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1. Introduction

Under the rational expectations hypothesis, there exists an objective probability law governing

the state process, and economic agents know this law which coincides with their subjective

beliefs. This rational expectations hypothesis has become the workhorse in macroeconomics and

finance. However, it faces serious difficulties when confronting with asset markets data. Most

prominently, Mehra and Prescott (1985) show that for a standard rational, representative-agent

model to explain the high equity premium observed in the data, an implausibly high degree of

risk aversion is needed, resulting in the equity premium puzzle. Weil (1989) shows that this high

degree of risk aversion generates an implausibly high riskfree rate, resulting in the riskfree rate

puzzle. In addition, a number of empirical studies document puzzling links between aggregate

asset markets and macroeconomics: Price-dividend ratios move procyclically (Campbell and

Shiller (1988a)) and conditional expected equity premia move countercyclically (Campbell and

Shiller (1988a) and Fama and French (1989)). Excess returns are serially correlated and mean

reverting (Fama and French (1988b) and Poterba and Summers (1988)). Excess returns are

forecastable; in particular, the log dividend yield predicts long-horizon realized excess returns

(Campbell and Shiller (1988b), Fama and French (1988a)). Conditional volatility of stock

returns is persistent and moves countercyclically (Bollerslev et al. (1992)).

In this paper, we develop a representative-agent consumption-based asset-pricing model

that helps explain the preceding puzzles simultaneously by departing from the rational expec-

tations hypothesis. Our model has two main ingredients. First, we assume that aggregate

consumption follows a hidden Markov regime-switching process. The agent learns about the

hidden state based on past consumption data. The posterior state beliefs capture fluctuating

economic uncertainty and drive asset return dynamics. Second, we assume that the agent is

ambiguous about the hidden state and his preferences are represented by the smooth ambi-

guity model of Klibanoff et al. (2005, 2006). In order to derive quantitative implications,

we study two tractable utility specifications. The log-exponential specification features a unit

coefficient of relative risk aversion and a constant coefficient of absolute ambiguity aversion.

This specification is equivalent to the multiplier preferences (Hansen and Sargent (2001)) and

the risk-sensitive preferences (Tallarini (2000)), as pointed out by Hansen (2007). Ambiguity

aversion is manifested through a pessimistic distortion of state beliefs. Under the distorted

state beliefs, smaller values of continuation utilities receive relatively higher weight. We also

consider the power-power specification in which the agent exhibits constant relative risk aver-

sion and constant relative ambiguity aversion. In this case, ambiguity aversion is manifested
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through a distortion of the standard pricing kernel. This distortion also features pessimism, but

does not admit an interpretation based on the multiplier or risk-sensitive preferences. For both

specifications, we can find reasonable parameter values (both the subjective discount factor and

the risk aversion coefficient are between zero and one) to match the mean riskfree rate and the

mean equity premium in the historical data. However, the log-exponential specification cannot

deliver interesting aggregate stock return dynamics because the consumption-wealth ratio is

constant. In this case, the price-dividend ratio is also constant when equilibrium aggregate

consumption is equal to aggregate dividends. By contrast, the power-power specification can

generate the dynamic asset pricing phenomena mentioned earlier.

We motivate our adoption of the smooth ambiguity model in two ways. First, the Ellsberg

Paradox (Ellsberg (1961)) and related experimental evidence demonstrate that the distinction

between risk and ambiguity is behaviorally meaningful. Roughly speaking, risk refers to the

situation where there is a probability measure to guide choice, while ambiguity refers to the

situation where the decision maker is uncertain about this probability measure due to cognitive

or informational constraints. Knight (1921) and Keynes (1936) emphasize that ambiguity may

be important for economic decision-making. We assume that the agent in our model is am-

biguous about the hidden state in consumption growth. Our adopted smooth ambiguity model

captures this ambiguity and attitude towards ambiguity. Our second motivation is related to

the robustness theory developed by Hansen and Sargent (2001) and Hansen (2007). Specifically,

the agent in our model may fear model misspecification in the consumption process. He is con-

cerned about this model uncertainty, and thus, seeks robust decision-making. We may interpret

the smooth ambiguity model as a model of robustness in the presence of model uncertainty.

Our modeling of learning echoes with Hansen’s (2007) suggestion that one should put econo-

metricians and economic agents on comparable footings in terms of statistical knowledge. When

estimating the regime-switching consumption process, econometricians typically apply Hamil-

ton’s (1989) maximum likelihood method and assume that they do not observe the hidden

state. However, the rational expectations hypothesis often requires economic agents to be en-

dowed with more precise information than econometricians. A typical assumption is that agents

know all parameter values underlying the consumption process (e.g., Cecchetti et al. (1990,

2000)). In this paper, we show that there are important quantitative implications when agents

are concerned about statistical ambiguity by removing the information gap between them and

econometricians, while the standard Bayesian learning has small quantitative effects.1

1There is a large literature on learning in asset pricing using the standard Bayesian framework. Notable works
include Brandt et al. (2004), Brennan and Xia (2001), David (1997), Detemple (1986), Dothan and Feldman
(1986), Timmermann (1993), Veronesi (1999, 2000), Wang (1993), and Weitzman (2006).

2



Learning is naturally embedded in the recursive smooth ambiguity model. In this model,

the posterior of the hidden state and the conditional distribution of the consumption process

given a state cannot be reduced to a compound predictive distribution, unlike in the standard

Bayesian analysis. It is this irreducibility that captures ambiguity or model uncertainty. An

important advantage of the smooth ambiguity model over other models of ambiguity such as the

maxmin expected utility (or multiple-priors) model of Gilboa and Schmeidler (1989) is that it

achieves a separation between ambiguity (beliefs) and ambiguity attitude (tastes). This feature

allows us to do comparative statics with respect to the ambiguity aversion parameter holding

ambiguity fixed, and to calibrate it for quantitative analysis. Another advantage is that we can

apply the usual differential analysis for the smooth ambiguity model under standard regularity

conditions. We can then derive the pricing kernel quite tractably. By contrast, the widely

applied maxmin expected utility model lacks this smoothness property.

Our paper contributes to a growing body of literature that studies the implications of ambi-

guity and robustness for finance and macroeconomics.2 Here we discuss closely related papers

only. Epstein and Schneider (2007a) model learning under ambiguity using a set of priors and

a set of likelihoods. Both sets are updated by Bayes’ Rule in a suitable way. Applying this

learning model, Epstein and Schneider (2007b) analyze asset pricing implications. Leippold et

al. (2007) extend this model to a continuous-time environment. Hansen and Sargent (2006) for-

mulate a learning model that allows for two forms of model misspecification: (i) misspecification

in the underlying Markov law for the hidden states, and (ii) misspecification of the probabilities

assigned to the hidden Markov states. Hansen and Sargent (2007) apply this learning model to

study time-varying model uncertainty premia. Hansen (2007) surveys models of learning and

robustness. He analyzes a continuous-time model similar to our log-exponential case. But he

does not consider the power-power case and does not conduct a thorough quantitative analysis

as in our paper. Our paper is also related to Abel (2002), Brandt et al. (2004), and Cec-

chetti et al. (2000) who model the agent’s pessimism and doubt in specific ways and show that

their modeling helps explain many asset pricing puzzles. Our adopted smooth ambiguity model

captures pessimism and doubt with a decision theoretic foundation.

The remainder of the paper proceeds as follows. Section 2 presents the smooth ambiguity
2See Cao et al. (2005), Chen and Epstein (2002), Epstein and Miao (2003), Epstein and Wang (1994, 1995),

Garlappi et al. (2007), Miao and Wang (2007), and Routledge and Zin (2001) for asset pricing applications of
the multiple-prior utility model. See Anderson et al. (2002), Cagetti, et al. (2002), Hansen and Sargent (2001),
Hansen et al. (1999), Hansen et al. (2006), Liu et al. (2005), Maenhout (2004), and Uppal and Wang (2003)
for models of robustness and applications. Maccheroni et al. (2006) provide an axiomatic foundation for one of
Hansen and Sargent’s robustness formulations – the multiplier preferences. See Backus et al. (2005) and Hansen
and Sargent (2008) for a survey.
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model. Section 3 analyzes its asset pricing implications in a Lucas-style model. Section 4

calibrates the model and studies its quantitative implications. Section 5 concludes. Appendices

contain proofs and an outline of the numerical method.

2. Smooth Ambiguity Preferences

In order to study its asset pricing implications, we first review the smooth ambiguity model

developed by Klibanoff et al. (2005, 2006), and then derive its utility gradient. We also discuss

related alternative approaches. We refer the reader to the preceding two papers for further

details and for axiomatic foundations.

2.1. Static Smooth Ambiguity Model

We start with the static model of Klibanoff et al. (2005). Suppose uncertainty is represented by

a measurable space (S,S) . An agent ranks uncertain prospects or acts, maps from S into some

outcome set. An example of acts is consumption. The agent’s smooth ambiguity preferences

over consumption are represented by the following utility function:3

φ−1

(∫

Π
φ (Eπu (C)) dµ

)
, ∀C : S → R+, (1)

where Eπ is the expectation operator with respect to the probability distribution π on (S,S),

u is a vN-M utility function, φ is an increasing function, and µ is a subjective prior over the

set Π of probability measures π that the agent thinks possible.

A key feature of this model is that it achieves a separation between ambiguity, identified

as a characteristic of the agent’s subjective beliefs, and ambiguity attitude, identified as a

characteristic of the agent’s tastes.4 Specifically, ambiguity is characterized by properties of

the subjective set of measures Π. Attitudes towards ambiguity are characterized by the shape of

φ, while attitudes towards pure risk are characterized by the shape of u, as usual. In particular,

the agent displays ambiguity aversion if and only if φ is concave. Intuitively, an ambiguity averse

agent prefers consumption that is more robust to the possible variation in probabilities. That

is, he is averse to mean-preserving spreads in the distribution µC induced by the prior µ and the

consumption act C. This distribution represents the uncertainty about ex ante evaluation of C

3The utility function in (1) is ordinally equivalent to the utility function Eµφ (Eπu (c)) given in Klibanoff et
al. (2005).

4The behavioral foundation of ambiguity and ambiguity attitude is based on the theory developed by Ghi-
rardato and Marinacci (2002). Epstein (1999) provides a different foundation. The main difference is that the
benchmark ambiguity neutral preference is the expected utility preference according to Ghirardato and Marinacci
(2002), while Epstein’s (1999) benchmark is the probabilistic sophisticated preferences.
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given π, Eπu (C) . Note that there is no reduction between µ and π in general. It is possible

when φ is linear. In this case, the agent is ambiguity neutral and the smooth ambiguity model

in (1) reduces to the standard expected utility model. Segal (1987) first points out the idea

of modeling ambiguity attitude by relaxing the axiom of reduction of compound lotteries. An

alternative interpretation of the irreducibility of compound lotteries is related to the timing of

resolution of information studied by Epstein and Zin (1989) and Kreps and Porteus (1978).

