Disasters, Recoveries, and Predictability

François Gourio

Boston University

2008

François Gourio (BU)

Disasters and Asset Pricing

2008 1 / 41

3

• Rietz [1988]: "disaster" resolution of the equity premium puzzle.

Rietz [1988]: "disaster" resolution of the equity premium puzzle.
small probability of large decrease in consumption

3

- Rietz [1988]: "disaster" resolution of the equity premium puzzle.
 small probability of large decrease in consumption
- Barro [2006] revives this explanation

- Rietz [1988]: "disaster" resolution of the equity premium puzzle.
 - small probability of large decrease in consumption
- Barro [2006] revives this explanation
 - disasters are large and frequent (p=1.7%)

- Rietz [1988]: "disaster" resolution of the equity premium puzzle.
 - small probability of large decrease in consumption
- Barro [2006] revives this explanation
 - disasters are large and frequent (p=1.7%)
 - $\bullet\,$ stock returns $<\,$ bond returns during disasters.

- Rietz [1988]: "disaster" resolution of the equity premium puzzle.
 - small probability of large decrease in consumption
- Barro [2006] revives this explanation
 - disasters are large and frequent (p=1.7%)
 - stock returns < bond returns during disasters.
- Gabaix [2007]: time-varying risk of disasters can explain many asset pricing puzzles.

- Rietz [1988]: "disaster" resolution of the equity premium puzzle.
 - small probability of large decrease in consumption
- Barro [2006] revives this explanation
 - disasters are large and frequent (p=1.7%)
 - stock returns < bond returns during disasters.
- Gabaix [2007]: time-varying risk of disasters can explain many asset pricing puzzles.
- An alternative to leading asset pricing models?

008 2/41

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.

(日) (同) (三) (三)

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.
 - But in the data, it seems many disasters are followed by a "recovery".

A B F A B F

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.
 - But in the data, it seems many disasters are followed by a "recovery".
 - How does this affect the conclusions of Rietz & Barro ?

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.
 - But in the data, it seems many disasters are followed by a "recovery".
 - How does this affect the conclusions of Rietz & Barro ?
- Can the disaster model account for other facts beyond the equity premium puzzle?

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.
 - But in the data, it seems many disasters are followed by a "recovery".
 - How does this affect the conclusions of Rietz & Barro ?
- Can the disaster model account for other facts beyond the equity premium puzzle?
 - time-series predictability of stock returns

- Tries to assess the robustness of the disaster explanation.
- In the model, disasters are permanent.
 - But in the data, it seems many disasters are followed by a "recovery".
 - How does this affect the conclusions of Rietz & Barro ?
- Can the disaster model account for other facts beyond the equity premium puzzle?
 - time-series predictability of stock returns
 - cross-sectional predictability of expected returns

- Review of the Barro-Rietz model
- Recoveries in the Data and in the Model (AER P&P)
- Time-Series Predictability (FRL)
- Cross-Section Predictability (WP)

Barro-Rietz model

• Representative agent:

$$E\sum_{t=0}^{\infty}\beta^{t}\frac{C_{t}^{1-\gamma}}{1-\gamma}.$$

- Endowment Economy.
- Consumption = dividend process:

$$\Delta \log C_t = \mu + \sigma \varepsilon_t$$
, with probability $1 - p$,

 $= \mu + \sigma arepsilon_t + \log(1-b)$, with probability p,

 ε_t iid N(0, 1).

François Gourio (BU)

Disasters and Asset Pricing

2008 5 / 41

イロト 不得下 イヨト イヨト 二日

• Risk-free rate:

$$\log R_f = -\logeta + \gamma\mu - rac{\gamma^2\sigma^2}{2} - \log\left(1-p+p(1-b)^{-\gamma}
ight).$$

2008 6 / 41

3

イロト イヨト イヨト イヨト

• Risk-free rate:

$$\log R_f = -\log eta + \gamma \mu - rac{\gamma^2 \sigma^2}{2} - \log \left(1 - p + p(1-b)^{-\gamma}
ight).$$

• Lower than in the standard model.

