) utility:

$$\phi(\mathbf{x}) = \frac{\mathbf{x}^{1-lpha}}{1-lpha}, \ \mathbf{x} > \mathbf{0}, \ \alpha > \mathbf{0}, \neq \mathbf{1}$$

where α is the parameter of CRAA.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative results

Special cases: CAAA

• When $\theta \rightarrow 0$, converge to Gilboa and Schmeidler (1989)

 $\inf_{\pi\in\Pi}\mathbb{E}_{\pi}u\left(\mathcal{C}\right).$

 Robustness (Hansen and Sargent) and risk-sensitivity (Tallarini (2000))

$$\phi^{-1} \left(\mathbb{E}_{\mu} \phi \left(\mathbb{E}_{\pi} u \left(C \right) \right) \right)$$

=
$$\min_{m \ge 0, \mathbb{E}_{\mu}[m]=1} \mathbb{E}_{\mu} \left[m \mathbb{E}_{\pi} u \left(C \right) \right] + \theta \mathbb{E}_{\mu} \left[m \log m \right]$$

=
$$-\theta \log \mathbb{E}_{\mu} \exp \left(- \frac{\mathbb{E}_{\pi} u \left(C \right)}{\theta} \right)$$

ヘロト ヘアト ヘビト ヘビト

æ

Setup Preferences Asset pricing implications Calibration and quantitative res

Resolving Ellsberg Paradox

An urn contains 30 red balls and 60 white and black balls

Motivation Summary

Model Conclusion

	R	В	W
f	10	0	0
g	0	10	0
f′	10	0	10
g'	0	10	10

- Beliefs: (1/3,0,2/3) with prob 1/2 and (1/3,2/3,0) with prob 1/2
- Bayesian approach with linear ϕ does not help

ヘロト 人間 ト ヘヨト ヘヨト

æ

Motivation Setup Summary Preferences Model Asset pricing implic Conclusion Calibration and qua

Resolving Ellsberg Paradox

- Strictly concave ϕ

1

$$\begin{aligned} u(10)/3 &= \phi^{-1}\left(\frac{1}{2}\phi(u(10)/3) + \frac{1}{2}\phi(u(10)/3)\right) \\ &> \phi^{-1}\left(\frac{1}{2}\phi(0) + \frac{1}{2}\phi(u(10) \times 2/3)\right) \end{aligned}$$

• $g' \succ f'$ because

$$u(10) \times 2/3 = \phi^{-1} \left(\frac{1}{2} \phi(\frac{2}{3}u(10)) + \frac{1}{2} \phi(\frac{2}{3}u(10)) \right)$$

> $\phi^{-1} \left(\frac{1}{2} \phi(\frac{1}{3}u(10) + \frac{2}{3}u(10)) + \frac{1}{2} \phi(\frac{1}{3}u(10)) \right)$

イロト 不得 とくほと くほとう

Setup Preferences Asset pricing implications Calibration and quantitative results

Recursive smooth ambiguity model

- Time *t* = 0, 1, 2, ...
- Period state space S, full space S[∞].
- History $s^t = \{s_0, s_1, s_2, ..., s_t\}$ with s_0 given.

• Unknown parameter z in Z

Utility

$$V_{t}(C; s^{t}) = u(C_{t}) + \beta \phi^{-1} \left(\int_{Z} \phi \left(\int_{S} V_{t+1}(C; s^{t}, s_{t+1}) d\pi_{z}(s_{t+1}|s^{t}) \right) d\mu(z|s^{t}) \right)$$

・ロト ・ 理 ト ・ ヨ ト ・

Motivation Summary Model

Setup Preferences Asset pricing implications Calibration and quantitative results

Pricing kernel

$$M_{t+1,z} = \frac{\phi'\left(\mathbb{E}_{\pi_{t,z}}\left[V_{t+1}\left(\mathcal{C}\right)\right]\right)}{\phi'\left(\phi^{-1}\left(\mathbb{E}_{\mu_{t}}\left[\phi\left(\mathbb{E}_{\pi_{t,z}}\left[V_{t+1}\left(\mathcal{C}\right)\right]\right)\right]\right)\right)}\frac{\beta u'\left(\mathcal{C}_{t+1}\right)}{u'\left(\mathcal{C}_{t}\right)}$$

Nengjiu Ju, Jianjun Miao Ambiguity, Learning, and Asset Returns

ヘロト 人間 とくほとくほとう

Motivation Summary Model Setup Preferences Asset pricing implications Calibration and quantitative results