An important advantage of the smooth ambiguity model over other models of ambiguity,

such as the widely adopted maxmin expected utility model of Gilboa and Schmeidler (1989), is

that it is tractable and admits a clear-cut comparative statics analysis. Tractability is revealed

by the fact that the well-developed machinery for dealing with risk attitudes can be applied

to ambiguity attitudes. In addition, the indifference curve implied by (1) is smooth under

regularity conditions, rather than kinked as in the case of the maxmin expected utility model.

More importantly, comparative statics of ambiguity attitudes can be easily analyzed using the

function φ only, holding ambiguity fixed. Such a comparative static analysis is not evident

for the maxmin expected utility model since the set of priors in that model may characterize

ambiguity as well as ambiguity attitudes.

Analogous to the standard risk theory, Klibanoff et al. (2005) define the coefficients of ab-

solute and relative ambiguity aversion at x as −φ′′ (x) /φ′ (x) and −xφ′′ (x) /φ′ (x), respectively.

We are particularly interested in the following two cases:

• constant absolute ambiguity aversion (CAAA) utility:

φ (x) = −e−
x
θ , θ > 0, (2)

where 1/θ is the parameter of CAAA.

• constant relative ambiguity aversion (CRAA) utility:

φ (x) =
x1−α

1− α
, α > 0, 6= 1 (3)

where α is the parameter of CRAA. We identify the case α = 1 as φ (x) = log x.

Klibanoff et al. (2005) show that when the coefficient of absolute ambiguity aversion goes to

infinity (e.g., θ → 0),5 the smooth ambiguity model converges to the maxmin expected utility

model:

inf
π∈Π

Eπu (C) .

5The coefficient of absolute ambiguity aversion need not be constant for this result to hold as along as a
regularity condition in Klibanoff et al. (2006) is satisfied.
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Thus, the maxmin expected utility model is the limiting case where the agent displays extreme

ambiguity aversion. In the other extreme case where θ → ∞, the agent is ambiguity neutral

and we obtain the standard expected utility model, Eπu (C).

When φ is given by (2), the smooth ambiguity model has an interesting connection to the

robust control theory developed by Hansen and Sargent (2008). One can show that

φ−1 (Eµφ (Eπu (C))) = min
m≥0,Eµ[m]=1

Eµ [mEπu (C)] + θEµ [m log m] (4)

= −θ logEµ exp
(
−Eπu (C)

θ

)
.

This equation shows that one can give two different alternative interpretations for the smooth

ambiguity preferences. The expression in the second line of (4) gives the risk-sensitive formu-

lation used in the control theory, while the expression in the first line of (4) gives the robust

control formulation. Here m represents a Radon-Nikodym derivative used to distort the prior

µ. The set of possible distortions is defined by a relative entropy criterion. The parameter θ

can be interpreted as the Lagrange multiplier associated with the set of densities. Anderson et

al. (2003) advocate to use model detection error probabilities to calibrate θ.

More generally, we may interpret the utility model defined in (1) as a model of robustness

in which the agent is concerned about model misspecification, and thus, seeks robust decision

making. Specifically, each distribution π in Π describes an economic model. The agent is

ambiguous about which is the right model specification. He has a subjective prior µ over

alternative models. He is averse to model uncertainty, and thus, evaluates different models

using a concave expected utility function φ.

2.2. Learning and Recursive Smooth Ambiguity Model

We now turn to the dynamic model of Klibanoff et al. (2006). Consider an infinite horizon

environment. Time is denoted by t = 0, 1, 2, .... The state space in each period is denoted by S.

Thus the full state space is given by S∞. At time t, the agent’s information consists of history

st = {s0, s1, s2, ..., st} with s0 ∈ S given and st ∈ S. The agent ranks adapted consumption

plans C = (Ct)t≥0 . That is, Ct is a measurable function of st. The agent is ambiguous about the

probability distribution on the full state space. This uncertainty is described by a parameter

z in the space Z. The parameter z can be interpreted in several different ways. It could be an

unknown model parameter, a discrete indicator of alternative models, or a hidden state that

evolves over time in a regime-switching process (Hamilton (1989)).

Each parameter z gives a probability distribution πz. This distribution is updated by

Bayes’ Rule to deliver πz

(·|st
)

conditioned on information st. The agent has a prior µ over
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the parameter z. The posterior µ
(·|st

)
is updated by Bayes’ Rule. At any time t, conditioned

on information st, the agent’s ambiguity preferences are represented by the following utility

function:

Vt

(
C; st

)
= u (Ct) + βφ−1

(∫

Z
φ

(∫

S
Vt+1

(
C; st, st+1

)
dπz

(
st+1|st

))
dµ

(
z|st

))
, (5)

where β ∈ (0, 1) is the discount factor, and u and φ admit the same interpretation as in the

static model. Note that the utility process in (5) is defined recursively, as in Kreps and Porteus

(1978) and Epstein and Zin (1989). Thus, it satisfies dynamic consistency. Dynamic consistency

is a tractable feature to analyze dynamic problems because the standard dynamic programming

technique can be applied.

As in the static model discussed in the previous subsection, we can still derive the equivalence

of the robustness, risk-sensitive control, and smooth ambiguity models when φ takes the CAAA

specification in (2). We can also derive a limiting result as the coefficient of absolute ambiguity

aversion goes to infinity. Formally, we can show that the limit satisfies:

Vt

(
C; st

)
= u (Ct) + β inf

z∈Z

∫

S
Vt+1

(
C; st, st+1

)
dπz

(
st+1|st

)
. (6)

This utility process is similar to the Epstein and Wang (1994) and Epstein and Schneider (2003,

2007a) recursive multiple-priors utility model. In Epstein and Schneider’s (2007a) learning

model, there exist both a set of priors and a set of likelihoods given a parameter. Both sets

are updated by Bayes’ Rule in a suitable way. By contrast, for the utility function defined in

(6), the set of priors is not updated. The agent always chooses the Dirac measure over the

parameter space that minimizes the continuation utility at each date.

We now turn to the following question: Does ambiguity persist in the long run? Klibanoff

et al. (2006) show that if φ−1 is Lipschitz and if the parameter space Z is finite, then the

smooth ambiguity utility model converges to the standard expected utility model with the true

parameter z∗ :

Vt

(
C; st

)
= u (Ct) + β

∫

S
Vt+1

(
C; st, st+1

)
dπz∗

(
st+1|st

)
. (7)

However, if the parameter space is infinite, then such convergence fails. In our application

below, we will consider a hidden Markov switching process. In this case, the parameter space

is infinite, and thus, ambiguity persists even in the long run.

2.3. Utility Gradient and Pricing Kernel

To study asset pricing implications, it is useful to introduce utility gradient (Duffie and Skiadas

(1994)). A utility gradient of the utility process (Vt) at the consumption plan C is an adapted
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process gz such that for every adapted process h,

lim
δ↓0

V0 (C + δh)− V0 (C)
δ

= E

[ ∞∑

t=0

gt,zht

]
.

Note that we use the notation gz to indicate that the utility gradient depends on an known

parameter z because the agent has partial information. In Appendix A, we show the following:

Proposition 1 Suppose that φ and u are differentiable.6 Then the utility gradient is given by

gt,z = ×t
τ=1

φ′
(
Eπτ−1,z [Vτ (C)]

)

φ′
(
φ−1

(
Eµτ−1

[
φ

(
Eπτ−1,z [Vτ (C)]

)]))βtu′ (Ct) , g0,z = u′ (C0) , (8)

where Eπτ−1,z and Eµτ−1denote the conditional expectation operators with respect to the distri-

butions πz

(·|sτ−1
)

and µ
(·|sτ−1

)
, respectively.

As is standard in the literature, we call the intertemporal marginal rate of substitution

gt+1,z/gt,z at consumption plan C the pricing kernel at C or the stochastic discount factor at C.

Given the preceding utility gradient, we can derive the following pricing kernel for the recursive

smooth ambiguity model:

Mt+1,z =
φ′

(
Eπt,z [Vt+1 (C)]

)

φ′
(
φ−1

(
Eµt

[
φ

(
Eπt,z [Vt+1 (C)]

)])) βu′ (Ct+1)
u′ (Ct)

. (9)

The last term in (9) gives the pricing kernel for the standard time-additive expected utility

model. The first term reveals the effect of ambiguity aversion. It is this term that generates

interesting asset pricing implications.

3. Asset Pricing Implications

In this section, we study the asset pricing implications of the smooth ambiguity model by

analyzing a Lucas-style pure-exchange economy (Lucas (1978)). Our model is based on the

fully rational model of Cecchetti (2000, Section II) with two departures: (i) we introduce

learning, and (ii) we incorporate ambiguity.

3.1. The Economy

There is a representative agent in the economy. The agent trades a risky and ambiguous stock

with unit supply and a riskfree bond with zero supply.7 The stock pays dividends Dt in period
6A transversality condition given in Appendix A must also be satisfied.
7We can easily generalize this model to incorporate multiple risky assets.
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t = 0, 1, 2, .... The dividend process is governed by a Markov regime-switching process,

log
(

Dt+1

Dt

)
= κzt+1 + σεt+1, D0 given, (10)

where εt is iid standard normal and the state zt ∈ {1, 2, ..., N} follows a N state Markov chain

with transition matrix (λij) where
∑

j λij = 1. Here κzt+1 denotes the expected growth rate of

dividends when the economy in period t + 1 is in the state zt+1. Assume κ1 > κ2 > ... > κN .

Let Re,t+1 and Rf,t+1 denote the gross returns on the stock and the bond between periods t

and t+1, respectively. Let Wt denote the period t financial wealth and let ψt be the proportion

of wealth after consumption invested in the stock. Then the agent’s budget constraint is given

by

Wt+1 = (Wt − Ct) Rm,t+1, (11)

where the market return Rm,t+1 is given by

Rm,t+1 = ψtRe,t+1 + (1− ψt) Rf,t+1. (12)

We assume that the agent does not observe the state of the economy. He learns about

it given his information about the history of dividends st = {s0, s1, ..., st} , where st = Dt.

To model learning within the standard expected utility model, one must specify a subjective

prior over the hidden state and a conditional distribution of data given a state. The prior is

updated by Bayes’ Rule to deliver a posterior. The posterior and the conditional distribution

can be reduced to a predictive distribution over the observable data. Thus, the model with

learning is observationally equivalent to a complete information model without learning.8 This

Bayesian theory of learning precludes ambiguity about hidden states. We will show in Section

4 that it has only modest quantitative implications for asset returns. To incorporate ambiguity

about hidden states, we assume that the agent’s preferences are represented by the recursive

smooth ambiguity utility function defined in (5), where the parameter z = (zt)t≥1 describes the

state of the economy and the parameter space is given by Z = {1, 2, ..., N}∞ . An important

feature of this model is that the preceding compound distribution cannot be reduced. We will

show in Section 4 that this irreducibility and ambiguity aversion have significant quantitative

implications for asset returns.