2008 6 / 41

• Risk-free rate:

$$\log R_f = -\log eta + \gamma \mu - rac{\gamma^2 \sigma^2}{2} - \log \left(1 - p + p(1-b)^{-\gamma}
ight).$$

- Lower than in the standard model.
- Equity Premium:

$$\log \frac{ER^e}{R^f} = \sigma^2 \gamma + \log \left(\frac{(1 - p + p(1 - b)^{-\gamma}) \left(1 - p + p(1 - b)\right)}{1 - p + p(1 - b)^{1 - \gamma}} \right).$$

Risk-free rate:

$$\log R_f = -\log eta + \gamma \mu - rac{\gamma^2 \sigma^2}{2} - \log \left(1 - p + p(1-b)^{-\gamma}
ight).$$

- Lower than in the standard model.
- Equity Premium:

$$\log \frac{ER^e}{R^f} = \sigma^2 \gamma + \log \left(\frac{(1 - p + p(1 - b)^{-\gamma}) \left(1 - p + p(1 - b)\right)}{1 - p + p(1 - b)^{1 - \gamma}} \right).$$

• Higher than in the standard model.

2008 6 / 41

Risk-free rate:

$$\log R_f = -\logeta + \gamma\mu - rac{\gamma^2\sigma^2}{2} - \log\left(1-p+p(1-b)^{-\gamma}
ight).$$

- Lower than in the standard model.
- Equity Premium:

$$\log \frac{ER^e}{R^f} = \sigma^2 \gamma + \log \left(\frac{(1 - p + p(1 - b)^{-\gamma}) \left(1 - p + p(1 - b)\right)}{1 - p + p(1 - b)^{1 - \gamma}} \right)$$

- Higher than in the standard model.
- Constant P-D ratio.

2008 6 / 41

Parameter	Meaning	Value
β	discount factor	0.97
μ	trend growth	0.025
σ	std dev of business cycle shocks	0.02
γ	risk aversion	4
р	probability of disaster	0.017
Ь	historical distribution, equivalent to:	0.43

• Without disasters, equity premium = 0.16%

3

Parameter	Meaning	Value
β	discount factor	0.97
μ	trend growth	0.025
σ	std dev of business cycle shocks	0.02
γ	risk aversion	4
р	probability of disaster	0.017
b	historical distribution, equivalent to:	0.43

- Without disasters, equity premium = 0.16%
- With disasters, equity premium = 5.6%

< ロト < 同ト < ヨト < ヨト

Parameter	Meaning	Value
β	discount factor	0.97
μ	trend growth	0.025
σ	std dev of business cycle shocks	0.02
γ	risk aversion	4
р	probability of disaster	0.017
Ь	historical distribution, equivalent to:	0.43

- Without disasters, equity premium = 0.16%
- With disasters, equity premium = 5.6%
- Add gov't default: w/probability 0.4, gov't bonds default in disaster, and recovery rate = 1 − b. → Reduces equity premium to 3.5%.

- - E + - E +

Parameter	Meaning	Value
β	discount factor	0.97
μ	trend growth	0.025
σ	std dev of business cycle shocks	0.02
γ	risk aversion	4
р	probability of disaster	0.017
Ь	historical distribution, equivalent to:	0.43

- Without disasters, equity premium = 0.16%
- With disasters, equity premium = 5.6%
- Add gov't default: w/probability 0.4, gov't bonds default in disaster, and recovery rate = 1 − b. → Reduces equity premium to 3.5%.
- Results driven by large disasters: if keep only disasters < 40%, EP = 0.8%.

François Gourio (BU)

- 4 同 6 4 日 6 4 日 6

Simulating a path of Log GDP in the Barro Model

François Gourio (BU)

Disasters and Asset Pricing

2008 8 / 41

Disasters in the Data

François Gourio (BU)

Disasters and Asset Pricing

2008 9 / 41

э

<ロ> (日) (日) (日) (日) (日)

Measuring Recoveries

in %	All disasters		Disaster $\geq 25\%$	
	57 events		27 events	
Years after	Growth	Loss from	Growth	Loss from
Trough	from Trough	Peak	from Trough	Peak
0	0.0	-29.8	0.0	-41.5
1	11.1	-22.8	16.1	-32.7
2	20.9	-16.8	31.3	-24.2
3	26.0	-13.7	38.6	-20.4
4	31.5	-10.2	45.5	-16.9
5	37.7	-6.1	52.2	-13.4

• The iid assumption is violated...

