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Abstract

Concerns about misspecification and an enduring model selection problem in which
one of the models has long run risks give rise to countercyclical risk premia. We use two
risk-sensitivity operators to construct the stochastic discount factor for a representative
consumer who evaluates consumption streams in light of model selection and parameter
estimation problems that can aggravate or attenuate long run risks as time passes. The
arrival of signals induces the consumer to alter his posterior distribution over models
and parameters. The consumer copes with specification doubts by slanting probabilities
pessimistically. These pessimistic model probabilities induce model uncertainty premia
that contribute a time-varying component to what is ordinarily measured as the market
price of risk.

KEY WORDS: Learning, Bayes’ law, robustness, risk-sensitivity, market price of model un-
certainty, time-varying risk premia, time-varying pessimism.

1 Introduction

A pessimist thinks that good news is temporary but that bad news will endure. In our
model, pessimism gives rise to what would ordinarily be measured as countercyclical risk
premia. We prefer to interpret them as countercyclical model uncertainty premia because
they emerge from a difficult ongoing model selection problem that a representative consumer
confronts in the face of doubts about his model specification that make his beliefs fragile.
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1.1 Fragility and doubt

We modify the usual rational expectations assumption that endows everyone with a unique
probability measure over sequences of payoff relevant outcomes. To represent specification
doubts, we endow the representative consumer with a set of probability measures that are
difficult to distinguish statistically. We assume that he is unwilling or unable to reduce that
set to a singleton by putting a prior over it.

Our representative consumer values consumption streams according to the multiplier
preferences of Hansen and Sargent (2001) that represent aversion to model uncertainty.! His
fear of model misspecification induces him to compute valuations that are cautious with
respect to the set of measures. Caution inspires him to seek bounds on his valuations over a
set of distributions. He constructs those bounds by minimizing expected discounted utility
over the set of probability measures.

At time ¢, our representative consumer evaluates payoffs according to a particular mea-
sure that emerges from a time ¢ minimization problem over a set of continuation measures.
Ez post, he acts ‘as if’ he is an ordinary rational expectations investor, except that the
probability measure that he uses is twisted in a pessimistic direction relative to what it
would be in a comparable rational expectations model. The ‘fragility’ in our title refers
to the sensitivity to news of worst-case continuation measures and consequent valuations.?
Relative to the conventional rational expectations case in which the representative consumer
has complete confidence in his statistical model, our representative consumer’s inability to
specify a unique model puts ‘model uncertainty premia’ into asset prices.

1.2 Fragile expectations as sources of time-varying risk premia

To make these ideas operational, we endow our representative consumer with a hidden
Markov model that confronts him with ongoing model selection and parameter estimation
problems. Time-varying risk premia emerge as model uncertainty adjustments to the prob-
ability distribution over hidden states. Our representative consumer wants to know com-
ponents of a hidden state vector, some of which stand for unknown parameters within a
submodel and others of which index submodels. A distribution over that hidden state be-
comes part of the state vector in the representative consumer’s value function. Bayes’ law
describes its motion over time. With limited amounts of historical evidence, the submodels
are difficult to distinguish. To make forecasts of consumption growth that are robust with
respect both to his model specification and to his prior over submodels, the representative
consumer slants probabilities towards the submodel that has the lowest utility, subject to
some constraints on the relative entropy between the approximating model and the resulting
slanted model. We show how variations over time in the probabilities attached to submodels
and other state variables put volatility into the model uncertainty premia, and how they are
enhanced by the representative consumer’s adjustments for model misspecification.

!The relationship of the multiplier preferences of Hansen and Sargent (2001) to the max-min expected
utility preferences of Gilboa and Schmeidler (1989) are analyzed by Hansen et al. (2006b), Maccheroni et al.
(2006a,b), Cerreia et al. (2008), and Strzalecki (2008).

2Harrsion and Kreps (1978) and Scheinkman and Xiong (2003) explore a very different setting in which
difficult to detect departures from rational expectations lead to interesting asset price dynamics that cannot
occur under rational expectations.



Our application builds on ideas of Tallarini (2000), Bansal and Yaron (2004), and Hansen
and Sargent (2006a). We follow Tallarini by adopting an easy to compute logarithmic pref-
erence specification and an endowment economy.® But we specify a different consumption
growth process than Tallarini. Our representative consumer’s model of consumption growth
consists of a probability weighted mixture of two competing submodels, each of which is a
hidden Markov model. And while Tallarini applied one risk sensitivity operator, we apply
two. Our second risk-sensitivity operator, taken from Hansen and Sargent (2006a), ad-
justs for uncertainty about hidden Markov states that include both unknown parameters
and indexes of submodels. We interpret both risk-sensitivity operators as capturing the
representative consumer’s concerns about robustness instead of the enhanced risk aversion
featured by Tallarini.*

Along with Bansal and Yaron (2004), we impute to the representative consumer a model
for consumption growth that contains a difficult to detect persistent component. We dif-
fer from Bansal and Yaron by endowing the representative consumer with multiple doubts
about the model specification. Our representative consumer assigns positive probabilities to
two submodels that Bansal and Yaron tell us are difficult to distinguish, namely, an i.i.d.
consumption growth model and Bansal and Yaron’s long-run risk model. But he doubts
those model-mixing probabilities as well as the specification of each of those submodels. In
contrast, Bansal and Yaron assume that the representative consumer assigns probability one
to the long-run risk model even though sample evidence is indecisive in selecting between
them.® Nevertheless, as we shall see in section 5.3, our framework gives a new possible
justification for why a consumer might want to act as if he puts probability (close to) one
on the long-run risk model even though he knows that it is difficult to discriminate between
these models from finite data records.

Our logarithmic utility specification makes the representative consumer’s value function
linear, conditional on a component of the hidden state that indexes submodels. Value func-
tions conditional on the submodels can be computed via special cases of the linear-quadratic
calculations in Hansen and Sargent (2006b).

The present paper can be read partly as a sequel to Barillas et al. (2007) who reinterpret
the model of Tallarini (2000) in terms of a representative consumer who is concerned about
the fragility of his valuations to alternative dogmatic priors over the unconditional mean
growth rate of log consumption.® This paper extends Barillas et al. (2007) by endowing the
representative consumer with a nondogmatic prior over the mean growth rate and allowing
him to learn about it even while distrusting his model specification.

3Tallarini studies both a production economy and a pure endowment economy.

“Barillas et al. (2007) reinterpret some of Tallarini’s results in terms of concern about model misspecifi-
cation instead of risk aversion.

®Bansal and Yaron (2004) incorporate other features in their specifications of consumption dynamics,
including stochastic volatility. They also use a recursive utility specification with an intertemporal elasticity
of substitution greater than 1.

6Strictly speaking, this statement refers to Barillas et al.’s random walk specification. They also consider
a trend stationary specification for consumption growth.



1.3 Relation to other asset pricing models with Bayesian learning

Bayesian learning about hidden states is part of other asset pricing models. But we exploit
substantially more of the hidden state structure than do earlier researchers, for example,
Detemple (1986), David (1997), Veronesi (2000), Brennan and Zia (2001), Ai (2006), and
Croce et al. (2006).” Those papers use learning about a hidden state simply to generate a
particular exogenous process for distributions of future signals conditional on past signals,
an essential input into any consumption based asset pricing model. Those papers specify
the evolution of a primitive stochastic process of technology or endowments in terms of an
information structure that conceals hidden Markov states. By applying Bayesian learning,
typically as embodied in recursive filtering methods, they construct a less informative state
vector that consists of sufficient statistics for the distribution of hidden states conditioned
on signal histories, as well as a recursive law of motion for it. The evolution equation for
that less informative state vector is used as an input in decision making and asset pricing.
Except that they are based on coarser information structures, decision making and asset
pricing in these models is standard. Thus, those applications of Bayesian learning to asset
pricing reduce the representative consumer’s information set without any reference to actions
or utility consequences.® Therefore, the asset pricing implications of such learning models
depend only on the distributions of future signals conditioned on past signals, and not on
the underlying structure with hidden states that the model builder used to deduce that
distribution. In such rational expectations models, the only thing that learning contributes
is a justification for those conditional distributions: we would get equivalent asset pricing
implications if we had started by just assuming those distributions.

As we shall see, the way that we activate our second risk-sensitivity operator means that
equivalence is not true in our model, because for us, asset prices continue also to depend
on the evolution of the hidden states and not just on the distribution of future signals
conditioned on signal histories under the consumer’s approximating model. This occurs
because of how, following Hansen and Sargent (2006a), we make the representative consumer
explore potential misspecifications of the distributions of hidden Markov states and of future
signals conditioned on those hidden Markov states and on how he therefore refuses to reduce
compound lotteries. In a sequel to this paper, Hansen (2007), among other things (a) expands
the model uncertainty faced by the representative consumer by effectively confronting him
with a continuum of long-run risk models parameterized by Bansal and Yaron’s p, and (b)
studies the consequences of applying a risk-sensitivity adjustment to this additional source
of model uncertainty.