We are ready to define equilibrium. A competitive equilibrium of this economy consists of

processes of consumption (Ct), trading strategies (ψt) , and returns (Re,t+1) , and (Rf,t+1) such

8Brandt et al. (2004), David (1997), and Veronesi (1999, 2000) use this Bayesian theory to study asset pricing
models with hidden Markov switching processes. Brandt et al. (2004) also analyze some alternative learning
rules to Bayes’ Rule.
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that: (i) (Ct) and (ψt) maximize the agent’s utility (5) subject to the budget constraint (11),

and (ii) markets clear in that ψt = 1 and Ct = Dt for all t. Because in equilibrium consumption

is equal to dividends, we may directly refer to the dividend process in (10) as the aggregate

consumption process.

3.2. State Beliefs

We now describe the evolution of the posterior state beliefs. Let µt (j) = Pr
(
zt+1 = j|st

)
and

µt = (µt (1) , µt (2) , ..., µt (N)) . That is, µt (j) is the conditional probability that the economy

at date t + 1 is in state j given the history of dividends st = {D0, D1, D2, ..., Dt} . The prior

belief µ0 is given. We need to derive the updating process of the posterior beliefs µt. To this

end, we let µt
t (j) = Pr

(
zt = j|st

)
. We then have

µt+1 (j) =
N∑

i=1

λijµ
t+1
t+1 (i) . (13)

By Bayes’ Rule,

µt+1
t+1 (i) =

f (log (Dt+1/Dt) , i) µt (i)∑
j f (log (Dt+1/Dt) , j) µt (j)

(14)

where

f (y, i) =
1√
2πσ

exp

[
−(y − κi)

2

2σ2

]
(15)

is the density function of the normal distribution with mean κi and variance σ2.

Combining (13) and (14), we obtain the belief updating process:

µt+1 (j) = Bj (log (Dt+1/Dt) , µt) ,

where the belief updating function is given by

Bj (y, µt) =
∑N

i=1 λijf (y, i) µt (i)∑N
i=1 f (y, i) µt (i)

.

We denote the vector of these functions by B = (B1, B2, ..., BN ) . We can then write the belief

updating equation as

µt+1 = B (log (Dt+1/Dt) , µt) . (16)

3.3. Optimality and Equilibrium

As is well known from the recursive utility models (Epstein and Zin (1989)), one needs to

specify functional forms for primitives in order to derive sharp characterizations of asset pricing

implications. In what follows, we consider two tractable specifications.
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3.3.1. Log-Exponential Specification

Under the log-exponential specification, we assume u (C) = log (C) , and φ is CAAA given by

(2). We can use the utility gradient and the pricing kernel derived in Section 2.3 to derive equi-

librium restrictions on asset returns. Instead of using this method, we directly solve the agent’s

optimization problem by dynamic programming theory, and then impose market-clearing con-

ditions. This method is of independent interest because it gives the solution to the agent’s

optimal consumption and portfolio choice problem.

We choose wealth and beliefs (Wt, µt) as state variables. We solve an equilibrium in which

the stock return and the riskfree rate are functions of the dividend growth Dt+1/Dt and beliefs

µt. Let J (Wt, µt) be the value function (or indirect utility function) associated with the utility

function (5). By a standard dynamic programming argument, we can show that J satisfies the

following Bellman equation:

J (Wt, µt) = max
Ct,ψt

log (Ct)− βθ log


∑

j

µt (j) exp
(
−1

θ
Et,j [J (Wt+1, µt+1)]

)
 , (17)

subject to the budget constraint (11) and the belief updating equation (16). Here Et,j denotes

the expectation for the distribution of the dividend growth given in (10) conditional on µt and

the state zt+1 = j. This expectation is actually taken with respect to the normally distributed

random variable εt+1 given zt+1 = j. The following proposition characterizes the equilibrium

and optimality.

Proposition 2 (i) The equilibrium stock price and return are given by

Pt =
β

1− β
Dt, Re,t+1 = Rm,t+1 =

1
β

Dt+1

Dt
. (18)

(ii) The equilibrium bond return is given by

1
Rf,t+1

=
∑

j

µt (j)Et,j [Mt+1,j ] , (19)

where the pricing kernel is given by

Mt+1,j = β
Ct

Ct+1

exp
(−1

θEt,j [J (Wt+1, µt+1)]
)

∑
j µt (j) exp

(−1
θEt,j [J (Wt+1, µt+1)]

) . (20)

(iii) Given the returns Re,t+1 and Rf,t+1 in parts (i) and (ii), the value function is given by

J (Wt, µt) =
1

1− β
log (Wt) + G (µt) , (21)
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where the function G satisfies

G (µt) = log (1− β)− βθ log


∑

j

µt (j) exp
(
−1

θ
Et,j

[
log (βRm,t+1)

1− β
+ G (µt+1)

])
 . (22)

The optimal consumption rule is given by

Ct = (1− β)Wt, (23)

and the optimal trading strategy ψt satisfies

0 =
∑

j

µt (j) exp
(
−1

θ
Et,j

[
1

1− β
log (Rm,t+1) + G (µt+1)

])
Et,j

[
Re,t+1 −Rf,t+1

Rm,t+1

]
, (24)

where Rm,t+1 = ψtRe,t+1 + (1− ψt) Rf,t+1.

An important feature of the log-exponential specification is that the optimal consumption-

to-wealth ratio is constant as in the standard logarithmic expected utility model. Given this

consumption rule, we use the market-clearing condition to derive

Ct = Dt = (1− β) Wt = (1− β) (Pt + Dt) .

This equation delivers a closed-form solution to the stock price and return given in part (i).

This closed-form solution implies that with log-exponential specification, learning and ambiguity

aversion do not affect the stock price and return.

To understand the effect of ambiguity aversion on the riskfree rate, we consider the pricing

kernel given in equation (20), which can also be derived using equation (9). This equation

admits an intuitive interpretation. The first term βCt/Ct+1 is the pricing kernel for the standard

logarithmic expected utility function. This case is specialized when θ goes to infinity. Let m∗
t,j

denote the second term in equation (20). This term can be interpreted as a Radon-Nikodym

derivative with respect to µt since
∑

j µt (j) m∗
t,j = 1. We can then rewrite equation (19) as

1
Rf,t+1

=
∑

j

µ̂t (j)Et,j

[
β

Ct

Ct+1

]
,

where µ̂t (j) = µt (j) m∗
t,j is the distorted posterior probability of state j. Thus, the effect of

ambiguity aversion on the riskfree rate under the log-exponential specification is manifested

through distorting the posterior beliefs about the hidden states. Importantly, the expression

of m∗
t,j given in (20) reveals that the agent puts relatively more weight on smaller continuation

values than larger values in the distorted probability distribution. Thus, an increase in the

12



degree of ambiguity aversion implies a first-order stochastic dominated shift of state beliefs.

This pessimism induces the agent to save more for future consumption. Thus, it lowers the

riskfree rate and raises the equity premium.

The preceding interpretation is related to the robustness and risk-sensitive control theory

developed by Hansen and Sargent discussed in Section 2.1. Formally, we can show that the

Bellman equation in (17) is equivalent to

J (Wt, µt) = max
Ct,ψt

log (Ct)+β

(
min

mt≥0,Eµt [mt]=1
Eµt [mtEt,j {J (Wt+1, µt+1)}] + θEµt [mt log (mt)]

)
,

where mt is a Radon-Nikodym derivative with respect to µt defined on the set of states

{1, 2, ..., N} . This derivative mt distorts the state beliefs µt. One can show that the minimizing

derivative is given by mt (j) = m∗
t,j defined earlier.

It is interesting to consider the limiting case when θ → 0. As discussed in Section 2.2, the

model in this case reduces to a version of the recursive multiple-priors utility:

J (Wt, µt) = max
Ct,ψt

log (Ct) + β min
j
Et,j [J (Wt+1, µt+1)] . (25)

That is, the agent exhibits extreme ambiguity aversion by choosing the worst continuation

utility value. In terms of the distorted beliefs interpretation, the agent views the state with the

lowest continuation value has probability 1. Taking limit in (20) shows that the pricing kernel

for this model is equal to βCt/ [Ct+1µt (N)] for state N with the lowest continuation values,

and to zero, otherwise. Thus, it follows from (19) that the limiting riskfree rate is given by

rf,t+1 = Rf,t+1 − 1 =
1
β

exp
(
κN − 0.5σ2

)− 1, (26)

where κN denotes the lowest expected growth rate of consumption. This equation gives the

lower bound of the mean riskfree rate. This lower bound corresponds to the value obtained from

Abel’s (2002) formulation of uniform pessimism in which the agent’s perceived distribution of

consumption growth is a first-order stochastically dominated shift of the objective distribution.

Thus, our model provides a foundation of Abel’s modeling of pessimism. Our model, however,

cannot capture Abel’s (2002) modeling of doubt which is characterized by a mean-preserving

spread of the objective distribution of consumption growth.

We now take the asset returns as exogenously given and consider the effect of ambiguity

aversion on the agent’s portfolio choice decision. We use Rm,t+1 = Wt+1/ (Wt − Ct) and (21)

to rewrite (24) as

0 =
∑

j

µt (j) exp
(
−1

θ
Et,j [J (Wt+1, µt+1)]

)
Et,j

[
Re,t+1 −Rf,t+1

Rm,t+1

]
. (27)

13



Dividing this equation by
∑

j µt (j) exp
(−1

θEt,j [J (Wt+1, µt+1)]
)
, we obtain

0 =
∑

j

µ̂t (j)Et,j

[
Re,t+1 −Rf,t+1

ψt (Re,t+1 −Rf,t+1) + Rf,t+1

]
. (28)

This equation reveals that an ambiguous averse agent behaves as an expected utility agent

with distorted state beliefs µ̂t. Suppose the bond and excess returns are positive and the excess

returns are higher for higher growth state. Because an increase in the ambiguity aversion

parameter from 1/θ1 to 1/θ2 implies a first-order stochastic dominated shift of the state beliefs

from µ̂1
t to µ̂2

t , we can show that

0 =
∑

j

µ̂1
t (j)Et,j

[
Re,t+1 −Rf,t+1

ψ1
t (Re,t+1 −Rf,t+1) + Rf,t+1

]
≥

∑

j

µ̂2
t (j)Et,j

[
Re,t+1 −Rf,t+1

ψ1
t (Re,t+1 −Rf,t+1) + Rf,t+1

]
.

Thus, we deduce that a more ambiguity averse agent demand less stocks in that ψ2
t ≤ ψ1

t . As

shown earlier, in general equilibrium this reduction in demand increases equity premium and

this increase is due to a decrease in the riskfree rate only, with the stock return unchanged.

3.3.2. Power-Power Specification

We now turn to the power-power specification in which u (C) = C1−γ/ (1− γ) , and φ is CRAA

given by (3). Here 1 6= γ > 0 is the relative risk aversion parameter.9 The following proposition

characterizes equilibrium returns.