Log-exponential specification

- $u(c) = \log(c)$ and ϕ is CAAA
- Bellman equation

$$J(W_{t}, \mu_{t}) = \max_{C_{t}, \psi_{t}} \log (C_{t}) - \beta \theta \log \left(\sum_{j} \mu_{t}(j) \exp \left(-\frac{1}{\theta} \mathbb{E}_{t,j} \left[J(W_{t+1}, \mu_{t+1}) \right] \right) \right)$$

イロト 不得 とくほ とくほ とう

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative results

Log-exponential specification

The equilibrium stock price and return are given by

$$P_t = \frac{\beta}{1-\beta}D_t, \ R_{e,t+1} = R_{m,t+1} = \frac{1}{\beta}\frac{D_{t+1}}{D_t}$$

The equilibrium bond return is given by

$$\frac{1}{R_{f,t+1}} = \sum_{j} \mu_t(j) \mathbb{E}_{tj} \left[M_{t+1,j} \right],$$

where the pricing kernel is given by

$$M_{t+1,j} = \beta \frac{C_t}{C_{t+1}} \frac{\exp\left(-\frac{1}{\theta}\mathbb{E}_{t,j}\left[J\left(W_{t+1},\mu_{t+1}\right)\right]\right)}{\sum_j \mu_t\left(j\right)\exp\left(-\frac{1}{\theta}\mathbb{E}_{t,j}\left[J\left(W_{t+1},\mu_{t+1}\right)\right]\right)}.$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

otivation	Setup
ummary	Preferences
Model	Asset pricing implications
nclusion	Calibration and quantitative results

Intuition

• Distorted beliefs $\hat{\mu}_t(j) = \mu_t(j) m_{t,j}^*$,

$$\frac{1}{R_{f,t+1}} = \sum_{j} \hat{\mu}_{t}(j) \mathbb{E}_{t,j} \left[\beta \frac{C_{t}}{C_{t+1}} \right],$$

- The ambiguous averse agent puts relatively more weight on smaller continuation values than larger values under distorted beliefs
- An increase in the degree of ambiguity aversion implies a first-order stochastic dominated shift of state beliefs
- This pessimism induces the agent to save more for future consumption

Motivation Setup Summary Preferences Model Asset pricing implications Conclusion Calibration and quantitativ

Power-power specification

- $u(\mathbf{C}) = \mathbf{C}^{1-\gamma}/(1-\gamma)$, and ϕ is CRAA
- When $\gamma > 1$, utility function is not well defined
- We adopt

$$V_t(C; s^t) = \left[C_t^{1-\gamma} + \right]$$

$$\beta \left\{ \int \left(\int V_{t+1}^{1-\gamma} \left(\boldsymbol{C}; \boldsymbol{s}^{t}, \boldsymbol{s}_{t+1} \right) \boldsymbol{d} \pi_{\boldsymbol{z}} \left(\boldsymbol{s}_{t+1} | \boldsymbol{s}^{t} \right) \right)^{1-\alpha} \boldsymbol{d} \mu \left(\boldsymbol{z} | \boldsymbol{s}^{t} \right) \right\}^{\frac{1}{1-\alpha}} \right]^{\frac{1}{1-\gamma}}$$

Ordinally equivalent (Epstein and Zin (1989, 1991))

イロト イポト イヨト イヨト

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative results

Power-power specification: Pricing

The equilibrium stock price and return are given by

$$P_{t} = \varphi(\mu_{t}) D_{t}, \ R_{e,t+1} = R_{m,t+1} = \frac{D_{t+1}}{D_{t}} \frac{1 + \varphi(\mu_{t+1})}{\varphi(\mu_{t})},$$

where the function φ satisfies

$$1 = \sum_{j} \mu_{t}(j) \left(\mathbb{E}_{t,j} \left[\frac{1 + \varphi(\mu_{t+1})}{\varphi(\mu_{t})} \beta\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma} \right] \right)^{1-\alpha}$$

• The pricing kernel is given by

$$M_{t+1,j} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\mathbb{E}_{t,j}\left[R_{m,t+1}\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma}\right]\right)^{-\alpha}.$$

Setup Preferences Asset pricing implications Calibration and quantitative results

Intuition

μ_t is a state variable driving stock returns

Motivation Summary Model

Conclusion

- Pessimism induces the agent to save more and invest less in the stock
- Ambiguity aversion has different effects for the γ > 1 case and for the γ < 1 case
- Wealth and substitution effects