1.4 Outline

Let EV (x) be a scalar value function, where E' is the mathematical expectation over a ran-
dom vector z. Rather than applying F to V(z), this paper follows Hansen and Sargent

"The learning problems in those papers share the feature that learning is passive, there being no role for
experimentation so that prediction can be separated from control. Cogley et al. (2005) apply the framework
of Hansen and Sargent (2006a) in a setting where decisions affect future probabilities of hidden states and
experimentation is active.

80mne exception to this statement is our earlier paper Cagetti et al. (2002) that incorporates a robustness
correction in a continuous time model.



(1995), Hansen et al. (1999), Tallarini (2000) and others by applying a risk-sensitivity oper-

ator to V, namely, T[V (z)] = —0log E exp [%(x)
an extra adjustment for risk that is beyond what is captured by the shape of V. When
0=+o00, T=FE.

Tallarini (2000) interprets 6 as a risk-aversion parameter and T as an extra adjustment

for risk in continuation values. We instead interpret —6log E exp [%(m)} as the indirect

value function for a max-min expected utility decision maker who uses the multiplier prefer-
ences of Hansen and Sargent (2001) to make conservative evaluations of probability densities
and therefore we regard 6 as a parameter that measures concern about misspecification of
probabilities. We use T as a device from which we can deduce how the market prices a
representative consumer’s uncertainty about model specification.

In a representative consumer asset pricing model, replacing F with T adds a potentially
volatile multiplicative adjustment to the stochastic discount factor. Hansen et al. (1999)
and Tallarini (2000) show how this adjustment increases the theoretical value of the market
price of risk and thereby helps move the theoretical stochastic discount factor closer to the
bounds of Hansen and Jagannathan (1991). In this paper, we consider three models with
successively deeper specification doubts. We study how these doubts affect the market price
of model uncertainty. We summarize these effects in table 1 and the last column of table
2. Where A(:),C(1), D(t), G(¢) are matrices in a state space model ¢ for the consumption
growth rate, table 1 displays formulas for objects that compose the market price of model
uncertainty that are reported in table 2. The first row of table 2 shows a time invariant
market price of model uncertainty that comes from the model of Tallarini (2000) after we
have adapted it by incorporating the long run risk specification of Bansal and Yaron (2004).
The second row reports the market price of model uncertainty for a non-stationary version
of a model in the spirit of Hansen et al. (2002) that we form by restricting the representative
consumer’s information set to be the history of consumption growth rates. This model puts
a smoothly time-varying component into the market price of model uncertainty. The third
row pertains to the model that is the principal focus of this paper. Here the representative
consumer faces an enduring and ambiguous model selection problem that contributes an
erratic time varying component of the market price of risk that imparts countercyclical risk
premia.’

} , where 6 > 0 is a parameter that controls

1.5 Timing of resolution of uncertainty

We will use two T operators. The first operator T! conditions on knowledge of all hidden
state variables. In addition to its interpretation in terms of robustness, Hansen and Sargent
(2006a) pointed out that T' has an alternative interpretation in terms of relaxing the hy-
pothesis that intertemporal compound lotteries can be reduced in the spirit of Kreps and
Porteus (1978) and Epstein and Zin (1989). We use T! to evaluate consumption profiles
conditioned on a hidden Markov state.

Our second operator, T2, has an alternative interpretation of relaxing the assumption
that consumption lotteries conditioned on a hidden Markov state can be reduced to lotteries

9Subsection 5.2 presents table 4 as a convenient way of showing the relationship of our three models to
other models in the literature.



conditioned only on the signal history. This interpretation follows Segal (1990) and Klibanoff
et al. (2003). We use the T? operator to adjust for risk about hidden states in a different
way than the usual Bayesian model averaging approach does.

1.6 Organization

To make formulas for time-varying uncertainty prices more accessible, we assemble them by
constructing a sequence of models that make the representative consumer’s inference prob-
lems and specification doubts more and more interesting. Section 2 describes how we can
blend features of the models of Tallarini (2000) and Bansal and Yaron (2004). Section 3
conceals the state from the representative consumer and, relative to the model of section 2,
describes an additional adjustment for model uncertainty. Section 4 adds another type of
hidden state that indexes possible submodels. Section 5 contains a description of our appli-
cation and an account of the sources of time-variation in market prices of model uncertainty.
Section 6 explains what it is that is going on in the head of our representative consumer to
make him a pessimist who regards good news as temporary and bad news as permanent and
offers a heuristic account of why robust learning about submodels produces countercyclical
market prices of uncertainty. Section 7 contains some concluding remarks.

2 Tallarini meets Bansal and Yaron

This section modifies the model of Tallarini (2000) by replacing his endowment process for
log consumption growth with a long run risk specification like one used by Bansal and Yaron
(2004). We also reinterpret the risk-sensitivity operator used by Tallarini as the indirect
utility function for someone who is concerned about model misspecification, then give a
formula for what Hansen et al. (1999) call the market price of model uncertainty (M PU).
In this way, we fill in the first row of table 2.

2.1 A warmup model without risk sensitivity

To set the stage, we first consider a model with no risk-sensitivity adjustments. Then to
incorporate the representative consumer’s fear of model misspecification, sections will add
risk-sensitivity adjustments to this basic model.

Let ¢; be the log of consumption and define the expected present value of the log of
consumption recursively by

Vi=(1-08)a+ EfVip (1)

where the growth in log consumption ¢, 1 — ¢; is governed by the state space system

Cr1 = AG+Ceun (2)
cy1 — ¢ = DG+ Ge (3)

where €1 ~ N(0, 7). Solving recursion (1) shows that V; equals

Vi= NG+ (4)



where

X = BD(I — BA)L. (5)

Proof. Define v, = V; — ¢, and write (4) as v, = fE(vi41 + ¢01 — ¢—1). This implies
vy = BEw + BD(. Solving this expectational difference equation forward and using the
state space system (2) and (3) gives vy = BD(I — BA)~1(,. O

Let * denote a next period value and express (1) as the Bellman equation
In the next section, we modify the model of Tallarini (2000) by replacing his specification
of consumption growth with (2) and (3),

2.2 A model with one risk sensitivity operator

We get our version of the model of Tallarini (2000) by replacing (6) with a value function!®

W(¢,c)=N(+r+c (7)
that we obtain by solving the recursion
W(¢ )= (1= B)e+ T [BW((", )] (8)

where T! is a risk-sensitivity operator defined in the following two mathematically equivalent
ways:

Tl[ﬂw(c*jc*ﬂ = _91 logE |:exp <#f*’c*)>

_ min  E (m(e*) [BW(C*, ") + 61 log m(e")]

m(e*)>0,Em(e*)=1

c,c} )
g,c> . (10)

where

o~
*
I

AC+ Ce
¢ —c = D(+Ge.

While Tallarini (2000) emphasizes (9) and interprets T! as enhancing risk-aversion, we em-
phasize (10) and interpret T' as a way of implementing a version of the multiplier preferences
of Hansen and Sargent (2001) and thereby making a cautious evaluation due to the represen-
tative consumer’s distrust of the model’s specification of the distribution of (* conditional on
¢, c. Minimization over the likelihood ratio m expresses that distrust. We allow the function
m to depend on ¢ and c¢. The nonnegative function m distorts the density of €* conditional
on ¢, while E [m(e*)logm(e*)|(, c] is the conditional entropy of the distortion. Here 6; is a
positive risk-sensitivity parameter.

10This is the value function for a planner who confronts an exogenous consumption endowment process. It
differs from the value function of a private agent facing a decentralized security market. We use the planner’s
value function to compute the equilibrium continuation values that are needed to represent prices.

7



Proposition 2.1. The fized point of (8) is attained by a value function (7) with X satisfying

(5) and
m:i\chrGf (11)
2(1—-3)6, '
The associated worst distribution for € is normal with mean
w = ;—B(C’)\ +G") (12)
1

and covariance matrix I.

Proof. The T! operator maps a function N'¢ + ¢ + & into a value function with the same
functional form. Since the value function is linear in ¢ and ¢, and the original distribution
for €* is normal, the minimizing value of m in (10) is

1

m(e") = exp (e* cwt — iw*'w*) (13)
where w* is given by (12). This follows because the worst-case density distortion 7 (e*) is
proportional to

exp [—g()\'g* + "+ KJ)}
1

when viewed as a function of €*. Thus, while m changes the distribution of €*, the distorted
distribution is normal with mean w* instead of zero and the same covariance matrix. The
relative entropy for this mean distortion is %w*’w*. Thus, the problem is solved by: (1)
computing the expectation of the discounted value function where €* has mean w*; and (2)
replacing E [mlogm|(, ¢] with 222" These computations imply that

2

THBW(C, )] = B(NA + D)C + Bk + Be — 20,

(C'A+ G (C'A+ @Y.

