
Disasters, Recoveries, and Predictability

François Gourio

Boston University

2008

François Gourio (BU) Disasters and Asset Pricing 2008 1 / 41



Motivation

Rietz [1988]: "disaster" resolution of the equity premium puzzle.

small probability of large decrease in consumption

Barro [2006] revives this explanation

disasters are large and frequent (p=1.7%)
stock returns < bond returns during disasters.

Gabaix [2007]: time-varying risk of disasters can explain many asset
pricing puzzles.

An alternative to leading asset pricing models?
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This presentation

Tries to assess the robustness of the disaster explanation.

In the model, disasters are permanent.

But in the data, it seems many disasters are followed by a "recovery".
How does this a¤ect the conclusions of Rietz & Barro ?

Can the disaster model account for other facts beyond the equity
premium puzzle?

time-series predictability of stock returns
cross-sectional predictability of expected returns
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Outline

1 Review of the Barro-Rietz model
2 Recoveries in the Data and in the Model (AER P&P)
3 Time�Series Predictability (FRL)
4 Cross-Section Predictability (WP)
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Barro-Rietz model

Representative agent:

E
∞

∑
t=0

βt
C 1�γ
t

1� γ
.

Endowment Economy.

Consumption = dividend process:

∆ logCt = µ+ σεt , with probability 1� p,

= µ+ σεt + log(1� b), with probability p,

εt iid N(0, 1).
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Barro-Rietz: theoretical results

Risk-free rate:

logRf = � log β+ γµ� γ2σ2

2
� log

�
1� p + p(1� b)�γ

�
.

Lower than in the standard model.

Equity Premium:

log
ERe

R f
= σ2γ+ log

�
(1� p + p(1� b)�γ) (1� p + p(1� b))

1� p + p(1� b)1�γ

�
.

Higher than in the standard model.

Constant P-D ratio.
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Barro-Rietz: Calibration

Parameter Meaning Value
β discount factor 0.97
µ trend growth 0.025
σ std dev of business cycle shocks 0.02
γ risk aversion 4
p probability of disaster 0.017
b historical distribution, equivalent to: 0.43

Without disasters, equity premium = 0.16%

With disasters, equity premium = 5.6%

Add gov�t default: w/probability 0.4, gov�t bonds default in disaster,
and recovery rate = 1� b. ! Reduces equity premium to 3.5%.

Results driven by large disasters: if keep only disasters < 40%,
EP = 0.8%.
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Simulating a path of Log GDP in the Barro Model
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Disasters in the Data
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Measuring Recoveries

in % All disasters Disaster � 25%
57 events 27 events

Years after Growth Loss from Growth Loss from
Trough from Trough Peak from Trough Peak
0 0.0 -29.8 0.0 -41.5
1 11.1 -22.8 16.1 -32.7
2 20.9 -16.8 31.3 -24.2
3 26.0 -13.7 38.6 -20.4
4 31.5 -10.2 45.5 -16.9
5 37.7 -6.1 52.2 -13.4

The iid assumption is violated...
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Introducing Recoveries in the Model

In the period after a disaster, there is a probability π that
consumption increases by � log(1� b).

π = 0 : Barro-Rietz model.
π = 1 : Sure recovery.
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Equity Premium with Recoveries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Probability of recovery ( π )

E
qu

ity
 p

re
m

iu
m

 (
%

 p
er

 y
ea

r)

Figure:François Gourio (BU) Disasters and Asset Pricing 2008 12 / 41



Explanation

How does P/D ratio change if you expect a recovery?

Pt
Ct
= Et ∑

k�1
βk
�
Ct+k
Ct

�1�γ

,

The possibility of a future recovery can increase or decrease the stock
price, depending on γ > 1 or γ < 1.

Intuition: two e¤ects

1 cash-�ow e¤ect: recovery will increase dividends (=consumption).
2 discount rate e¤ect: recovery will increase consumption, so interest
rates increase today.

With low IES, PtCt falls more following a disaster if there is a possible
recovery.

Ex-ante equities are riskier.
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E¤ect of Recoveries with Epstein-Zin utility
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Implications of Recoveries for Asset Prices during Disasters

Low IES: very high interest rates, low P-D ratio.

High IES: not so high interest rates, P-D ratio rises slightly.

Empirically: interest rate not so high, but P-D ratios fall (modestly).

May need higher risk in disasters to �t these data.
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P-E ratio not really low in the Great Depression
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P­E ratio is not low!
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Prices and Earnings fell by similar amount
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Time-Series Predictability: Empirical Evidence

So far constant equity premium and P-D ratio, stock return is iid.