Proposition 3 (i) The equilibrium stock price and return are given by10

Pt = ϕ (µt) Dt,

Re,t+1 = Rm,t+1 =
Dt+1

Dt

1 + ϕ (µt+1)
ϕ (µt)

, (29)

where the function ϕ satisfies

1 =
∑

j

µt (j)

(
Et,j

[
1 + ϕ (µt+1)

ϕ (µt)
β

(
Ct+1

Ct

)1−γ
])1−α

. (30)

9Note that the case of u (C) = log (C) is not nested here. When γ > 1, the utility is not well defined for
all values of α, e.g., α = 0.5. To overcome this problem, we may follow Epstein and Zin (1989) and define an
ordinally equivalent utility function as

Vt (C) =


C1−γ

t + β

(∑
j

µt (j)
(
Et,j

[
V 1−γ

t+1 (C)
])1−α

) 1
1−α




1
1−γ

.

This formulation does not change our asset pricing results.
10A transversality condition must be satisfied, which insures that the value function is finite and the price-

dividend ratio is positive. This condition is satisfied for all numerical solutions in Section 4.
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(ii) The equilibrium bond return is given by

1
Rf,t+1

=
∑

j

µt (j)Et,j [Mt+1,j ] , (31)

where the pricing kernel is given by

Mt+1,j = β

(
Ct+1

Ct

)−γ
(
Et,j

[
Rm,t+1β

(
Ct+1

Ct

)−γ
])−α

. (32)

This proposition demonstrates that unlike the log-exponential specification, both learning

and ambiguity aversion affect the stock return. This effect is manifested through the price-

dividend ratio ϕ which is a function of state beliefs µt. This function varies with the risk

aversion parameter γ and the ambiguity aversion parameter α as revealed by equation (30).

Turn to the pricing kernel given in equation (32). The first term on its right-hand side gives

the pricing kernel for the standard power expected utility model with α = 0. The second term

captures the effect of ambiguity aversion. Unlike (20) under the log-exponential specification,

this term cannot be interpreted as a Radon-Nikodym derivative. As a result, the equivalence to

the robustness and risk-sensitive formulations discussed in Hansen (2007) does not hold here.

We also observe from (30) and (32) that the effect of ambiguity aversion depends crucially on

the risk aversion parameter γ. We will show numerically in Section 4 that ambiguity aversion

has different effects for the γ > 1 case and for the γ < 1 case.

We can derive the pricing kernel in (32) using the utility gradient approach discussed in

Section 2.3. To this end, we need the following:

Proposition 4 Let the returns Re,t+1 and Rf,t+1 be given in Proposition 3 parts (i) and (ii).

Then the value function is given by

J (Wt, µt) =
W 1−γ

t

1− γ
G (µt) . (33)

The optimal consumption rule is given by

Ct = Wt [G (µt)]
−1/γ , (34)

and the optimal trading strategy ψt satisfies

0 =
∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])−α (

Et,j

[
R−γ

m,t+1G (µt+1) (Re,t+1 −Rf,t+1)
])

, (35)
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where Rm,t+1 = ψtRe,t+1 + (1− ψt) Rf,t+1 and G satisfies

G (µt) = [G (µt)]
γ−1

γ + β
(
1− [G (µt)]

− 1
γ

)1−γ


∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])1−α




1
1−α

.

(36)

Finally, the pricing kernel in (32) is equal to

β

(
Ct+1

Ct

)−γ (Et,j [J (Wt+1, µt+1)])
−α

(∑
j µt (j)

[
(Et,j [J (Wt+1, µt+1)])

1−α
]) −α

1−α

. (37)

Taking the stock and bond returns as exogenously given, Proposition 4 characterizes the

agent’s optimal consumption and portfolio rules. To understand the effect of ambiguity aversion

on the optimal portfolio, we follow a similar procedure described in the log-exponential case to

rewrite (35) as

0 =
∑

j

µ̂t (j)
(
Et,j

[
R−γ

m,t+1G (µt+1) (Re,t+1 −Rf,t+1)
])

, (38)

where

µ̂t (j) = µt (j)
(Et,j [J (Wt+1, µt+1)])

−α

∑
j µt (j) (Et,j [J (Wt+1, µt+1)])

−α .

Equation (38) reveals that the ambiguous averse agent behaves as an expected utility agent

with the distorted beliefs µ̂t. As in the log-exponential case, a more ambiguity averse agent

attaches more weight to the smaller continuation values. Because we know from the standard

risk analysis that a first-order stochastic dominated shift in the distribution of the stock returns

does not necessarily reduce the demand for the stock depending on the risk aversion coefficient

γ, a more ambiguity averse agent does not necessarily demand less stocks. Gollier (2006) finds

a similar result in a static model and gives conditions for a comparative statics result. Our

dynamic model with learning is more complicated and does not permit such a characterization.

4. Quantitative Results

We first calibrate our model and describe stylized facts. We then study properties of uncon-

ditional and conditional moments of returns generated by our model. Our model does not

admit an explicit analytical solution. We thus solve the model numerically using the projection

method (Judd (1998)) and run Monte Carlo simulations to compute model moments. For com-

parison, we also solve two benchmark models. Benchmark model I is the fully rational model

with complete information studied by Cecchetti et al. (2000). Benchmark model II incorporates

learning and is otherwise the same as benchmark model I. This model is similar to Veronesi

(1999, 2000) and its solution is specialized by setting the ambiguity aversion parameter to zero.
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4.1. Calibration and Stylized Facts

We calibrate our model at the annual frequency. Because our model is based on Cecchetti

et al. (2000), we use their estimates for the consumption process. Cecchetti et al. (2000)

apply Hamilton’s maximum likelihood method to estimate parameters of the two-state regime-

switching process given in (10) using the annual per capita US consumption data covering the

period 1890-1994. Table 1 reproduces their estimates. This table reveals that the high-growth

state is highly persistent, with consumption growth in this state being 2.251 percent. The

economy spends most of the time in this state with the unconditional probability of being

in this state given by (1− λ22) / (2− λ11 − λ22) = 0.96. The low-growth state is moderately

persistent, but very bad, with consumption growth in this state being −6.785 percent.

[Insert Table 1 Here]

We reproduce data moments estimated by Cecchetti et al. (2000) in Table 2. Panel A of

this table reveals that the mean values of equity premium and riskfree rate are given by 5.75

and 2.66 percent, respectively.11 In addition, the volatility of equity premium is 19.02 percent.

These values are hard to match in a standard asset-pricing model under reasonable calibration.

This fact is often referred to as the equity premium, riskfree rate and equity volatility puzzles

(see Campbell (1999) for a survey). Panel A of Table 2 also reports that the equity premium

and the riskfree rate are negatively correlated with the correlation coefficient −0.24. Panel

B of Table 2 reports that the log dividend yield predicts long-horizon realized excess returns.

It also shows that the regression slope and R2 increase with the return horizon. This return

predictability puzzle is first documented by Campbell and Shiller (1988b) and Fama and French

(1988a). Panel B of Table 2 also reports variance ratio statistics for the equity premium. These

ratios are generally less than 1 and fall with the horizon. This evidence suggests that excess

returns are negatively serially correlated, or asset prices are mean reverting (Fama and French

(1988b) and Poterba and Summers (1988)).

In addition to the preceding stylized facts reported in Table 2, we will use our model to

explain three other stylized facts: (i) persistent and countercyclical variation in conditional

volatility of stock returns (Bollerslev et al. (1992)), (ii) procyclical variation in price-dividend

ratios (Campbell and Shiller (1988a)), and (iii) countercyclical variation in conditional expected

equity premia (Campbell and Shiller (1988a,b) and Fama and French (1989)).

[Insert Table 2 Here]
11We follow Cecchetti et al. (2000) and report arithmetic average returns in both data and model solutions.

Mehra and Prescott (1985) also report arithmetic averages.
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To explain the above facts, we need to calibrate baseline preference parameters. As argued

by Mehra and Prescott (1985) and Kocherlakota (1996), we require β to be between zero and

one and γ to be between zero and ten. However, we do not have any information about the

magnitude of the degree of ambiguity aversion. For the log-exponential specification, we set

β = 0.940 and 1/θ = 1.292 to match the first moments of the equity premium and the riskfree

rate reported in Table 2. For the power-power specification, we set β = 0.944, γ = 0.647, and

α = 48.367 to match the means of the equity premium and the riskfree rate and their correlation

coefficient reported in Table 2. Based on the preceding calibrated baseline parameter values,

we will study the cyclical behavior of returns and examine the comparative statics effects of

risk aversion and ambiguity aversion on unconditional and conditional moments of returns. We

will also investigate the role of learning quantitatively.

4.2. Unconditional Moments of Returns

We start by discussing the unconditional moments of returns generated from our model. We

consider two different utility specifications studied in Section 3.

4.2.1. Log-Exponential Specification

Table 3 reports the results for the log-exponential case. Panel A reports the results for the

baseline parameter values. To examine the comparative static properties of β and 1/θ, Panels

B-D report results for different values of β and 1/θ. These panels reveal that both the mean

riskfree rate and the mean stock return decrease with β for a fixed value of 1/θ. They also reveal

that the riskfree rate decreases with 1/θ for fixed β. The intuition is that a more ambiguity

averse agent attaches more weight to lower values of continuation utilities. Thus, he saves more

for future consumption, resulting in a lower riskfree rate. As shown in Proposition 2 and Table

3, ambiguity aversion has no effect on the stock return because the consumption-wealth ratio

is constant as in the standard logarithmic utility model. Consequently, we can choose a low

value for β to match the high stock return and then choose a high value for 1/θ to match the

low riskfree rate.

[Insert Table 3 Here]

An alternative way to understand the equity premium puzzle is to study the Hansen-

Jagannathan bound or the market price of uncertainty (Hansen and Jagannathan (1991)) de-

fined as the ratio of the standard deviation to the mean of the pricing kernel. This bound is close

to zero in models without ambiguity as revealed by the first row in each of panels B-D. This
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bound rises significantly as we increase the ambiguity aversion parameter 1/θ. In particular, it

is equal to 3.792 for our baseline parameter values, while it is equal to 0.037 for benchmark

model II without ambiguity.

Column 6 of Table 3 reveals that ambiguity may raise volatility of equity premium, but by a

very small amount. For the baseline parameter values, the model implied volatility 3.853% of the

equity premium is too low, compared to the data value 19.02% reported in Table 2. The intuition

follows from the closed-form solution to the stock return in equation (18). This equation shows

that the volatility of the stock return is determined by the volatility of consumption growth

since the price-dividend ratio is constant. The latter volatility is extremely low in the data as

reported in Table 1.

To study the role of learning, we compare our model with benchmark models I and II.