Substitute this into (8) and solve for A and . O

Remark 2.2. While the minimization problem allows the distortion to the mean of the
shock €* to be state dependent, the minimizing distortion turns out not to depend on the
state because the value function is linear and shocks are homoskedastic. The mean distortion
solves: o

min (3 [X(AC + Cw*)+ Kk +c+ D(+ Gu*| + Ew*’w*.
Remark 2.3. The state space model (2), (3) implies that a moving average representation
for consumption growth is

ciy1 — ¢ = [D(I — AL)"*'CL + Glesq (14)

where L is the backward shift operator. Notice that C'\+ G" in (12) equals the present value
of the moving average coefficients in representation (14).



Object Formula
Av) [1 = BAQW)T'BD()

(1) — e [CAW) + G|
S()  ELC() = C(W][C() = ¢(1)] from Kalman filter
w () ~ZICWON) + G

( (£)A
a0 ON0

Table 1: Components of value functions and market prices of model uncertainty.

2.2.1 The market price of model uncertainty

Using (13), the stochastic discount factor for our model is

(ﬂ exp(c—c*>> (exp(e*’w* - .5w*'w*)), (15)

where the first term is the ordinary stochastic discount factor without concerns about robust-
ness for the CRRA specification with risk-aversion parameter equal to unity (i.e., logarithmic
preferences) and the second term is the Radon-Nikodym derivative 7 given by equation (13).
Hansen et al. (1999) and Hansen et al. (2002) show that the Radon-Nikodym derivative m is
a potentially volatile factor that multiplies the ordinary stochastic discount factor and that
it contributes the following amount to what is ordinarily measured as the market price of
risk:!!
sty (1iu111G) = lexp(wlyywie) = 17 & [wpal.

This approximation can be formalized by taking a continuous time limit. As explained in
Hansen et al. (1999) and Hansen et al. (2002), we prefer to interpret this quantity as the
market price of model uncertainty. Thus, for this model, the contribution of a concern about
robustness to what is usually interpreted as the market price of risk is approximately

|wiga] = |w'],

which is time-invariant, as emphasized by Anderson et al. (2003). This formula explains the
entry for the market price of model uncertainty M PU, for model 1 in table 2.

2.2.2 The market prices of uncertainty for three models

In section 3, we explain the entry in table 2 for M PU; from a model 2 that, by withholding
knowledge of (, puts the representative consumer in a situation that requires him to filter.
In model 2, the decision maker applies another risk sensitivity operator to account for his
uncertainty about the distribution ¢ ~ N((,Y) of the hidden state that emerges from the
filtering problem. The model 2 M PU, has a time-varying component due to the presence of
¥, as a determinant of uy, but it is a smooth and deterministic function of time. The third
row of table 2 summarizes the outcome of a model 3 that we form in section 4 by endowing

The date t + 1 is used on w1 because it is the distortion of the mean of the shock €, conditional on
date t information.



Model hidden states T # shocks M PU,

1 none T! 2 |w*|
2 ¢ T2, Tt 1 \/%\Gw*—l—Duﬂ

3 L) TATETY 1 |- BIDG() — DO)G(0)]
G (1w (1) + D(1)u; (1)
~(1 = ) [GO)w*(0) + D(0)u; (0)

Table 2: Market prices of uncertainty in models with risk sensitivity. Model 1 is our ro-
bustness version of Tallarini (2000). Model 2 is a modification of a model of Hansen et al.
(2002) to allow for different #’s in distinct risk-sensitivity corrections. Model 3 activates
model uncertainty about the prior distribution over submodels. M PU, is the conditional
standard deviation of a multiplicative adjustment to the stochastic discount factor that is
induced by concern about model misspecification. + = 1 is Bansal and Yaron’s long run risk
model; ¢ = 0 is an i.i.d. consumption growth model.

the decision maker with two submodels for the consumption growth process and a prior
probability distribution p; for averaging them. That the representative consumer doubts
the specification of his prior distribution contributes adjustments that make the market
price of uncertainty vary erratically over time as the arrival of new information unsettles his
worst-case valuations and his worst case probabilities p; over submodels.'?

Model 1 contains as many shocks as appear in ¢,,1, two in our application, while models
2 and 3 contain as many shocks as occur in the innovations representation for ¢;y; — ¢;, one
in our application.

3 A model with a hidden state and a second risk-
sensitivity adjustment

The model in section 2.2 assumes that the representative consumer observes (; at time t.
We now consider a model in which (; is hidden at time ¢. The representative consumer
observes a signal s; — s;_; at date t, which he combines with earlier signals to form a date
t vector of signals sf = (s; — $4_1,81-1 — Si—2, ..., 81 — So). In our application, the signal is
aggregate consumption growth, s; —s;_1 = ¢; — ¢;_1. He uses this signal along with previous
signals including sy to make inferences about (;. The initial information is reflected in a
prior for ¢y that is normal with mean ¢ and covariance matrix ¥y. We let S, denote the date
t conditioning information used by a planner and by a representative private consumer.'3
Neither the individual consumer nor the fictitious planner can influence the signal, so the
information structure is “exogenously” given to both. Individual consumers take aggregate

12Models 2 and 3 both implement versions of the robustness recursions that Hansen and Sargent (2006b)
refer to as Game I. That paper also discusses alternative recursions in a Game II that apply T2 o T! at
each iteration and so work with value functions that depend on observed states and sufficient statistics for
estimated states only, not the hidden states themselves. Hansen and Sargent (2006b) discuss how Game IT
focuses the decision maker’s concerns about robustness in different directions than Game I.

B3Formally, S; is a sigma algebra under which sf is measurable.
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consumption as given but optimally choose their own. We introduce a planner because even
in an endowment economy, we require the value function of the planner to represent prices.
Given our information structure, the representative consumer and the fictitious planner
both confront a filtering problem. Because we add two corrections for the representative
consumer’s concerns about model misspecification, we construct a model with learning that
differs from ones in the literature described in subsection 1.3.14

3.1 Filtering implies an innovations representation

Application of the Kalman filter yields the following innovations representation for system
(2), (3):
(1 = Al + K(S)ar
Et—l—l - AEtA/ —|— CC/ - K(Et)(AEtD/ —|— CG/>/
Ser1—S¢ = DG+ a
where §; = E[G|S], ar1 = si01 — Elsea|Si), Bt = E(G — &) (G — &), Ay = EBayap, =

DY, D'+ GG, and
K(2) = (ASD' + CG')(DED' + GG')~™.

At time ¢, (¢, %) are sufficient statistics for the history of signals s}.

3.2 Distrust of the distribution over (;

We first imagine a representative consumer who values consumption streams by using the
following two step procedure:

1. Temporarily pretend that (; is observed and proceed as in section 2.2 to obtain the
value function

W, c)=N+kr+c (16)

2. Now imagine that the representative consumer acknowledges that (; is not observed by
taking the conditional expectation of (16) with respect to the conditional distribution
of ¢ pinned down by ((, ) to get

W(,e)=N+k+ec

To introduce our second risk-sensitivity operator, we amend this two-step procedure by
replacing the conditional expectation in the second step with a risk-sensitivity operator that
is designed to make an evaluation that is cautious with respect to the distribution of (
conditioned on (¢, ¥). This risk-sensitivity adjustment is

T2 W (C,¢)[C, e, )]0 = —bs log/eXp<#jc>

=m0+ 82108 Q) HOOCIE DL

h(¢)20,[ h(¢)#(¢I¢,%)=1

)o(CIC,2)dc

“However, rows la and 1b of table 4 display a specification without T2 that does share the features
emphasized in subsection 1.3.

11



where 6, is another positive risk-sensitivity parameter and ¢(C|¢,Y) is a Gaussian density
with mean ¢ and covariance matrix Y. The minimizing A is

—()\’§+/<o—|—c))

h(C) o eXp( )

(17)

where the factor of proportionality is chosen to make h have expectation one when integrated
against ¢. The worst case density for ¢ is h(¢)¢(¢|¢,%). This density is normal with mean
u* + ¢ and covariance matrix .

Proposition 3.1. The adjusted value function is:

. z 1
T2(W(<7C)|C7 C>Z|92) = )‘/C_I_K'_ ﬁ)‘/Z)‘_‘_C (18)
2

and the mean of the worst-case normal distribution is:

W= — (19)
02

Proof. From (17), the worst-case density for ¢ is proportional to,

(NC+r+c)
02

G exp | ~5 (¢~ )= (¢ - é)} = exp [_ el

It follows from a standard complete the square argument that this density is normal with
mean u*+¢ given by (19) and covariance matrix X. The entropy of the minimizing distortion
is:

1 e . 1
Ethgh:§U /E 1U :2—05)\/2)\

After substituting for the distorted mean and this measure of entropy, we obtain the value
function (18). O

Remark 3.2. The worst case distribution for ¢ is normal with a distortion to the mean
only. The distorted mean and resulting value function can be computed by solving:

TXW(C, )¢, ¢, 2)]0, = mJn(XCV +Nu+Kk+c+ %U’E_lu).