In data, equity premium varies over time:

Ret+1 � R ft+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.83, t-stat = 2.61,R2 = 7.4%

Results very similar if predict equity returns:

Ret+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.39 t-stat = 2.28,R2 = 5.8%

i.e., "predictability comes from risk premia, not the risk-free rate".

Is the disaster model consistent with these patterns?

François Gourio (BU) Disasters and Asset Pricing 2008 18 / 41



Time-Series Predictability: Empirical Evidence

So far constant equity premium and P-D ratio, stock return is iid.

In data, equity premium varies over time:

Ret+1 � R ft+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.83, t-stat = 2.61,R2 = 7.4%

Results very similar if predict equity returns:

Ret+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.39 t-stat = 2.28,R2 = 5.8%

i.e., "predictability comes from risk premia, not the risk-free rate".

Is the disaster model consistent with these patterns?

François Gourio (BU) Disasters and Asset Pricing 2008 18 / 41



Time-Series Predictability: Empirical Evidence

So far constant equity premium and P-D ratio, stock return is iid.

In data, equity premium varies over time:

Ret+1 � R ft+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.83, t-stat = 2.61,R2 = 7.4%

Results very similar if predict equity returns:

Ret+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.39 t-stat = 2.28,R2 = 5.8%

i.e., "predictability comes from risk premia, not the risk-free rate".

Is the disaster model consistent with these patterns?

François Gourio (BU) Disasters and Asset Pricing 2008 18 / 41



Time-Series Predictability: Empirical Evidence

So far constant equity premium and P-D ratio, stock return is iid.

In data, equity premium varies over time:

Ret+1 � R ft+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.83, t-stat = 2.61,R2 = 7.4%

Results very similar if predict equity returns:

Ret+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.39 t-stat = 2.28,R2 = 5.8%

i.e., "predictability comes from risk premia, not the risk-free rate".

Is the disaster model consistent with these patterns?

François Gourio (BU) Disasters and Asset Pricing 2008 18 / 41



Time-Series Predictability: Empirical Evidence

So far constant equity premium and P-D ratio, stock return is iid.

In data, equity premium varies over time:

Ret+1 � R ft+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.83, t-stat = 2.61,R2 = 7.4%

Results very similar if predict equity returns:

Ret+1 = α+ β
Dt
Pt
+ εt+1,

β = 3.39 t-stat = 2.28,R2 = 5.8%

i.e., "predictability comes from risk premia, not the risk-free rate".

Is the disaster model consistent with these patterns?

François Gourio (BU) Disasters and Asset Pricing 2008 18 / 41



Theoretical Result: Time-Varying Probability of Disaster

A1: representative consumer with CRRA utility.

A2: Consumption process:

∆ logCt+1 = µ+ σεt+1 with prob 1� pt ,
∆ logCt+1 = µ+ σεt+1 + log(1� b), with prob pt ,

A3: pt+1 is Markov: F (pt+1jpt ), and that pt+1 and realization of
disaster are independent, conditional on pt .

Then:

1 Equity premium increasing in pt ,
2 Expected equity return EtRet+1 decreasing in pt ,
3 P-D ratio is increasing in pt i¤ γ > 1.

Intuition: high pt leads to more (precautionary) savings, low interest
rates, and high equity risk premium.
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A conundrum for the disaster model

Matching the regressions requires that the expected equity premium
and expected equity return are positively correlated.

The model can not generate this:

If γ > 1 (IES<1), the P-D ratio is increasing in pt , and a high P-D
forecasts a high equity excess return.
If γ < 1 (IES>1), a high P-D ratio forecasts a low equity excess return
but a high equity return.

Neither �ts the data.

"Interest rate too volatile in the model"
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One solution: time-varying size of dividend disaster

One resolution: size of dividend disaster change over time, but not
size of consumption disaster:

∆ logCt+1 = µ+ σεt+1,

and ∆ logDt+1 = µ+ σεt+1,with probability 1� p;

or ∆ logCt+1 = µ+ σεt+1 + log(1� b),
and ∆ logDt+1 = µ+ σεt+1 + log(1� dt ), with probability p,

And dt follows some Markov process.
Then, interest rates are constant and volatile risk premia.
Matches the facts above, but

unusual "time-varying expected leverage" of stocks.
does not explain why "risk premia move all together"
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Another solution: Epstein-Zin utility

Can show analytically than an IES > 1 allows to get the correct sign.

Trying to match this quantitatively using Barro�s parameters.

Leverage = 3, IES = 1.5.

Probability of disaster oscillates between high and low state:
transition probability π.

ph = .017+ ε, pl = .017� ε

Pick parameters π, ε to match σ(P �D), regression slope:

π = 0.043, ε ' .017.

Highly volatile probability of disaster.
Equity premium too high then.
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Cross-Sectional Tests

If disasters drive equity risk premia, assets which do relatively better
in disasters should have low average returns.