Because the stock return is the same for these three models as shown in Proposition 2, we focus

on the riskfree rate. Consistent with the findings reported by Cecchetti. (2000), Columns 8-9

of Table 3 show that the equity premium µ∗eq is too low and the riskfree rate r∗f is too high in

benchmark model I. We decompose the riskfree rf in our model into three components:

rf = r∗f +
(
rL
f − r∗f

)
+

(
rf − rL

f

)
, (39)

where rL
f is the mean riskfree rate in benchmark model II. Column 10 of Table 3 reports the

second component ∆rL
f = rL

f − r∗f which measures the effect of the standard Bayesian learning

without ambiguity. This column reveals that learning lowers the riskfree rate, but by a negligible

amount. Column 11 reports the third component ∆rf = rf − rL
f . This component accounts for

the effect of ambiguity aversion and learning under ambiguity. It reveals that the reduction of

the riskfree rate is attributed almost exclusively to ambiguity.

It is interesting to consider the limiting case where 1/θ converges to infinity. In this case, our

model reduces to a version of the recursive multiple-priors model. In our simulations reported

in Table 3, we find that this limit is approached very quickly. For example, when 1/θ = 2 and

β = 0.98, we can verify that the implied riskfree rate is extremely close to the analytical solution

given in (26). This analytical solution is obtained when the agent pessimistically believes that

consumption grows according to the rate in the low-growth state. This extreme pessimism

cannot match the first moments of the equity premium and riskfree rate simultaneously by

choosing one parameter β only.

4.2.2. Power-Power Specification

Since the log-exponential specification implies that the price-dividend ratio is constant and the

stock return is equal to consumption growth discounted by the subjective discount rate, this

19



specification cannot deliver interesting dynamics of stock returns and equity premium. We now

turn to the power-power specification and restrict attention to this case in the remainder of

Section 4.

Panel A of Table 4 reports results for the baseline parameter values β = 0.944, γ = 0.647,

and α = 48.367. Panels B-F reports comparative static results. First, as in the log-exponential

case, both the riskfree rate and the stock return decrease with the subjective discount factor

β. Second, the first rows of Panels B-F of Table 4 reveal that an increase in the risk aversion

parameter γ from 0 to 3.0 raises both the riskfree rate and the equity premium for benchmark

model II with α = 0. We also experiment with many other parameter values for β ∈ (0, 1),

γ ∈ (0, 10) and α = 0. But we are unable to match both the low riskfree rate and the high

equity premium reported in Table 2 simultaneously. This result shows that benchmark model

II with Bayesian learning cannot resolve the equity premium and riskfree rate puzzles. We will

return to this point below.

We now consider the role of ambiguity aversion with α > 0. Table 4 reveals that the effects

of ambiguity aversion are quite different for the cases with γ < 1 and γ > 1.12 For the γ < 1

case, an increase in α lowers the riskfree rate and raises the stock return, and hence raises the

equity premium. The intuition is that a more ambiguity averse agent saves more for future

consumption and invests less in the stock. It is this property that permits us to find parameter

values to match the first moments of the riskfree rate and the equity premium.

[Insert Table 4 Here]

More formally, when γ < 1, a more ambiguous averse agent puts a higher weight on the

low-growth state in the pricing kernel distortion given in (32) than on the high-growth state.

To help understand the intuition, we consider the extreme case where α is very large. In this

case, the agent puts the maximal weight 1/µt (2) on the low-growth state and zero weight on

the high-growth state in order for equation (30) to be satisfied. That is, the expression

(
Et,j

[
1 + ϕ (µt+1)

ϕ (µt)
β

(
Ct+1

Ct

)1−γ
])1−α

increases to 1/µt (2) for j = 2 and decreases to 0 for j = 1. Note that ϕ varies with α and the

expectation in the preceding expression does not have a limit. We can then use equations (29),
12Applying Epstein and Schneider’s (2007b) recursive multiple-priors model with learning, Leippold et al.

(2005) find a similar result analytically in a continuous-time framework.
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(31), and (32) to show that when we increase α, the riskfree rate decreases to the value

rf,t+1 = Rf,t+1 − 1 '
Et,2

[
1+ϕ(µt+1)

ϕ(µt)
β

(
Ct+1

Ct

)1−γ
]

Et,2

[
β

(
Ct+1

Ct

)−γ
] − 1 (40)

=
1
β

exp
(
γκ2 − 0.5γ2σ2

)
Et,2

[
1 + ϕ (µt+1)

ϕ (µt)
β

(
Ct+1

Ct

)1−γ
]
− 1.

We numerically verify that the expectation term is always less than 1, which allows us to find

a value of α to match the low riskfree rate observed in the data.

By contrast, for the γ > 1 case, an increase in α raises both the mean riskfree rate and the

mean stock return. To understand the opposite effect on the riskfree rate, we examine equation

(30). This equation reveals that when γ > 1, the marginal utility discount on consumption

growth (Ct+1/Ct)
−γ dominates so that a more ambiguity averse agent with γ > 1 believes

that the high-growth state is less valuable. Thus, he puts a relatively higher weight on the

high-growth state in the pricing kernel distortion than on the low-growth state. Consequently,

he saves less, resulting in a higher riskfree rate. We verify numerically that as we increase

α, the riskfree rate increases to the value given by equation (40) with the low-growth state

2 replaced with the high-growth state 1. By extensive numerical simulations, we are unable

to find parameter values for α > 0, β ∈ (0, 1) , and γ > 1 to match the first moments of the

riskfree rate and the equity premium simultaneously. In addition, we also find that the mean

equity premium may decrease with the degree of ambiguity aversion. In summary, we find that

ambiguity aversion plays a very different role than risk aversion and may not reinforce risk

aversion. Gollier (2006) also makes this point in a simple static model without learning.

We next consider the role of learning. Table 5 reports the decomposition of the riskfree

rate, the stock return and the equity premium similar to equation (39). This table reveals that

for benchmark model II without ambiguity, the standard Bayesian learning lowers the riskfree

rate, but by a negligible amount. In addition, learning raises the stock return for γ < 1 and

lowers it for γ > 1, both by a negligible amount. In addition, the standard risk premium

component and the learning component account for a negligible amount of the mean equity

premium. The latter component may be negative for a sufficiently high degree of risk aversion.

Thus, a standard Bayesian learning model may worsen the equity premium puzzle. In a related

continuous-time model without ambiguity, Veronesi (2000) finds a similar result. The intuition

follows from the following equation with α = 0:

Et [Re,t+1 −Rf,t+1] =
−Covt (Mt+1, Re,t+1)

Et [Mt+1]
. (41)
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Specifically, following a negative innovation in consumption growth, the agent revises his beliefs

about the future consumption growth downward. He then increases his hedging demand for the

stock to avoid low levels of consumption in the future. This effect tends to increase the stock

price. When the agent is sufficiently risk averse, this effect dominates the opposing effect on

the stock price due to the initial negative shock to consumption growth, leading to a negative

correlation between consumption growth and the stock return. This negative correlation results

in a positive covariance between the pricing kernel Mt+1 = β (Ct+1/Ct)
−γ and the stock return,

and hence a negative equity premium. Veronesi (2000) also shows that there is an upper bound

of the equity premium and this bound is independent of the degree of risk aversion. Thus,

the high equity premium observed in the data cannot be matched by choosing a high value of

the risk aversion parameter. By contrast, in our learning model ambiguity aversion can help

explain both the equity premium and riskfree rate puzzles because the ambiguity averse agent

tends to invest less in the stock, thereby counteracting the preceding hedging demand effect.

Table 5 shows that ambiguity aversion reduces the riskfree rate for γ < 1 and increases the

mean stock return. In addition, the ambiguity premium component ∆µeq reported in Column

10 accounts for a significant amount of the equity premium.

[Insert Table 5 Here]

We now turn to the second moments. Table 4 reveals that for the baseline parameter values,

the implied volatility of the riskfree rate and the stock return is too low compared with the

data reported in Table 2. Thus, for both the log-exponential and power-power cases, our model

with learning under ambiguity cannot resolve the equity volatility puzzle (Shiller (1981)).13

To understand the intuition, we observe from equation (29) that the stock return volatility

comes from two components: (i) volatility of consumption growth, and (ii) variation in the

price-dividend ratio ϕ due to learning about the hidden state. Clearly the first component is

too small as reported in Table 2. To examine the second component, we plot the price-dividend

ratio as a function of the posterior beliefs about the high-growth state µt (1) in Figure 1. This

figure reveals that the price-dividend ratio does not vary much as µt (1) moves from 0 to 1.

Thus, learning under ambiguity does not contribute much to the unconditional stock return

volatility.

[Insert Figure 1 Here]
13In a model similar to ours, but without ambiguity and with Epstein-Zin utility, Brandt et al. (2004) show

that the model implied stock volatility is too low compared to data for several alternative learning rules.
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4.3. Price-Dividend Ratio

We now analyze the properties of the price-dividend ratio function ϕ under the power-power

specification by varying the ambiguity and risk aversion parameters, respectively, around the

baseline parameter values. Panel a of Figure 1 presents this function for different values of

α, holding other parameters fixed at the baseline values. It reveals two properties. First,

the price-dividend ratio is an increasing and convex function of the posterior probability of

the high-growth state µt (1). The intuition is similar to that described by Veronesi (1999)

who assumes expected exponential utility. When times are good (µt (1) is close to 1), a bad

piece of news decreases µt (1) , and hence decreases future expected dividends. But it also

increases the agent’s uncertainty about consumption growth since µt (1) is now closer to 0.5,

which gives approximately the maximal conditional volatility of the posterior probability of the

high-growth state in the next period, as shown in Panel a of Figure 2. Since the agent wants

to be compensated for bearing more risk, they will require an additional discount on the stock

price. Thus, the price reduction due to a bad piece of news in good times is higher than the

reduction in expected future dividends. By contrast, suppose the agent believes times are bad

and hence µt (1) is close to zero. A good piece of news increases the expected future dividends,

but also raises the agent’s perceived uncertainty since it moves µt (1) closer to 0.5. Thus, the

price-dividend ratio increases, but not as much as it would in a present-value model. The second

property of Panel a of Figure 1 is that an increase in the degree of ambiguity aversion lowers

the price-dividend ratio because it induces the agent to invest less in the stock. In addition,

the increase in the degree of ambiguity aversion raises the curvature of the price-dividend ratio

function, thereby helping increase the equity volatility. In the special case of benchmark model

II with α = 0, we can prove analytically that the price-dividend ratio is a linear function of the

state beliefs. Note that the curvature is not very sensitive to the ambiguity aversion parameter.

As a result, ambiguity aversion cannot have a large impact on equity volatility, and hence

cannot resolve the equity volatility puzzle.