3.3 Worst-case density and the market price of model uncertainty

The worst case density for next period’s (consumption growth rate) signal s, — s; that is
induced by applying T? to the fixed point of recursions on (8) using T* is:

N (D¢ + Gw* + Du},GG' + DX, D)

= N(DZ—/@

1
H—G(C’A +G') — — DY\, GG + DEtD’)
1

02

12



Thus, Gw* + Du; is the distortion to the mean of the scalar random variable s;;; — s; that
has variance GG’ + DY, D" = A,. Since s;,1 — s; is the consumption growth rate in our
application, it follows the market price of uncertainty is approximately

_ |Gw* + Duy|

stde[g(se41 — 5¢|Sp)] = T (20)

where ¢ is the ratio of the distorted conditional density for s;.; — s; relative to the original
conditional density. This approximation can be justified by taking a continuous time ap-
proximation, in which case A, = GG’. T! contributes w* and T? contributes u}. Formula
(20) is the entry in the second row of table 2. The component u; reflects the representative
consumer’s caution with respect to the distribution of the hidden state and contributes a
time-varying component to the price of risk. That this component is time-varying is at-
tributable to our having assumed that the representative consumer observes a finite history
of consumption growth signals. Hansen et al. (2002) considered a model in which the length
of the history of signals is infinite, allowing u} to converge to a constant in their model.*

4 A model with two submodels and yet another risk-
sensitivity operator

4.1 Two submodels without another risk-sensitivity operator

We now consider two submodels for consumption growth ¢;,1 — ¢;, each of which has the
form (2), (3). We denote the submodels ¢ € {0,1} and suppose that the representative
consumer attaches probability p; = E(¢|S;) to model 1 at time ¢, where S; denotes the sigma
algebra generated by the signal history. As we are about to describe, these probabilities can
be computed by using Bayes’ rule, a prior and data s = [s; — s;_1, $1-1 — S¢—2, .- -, S1 — So-

4.2 Submodel ; and its innovations representation

Submodel ¢ has a state space representation

Gr1(t) = A()G() + C()er
Ser1 — St = D()G() + G(L)ersr-

As does the single ¢+ model of section 3, submodel ¢ has an innovations representation:

§t+1(b) A(L)é;t(b) + K[25(¢), t]agia ()
St1— st = D()G() + ara(e) (21)

where ét+1(L) = E[G41|Si41, 1,
K[%(1),d = [AW)Z (1) D) + C()G () [D() 2 (1) D(1) + G(0)G(0)]

15When 6; = 65, the mean distortion for the signal depends directly on the covariance of the signal with
the hidden state, GO’ + GX;A’, and on the covariance matrix of the signal, GG’ + DX;D’, both conditioned
on the signal history. When 6; and 65 are distinct, the decomposition of these objects into the contributions
from the underlying shock vector w;,1 and ¢; () — ¢, matters.
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Zipa() = AW AW + C()C) = K(Z(0) (AW () AQ) + C()G()'),

aiy1(¢) is the forecast error for the signal (i.e., the ‘innovation’), and ¥;(¢) is the covariance
matrix for (;(¢) — (;(¢) conditioned on ¢ and the signal history through date ¢.

4.3 The likelihood of s

To construct a likelihood function for a history s = s; — s;-1, 8.1 — S4—a, ..., $1 — S condi-
tioned on model ¢, we use (21) to compute the date ¢ + 1 signal innovation a;;;(¢) for model
¢ recursively from the innovations representation and form the conditional variance for the
signal based on date ¢ information, namely, A;(:) = G(¢)G(¢)" + D(1)3:(¢)D(¢)".*® Then the
log-likelihood of model ¢ can be represented recursively as

(1) => 4

where .
li(1) = ) [log(27) + log det[A_1(¢)] + ar (1) [Ar—1 (1)) ae(1)] -
We compute p; by
b el =8O
(1 — Po) + Poexp[L(1) — £:(0)]
Alternatively, we can update p; recursively using:

Prexplli1(1) — r1(0)]
1 —py) + prexplleyr(1) = Leg(0)]

Dt+1 = (
In the appendix, we deduce the continuous time limit of this updating equation:
dpy = pr(1 — po) [1e(1) — f1(0)] A~ (dsy — figdlt)

where fi;(t) = C,(0)'D(1), fir = Peite(1) + (1 — p)je(0), A = GG, and G is independent of
017 Here ji;(¢) is the estimated conditional mean of the signal conditioned on model ¢. The
probability assigned to the model with the larger conditional mean increases when the signal
(i.e., the consumption growth rate) exceeds its mean across models.

4.3.1 Two submodels with another risk-sensitivity operator

A hidden state vector z = [((0),((1),¢]. In the previous section, we prepared all of the
objects that we need to form the joint density of z conditioned on the history of the signal.
Conditioned on submodel ¢, the density of ((¢) is normal with mean ((:) and covariance

60ur likelihood integrates over the initial hidden state for each of the models using prior information.

17To justify the continuous time limit, we need to assume that G(0)G(0)' = G(1)G(1)’ so that the volatility
in the signal equation is the same for each model. Our estimates suggest that this is a good approximation
for our two models. Without this equality, the probabilities would be degenerate. A difference across models
in local variances would be detected by the high frequency data and that would reveal the statistically
preferred model.
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matrix (¢). We also showed how to compute the marginal probabilities 1 — p and p of the
two submodels, conditional on the signal history. Multiply these densities to obtain the joint
density for z = [((0),((1), ] conditioned on the signal history.

The representative consumer evaluates discounted streams of ¢; by using a value function
formed in the following three step process:

1. To account for specification doubts about the distribution of s;,; conditional on both
the state (1) and model ¢, apply T' to each submodel (. Thus, conditional on z =
[€(0),¢(1),¢], we form two value functions of the form that we presented in section 2.2:

W(C(1),e,0) = A1) - C(e) + k(L) + ¢

where
Ao = 17— AW BD0) (22)
o) = g RO + Gl (23)
The mean of the associated worst case shock vector for model ¢ is
W) =~ [Cwa0 +60). (24)

a distortion that is familiar from section 2.2, Hansen et al. (1999), and Anderson et al.
(2003), except now it depends on the model ¢. The distorted distribution for the signal
S¢y1 is normal with mean:

DG — P

O

and covariance matrix G(¢)G(¢)" conditioned on ¢ and (;(¢).

[CW'AW) +G(W)T,

2. To account for uncertainty about the distribution of the state ((¢) for model ¢, apply
T2 conditional on ¢. We proceed as in section 3:

T2A() - ¢ + K(2) + cle, 03] (é(L), Z(L)) =U (L,é(b), E(L)) +c
where

Ule, ¢(0), ()] = Ae) - €+ hi(e) = %&A(L)'E(L)A(L)-

The mean of the distorted distribution for ¢ is ¢ 4+ u*, where

W) = —éz(mu). (25)

The implied worst case distribution of ¢,(¢) — (;(¢) is altered from normal mean zero
with covariance ¥;(¢) to normal with mean —ézt(L)A(L) and covariance matrix ;(¢).
As a consequence, s;,1 is normal with mean:

D(1)Gi(e) — EG(L) [CW'A) +G()] = Q%D(L)EM(L)-

The conditional covariance matrix of s;,1 is G(¢)G(¢) + D(¢)%(¢)D(¢)" conditioned on
the model ¢ and the signal history.
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3. To capture the representative consumer’s distrust of his prior over submodels, we apply
a second T? operator that makes a robust adjustment of the model probabilities p and
1 —p. T? applied to Ult, ((¢), X(1)] is:'8

T2UL, (1), 2()]) (26)

o l(l e (_U[O,C(SS,Z(O)]) + pexp (_Uu,é(;j,z(n]”

- rmn{ﬁﬂaémxzmn+ﬂﬂmg1—ﬁ»—ba1—ﬁﬂ<r—@+

0<p<1

[mmmmeMM@—M@ﬁ}
The twisted submodel probabilities are:

=5 o (1= p)exp (20N 7

oo ey~ o

2

Please note how equations (27), (28) shift probability toward the submodel ¢ that has
the worse value at each time t. This aspect of p plays an important role in shaping the
evolution of the market price of model uncertainty.

An outcome of this three step process is an implied worst case density for s; ;1 — s
conditioned on current and past signals that is a mixture of normals with (1 — p;, p;) as
probability weights. To compute the market price of model uncertainty, we want to deduce
the ratio of this density to that implied by the approximating model.