ヘロト ヘアト ヘビト ヘビト

 Motivation
 Setup

 Summary
 Preferences

 Model
 Asset pricing implications

 Conclusion
 Calibration and quantitative results

Calibration

- Use data from Cecchetti et al. (2000)
- For log-exponential specification, choose (β, 1/θ) to match mean values of equity premium and riskfree rate
- For power-power specification, choose (β, γ, α) to match mean values of equity premium and riskfree rate and their correlation
- Require $\beta \in (0, 1)$ and $\gamma \in (0, 10)$

ヘロン 人間 とくほ とくほ とう

Table 1. Maximum likelihood estimates of the consumption process

λ_{11}	λ_{22}	κ_1	κ_2	σ
0.978	0.516	2.251	-6.785	3.127

Notes: The numbers in the last three columns are expressed in percentage. This table is taken from Table 2 in Cecchetti et al. (2000).

Table 2. Stylized facts of equity and short-termbond returns using annual observations from 1871-1993

A. First and second moments as a percentage

Mean equity premium	μ_{eq}	5.75
Mean risk-free rate	r_f	2.66
Standard deviation		
Equity premium	$\sigma(\mu_{eq})$	19.02
Risk-free rate	$\sigma(r_f)$	5.13
Correlation	$ ho_{eq,f}$	-0.24

B. Predictability and persistence of excess returns

Horizon	Regression slope	R^2	Variance ratio
1	0.148	0.043	1.000
2	0.295	0.081	1.038
3	0.370	0.096	0.921
5	0.662	0.191	0.879
8	0.945	0.278	0.766

Notes: The regression slope and R^2 are for regressions of the k-year (k = 1, 2, 3, 5, 8) ahead equity premium on the current log dividend-price ratio. The variance ratio is the variance of the k-year equity premium dividend by k times the variance of the one-year equity premium. This table is taken from Table 1 in Cecchetti et al. (2000).

1	2	3	4	5	6	7	8	9	10	11
								$r_f = r$	$f_{f}^{*} + \Delta r_{f}^{L}$	$+\Delta r_f$
1/ heta	r_{f}	$\sigma(r_f)$	r_e	μ_{eq}	$\sigma(\mu_{eq})$	$\frac{\sigma(M)}{E[M]}$	μ_{eq}^*	r_f^*	Δr_f^L	Δr_f
		Panel A	: Baseline	e param	eter valu	es: $\beta =$	0.940, 1	$\theta = 1.2$	92	
	2.660	0.914	8.410	5.750	3.853	3.792	0.133	8.276	-0.002	-5.614
				Pane	el B: $\beta =$	0.940				
0.00	8.274	0.817	8.410	0.136	3.816	0.037	0.133	8.276	-0.002	0.000
0.25	7.990	1.107	8.410	0.420	3.831	0.185	0.133	8.276	-0.002	-0.283
0.50	7.369	1.399	8.410	1.041	3.874	0.560	0.133	8.276	-0.002	-0.904
0.75	6.027	1.477	8.410	2.383	3.905	1.436	0.133	8.276	-0.002	-2.246
1.00	4.318	1.260	8.410	4.092	3.883	2.614	0.133	8.276	-0.002	-3.955
1.25	2.867	0.962	8.410	5.543	3.856	3.644	0.133	8.276	-0.002	-5.407
1.50	1.791	0.699	8.410	6.619	3.846	4.420	0.133	8.276	-0.002	-6.483
1.75	1.028	0.496	8.410	7.382	3.849	4.976	0.133	8.276	-0.002	-7.246
2.00	0.495	0.347	8.410	7.915	3.857	5.367	0.133	8.276	-0.002	-7.778
				Pan	el C: β =	= 0.98				
0.00	3.892	0.784	4.023	0.131	3.662	0.037	0.128	3.895	-0.002	0.000
0.25	1.398	1.396	4.023	2.625	3.747	1.675	0.128	3.895	-0.002	-2.494
0.50	-2.582	0.606	4.023	6.605	3.690	4.612	0.128	3.895	-0.002	-6.474
0.75	-4.011	0.206	4.023	8.034	3.712	5.705	0.128	3.895	-0.002	-7.903
1.00	-4.477	0.068	4.023	8.500	3.728	6.064	0.128	3.895	-0.002	-8.369
1.25	-4.628	0.022	4.023	8.651	3.734	6.181	0.128	3.895	-0.002	-8.520
1.50	-4.676	0.007	4.023	8.699	3.737	6.219	0.128	3.895	-0.002	-8.569
1.75	-4.692	0.002	4.023	8.715	3.737	6.231	0.128	3.895	-0.002	-8.584
2.00	-4.697	0.001	4.023	8.720	3.738	6.235	0.128	3.895	-0.002	-8.589
				Pan	el D: β =	= 0.92				
0.00	10.668	0.835	10.807	0.139	3.901	0.037	0.136	10.670	-0.003	0.000
0.25	10.476	1.047	10.807	0.331	3.909	0.131	0.136	10.670	-0.003	-0.192
0.50	10.154	1.275	10.807	0.653	3.933	0.314	0.136	10.670	-0.003	-0.514
0.75	9.565	1.465	10.807	1.242	3.968	0.670	0.136	10.670	-0.003	-1.103
1.00	8.567	1.516	10.807	2.240	3.990	1.308	0.136	10.670	-0.003	-2.101
1.25	7.311	1.396	10.807	3.496	3.981	2.146	0.136	10.670	-0.003	-3.357
1.50	6.096	1.186	10.807	4.711	3.958	2.979	0.136	10.670	-0.003	-4.572
1.75	5.064	0.964	10.807	5.743	3.940	3.698	0.136	10.670	-0.003	-5.604
2.00	4.235	0.763	10.807	6.572	3.931	4.283	0.136	10.670	-0.003	-6.433