[Insert Figure 2 Here]

Panel b of Figure 1 presents the price-dividend ratio function for different values of γ,

holding other parameters fixed at the baseline values. It reveals that the price-dividend ratio is

an increasing function of µt (1) for the γ < 1 case, as in Panel a, while it is a decreasing function

for the γ > 1 case. This property implies that the price-dividend ratio is countercyclical when

γ > 1, which is inconsistent with empirical evidence. The intuition is that the cyclicality

of the price-dividend ratio depends on the relative importance of two offsetting wealth and
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substitution effects. Suppose the economy is in a boom and the agent believes that the high-

growth state is more likely. Anticipating future high consumption growth, the wealth effect

means that the agent wants to consume more and sell assets today. This effect lowers the stock

price. On the other hand, future high consumption growth, implies that the relative price of

future goods is lower. Thus, the intertemporal substitution effect implies that the agent wants

to consume less and buy more assets. This effect raises the stock price. When the elasticity of

intertemporal substitution 1/γ > 1, the substitution effect dominates so that the price-dividend

ratio is procyclical and increases with the posterior probability µt (1) of the high-growth state.

When γ > 1, the opposite result holds. A similar finding appears in Bansal and Yaron (2004),

Brandt et al. (2004), and Cecchetti et al. (1990).

Panel b of Figure 1 also reveals that the price-dividend ratio rises as we increase γ from 0.2

to 0.8, and then falls as we increase γ further to 1.5 and 3.0. The intuition is that an increase

in γ when γ < 1 reinforces the substitution effect which induces the agent to buy more assets.

By contrast, an increase in γ when γ > 1 reinforces the wealth effect which induces the agent

to sell more assets.

4.4. Time-Varying Equity Premia and Equity Volatility

Although our model cannot generate high unconditional volatility of the stock return, in this

subsection we show that our model under the power-power specification can generate several

interesting patterns of conditional moments of returns observed in the data such as counter-

cyclicality of conditional expected equity premia and conditional equity volatility.

Panels a and b of Figure 3 plot the conditional expected equity premium as a function of

the posterior probability of the high-growth state for different values of α and γ, respectively.

Several properties emerge. First, this function is hump-shaped. This shape follows from the

convexity of the price-dividend ratio function presented in Figure 1 and the shape of the belief

function presented in Figure 2. We observe from Figure 2a that the conditional volatility of

the posterior probability of the high-growth state in the next period takes the maximum value

when the current posterior probability of the high-growth state is around 0.5. Since during

recessions, the agent’s perceived uncertainty about the hidden state is high, it follows from

Figure 3 that the conditional expected equity premium is high during recessions. As a result,

our model can generate the countercyclical variation in equity premia observed in the data.

Second, the curvature of this function increases with α, implying that ambiguity aversion helps

explain the time-varying equity premium. By contrast, in benchmark model II with α = 0, the

conditional expected equity premium is almost flat with the posterior probability of the high-
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growth state. Consequently, it cannot generate time-varying expected equity premia. Third,

the conditional expected equity premium may decrease with the risk aversion parameter γ when

γ rises from 0.2 to 3.0 for a wide range of the posterior probabilities of the high-growth state. It

can even take negative values for γ > 1. The intuition follows from equation (41) and is similar

to that discussed in Section 4.2 for benchmark model II with α = 0. That is, when γ is high

enough, the agent’s hedging demand is so high that consumption growth and the stock return

are negatively correlated. Consequentluy, the pricing kernel and the stock return is positvely

correlated, leading to negative conditional equity premia by (41).

[Insert Figure 3 Here]

Panels a and b of Figure 4 plot the conditional volatility of stock returns as a function of the

posterior probability of the high-growth state for different values of α and γ, respectively. The

shape of this function follows from the shape of the price-dividend ratio function presented in

Figure 1 and the shape of the belief function presented in Figure 2. As a result, the conditional

stock volatility function is hump-shaped, with the maximum attained at a value of posterior

close to 0.5. Thus, our model is consistent with the empirical evidence that uncertainty and

conditional volatility of stock returns are higher during recessions. We next observe from Panel

b of Figure 2 that the agent’s beliefs are persistent in the sense that if he believes the high-

growth state today has a high probability, then he expects the high-growth state tomorrow also

has a high probability on average. It follows from Figure 4 that changes in return volatility tend

to be persistent, giving rise to the volatility clustering phenomenon documented by Bollerslev

et al. (1992). Finally, Figure 4a reveals that ambiguity aversion (α > 0) raises conditional

volatility of stock returns, compared to benchmark model II with α = 0. But there is no

monotonic relationship between conditional stock return volatility and the degree of ambiguity

aversion. Figure 4b shows that conditional volatility of stock returns first decreases with the risk

aversion parameter γ, and then increases with γ when γ increases from 0.2 to 3.0. Consequently,

ambiguity aversion amplifies the stock return volatility, while risk aversion may dampen it.

[Insert Figure 4 Here]

Figure 5 illustrates the time-varying properties of equity premia and stock return volatility

by a Monte Carlo simulation. Panel a plots a time series of dividend growth simulated using

(10). Panel b plots the time series of the posterior probability of the high-growth state µt (1) ,

computed using (16). It reveals that in most of the time the agent believes that the economy is in

the high-growth state in that µt (1) is close to 1. After a few negative innovations in consumption
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growth, the agent believes the low-growth state is more likely in that µt (1) decreases and is

close to 0.5. At this value, the agent’s perceived uncertainty about the high-growth state in the

next period is the highest. Using the simulated series of consumption growth and the posterior

probability, we can compute the series of conditional volatility of stock returns and conditional

expected equity premium. We plot these series in Panels c and d of Figure 5, respectively. From

these panels, we can see that both the conditional volatility of stock returns and conditional

expected equity premium are time-varying and move with business cycles countercyclically.

[Insert Figure 5 Here]

4.5. Serial Correlation and Predictability of Returns

To examine the ability of our model to generate the serial correlation and predictability of

returns reported in Table 2, we compare our model with benchmark models I and II. Table 6

reports the model implied values of the variance ratios, the regression slope and the R2’s, at

horizons of 1, 2, 3, 5, and 8 years based on the baseline parameter values given in Table 4.

To account for the small sample bias in these statistics, we generate them using 10,000 Monte

Carlo experiments as described in Cecchetti et al. (2000).

From Table 6, we observe that benchmark model I produces variance ratios close to 1 and R2s

close to zero, and thus, it cannot generate the mean reversion and predictability of excess returns

reported in Table 2. Cecchetti et al. (2000) find the same result and show that a model with

distorted beliefs can help explain this stylized fact. We now consider benchmark model II with

Bayesian learning. Because of learning, the agent’s posterior state beliefs are a state variable

that drives asset returns. These posterior state beliefs respond to consumption innovations

and evolve over time by Bayes updating. Because the change of state beliefs is persistent, the

price-dividend ratio is also persistent and positively serially correlated. Intuition suggests that

learning should help explain the mean reverting and predictability pattern. However, Table 6

reports that benchmark model II with Bayesian learning helps little quantitatively. Brandt et al.

(2004) find a similar result. We finally consider our model in which we introduce ambiguity into

benchmark model II. Table 6 reveals that while all three models can generate the pattern that

the regression slope increases with the horizon and the variance ratio decreases with the horizon,

our model with learning under ambiguity produces much more significant quantitative effects.

In particular, compared to benchmark model II, our model implied values of the regression

slope and R2 are higher, while our model implied values of variance ratio are smaller. However,

our model still cannot replicate the same numbers estimated from the data reported in Panel

B of Table 2.
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[Insert Table 6 Here]

5. Conclusion

In this paper, we have proposed a consumption-based asset pricing model that can match the

first moments of the equity premium and riskfree rate observed in the data. In addition, our

model can generate a variety of dynamic asset pricing phenomena, including the procyclical

variation of price-dividend ratios, the countercyclical variation of equity premia and equity

volatility, and the mean reversion and long horizon predictability of excess returns. There are

two main ingredients of our model. First, we assume that consumption growth is governed by a

hidden Markov regime-switching process. The representative agent formulates posterior proba-

bilities on the hidden states by observing past consumption data. This posterior distribution is

a state variable that drives asset return dynamics. Second, and most importantly, the agent is

ambiguous about the hidden state in consumption growth. His preferences are represented by

the smooth ambiguity model proposed by Klibanoff et al. (2005, 2006). The agent’s degree of

ambiguity aversion plays a key role in determining asset returns. It helps propagate and amplify

shocks to the dynamics of asset returns. Without ambiguity aversion, our model cannot match

the first moments of the equity premium and riskfree rate observed in the data, and cannot

generate significant time-varying equity premia. One limitation of our model is that it cannot

match equity volatility observed in the data. One potential way to resolve this puzzle is to

separate consumption from dividends since dividends are much more volatile than consumption

or to introduce leverage (see Abel (1999) and Cecchetti et al. (1993)). We leave this extension

for future research.

Other models can also simultaneously generate the unconditional moments and dynamics

of asset returns observed in the data. For example, Campbell and Cochrane (1999) introduce a

slow moving habit or time-varying subsistence level into a standard power utility function. As a

result, the agent’s risk aversion is time varying. Bansal and Yaron (2004) apply the Epstein-Zin

recursive utility function, and incorporate fluctuating volatility and a persistent component in

consumption growth. Nevertheless, we view our model as a first step toward understanding the

quantitative implications of learning under ambiguity for asset returns. We have shown that

our model can go a long way to explain many asset pricing puzzles. Much work still remains to

be done. For example, how to distinguish between risk aversion and intertemporal substitution

in our model and how to empirically estimate parameters of ambiguity aversion, risk aversion,

and intertemporal substitution would be important future research topics.
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Appendix

A Proofs

Proof of Proposition 1: Define the function Φt (δ) = Vt (C + δh) . Then Φ′t (0) is equal to

lim
δ↓0

Vt (C + δh)− Vt (C)
δ

.

Using (5), we can derive

Φ′t (0) = u′ (Ct) ht + β
Eµtφ

′ (Eπt,z [Vt+1]
)

φ′
(
φ−1

(
Eµt

[
φ

(
Eπt,z [Vt+1]

)]))Eπt,z

[
Φ′t+1 (0)

]

= u′ (Ct) ht + βEt

[
φ′

(
Eπt,z [Vt+1]

)

φ′
(
φ−1

(
Eµt

[
φ

(
Eπt,z [Vt+1]

)]))Φ′t+1 (0)

]
,

where Et denotes the conditional expectation given history st. Solving the preceding equation

forward recursively starting from t = 0, we can derive the utility gradient gz given in (8). We

also need a transversality condition, limT→∞ E [gT,zΦ′T (0)] = 0. The expression for the pricing

kernel (9) follows from this equation. Q.E.D.

Proof of Proposition 2: We conjecture that the value function takes the form in (21).

Substituting this conjectured value function and the budget constraint (11) into the Bellman

equation (17) yields

J (Wt, µt) = max
Ct,ψt

log (Ct) +
β

1− β
log (Wt − Ct) (A.1)

−βθ log


∑

j

µt (j) exp
(
−1

θ
Et,j [A log (Rm,t+1) + G (µt+1)]

)
 .

The first-order condition with respect to Ct delivers the consumption rule (23). Substituting

this consumption rule back into the Bellman equation (A.1) and using the conjectured value

function, we obtain equation (22).

Using the equilibrium market-clearing condition, we can derive

Ct = Dt = (1− β) Wt = (1− β) (Pt + Dt) .