4.4 Multiplicative adjustment to stochastic discount factor

Denote the likelihood of the approximating model as

F(sie1 — 8 S) = (1= po) F (541 — 56/ S0, 0) + Pe f (s01 — /Si, 1) (29)
and let the distorted likelihood be
F(see1 = 52180, 1) = (1= ) (5141 — 50/ S5, 0) + Pef (5101 — /S, 1). (30)

We have computed all of the objects appearing in (29) and (30). In particular, for ;. =0, 1,

f (S¢+1— $¢|Sy, ¢) is normal with means and variances that we computed in section 3. The two

model-averaged signal densities are mixtures of normals with weights p; and p;, respectively.
We now want to study the statistical time behavior of time series for the following Radon-

Nikodym derivative: .

f(3t+1 - 3t|8t)

f(st11 — 84|St)

18We ignore the consumption contribution to value functions conditioned on ¢ because it is common to
both value function and hence serves as a common proportionality factor in the probability distortions.

9(5t+1 - 5t|8t) = (31)
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Under the approximating model, g(s;11 — $¢|S;) serves as a multiplicative adjustment to
the stochastic discount factor that accounts for the representative consumer’s fear of model
misspecification. By construction, the random variable g(s;, 1 — s;|S;) has mean one under
the approximating model.

In the next section, we describe a Gaussian approximation to the worst case distribution
and a formula for the likelihood ratio g(s;+1 — s;|S;) that we shall motivate by a continuous
time approximation.

4.5 Continuous-time approximation

The mean consumption growth rate under the approximating model is

fis = PD(1)C(1) + (1 — p) D(0)¢(0).
Appendix B uses a continuous time model and the assumption that G(1) = G(0) to motivate
the following approximation to the mean of the growth rate under the worst case model:

fis = PID(1)¢(1) + G(Lw* (1) + D(L)u*(1)] + (1 = B)[D(0)¢(0) + G(0)w*(0) + D(0)u*(0)].
Subtracting and rearranging gives the following distortion to the mean of consumption
growth:

fo—its = (5=5)| D) = DO)(0)] —p|GLw (1) + D(L)u(1)]
— (1=7)|GOw"(0) + D(O)u'(0)].

Appendix B also shows that under both the approximating model and the worst case model,
Si+1 — 8¢ has conditional covariance GG’, so that the market price of model uncertainty in
this model is

staifg(sir — i) ~ |Ft et (32

ER2
VGG
where ¢ is the distorted conditional density for s,.; relative to the original conditional
density. Formula (32) is the entry for the M PU; for model 3 in table 2. Formulas (32), (32)
isolate variations in (;(0), (;(1), p, Py as sources of erratic time variations in the market price
of model uncertainty, while u;(0),u;(1) contribute smooth time variation, and w*(0), w*(1)

contribute constant components.

5 Doubts about long run risk

In this section, we reinterpret some of the observations about long run risk made by Bansal
and Yaron (2004) to justify the hypothesis that a representative consumer carries along
two submodels for consumption growth, each taking the form of (2) and (3). Bansal and
Yaron’s argument that these two models are difficult to distinguish even with moderately
long time series, prompts us to take a different approach than they do and to posit that
the representative consumer doubts the stochastic specification of each submodel as well as
his posterior distribution over the submodels at each date. We calibrate the two submodels
and use them to study how the various components of (32) contribute to the market price
of model uncertainty.
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¢(v) meaning

¢(0) El(cit1 — )]0 = 0]
(14(1) persistent component
G(l)  Eller —c)le = 1]

Table 3: Interpretation of state variables in two submodels, where ¢ = 1 is the long-run risk
submodel and ¢ = 0 is the i.i.d. consumption growth submodel.

—= = O~

5.1 Two submodels for consumption growth

The representative consumer indexes two submodels for the signal s;,1 — s; by the time-
invariant hidden state z3; = 230 = ¢ € {0,1}, where + = 0 denotes “model 0” and
t = 1 denotes “model 1”7. The state vector z; used in our general formulation consists
of Ct(1)> Ct(o)a L'lg

We take ¢« = 1 to be the long run risk model and ¢ = 0 to be the iid consumption growth
model. In both models, the consumption growth rate is the signal. For easy reference, table
3 describes the state variables in the two submodels. In each submodel, the unconditional
mean of consumption growth is an unknown parameter that becomes a constant component
of the hidden state.

5.1.1 Long-run risk model

The ¢ = 1 model is:®°
] - Bl Al
Cz,t+1(1) 01 C2,t(1) 0 0 €2.t+1

Sip1— s = [1 1] [C“(lﬂﬂo o2 (1)] [6““] (33)

€2t+1

where (20(1) = p(1). We set the initial state covariance matrix to be:

£o(1) = [U%/(lo_ /) UM

19We have defined the random variable (; (1) only for ¢ = 1, but we could extend it by letting it be identically
zero when ¢ = 0 and similarly for (;(0). Such extensions are inconsequential because the consumer cares
about the distribution of (;(1) only when ¢ = 1 and about the distribution of (;(0) only when ¢ = 0.

20To capture the ‘long run risk’ specification of Bansal and Yaron, we imposed p = .98,0; = .00025
and estimated o2(1) = .0053(.0003) and (2,0(1) = .0054(.0008) by maximum likelihood where standard
errors are in parentheses. The estimates are based on 228 quarterly observations for consumption growth
per capita of nondurables plus services from 1947.2-2003.3. When we also estimated p,o; by maximum
likelihood, we obtained a point estimate of p that was too low to capture Bansal and Yaron’s idea of long
run risk, but p is estimated very imprecisely. Therefore, we simply imposed the values just mentioned.
These values do capture Bansal and Yaron’s idea: figure 3 confirms that the resulting long run risk model is
difficult to distinguish from the i.i.d. consumption growth model. Hansen (2007) studies a setting where in
effect there is a continuum of long-run risk models on the table indexed by values of p in (—1,1). Hansen
confirms that the likelihood conveys little information about the value of p. Hansen (2007) constructs a risk-
sensitivity (exponential tilting) adjustment that expresses the representative consumer’s uncertainty about
the distribution of p and studies how it affects the market price of uncertainty.
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Model Do Info 0s papers

1 1 G(1), ¢ 0, Tallarini (2000)
Bansal and Yaron (2004)
la 1 Coo(l), ¢, 8t 01 =0,  Anderson et al. (2003)
Croce et al. (2006)
1b 1 Go(1), e, 8h 61 =06, Hansen et al. (2002)
2 1 ct, 84 0,0
3 €(0,1) Ct, Sh 01,0, current paper

Table 4: Comparisons of various models in the literature. The vector s._ includes the infinite
past history of signals, so we set prior time-invariant covariance matrices of hidden states
equal to the covariance matrices that emerge when we take limits of the state covariance
matrices from the Kalman filter.

where vy(1) = 3 %.00082, which is three times its counterpart from the maximum likelihood

. . : Go(M] [ 0
estimates. The initial mean for the state is set at [5270(1) =1 0054

5.1.2 iid growth model

The ¢ = 0 model has a single state variable (;(0) that is time invariant with initial condition
1(0). Thus, we write the state evolution as (;41(0) = ¢;(0) and the signal equation as:?!

Se1— 5 = G(0) + [0 02(0)] €141 (34)

We set the scalar ¥(0) = 3 % .0008, which is three times its maximum likelihood estimate,
and we set the initial mean ((0) for the scalar state to be .0056.

5.2 Comparisons with related models

Table 4 summarizes some assumptions about information sets, robustness parameters 6y, 6,
and the initial probability p, attached to the long-run risk submodel ¢ = 1 in the three
models in table 2 as well as in models that appear in other papers that can be viewed as
special cases of the model of this paper. What we call model 1a gives the representative
consumer an information set that consists of an infinite record of past consumption growth
rates, as well as knowledge of the unconditional mean consumption growth rate (,o. To
capture this specification, this model initializes ¥(1) at the steady state of iterations on the
Riccati equation for ¥(1).11). This specification was used by Anderson et al. (2003), Hansen
et al. (2002), and Croce et al. (2006).2> To capture the reduced information specification
in model 1b, we can set 3,(1) at an arbitrary matrix exceeding the conditional covariance
matrix used in model la. For example, for those components of ((1) that are asymptotically

21To obtain parameter values for the i.i.d. consumption submodel ¢ = 0, we estimated (20(0) =
.0056(.0004) and 02(0) = .0054(.0003).

22 Appendix A describes an alternative recursion on T2 o T! that with 6; = 6, leads to our version of the
model of Croce et al. (2006), and also explains why in the present context that recursion gives outcomes
that are the same as those considered in this paper.
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stationary, we can imagine setting the corresponding components of ¥,(1) to those values.
Model 2 generalizes model 10 by allowing the representative consumer to distinguish between
his doubts about the distribution of s,,; conditional on (;(1), on the one hand, and his doubts
about the distribution of (;(1) itself, on the other.