Ex.: defense stocks, gold, ...

Puzzles in the �nance literature: value - size - momentum.

Distinguish two models:

1 baseline Barro-Rietz model: constant probability of disaster, but
di¤erent exposures to disasters.

2 Gabaix-style model: time-varying prob of disaster, and perhaps no
disaster realized in sample.
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9/11 as �Natural Experiment�

Use the return on 9/17 as a proxy for exposure to disaster:
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correl=0.21837

Mean return of defense, gold, tobacco stocks is not low!
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Fama-French 25 returns on 9-17 vs. mean excess returns
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Data from 9-17-01

E (R) Return on 9-17

HML 0.40 -0.93
t-stat 3.47

SMB 0.24 0.24
t-stat 2.19

UMD 0.76 2.72
t-stat 5.01

SV-SG 0.49 -0.20
t-stat 4.14
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Measuring the Exposure to Large Negative Market Returns

Measure exposure to large decreases in the stock market.

First step: �nd βdi by a time-series regression, for each asset:

R it+1 � R ft+1 = αi + βdi

�
Rmt+1 � R ft+1

�
� 1Rmt+1�R ft+1<�10 + εit+1.

Second step: do βdi "explain" the di¤erences in average returns?

"Disaster CAPM"

Data: US, portfolios of stocks, 1926-2006.
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Evaluating the "Disaster CAPM"
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Figure: CAPM (top panel) and Disaster CAPM (bottom panel).
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Disaster Beta and Market Beta are highly correlated
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Estimating the model with time-varying probability of
disaster and Epstein-Zin utility (work in progress)

probability of disaster unobservable)SDF unobserved.

solution: extract probability of disaster from asset prices.

e.g., use the P-D ratio: PtDt = f (pt ;parameters).

given pt , construct the SDF M and test the conditions E (MRei ) = 0.
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Implied Probability of Disaster
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Predicted mean returns vs. Data mean returns
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Conclusions

In the data, most disasters are not permanent.

Incorporating this in the model changes the conclusions:

IES>1! lower risk premia.
IES<1! higher risk premia.

TS predictability hard to reconcile with the disaster model.

Impossible to get with CRRA and changing probability of disaster.
Requires highly volatile prob of disaster with E-Zin utility.
Time-varying size of dividend disaster. Unappealing.
Need high IES ! tension with the need for low IES for recoveries.

Cross-sectional evidence is mixed
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Backup
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Barro�s measures of disasters

Data on GDP per capita in XXth century (Maddison).
20 OECD countries + 15 countries from Latin America and Asia.

De�nes disaster as fall in GDP greater than 15% (peak-to-trough).

Finds 60 disasters.

Prob of disaster = 60
35 =1.7% per year.

Average peak-to-trough decline is 29%.
Mainly WWI, Great Depression, WWII, Latin America post WWII.

Barro and Ursua (2008): measuring consumption disasters.
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More dynamics
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Figure: Impact of the speed of recovery on the unconditional equity premium in
the model, for two elasticities of substitution parameters.
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Dynamics of Disasters

Another interesting case: disasters not "pure jumps" but occur over
several years.

i.e. positive autocorrelation at beginning of disasters.

The previous analysis applies in reverse:

low IES ! lower risk premia;
high IES ! higher risk premia.
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Cross-Sectional Tests: Theory

∆ logDit = µi + λi εt

= µi + λi εt + ηi log(1� b)

Exposure to "business cycle shocks" λi .

Exposure to disasters ηi .

Implied stock i excess return:

log
ERei
R f

= λiσγ+ log
�
(1� p + p(1� b)�γ) (1� p + p(1� b)ηi )

1� p + p(1� b)ηi�γ

�
.
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Motivation for 1-factor disaster model
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CAPM and 1f disaster model on whole sample
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E¤ect of Recoveries with Epstein-Zin utility

Probability of a recovery π 0.00 0.30 0.60 0.90 1.00

IES = 0.25 3.31 4.62 5.91 7.19 7.64
IES = 0.50 3.31 3.30 3.03 2.26 1.68
IES = 1 3.31 2.69 1.94 1.00 0.54
IES = 2 3.31 2.42 1.52 0.63 0.30

Table: Equity premium, as a function of the intertemporal elasticity of
substitution (IES) and the probability of a recovery.
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E¤ect of Recoveries with Epstein-Zin utility

ERb ERe σ(Re ) σ(Rb) σ(D) σ(pd) βR eR b βR e
Model 1.62 16.47 23.55 2.55 6.48 .411 3.77 2.750

Data 1.03 8.91 15.04 4.36 14.9 .415 3.83 3.39
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