This equation gives the equilibrium stock price and hence the stock return given in part (i).

We turn to the riskfree rate. Substituting (12) for Rm,t+1 into (A.1) and taking first-order

condition with respect to the trading strategy ψt, we obtain equation (24). Imposing the market
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clearing condition ψt = 1 so that Rm,t+1 = Re,t+1, we can solve for Rf,t+1 to obtain (19) with

the pricing kernel given by

Mt+1,j =
βCt

Ct+1

exp
(
−1

θEt,j

[
1

1−β log (Rm,t+1) + G (µt+1)
])

∑
j µt (j) exp

(
−1

θEt,j

[
1

1−β log (Rm,t+1) + G (µt+1)
]) . (A.2)

We finally use the value function (21) and Rm,t+1 = Wt+1/ (Wt − Ct) from (12) to rewrite (A.2)

as equation (20). Q.E.D.

Proof of Propositions 3 and 4: We conjecture that the value function takes the form

in (33) and optimal consumption is linear in wealth Ct = atWt, where at and G are to be

determined. By a standard dynamic programming argument, the value function J satisfies the

following Bellman equation

W 1−γ
t

1− γ
G (µt) = max

Ct,ψt

C1−γ
t

1− γ
+ β


∑

j

µt (j)

(
Et,j

[
W 1−γ

t+1

1− γ
G (µt+1)

])1−α



1
1−α

.

Substituting the budget constraint into the preceding equation yields:

W 1−γ
t

1− γ
G (µt) (A.3)

= max
Ct,ψt

C1−γ
t

1− γ
+ β

(Wt − Ct)
1−γ

1− γ


∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])1−α




1
1−α

.

Taking first-order condition with respect to consumption delivers:

C−γ
t = β (Wt − Ct)

−γ


∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])1−α




1
1−α

.

Substituting the conjectured consumption rule Ct = atWt into the preceding two equation, we

have

G (µt) = a1−γ
t + β (1− at)

1−γ


∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])1−α




1
1−α

, (A.4)

and

a−γ
t = β (1− at)

−γ


∑

j

µt (j)
(
Et,j

[
R1−γ

m,t+1G (µt+1)
])1−α




1
1−α

. (A.5)
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It follows from these two equations that

G (µt) = a−γ
t =

(
Ct

Wt

)−γ

. (A.6)

Substituting (A.6) for at into (A.4) yields (36).

Substitute (A.6) into (A.5) to deduce that

a−γ
t = β (1− at)

−γ


∑

j

µt (j)

(
Et,j

[
R1−γ

m,t+1

(
Ct+1

Wt+1

)−γ
])1−α




1
1−α

. (A.7)

Use the budget constraint and the consumption rule Ct = atWt to derive:

Wt+1 = Rm,t+1 (Wt − Ct) = Rm,t+1Ct
1− at

at
. (A.8)

Substitute this equation into (A.7) to derive

a−γ
t = β (1− at)

−γ


∑

j

µt (j)

(
Et,j

[
R1−γ

m,t+1

(
at

1− at

)−γ (
Ct+1

CtRm,t+1

)−γ
])1−α




1
1−α

. (A.9)

Simplifying yields

1 =
∑

j

µt (j)

(
Et,j

[
Rm,t+1β

(
Ct+1

Ct

)−γ
])1−α

. (A.10)

We turn to the riskfree rate. Substituting (12) for Rm,t+1 into (A.3) and taking first-order

condition with respect to the trading strategy ψt, we obtain equation (35). Using (A.6) to

substitute G (µt+1) into this equation yields:

0 =
∑

j

µt (j)

(
Et,j

[
R1−γ

m,t+1

(
Ct+1

Wt+1

)−γ
])−α (

Et,j

[
R−γ

m,t+1 (Re,t+1 −Rf,t+1)
(

Ct+1

Wt+1

)−γ
])

.

Substituting Wt+1 given in (A.8) into the preceding equation yields:

0 =
∑

j

µt (j)

(
Et,j

[
Rm,t+1

(
Ct+1

Ct

)−γ
])−α (

Et,j

[(
Ct+1

Ct

)−γ

(Re,t+1 −Rf,t+1)

])
. (A.11)

Equations (A.10) and (A.11) imply that the pricing kernel is given by (32), and that the stock

return and the riskfree rate satisfy the Euler equations (29) and (31).

Conjecture that the price dividend ratio is given by

Pt = ϕ (µt) Dt,
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where ϕ is a function to be determined. Then in equilibrium,

Re,t+1 = Rm,t+1 =
Pt+1 + Dt+1

Pt
=

Dt+1

Dt

1 + ϕ (µt+1)
ϕ (µt)

.

Substituting the preceding equation into (A.10) yields equation (30).

From equations (33)-(34), we can rewrite the value functions at date t as J (Wt, µt) =

WtC
−γ
t / (1− γ) . We now use this expression and (9) to rewrite (37) as

(
Et,j

[
Wt+1C

−γ
t+1

])−α

(
Eµt

[(
Et,j

[
Wt+1C

−γ
t+1

])1−α
]) −α

1−α

β

(
Ct+1

Ct

)1−γ

.

Using equation (12), we rewrite the first term on the right-hand side as
(
Et,j

[
(Wt − Ct)Rm,t+1C

−γ
t+1

])−α

(
Eµt

[(
Et,j

[
(Wt − Ct) Rm,t+1C

−γ
t+1

])1−α
]) −α

1−α

=

(
Et,j

[
Rm,t+1β

(
Ct+1

Ct

)−γ
])−α

(
Eµt

[(
Et,j

[
Rm,t+1β

(
Ct+1

Ct

)−γ
])1−α

]) −α
1−α

,

where we cancel out (Wt − Ct) and multiply the expressions in the numerator and the denom-

inator by (βCγ
t )−α to obtain the equality. Finally, we use equations (29) and (30) to deduce

that the denominator in the last expression is equal to one . We thus obtain the pricing kernel

given in (32). Q.E.D.

B Numerical Method: Two-State Case

For the log-exponential case, we solve the functional equation (22) for G. For the power-power

specification, we solve the functional equation (30) for ϕ. In both cases, we use the projection

method described in Judd (1998). Here, we only outline the algorithm for the power-power

specification with two states N = 2. The algorithm for the log-exponential case is similar.

Let z ∈ {1, 2} . Let pt = µt (1) . We approximate the function ϕ (pt, 1− pt) by the function

Φ (pt) =
n∑

i=0

ciTi (pt) ,

where Ti (p) is an n-order Chebyshev function (with the domain adjusted to [−1, 1]) and

c0, c1, ..., and cn are coefficients to be determined. Let c = (c0, c1, ..., cn) .
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We define the function

H (pt, j) = Et,j

[
β

(
Ct+1

Ct

)1−γ
(

1 +
n∑

i=0

ciTi (pt+1)

)]

= β

∫
exp ((1− γ) y)

(
1 +

n∑

i=0

ciTi (B1 (y, pt))

)
f (y, j) dy,

where we define the belief transition function

B1 (y, x) =
λ11f (y, 1)x + (1− λ22) f (y, 2) (1− x)

f (y, 1)x + f (y, 2) (1− x)
.

We then obtain the approximated residual function

R (pt; c) = pt (H (pt, 1))1−α + (1− pt) (H (pt, 2))1−α −
(

n∑

i=0

ciTi (pt)

)1−α

.

Our objective is to make R (pt; c) close to zero. To this end, we use the collocation method.

Let xj be the n+1 roots of the Chebyshev function Tn+1 (x) . We then solve the system of n+1

equations

R (xj ; c) = 0, j = 1, ..., n + 1,

for n + 1 unknowns (c0, c1, ..., cn) .
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Table 1. Maximum likelihood estimates of the consumption process

λ11 λ22 κ1 κ2 σ

0.978 0.516 2.251 −6.785 3.127

Notes: The numbers in the last three columns are expressed in percentage. This table is taken
from Table 2 in Cecchetti et al. (2000).

Table 2. Stylized facts of equity and short-term
bond returns using annual observations from 1871-1993

A. First and second moments as a percentage

Mean equity premium µeq 5.75
Mean risk-free rate rf 2.66
Standard deviation

Equity premium σ(µeq) 19.02
Risk-free rate σ(rf ) 5.13

Correlation ρeq,f -0.24

B. Predictability and persistence of excess returns

Horizon Regression slope R2 Variance ratio

1 0.148 0.043 1.000
2 0.295 0.081 1.038
3 0.370 0.096 0.921
5 0.662 0.191 0.879
8 0.945 0.278 0.766

Notes: This table is taken from Table 1 in Cecchetti et al. (2000).
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Table 3. Unconditional Moments for the Log–Exponential Case

1 2 3 4 5 6 7 8 9 10 11
rf = r∗f + ∆rL

f + ∆rf

1/θ rf σ(rf ) re µeq σ(µeq)
σ(M)
E[M ] µ∗eq r∗f ∆rL

f ∆rf

Panel A: Baseline parameter values: β = 0.940, 1/θ = 1.292
2.660 0.914 8.410 5.750 3.853 3.792 0.133 8.276 -0.002 -5.614

Panel B: β = 0.940
0.00 8.274 0.817 8.410 0.136 3.816 0.037 0.133 8.276 -0.002 0.000
0.25 7.990 1.107 8.410 0.420 3.831 0.185 0.133 8.276 -0.002 -0.283
0.50 7.369 1.399 8.410 1.041 3.874 0.560 0.133 8.276 -0.002 -0.904
0.75 6.027 1.477 8.410 2.383 3.905 1.436 0.133 8.276 -0.002 -2.246
1.00 4.318 1.260 8.410 4.092 3.883 2.614 0.133 8.276 -0.002 -3.955
1.25 2.867 0.962 8.410 5.543 3.856 3.644 0.133 8.276 -0.002 -5.407
1.50 1.791 0.699 8.410 6.619 3.846 4.420 0.133 8.276 -0.002 -6.483
1.75 1.028 0.496 8.410 7.382 3.849 4.976 0.133 8.276 -0.002 -7.246
2.00 0.495 0.347 8.410 7.915 3.857 5.367 0.133 8.276 -0.002 -7.778

Panel C: β = 0.98
0.00 3.892 0.784 4.023 0.131 3.662 0.037 0.128 3.895 -0.002 0.000
0.25 1.398 1.396 4.023 2.625 3.747 1.675 0.128 3.895 -0.002 -2.494
0.50 -2.582 0.606 4.023 6.605 3.690 4.612 0.128 3.895 -0.002 -6.474
0.75 -4.011 0.206 4.023 8.034 3.712 5.705 0.128 3.895 -0.002 -7.903
1.00 -4.477 0.068 4.023 8.500 3.728 6.064 0.128 3.895 -0.002 -8.369
1.25 -4.628 0.022 4.023 8.651 3.734 6.181 0.128 3.895 -0.002 -8.520
1.50 -4.676 0.007 4.023 8.699 3.737 6.219 0.128 3.895 -0.002 -8.569
1.75 -4.692 0.002 4.023 8.715 3.737 6.231 0.128 3.895 -0.002 -8.584
2.00 -4.697 0.001 4.023 8.720 3.738 6.235 0.128 3.895 -0.002 -8.589