5.3 A reinterpretation of the consumer’s attachment to the long-
run risk model

As in Hansen et al. (1999) or Tallarini (2000), the representative consumer’s specification
doubts contribute a multiplicative adjustment to the stochastic discount factor that equals
a Radon-Nikodym derivative of the representative consumer’s worst case distribution of
consumption growth relative to the distribution given by his approximating model. The
representative consumer assigns worst case probabilities to the iid and long-run risk con-
sumption growth models, respectively, in order to form that Radon-Nikodym derivative. For
our calibration, we show how the representative consumer slants his worst case probabilities
toward the long run risk model « = 1. For an interesting setting of (6;,6s), we show that his
worst case model puts almost all of the probability on the long-run risk model. In this case,
our representative consumer becomes almost like Bansal and Yaron’s by fully embracing the
long run risk specification. But that is not the end of the story in our setting. We show that
even in this case, the fact that the iid model remains on the table under the approximat-
ing model contributes an interesting component of risk-premia that varies over time as the
Bayesian probability attached to the long run risk model fluctuates under the consumer’s
approximating model. Thus, doubts about the model specification continue to affect market
prices of risk even when our representative consumer acts ‘as if” (under his worst case model)
he attaches probability close to one to the long-run risk model.

5.4 Features of the long-run risk model

Figure 1 reports the impulse response, spectrum, covariogram, and sample path for the
consumption growth process given by the long-run risk model (33). The spectrum is flat at all
except very low frequencies. The covariogram and impulse response function closely resemble
ones associated with an i.i.d. process. On the basis of outcomes like those summarized in
figure 1, Bansal and Yaron argued that consumption growth data alone make it difficult to
distinguish a long-run risk model like (33) that makes log consumption growth equal to an
i.i.d. process plus a persistent process with low variance from the alternative specification that
log consumption growth is an i.i.d. process. They use that observation to justify imputing a
model like (33) to a representative consumer.

We start from Bansal and Yaron’s observation that the i.i.d. consumption growth model
(model + = 0) and the long run risk model (33) (model ¢« = 1) are difficult to distinguish
except in long data sets. (The probabilities p; = E(¢|S;) reported in figure 3 below confirm
that perception.) As emphasized above, we depart from Bansal and Yaron’s approach by
assuming that our representative consumer expresses his belief that these two submodels are
difficult to distinguish by having him attach positive probability to both. We allow him to
learn which model the data favor as time passes. We also depart from Bansal and Yaron
by assuming that the representative consumer observes neither the state variable (; (1) nor
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Figure 1: Long run risk consumption growth process

the unconditional mean growth rates (54(¢) for © = 0, 1. Therefore, the consumer estimates
them.

5.5 Sub model probabilities

The top panel of figure 2 plots consumption growth against the mean of consumption growth
conditioned on the signal history for the long-run risk model + = 1, while for comparison the
bottom panel shows the conditional mean from the i.i.d. consumption growth model + = 0.
The conditional mean from model ¢ = 0 is less volatile than the conditional mean from model
t=1.

Figure 3 plots p, for our data on the quarterly growth rate of per capita U.S. consumption
over the period 1947.2-2003.3 starting from an initial condition py = .5 that puts equal weight
on the two models described above. The fact that p, wanders in the range [0, 1] confirms
Bansal and Yaron’s claim that a long-run risk model is difficult to distinguish from an i.i.d.
model for consumption growth. In figure 4, we shall plot p; along side a twisted version of
it that is induced by application of the T? operator.

5.6 Robust model averaging

For the calibrated models ¢t = 0 and ¢ = 1 in section 5.4 and § = .998, the dashed (red) line
in figure 3 reports the worst case probabilities p; given by (27) for our calibrated submodels
when p;o = .5. We emphasize concerns about robustness in state estimation and model
choice rather than misspecified dynamics for each submodel by setting 6, = .2 and 0, =
20. While Bansal and Yaron (2004) argue that long-run risk model is hard to distinguish
from other time series models of consumption, their representative consumer nevertheless
commits to a known long-run risk model. In contrast, our representative consumer leaves
both models on the table. The worst-case probabilities p; that are depicted in figure 3 indicate
that the representative consumer’s concern for robustness makes him slant model selection
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Figure 2: Top panel: Consumption growth and Zl,t(l) + ézt(l); bottom panel: consumption
growth and (;(0).
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Figure 3: Bayesian probability p, attached to model 1 for U.S. quarterly consumption (non-
durables plus services) per capita for py = .5 (solid blue line) and worst case probability p;
associated with 6, = 20,60, = .2 (dashed red line).
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probabilities towards the long run risk model because, as we shall document below, relative
to the i.i.d. consumption growth model, the long-run risk model has adverse consequences
for discounted utility. A cautious investor mixes submodels by slanting probabilities towards
the model with the lower discounted expected utility.

Formula (27) tells how the slanting of the model mixing probabilities p depends on the
magnitudes of the robust value functions conditioned on the model ¢:

U, E(0), S(0)] + ¢ = [A(L) G + K(L)] n {—%A(L)fzt(b)x(b) te (35)

The T2 operator slants probabilities toward the model for which (35) is smaller, in an amount
determined by the parameter 6,. The worst case probabilities in figure 3 are slanted more
when there are large differences in the value functions Ult, ¢(¢), ¥(2)] for ¢ = 0, 1. These dif-
ferences in turn are driven largely by movements in estimates of the long run risk component.
When the estimate of the long run risk component (;(1) is high, the discounted expected
utility is also typically expected to be high because the high growth rate in consumption
persists.

The top left panel of figure 4 displays p; — p;, while the remaining panels shows objects
that contribute to the fluctuations in p; — p;. The top right panel displays the difference
across models in the key object in formula (27), U0, ¢,(0), (0] — Ulz, (1), £(1)], while the
bottom two panels decompose this difference into two parts. The lower left panel shows
A(0) - G:(0) = A(1) - (0) while the lower right shows —z=A(0)'S;(0)A(0) 4+ 5= A(1)Se(1)A(1).
These two sum to the top right panel. The difference of A(:) - (1) between the submodels
plotted in the lower left panel is evidently the important source of the time series variation
in the difference between Ult, {(¢), £(¢)] for « = 0, 1. Recall that A(¢)-¢,(¢)+c is the expected
discounted utility conditioned on the hidden state. From the Law of Iterated Expectations,
M1)€ (1) +c is the expected discounted utility conditioned on the signal history. This source
of fluctuations would be present even when 6; = +o00. It varies more when + = 1 than when
¢ = 0. The difference across submodels in —ﬁ)\(L)’Zt(L))\(L) is the contribution in (35) that
comes from the first application of the T2. This term reflects a smooth secular movement
that is induced by learning about the unconditional means of consumption growth in the two
submodels. The T! operator contributes a distinct constant x(¢) to the discounted expected
utility that depends on ;.23

5.7 Differences in estimates of mean consumption growth across
submodels

Figure 5 displays the representative consumer’s estimates of the time invariant contribution
to consumption growth, u(t) = (3(¢), conditional on models ¢ = 0 and ¢ = 1, respectively.
For each model, the worst case estimate of ((¢) is the dotted line. Notice how the worst case
estimate is lower than the estimate under each approximating submodel. Figure 6 shows
the posterior standard deviation of (5(¢) from the ordinary Kalman filter for each submodel.
As this standard deviation converges to zero, less distortion of the mean of 1(¢) comes from
the T? operator. Because it is more difficult to estimate the time invariant component

ZGiven the large value of 01, the s are small: £(0) = —.0004 and (1) = —.0020.
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Figure 4: Contributions to slanting of model weights. Top left panel: p, — p;. Top right
panel: UJ0, (;(0),3(0] — Ule, ¢(1),%(1)]. Lower left panel: A(0) - ¢;(0) — A(1) - (;(0). Lower
right panel: —z5-A\(0)'Z,(0)A(0) + 55; A(1)' 2 (1)A(1).

of consumption in the presence of the long run risk component, the posterior standard
deviation is larger in the long-run risk submodel. For given 65, the smaller precision of the
mean in the long run risk model accounts for the bigger downward distortion in the worst
case unconditional mean in model ¢ = 1.