 Table 3. Unconditional Moments for the Log–Exponential Case

Notes: Except for the numbers in Columns 1 and 7, all numbers are in percentage. The variables in the first row and columns 2-6 are defined as in Table 2. $\sigma(M)/E[M]$ is the ratio of the standard deviation to the mean of the pricing kernel. r_f^* and μ_{eq}^* are the mean riskfree rate and the mean equity premium for benchmark model I. r_f^L is the mean riskfree rate for benchmark model II. $\Delta r_f^L = r_f^L - r_f^*$ denotes the change of the mean riskfree rate due to learning only. $\Delta r_f = r_f - r_f^L$ denotes change of the riskfree rate due to ambiguity.

1	2	3	4	5	6	7	8	9		
α	r_{f}	$\sigma(r_f)$	r_e	$\sigma(r_e)$	μ_{eq}	$\sigma(\mu_{eq})$	$rac{\mu_{eq}}{\sigma(\mu_{eq})}$	$\frac{\sigma(M)}{E[M]}$		
Pane	el A: Base	eline pai	ameter v	values: /	$\beta = 0.944$	$\gamma = 0.6$	47, $\alpha = 4$	48.367		
	2.660	0.952	8.410	4.581	5.750	4.715	1.219	2.640		
Panel B: $\beta = 0.944, \gamma = 0.0$										
0.0	5.953	0.000	5.953	4.456	0.000	4.456	0.000	0.000		
3.0	5.813	0.189	6.077	4.660	0.265	4.671	0.057	0.096		
10.0	4.568	0.845	6.888	5.640	2.320	5.843	0.397	0.711		
25.0	-1.736	0.932	10.466	6.037	12.202	6.011	2.030	4.215		
60.0	0.004	1.026	13.212	4.927	13.208	4.996	2.643	6.152		
		-	Panel C:	$\beta = 0.9$	$44, \ \gamma = 0$).2				
0.0	6.345	0.160	6.375	4.324	0.030	4.322	0.007	0.007		
3.0	6.234	0.308	6.453	4.444	0.220	4.452	0.049	0.078		
10.0	5.552	0.786	6.855	4.956	1.303	5.087	0.256	0.447		
25.0	0.121	0.674	9.295	5.698	9.175	5.793	1.584	3.265		
60.0	-0.970	0.912	11.793	4.865	12.763	4.925	2.592	5.975		
		-	Panel D:	$\beta = 0.9$	$44, \ \gamma = 0$).8				
0.0	7.499	0.648	7.611	3.975	0.112	3.928	0.029	0.029		
3.0	7.470	0.686	7.615	3.980	0.145	3.935	0.037	0.040		
10.0	7.392	0.778	7.628	3.995	0.236	3.955	0.060	0.082		
25.0	7.144	0.999	7.669	4.036	0.526	4.028	0.131	0.225		
60.0	5.374	1.348	7.946	4.200	2.572	4.320	0.595	1.265		
			Panel E:	$\beta = 0.9$	$44, \gamma = 1$	5				
0.0	8.800	1.235	8.986	3.717	0.186	3.516	0.053	0.055		
3.0	8.877	1.137	9.013	3.733	0.137	3.546	0.039	0.050		
10.0	9.015	0.932	9.059	3.763	0.044	3.604	0.012	0.095		
25.0	9.195	0.606	9.114	3.808	-0.081	3.695	-0.022	0.171		
60.0	9.360	0.255	9.164	3.858	-0.195	3.807	-0.051	0.233		
			Panel F:	$\beta = 0.9$	$44, \ \gamma = 3$	8.0				
0.0	11.416	2.542	11.647	4.161	0.230	3.213	0.072	0.113		
3.0	11.807	2.071	12.069	3.863	0.262	3.248	0.081	0.127		
10.0	12.297	1.224	12.416	3.806	0.119	3.507	0.034	0.225		
25.0	12.623	0.529	12.611	3.903	-0.012	3.784	-0.003	0.262		
60.0	12.776	0.222	12.701	3.983	-0.075	3.936	-0.019	0.263		