Panel D: β = 0.92
0.00 10.668 0.835 10.807 0.139 3.901 0.037 0.136 10.670 -0.003 0.000
0.25 10.476 1.047 10.807 0.331 3.909 0.131 0.136 10.670 -0.003 -0.192
0.50 10.154 1.275 10.807 0.653 3.933 0.314 0.136 10.670 -0.003 -0.514
0.75 9.565 1.465 10.807 1.242 3.968 0.670 0.136 10.670 -0.003 -1.103
1.00 8.567 1.516 10.807 2.240 3.990 1.308 0.136 10.670 -0.003 -2.101
1.25 7.311 1.396 10.807 3.496 3.981 2.146 0.136 10.670 -0.003 -3.357
1.50 6.096 1.186 10.807 4.711 3.958 2.979 0.136 10.670 -0.003 -4.572
1.75 5.064 0.964 10.807 5.743 3.940 3.698 0.136 10.670 -0.003 -5.604
2.00 4.235 0.763 10.807 6.572 3.931 4.283 0.136 10.670 -0.003 -6.433

Notes: Except for the numbers in Columns 1 and 7, all numbers are in percentage. The
variables in the first row and columns 2-6 are defined as in Table 2. σ(M)/E[M ] is the ratio
of the standard deviation to the mean of the pricing kernel. r∗f and µ∗eq are the mean riskfree
rate and the mean equity premium for benchmark model I. rL

f is the mean riskfree rate for
benchmark model II. ∆rL

f = rL
f − r∗f denotes the change of the mean riskfree rate due to

learning only. ∆rf = rf − rL
f denotes change of the riskfree rate due to ambiguity.
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Table 4. Comparative Statistics for the Power-Power Case

1 2 3 4 5 6 7 8 9
α rf σ(rf ) re σ(re) µeq σ(µeq)

µeq

σ(µeq)
σ(M)
E[M ]

Panel A: Baseline parameter values: β = 0.944, γ = 0.647, α = 48.367
2.660 0.952 8.410 4.581 5.750 4.715 1.219 2.640

Panel B: β = 0.944, γ = 0.0
0.0 5.953 0.000 5.953 4.456 0.000 4.456 0.000 0.000
3.0 5.813 0.189 6.077 4.660 0.265 4.671 0.057 0.096
10.0 4.568 0.845 6.888 5.640 2.320 5.843 0.397 0.711
25.0 -1.736 0.932 10.466 6.037 12.202 6.011 2.030 4.215
60.0 0.004 1.026 13.212 4.927 13.208 4.996 2.643 6.152

Panel C: β = 0.944, γ = 0.2
0.0 6.345 0.160 6.375 4.324 0.030 4.322 0.007 0.007
3.0 6.234 0.308 6.453 4.444 0.220 4.452 0.049 0.078
10.0 5.552 0.786 6.855 4.956 1.303 5.087 0.256 0.447
25.0 0.121 0.674 9.295 5.698 9.175 5.793 1.584 3.265
60.0 -0.970 0.912 11.793 4.865 12.763 4.925 2.592 5.975

Panel D: β = 0.944, γ = 0.8
0.0 7.499 0.648 7.611 3.975 0.112 3.928 0.029 0.029
3.0 7.470 0.686 7.615 3.980 0.145 3.935 0.037 0.040
10.0 7.392 0.778 7.628 3.995 0.236 3.955 0.060 0.082
25.0 7.144 0.999 7.669 4.036 0.526 4.028 0.131 0.225
60.0 5.374 1.348 7.946 4.200 2.572 4.320 0.595 1.265

Panel E: β = 0.944, γ = 1.5
0.0 8.800 1.235 8.986 3.717 0.186 3.516 0.053 0.055
3.0 8.877 1.137 9.013 3.733 0.137 3.546 0.039 0.050
10.0 9.015 0.932 9.059 3.763 0.044 3.604 0.012 0.095
25.0 9.195 0.606 9.114 3.808 -0.081 3.695 -0.022 0.171
60.0 9.360 0.255 9.164 3.858 -0.195 3.807 -0.051 0.233

Panel F: β = 0.944, γ = 3.0
0.0 11.416 2.542 11.647 4.161 0.230 3.213 0.072 0.113
3.0 11.807 2.071 12.069 3.863 0.262 3.248 0.081 0.127
10.0 12.297 1.224 12.416 3.806 0.119 3.507 0.034 0.225
25.0 12.623 0.529 12.611 3.903 -0.012 3.784 -0.003 0.262
60.0 12.776 0.222 12.701 3.983 -0.075 3.936 -0.019 0.263

Notes: Except for numbers in Columns 1, 8 and 9, all numbers are in percentage. The variables
in the first row and columns 2-6 are defined as in Table 2. σ(M)/E[M ] is the ratio of the
standard deviation to the mean of the pricing kernel.
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Table 5. Decomposition of rf , re and µeq for the Power-Power Case

1 2 3 4 5 6 7 8 9 10
rf = r∗f + ∆rL

f + ∆rf re = r∗e + ∆rL
e + ∆re µeq = µ∗eq + ∆µL

eq + ∆µeq

α r∗f ∆rL
f ∆rf r∗e ∆rL

e ∆re µ∗eq ∆µL
eq ∆µeq

Panel A: Baseline parameter values: β = 0.944, γ = 0.647, α = 48.367
7.208 -0.001 -4.547 7.299 0.001 1.111 0.090 0.002 5.657

Panel B: β = 0.944, γ = 0.0
0.0 5.953 0.000 0.000 5.953 0.000 0.000 0.000 0.000 0.000
3.0 5.953 0.000 -0.140 5.953 0.000 0.124 0.000 0.000 0.265
10.0 5.953 0.000 -1.385 5.953 0.000 0.935 0.000 0.000 2.320
25.0 5.953 0.000 -7.689 5.953 0.000 4.513 0.000 0.000 12.202
60.0 5.953 0.000 -5.949 5.953 0.000 7.259 0.000 0.000 13.208

Panel C: β = 0.944, γ = 0.2
0.0 6.345 0.000 0.000 6.375 0.001 0.000 0.030 0.001 0.000
3.0 6.345 0.000 -0.111 6.375 0.001 0.078 0.030 0.001 0.189
10.0 6.345 0.000 -0.793 6.375 0.001 0.479 0.030 0.001 1.273
25.0 6.345 0.000 -6.224 6.375 0.001 2.920 0.030 0.001 9.144
60.0 6.345 0.000 -7.315 6.375 0.001 5.417 0.030 0.001 12.733

Panel D: β = 0.944, γ = 0.8
0.0 7.500 -0.001 0.000 7.610 0.001 0.000 0.110 0.003 0.000
3.0 7.500 -0.001 -0.028 7.610 0.001 0.005 0.110 0.003 0.033
10.0 7.500 -0.001 -0.106 7.610 0.001 0.017 0.110 0.003 0.123
25.0 7.500 -0.001 -0.355 7.610 0.001 0.059 0.110 0.003 0.414
60.0 7.500 -0.001 -2.125 7.610 0.001 0.335 0.110 0.003 2.460

Panel E: β = 0.944, γ = 1.5
0.0 8.806 -0.006 0.000 8.989 -0.003 0.000 0.183 0.003 0.000
3.0 8.806 -0.006 0.077 8.989 -0.003 0.028 0.183 0.003 -0.049
10.0 8.806 -0.006 0.215 8.989 -0.003 0.074 0.183 0.003 -0.141
25.0 8.806 -0.006 0.395 8.989 -0.003 0.128 0.183 0.003 -0.267
60.0 8.806 -0.006 0.559 8.989 -0.003 0.179 0.183 0.003 -0.381

Panel F: β = 0.944, γ = 3.0
0.0 11.444 -0.027 0.000 11.685 -0.038 0.000 0.241 -0.011 0.000
3.0 11.444 -0.027 0.390 11.685 -0.038 0.422 0.241 -0.011 0.032
10.0 11.444 -0.027 0.881 11.685 -0.038 0.769 0.241 -0.011 -0.111
25.0 11.444 -0.027 1.207 11.685 -0.038 0.964 0.241 -0.011 -0.243
60.0 11.444 -0.027 1.359 11.685 -0.038 1.055 0.241 -0.011 -0.305

Notes: Except for the numbers in Column 1, all numbers are in percentage. The variables r∗f ,
r∗e , and µ∗eq are the mean riskfree rate, stock return, and the mean equity premium, respectively,
for benchmark model I. The variables rL

f , rL
e , and µL

eq are the mean riskfree rate, stock return,
and the mean equity premium, respectively, for benchmark model II. ∆rL

f = rL
f − r∗f denotes

the change of the mean riskfree rate due to learning only. ∆rf = rf − rL
f denotes change of the

riskfree rate due to ambiguity. The other variables ∆rL
e , ∆re, ∆µL

eq, ∆µeq, are defined similarly.
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Table 6. Predictability and persistence of excess returns

1 2 3 4 5 6 7 8 9 10
Baseline parameter values Benchmark model I Benchmark model II

Variance Variance Variance
Horizon Slope R2 ratio Slope R2 ratio Slope R2 ratio

1 1.040 0.064 1.000 0.443 0.022 1.000 0.776 0.020 1.000
2 1.372 0.074 0.848 0.599 0.025 0.989 1.028 0.022 0.987
3 1.511 0.071 0.769 0.685 0.024 0.979 1.137 0.022 0.975
5 1.635 0.061 0.683 0.780 0.022 0.960 1.346 0.021 0.955
8 1.741 0.053 0.619 0.907 0.020 0.933 1.649 0.020 0.927

Notes: The slope and R2 are obtained from an OLS regression of the excess returns on the
log dividend yield at different horizons. The variance ratio is computed in the same way as
Cecchetti (1990, 2000). The reported numbers are the mean values of 10,000 Monte Carlo
simulations, each consisting of 123 excess returns and dividend yields.

42



Figure 1: Price dividend ratio as a function of the posterior probability of the high-
growth state.
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Figure 2: Conditional mean and volatility of the probability of the high-growth state
in the next period as functions of the current state beliefs.
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Figure 3: Conditional expected equity premium as a function of the beliefs about the
high-growth state. Panel a plots this function for different values of the ambiguity aversion
parameter α. Panel b plots this function for different values of the risk aversion parameter γ.
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Figure 4: Conditional volatility of stock returns as a function of the beliefs about the
high-growth state. Panel a plots this function for different values of the ambiguity aversion
parameter α. Panel b plots this function for different values of the risk aversion parameter γ.
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Figure 5: Simulated time series of dividend (consumption) growth, posterior prob-
ability of the high-growth state, conditional volatility of stock returns, and condi-
tional expected equity premium. Parameter values are set as the baseline values given in
Table 4.
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