5.8 Time series of the conditional stochastic discount factor

The bottom panel of figure 7 shows (31) along the sample path {s;} for the calibrated
submodels with ¢; = 20,0, = .2. For our logarithmic preference specification, namely,
B exp(sis1), the top panel of figure 7 shows the stochastic discount factor without a concern
for robustness. By using the same scales on the vertical axes, the top and bottom panels of
figure 7 portray the additional volatility in the stochastic discount factor that is contributed
by robustness when ¢, = 20, 6§, = .2. To appreciate why the enhanced volatility contributed
by g(si+1]s?) is interesting, recall how Hansen and Jagannathan (1991) characterized the
return heterogeneity puzzle as a shortfall of the volatility of the stochastic discount factor
computed by plugging U.S. data into the formula for the s.d.f. implied by a time-separable
CRRA preference specification and a reasonable discount factor when compared with the
stochastic discount factor revealed by asset market data.
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Figure 5: Estimates of ((0) (top panel) and of the second components of ((1) (bottom panel)
for 6; = 20,60, = .2. The worst case means are dotted.
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Figure 6: Standard deviation of ((0) (top panel) and of (3(1) (bottom panel).
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Figure 7: Top panel: the ordinary stochastic discount factor.
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tiplicative adjustment to the stochastic discount factor contributed by robustness when

61 - 20,82 - 2
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5.8.1 Time varying risk (or model uncertainty) premia

The continuous time limit in appendix B rationalizes the following approximation to risk-
premia when G(0) = G(1):*

He — [y

Tx VA, (36)
where A is a common value of G(¢)G(¢)" for « = 0, 1, fi; is the conditional mean of consump-
tion growth under the approximating model, and i is the conditional mean of consumption
growth under the worst case model. In (36) the term /A is the standard contribution to
the market price of risk coming from risk aversion with logarithmic preferences, while the
term LA[“ comes from our model uncertainty adjustments. In the continuous time limit, for
both the distorted and benchmark models, the growth rate of consumption is conditionally
normally distributed rather than being the mixture of normals that we obtained above. By
a ‘risk price’, we mean the required mean compensation needed to compensate for the ex-
posure to a one-standard deviation normal shock. More generally, in discrete time it is the
ratio of the conditional standard deviation of the stochastic discount factor to its mean (or
the maximum Sharpe ratio; see Hansen and Jagannathan (1991)).

In our model, the first component of the ‘risk price’ is more properly regarded as a ‘model
uncertainty price’. The second component v/A is very small. Figure 8 shows that variations
in the amount by which the Bayesian model weights are twisted, displayed in the top left
panel of figure 4, induce substantial fluctuations in the uncertainty premia. The model
uncertainty premia in figure 8 show secular movements and short-run variations. There are
time periods in which the long run risk model predicts that future discounted consumption
growth will be relatively low. To illustrate this dependence, we depict the time series for
A(1) - G(1) — A(0) - &(0) in the bottom panel. Since the subjective discount factor is very
close to unity, A(1) - (1) is dominated by the estimate of the time invariant component
(2(1). Nevertheless, the presence of the long run risk component is important because it
makes it challenging to disentangle the time invariant component (3(1) from the long run
risk component (y4(1).

Figure 9 reports the uncertainty prices for our baseline specification #; = 20,60, = .2 as
well as the two other specifications #; = 20,0, = .1 and 6; = 2,05 = .2. The ; = 20,60, = .1
specification makes the distorted probabilities concentrate almost completely on model ¢« = 1
(so that p; ~ 1) Nevertheless the time series variation in the risk prices remains because the
nontrivial (and now enhanced) differences between the distorted and the original probabilities
assigned to the each of the models. In particular, notice from formula (32) that when p; ~ 1,

fis = fis = (pe — D[D(1)G(1) = D(0)G(0)] — [G(L)w*(1) + D(1)u*(1)].

This formula tells us that even when the representative consumer assigns probability one to
the long-run risk model (just as the investors in the model of Bansal and Yaron do), the
representative consumer’s doubts about the model misspecification still contribute variations
in the market price of risk coming from variations over time in the (non-robust) Bayesian
model weight p; and the estimates of ((0) and (1) under the approximating model.

24Tn the continuous time limit, for both the distorted and benchmark models, the growth rate of consump-
tion is conditionally normally distributed rather than being the mixture of normals that we obtained above.
Model averaging is used in computing the conditional means for the respective normal distributions.
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The 6; = .2,0, = .2 specification focuses equally on all three forms of potential model
misspecification and can be cast in terms of a Radon-Nikodym derivative that perturbs the
density of s;,1|S;, the entropy of that perturbation, and a single risk-sensitivity operator with
parameter # = .2. The model then has a value function like that of model 1 of section 2.2,
except that the state variable is now the one that comes from the innovation representation
for the signal.?

Figure 10 again shows the market price of model uncertainty for our baseline ; = 20,6, =
.2 model, as well as two smooth curves that depict the price of model uncertainty in the
model that emerge from setting po = 1 and 0, = 20,6, = .2 and 0, = 2,05 = .2. Setting
po = 1 means that the representative consumer commits to the : = 1 model. That renders
our second application of the T? operator irrelevant, though the first remains. The first
application of T? gives rise to the smoothly declining market prices of model uncertainty in
these p; = 1 models.

Figure 11 uses (32) to decompose the market price of model uncertainty for the special
case 01 = 20,0, = .1, implying that p, =~ 1 . Given the small value of 6, the slanted
probabilities are essentially one: p;, ~ 1. Although the continuation values fluctuate, slanted
probabilities remain concentrated on the long run risk model. This means that the model
uncertainty premia are approximately

\/%Qﬁt — D[D(M)G(1) = D(0)G(0)] = [G(1w*(1) + D(l)uj(l)])’

which contain two distinct components: (i) a time varying backward-looking component
that is induced by the learning from the signal history; and (ii) a smooth forward-looking
component?® induced by distortions w*(¢) and u*(¢) in the mean vectors for the underlying
shocks and for the state estimates, respectively. Fluctuations of the first component reflect
variation in the model probabilities calculated under the approximating model using Bayes
law. They respond to newly arrived signals, as do differences in the conditional means for
consumption growth across models. The bottom two panels of figure 11 depict the two
components. They are highly correlated because the conditional means enter directly into
the construction of the likelihood function.

Our model uncertainty premia are given by differences between the Bayesian model av-
erage mean and a distorted counterpart, divided by the conditional volatility of consump-
tion. It is interesting to compare the differences in means relative to fluctuations in the
signal, namely, consumption growth. As emphasized by Anderson et al. (2003), difficulties
in estimating local means can cause statistical ambiguity that will make the representative
consumer reluctant to reject our worst case calculations. Anderson et al. (2003) use formal
statistical discrepancy measures as a guide as to how much concern about model misspeci-
fication we should be impute to the representative consumer. Their analysis abstracts from
learning, however. While we introduce explicit forms of learning, a concern about model
misspecification remains central to our analysis. For instance, through our 6, parameter,
we capture the extent to which our representative consumer is not fully confident about his

25See Hansen and Sargent (2006a) for a presentation of how a model with 6; = 6, can be represented in
terms of single risk-sensitivity operator.

26See the formulas for w* (1), (1), u; () given in formulas (22),(24), (25), in particular, formula (24) for
A(¢), to understand why we say ‘forward looking’.
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Figure 8: Model uncertainty premia. Top panel: £ i/_Zﬁt; the solid line is for 6; = 20,60, = .2;
the dashed-dotted ling is for 6; = v20,92 = .1, and the dotted line is for 6, = 2,0, = .2.
Bottom panel: (1) - ¢;(1) — A(0) - ¢(0).
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Figure 9: Model uncertainty premia for different configurations. The solid line is the #; =
20, 6, = .2, our benchmark specification. The dotted line slightly above the line for the
benchmark model assumes that 6, = 6, = .2. The dash-dotted line assumes that 6; =
20,65 = .1; for this setting p;, ~ 1.
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Figure 10: Model uncertainty premia for different configurations. The solid line is for our
benchmark specification with 6; = 20, 6, = .2. The dashed line is for py = 1, so that the
representative consumer commits to model ¢+ = 1, and #; = 20, #; = .2. The dotted line is
for po = 1, so that the representative consumer commits to model : = 1, and 6; = 0y = .2.
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Figure 11: Decomposition of uncertainty premium when p; ~ 1. Top panel: uncertainty
premium, with ¢, = 20,6, = .1. Middle panel: (; — 1). Bottom panel: [D(0)¢(0) —
D(1)¢(1)].
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Figure 12: Consumption growth signal and alternative conditional means. The dotted line is
the consumption growth rate, the dashed line is the model weighted conditional mean, and
the solid line is the distorted weighted conditional mean. The distorted weighted conditional
mean is computed using #; = 20 and 6, = .2

posterior probabilities. Thus, our representative consumer’s beliefs are fragile. While our
choices of #’s in this paper are merely illustrative, figure 12 reveals that they imply distor-
tions in the conditional mean averaged across models that are small when compared to the
movements in the signal.