 Table 4. Comparative Statistics for the Power-Power Case

Notes: Except for numbers in Columns 1, 8 and 9, all numbers are in percentage. The variables in the first row and columns 2-6 are defined as in Table 2. $\sigma(M)/E[M]$ is the ratio of the standard deviation to the mean of the pricing kernel.

1	2	3	4	5	6	7	8	9	10	
	$r_f = r$	$f_f^* + \Delta r_f^L$	$+\Delta r_f$	$r_e = r_e$	$r_e^* + \Delta r_e^L$	$+\Delta r_e$	$\mu_{eq} = \mu_{eq}^* + \Delta \mu_{eq}^L + \Delta \mu_{eq}$			
α	r_f^*	Δr_f^L	Δr_f	r_e^*	Δr_e^L	Δr_e	μ_{eq}^*	$\Delta \mu_{eq}^L$	$\Delta \mu_{eq}$	
	Panel A	: Baselir	ne param	eter valu	es: $\beta = 0$	$0.944, \gamma$	= 0.647	$\gamma, \alpha = 48.$.367	
	7.208	-0.001	-4.547	7.299	0.001	1.111	0.090	0.002	5.657	
			Pan	el B: β =	= 0.944, '	$\gamma = 0.0$				
0.0	5.953	0.000	0.000	5.953	0.000	0.000	0.000	0.000	0.000	
3.0	5.953	0.000	-0.140	5.953	0.000	0.124	0.000	0.000	0.265	
10.0	5.953	0.000	-1.385	5.953	0.000	0.935	0.000	0.000	2.320	
25.0	5.953	0.000	-7.689	5.953	0.000	4.513	0.000	0.000	12.202	
60.0	5.953	0.000	-5.949	5.953	0.000	7.259	0.000	0.000	13.208	
			Pan	el C: β =	= 0.944, ^	$\gamma = 0.2$				
0.0	6.345	0.000	0.000	6.375	0.001	0.000	0.030	0.001	0.000	
3.0	6.345	0.000	-0.111	6.375	0.001	0.078	0.030	0.001	0.189	
10.0	6.345	0.000	-0.793	6.375	0.001	0.479	0.030	0.001	1.273	
25.0	6.345	0.000	-6.224	6.375	0.001	2.920	0.030	0.001	9.144	
60.0	6.345	0.000	-7.315	6.375	0.001	5.417	0.030	0.001	12.733	
			Pan	el D: β =	= 0.944, ^	$\gamma = 0.8$				
0.0	7.500	-0.001	0.000	7.610	0.001	0.000	0.110	0.003	0.000	
3.0	7.500	-0.001	-0.028	7.610	0.001	0.005	0.110	0.003	0.033	
10.0	7.500	-0.001	-0.106	7.610	0.001	0.017	0.110	0.003	0.123	
25.0	7.500	-0.001	-0.355	7.610	0.001	0.059	0.110	0.003	0.414	
60.0	7.500	-0.001	-2.125	7.610	0.001	0.335	0.110	0.003	2.460	
			Pan	el E: β =	= 0.944, ~	$\gamma = 1.5$				
0.0	8.806	-0.006	0.000	8.989	-0.003	0.000	0.183	0.003	0.000	
3.0	8.806	-0.006	0.077	8.989	-0.003	0.028	0.183	0.003	-0.049	
10.0	8.806	-0.006	0.215	8.989	-0.003	0.074	0.183	0.003	-0.141	
25.0	8.806	-0.006	0.395	8.989	-0.003	0.128	0.183	0.003	-0.267	
60.0	8.806	-0.006	0.559	8.989	-0.003	0.179	0.183	0.003	-0.381	
			Par	nel F: β =	= 0.944, ~	$\gamma = 3.0$				
0.0	11.444	-0.027	0.000	11.685	-0.038	0.000	0.241	-0.011	0.000	
3.0	11.444	-0.027	0.390	11.685	-0.038	0.422	0.241	-0.011	0.032	
10.0	11.444	-0.027	0.881	11.685	-0.038	0.769	0.241	-0.011	-0.111	
25.0	11.444	-0.027	1.207	11.685	-0.038	0.964	0.241	-0.011	-0.243	
60.0	11.444	-0.027	1.359	11.685	-0.038	1.055	0.241	-0.011	-0.305	

Table 5. Decomposition of r_f , r_e and μ_{eq} for the Power-Power Case

Notes: Except for the numbers in Column 1, all numbers are in percentage. The variables r_f^* , r_e^* , and μ_{eq}^* are the mean riskfree rate, stock return, and the mean equity premium, respectively, for benchmark model I. The variables r_f^L , r_e^L , and μ_{eq}^L are the mean riskfree rate, stock return, and the mean equity premium, respectively, for benchmark model II. $\Delta r_f^L = r_f^L - r_f^*$ denotes the change of the mean riskfree rate due to learning only. $\Delta r_f = r_f - r_f^L$ denotes change of the riskfree rate due to ambiguity. The other variables Δr_e^L , Δr_e , $\Delta \mu_{eq}^L$, $\Delta \mu_{eq}$, are defined similarly.

1	2	3	4	5	6	7	8	9	10	
	Baseline parameter values			Ben	Benchmark model I			Benchmark model II		
			Variance			Variance			Variance	
Horizon	Slope	R^2	ratio	Slope	R^2	ratio	Slope	R^2	ratio	
1	1.040	0.064	1.000	0.443	0.022	1.000	0.776	0.020	1.000	
2	1.372	0.074	0.848	0.599	0.025	0.989	1.028	0.022	0.987	
3	1.511	0.071	0.769	0.685	0.024	0.979	1.137	0.022	0.975	
5	1.635	0.061	0.683	0.780	0.022	0.960	1.346	0.021	0.955	
8	1.741	0.053	0.619	0.907	0.020	0.933	1.649	0.020	0.927	

Table 6. Predictability and persistence of excess returns

Notes: The slope and R^2 are obtained from an OLS regression of the excess returns on the log dividend yield at different horizons. The variance ratio is computed in the same way as Cecchetti (1990, 2000). The reported numbers are the mean values of 10,000 Monte Carlo simulations, each consisting of 123 excess returns and dividend yields.

Figure 1: Price dividend ratio as a function of the posterior probability of the high-growth state.

Figure 2: Conditional mean and volatility of the probability of the high-growth state in the next period as functions of the current state beliefs.

Figure 3: Conditional expected equity premium as a function of the beliefs about the high-growth state. Panel a plots this function for different values of the ambiguity aversion parameter α . Panel b plots this function for different values of the risk aversion parameter γ .

Figure 4: Conditional volatility of stock returns as a function of the beliefs about the high-growth state. Panel a plots this function for different values of the ambiguity aversion parameter α . Panel b plots this function for different values of the risk aversion parameter γ .

Figure 5: Simulated time series of dividend (consumption) growth, posterior probability of the high-growth state, conditional volatility of stock returns, and conditional expected equity premium. Parameter values are set as the baseline values given in Table 4.

Conclusion

- We analyze the quantitative asset pricing implications of a new utility model by studying two tractable parametric specifications
- Ambiguity aversion plays a key role which is different from risk aversion
- Learning under ambiguity generates sizable equity premium and significant cyclical return dynamics

くロト (過) (目) (日)

New Developments and Future Research

- How to estimate ambiguity aversion parameter? Miao and Qu (2008)
- Portfolio choice under ambiguous return predictability. Chen, Ju and Miao (2008)
- Asset pricing with ambiguous rare disasters. Chen, Ju, and Miao (2008)
- Production economy? Chen, Ju and Miao (2008)
- Heterogeneity?
- Intertemporal substitution, risk aversion, and ambiguity aversion? Hayashi and Miao (2008)
- Continuous time? Skiadas (2008)

ヘロト ヘアト ヘビト ヘビト