6 Explanation for countercyclical uncertainty premia

This section explains why our pessimistic representative consumer regards good news as
temporary and bad news as enduring. The asymmetric responses of uncertainty premia to
good and bad shocks to consumption growth rates come from the way that our representative
consumer copes with uncertainty the probabilities he attaches to two competing candidate
submodels for consumption growth. He attaches positive probabilities to a submodel with
statistically subtle persistence in consumption growth, namely, the long-run risk model of
Bansal and Yaron (2004), and also to another submodel asserting iid consumption growth
rates. The asymmetrical response of model uncertainty premia to consumption growth
shocks depends on (1) how consumer’s concern about possible misspecification of the prob-
abilities that he attaches to submodels causes him to calculate worst case probabilities that
depend on value functions, and (2) how the value functions for the two submodels respond to
shocks in ways that bring them closer together after positive consumption growth shocks and
push them farther apart after negative shocks. The long-run risk submodel with persistent
consumption growth confronts the consumer with additional dynamics coming from another
hidden shock to consumption growth that expands the set of possible model misspecifica-
tions that he worries about. The representative consumer’s concerns about these additional
misspecifications are reflected in a mean distortion to the long-run risk shock and therefore a
more negative constant term in the formula for the continuation value. The resulting differ-
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ence in constant terms in the value functions for the submodels with and without long-run
consumption risk sets the stage for an asymmetric response of uncertainty premia to con-
sumption growth shocks. Consecutive periods of higher than average consumption growth
raise the probability that the consumer attaches to the submodel with persistent consump-
tion growth relative to that of the iid consumption growth model. Although the long-run
risk submodel has a more negative constant term, persistence of consumption growth un-
der this submodel means that consumption growth can be expected to remain higher than
average for many future periods. This pushes the continuation values associated with the
two submodels closer together than they are when consumption growth rates have recently
been lower than average. Via our exponential twisting formulas for worst-case probabilities,
continuation values determine the worst-case probabilities that the representative consumer
attaches to the submodels. That the continuation values for the two models become far-
ther apart after a string of negative consumption growth shocks implies that our cautious
consumer slants probability more towards the pessimistic long-run risk model when recent
observations of consumption growth have been lower than average than when these observed
growth rates are higher than average. Such intertemporal behavior of robustness-induced
probability slanting is how learning in the presence of uncertainty about submodels induces
time variation in uncertainty premia.

7 Concluding remarks

The model uncertainty premia that emerge from our model combine (1) the same constant
forward-looking contribution w* that was featured in earlier work without learning by Tal-
larini (2000) and Bansal and Yaron (2004), (2) additional smoothly decreasing components
u;(¢) that comes from learning about uncertain parameter values within submodels, and (3)
the potentially volatile time varying contribution highlighted in section 6 is caused by robust
learning about the distribution over submodels.?”

Our mechanism for producing time varying risk premia differs from other approaches.
For instance, Campbell and Cochrane (1999) induce secular movements in risk premia that
are backward looking because a social externality depends on current and past average con-
sumption. To generate variation in risk premia, Bansal and Yaron (2004) assume stochastic
volatility in consumption.?®

Our analysis features effects of learning on local or one-period uncertainty prices. Study-
ing the consequences of robust learning and model selection for multi-period uncertainty
prices is a natural next step. This will prompt us to explore two changes in our environ-
ment: a) the introduction of stochastically growing financial cash flows with alternative
exposures to uncertainty, and b) the relaxation of the unitary elasticity of substitution in
preferences. While a unitary elasticity of substitution simplifies our calculations, it implies
that the ratio of consumption to wealth is constant. Consumption claims, however, have
no obvious counterpart in financial data leading to the study of a). The unitary elasticity

2TThe implied risk free rate volatility is modest. The average risk free rate is about 2.5 percent with a
standard deviation of about .5.

280ur interest in learning and time series variation in the uncertainty premium differentiates us from
Weitzman (2005) and Jobert et al. (2006), who focus on long run averages.
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referred to in b) can be relaxed at the cost of using numerical techniques to approximate
value functions.

Our environment features two competing models. Implications like ours could also arise
in setups in which a hidden state moves very infrequently, as in the regime shift models of
advocated by Wonham (1964), Hamilton (1989), and others. Indeed, our analysis of model
averaging can be viewed as a limiting case of a stochastic regime model with two states.
While our example is highly stylized, we can imagine a variety of environments in which
learning about low frequency phenomenon is challenging, especially when investors are not
fully confident in their probability assessments. In this regard, Hansen et al. (2006a) show
that while long run risk components have important quantitative impacts on low frequency
implications of stochastic discount factors, it is also statistically challenging to measure those
components.

We have indicated how our results depend on the new parameter ¢,. Among several
important things that remain to be done with this framework, it will be useful to think
about how to calibrate 5. We hope to do that by extending the logic of the detection error
probabilities used by Anderson et al. (2003).
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A An alternative recursion

To understand the relationship of our work to the model of Croce et al. (2006), we note that
when #; = 65, the mean distortion for the signal depends directly on the covariance of the
signal with the hidden state, G(¢)C(¢) + G(1)3:(¢)A(¢)’, and on the covariance matrix of the
signal, G(¢)G(¢) + D(1)3:(¢)D(¢)', both conditioned on the signal history. But when ¢, and
0y are distinct, as they are in most of this paper, the decomposition of these objects into the
contributions from the underlying shock vector €41 and ¢(¢) — {,(+) matters.

Hansen and Sargent (2006a) consider another formulation that in the present context
would translate into a value function (q(z)) that satisfies the following recursion that uses
the composite operator T? o T!:

Qg,¢) = (1= B)c+ T TBQ(q", ")) (37)

where ¢ consists of the posterior density of ((0), the density of ((1) and the probabilities
assigned to each value of + and ¢* is the counterpart for the next time period and is based
on an additional observation of the signal. Here the continuation value Q)(q,c) depends on
the information available to the consumer, but the sequential application of the two opera-
tors still decomposes the transition into uncertainty over tomorrow’s signal into uncertainty
conditioned on the current hidden state and uncertainty over beliefs about that state.

If we endow the representative consumer with knowledge of ¢, the value function Q(q, )
coincides with Ul[t, (1), £(¢)] + ¢, except it has a different constant term. Since the constant
does not affect them, the worst-case models remain the same as the ones computed in section
4.3.1, as would the asset pricing implications. These outcomes are special to the log-linear
preferences and laws of motion and the absence of uncertainty about ¢. If there is uncertainty
about ¢, the value function (37) would have to be solved numerically and would differ from

(26) in more ways than just the constant term. The asset pricing implications would also
differ.

B Continuous time version
Consider the following continuous time model:

d¢(v) = [A() — 1]G(v)dt + C(v)dB;
ds; = D(u)(dt + G(1)dB,

where B; is a multivariate standard Brownian motion. We allow the “local signal” ds; to be
multivariate, although in a our example economies it is a scalar signal given by the increment
to the logarithm of consumption.

Assume that G(¢)G (1) = A is independent of ¢, a good approximation for our application.
Application of the Kalman filter implies:

dG, (1) = [A() = 1G(0) + Ki(1)ldse — D()Gi(1)]

where
Ki(1) = [C()G(t) + (1) D(2) | AT
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and

diy(e) = [A() = 1]5e(0) + 5i[AQ) — 1] + CC
—[C(W)G() + 2 (1) D) TATC()G () + (1) D)

Construct the innovation process:
dB, = ds, — [i,dt
where p; = E(¢|S;) and
fir = [5eD(1)G(1) + (1 = ) D(0)C(0)].

To determine the evolution of p;, first construct

= exp {/ Gi(v) A~ lds, — —/ D( 'ATID(1) (i (2)dt
where the likelihood ratio of model ¢ = 1 to ¢ = 0 is given by Ly(1)/Lz(0).2° Then
dL(¢ ;
Ltt((b)) = G()' D) A ds,.

The posterior probabilities of ¢+ = 0,1 are proportional to (1 — pg)L(0),poLi(1). Each
probability is a martingale relative to the filtration {S;,¢ > 0}. Then

dp, =pi(1 — py) [D(1)G(1) — D(O)é(O)}/A_ldst
— pe(1 =) [D(l)ft(l) — D(0)¢(0)]" A7 [D(1)G(1) + (1 = p)D(0)C(0)] dt - (38)
where p, = E(¢|S;). To verify the martingale property, construct the innovation process:
dB, = ds; — [idt.

where

fiu = [pD(1)C(1) + (1 = ) D(0)¢(0)).
Substituting the innovation process into (38),
dpy = pe(1 = p)[G(1)' D(1) = (:(0)' D(0)]A™d By
To compute the distorted distribution, first form:

M) = [(64+ 1) =AW D)

k) =~ MOCW + GOP
where § = log 5. Under model ¢, ds; has drift:
DW&() = GO [COYAW) + G0 ~ 5-DEAW)

29This construction appropriately ignores a common quadratic form in the signal increment ds;.
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and instantaneous covariance matrix A. For each model ¢, compute the value functions

Ule, ¢(0), B(1)] = M) - Gile) + w() = %%A(L)’Et(b)k(b)-

Then as in discrete time, the distorted probabilities (1 — p;) and py, respectively, are propor-
tional to:

exp (‘U[O’ét(gz’zt(oﬂ) (1—p). and exp (_U[l,é(;z),Et(l)]) 5

Averaging over models, we find that the distorted drift is:

fir = P (D(l)ft(l) - %G(l) [CAYAD) +G()] - %MUEM(D) +

(15 (DO)GO) - - GO ICOPA0) + 60)] - - DOEAO))

The drift distortion induced by robustness is fi; — fi;. For the scalar signal example
studied in the paper, the model uncertainty premia implied by this distortion is:

fu — fie
VA
The plots in the paper are given by forming the negative of the discrete-time mean distortion

and dividing by v/A. While the A in the discrete-time specification is model dependent, the
difference is very small.
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