イロト イポト イヨト イヨト

 In the period after a disaster, there is a probability π that consumption increases by - log(1 - b).

▶ Ξ つへで 2008 11 / 41

- In the period after a disaster, there is a probability π that consumption increases by - log(1 - b).
- $\pi = 0$: Barro-Rietz model.

イロト 不得下 イヨト イヨト 二日

- In the period after a disaster, there is a probability π that consumption increases by - log(1 - b).
- $\pi = 0$: Barro-Rietz model.
- $\pi = 1$: Sure recovery.

- 3

Equity Premium with Recoveries

François Gourio (BU)

Disasters and Asset Pricing

2008 12 / 41

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- 2

<ロ> (日) (日) (日) (日) (日)

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

• The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma>1$ or $\gamma<1$.

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma > 1$ or $\gamma < 1$.
- Intuition: two effects

2008 13 / 41

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma>1$ or $\gamma<1$.
- Intuition: two effects

cash-flow effect: recovery will increase dividends (=consumption).
Explanation

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma > 1$ or $\gamma < 1$.
- Intuition: two effects

cash-flow effect: recovery will increase dividends (=consumption).
 discount rate effect: recovery will increase consumption, so interest rates increase today.

Explanation

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma>1$ or $\gamma<1$.
- Intuition: two effects

Cash-flow effect: recovery will increase dividends (=consumption).

Ø discount rate effect: recovery will increase consumption, so interest rates increase today.

With low IES, ^P/_{Ct} falls more following a disaster if there is a possible recovery.

イロト 不得下 イヨト イヨト 二日

Explanation

• How does P/D ratio change if you expect a recovery?

$$rac{P_t}{C_t} = E_t \sum_{k \geq 1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$
 ,

- The possibility of a future recovery can increase or decrease the stock price, depending on $\gamma>1$ or $\gamma<1$.
- Intuition: two effects

cash-flow effect: recovery will increase dividends (=consumption).
 discount rate effect: recovery will increase consumption, so interest rates increase today.

- With low IES, ^P/_{Ct} falls more following a disaster if there is a possible recovery.
- Ex-ante equities are riskier.

イロト 不得下 イヨト イヨト 二日

Effect of Recoveries with Epstein-Zin utility

François Gourio (BU)

Disasters and Asset Pricing

2008 14 / 41

Implications of Recoveries for Asset Prices during Disasters

• Low IES: very high interest rates, low P-D ratio.

2008 15 / 41

< ロト < 同ト < ヨト < ヨト

Implications of Recoveries for Asset Prices during Disasters

- Low IES: very high interest rates, low P-D ratio.
- High IES: not so high interest rates, P-D ratio rises slightly.

Implications of Recoveries for Asset Prices during Disasters

- Low IES: very high interest rates, low P-D ratio.
- High IES: not so high interest rates, P-D ratio rises slightly.
- Empirically: interest rate not so high, but P-D ratios fall (modestly).

- Low IES: very high interest rates, low P-D ratio.
- High IES: not so high interest rates, P-D ratio rises slightly.
- Empirically: interest rate not so high, but P-D ratios fall (modestly).
- May need higher risk in disasters to fit these data.

P-E ratio not really low in the Great Depression

François Gourio (BU)

2008 16 / 41

Prices and Earnings fell by similar amount

François Gourio (BU)

2008 17 / 41

• So far constant equity premium and P-D ratio, stock return is iid.

2008 18 / 41

(日) (同) (三) (三)

- So far constant equity premium and P-D ratio, stock return is iid.
- In data, equity premium varies over time:

$$R_{t+1}^e - R_{t+1}^f = \alpha + \beta \frac{D_t}{P_t} + \varepsilon_{t+1},$$

$$eta=$$
 3.83, t-stat = 2.61, $R^2=$ 7.4%

So far constant equity premium and P-D ratio, stock return is iid.
In data, equity premium varies over time:

$$R_{t+1}^e - R_{t+1}^f = lpha + eta rac{D_t}{P_t} + arepsilon_{t+1}$$
 ,

$$eta=$$
 3.83, t-stat = 2.61, $R^2=$ 7.4%

• Results very similar if predict equity returns:

$$R_{t+1}^e=lpha+etarac{D_t}{P_t}+arepsilon_{t+1},$$

 $eta=3.39 ext{ t-stat}=2.28, R^2=5.8\%$

2008 18 / 41

イロト 人間ト イヨト イヨト

So far constant equity premium and P-D ratio, stock return is iid.
In data, equity premium varies over time:

$$R_{t+1}^{e} - R_{t+1}^{f} = lpha + eta rac{D_t}{P_t} + arepsilon_{t+1},$$

$$eta=$$
 3.83, t-stat = 2.61, $R^2=$ 7.4%

• Results very similar if predict equity returns:

$$R^e_{t+1} = lpha + eta rac{D_t}{P_t} + arepsilon_{t+1}$$
 ,

$$eta = 3.39$$
 t-stat = 2.28, $R^2 = 5.8\%$

• i.e., "predictability comes from risk premia, not the risk-free rate".

So far constant equity premium and P-D ratio, stock return is iid.
In data, equity premium varies over time:

$$R_{t+1}^e - R_{t+1}^f = lpha + eta rac{D_t}{P_t} + arepsilon_{t+1}$$
 ,

$$eta=$$
 3.83, t-stat = 2.61, $R^2=$ 7.4%

• Results very similar if predict equity returns:

$$R_{t+1}^e = lpha + eta rac{D_t}{P_t} + arepsilon_{t+1},$$

$$eta=3.39$$
 t-stat = 2.28, $R^2=5.8\%$

- i.e., "predictability comes from risk premia, not the risk-free rate".
- Is the disaster model consistent with these patterns?

François Gourio (BU)

• A1: representative consumer with CRRA utility.

2008 19 / 41

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

• A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

- A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .
- Then:

2008 19 / 41

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

- A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .
- Then:
- Equity premium increasing in p_t ,

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

- A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .
- Then:
- Equity premium increasing in p_t,
- 2 Expected equity return $E_t R_{t+1}^e$ decreasing in p_t ,

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

- A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .
- Then:
- Equity premium increasing in p_t ,
- 2 Expected equity return $E_t R_{t+1}^e$ decreasing in p_t ,
- P-D ratio is increasing in p_t iff $\gamma > 1$.

- A1: representative consumer with CRRA utility.
- A2: Consumption process:

$$\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1}$$
 with prob $1 - \mathbf{p}_t$,
 $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1 - b)$, with prob \mathbf{p}_t ,

- A3: p_{t+1} is Markov: $F(p_{t+1}|p_t)$, and that p_{t+1} and realization of disaster are independent, conditional on p_t .
- Then:
- Equity premium increasing in p_t ,
- **2** Expected equity return $E_t R_{t+1}^e$ decreasing in p_t ,
- P-D ratio is increasing in p_t iff $\gamma > 1$.
- Intuition: high p_t leads to more (precautionary) savings, low interest rates, and high equity risk premium.

François Gourio (BU)

Disasters and Asset Pricing

008 19/41

• Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.

2008 20 / 41

- Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.
- The model can not generate this:

- Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.
- The model can not generate this:
 - If γ > 1 (IES<1), the P-D ratio is *increasing* in p_t, and a high P-D forecasts a *high* equity excess return.

- Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.
- The model can not generate this:
 - If γ > 1 (IES<1), the P-D ratio is *increasing* in p_t, and a high P-D forecasts a *high* equity excess return.
 - If γ < 1 (IES>1), a high P-D ratio forecasts a low equity excess return but a *high* equity return.

- Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.
- The model can not generate this:
 - If γ > 1 (IES<1), the P-D ratio is *increasing* in p_t, and a high P-D forecasts a *high* equity excess return.
 - If γ < 1 (IES>1), a high P-D ratio forecasts a low equity excess return but a *high* equity return.
- Neither fits the data.

- Matching the regressions requires that the expected equity premium and expected equity return are positively correlated.
- The model can not generate this:
 - If γ > 1 (IES<1), the P-D ratio is *increasing* in p_t, and a high P-D forecasts a *high* equity excess return.
 - If γ < 1 (IES>1), a high P-D ratio forecasts a low equity excess return but a *high* equity return.
- Neither fits the data.
- "Interest rate too volatile in the model"

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

 $\begin{array}{lll} \Delta \log C_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{and } \Delta \log D_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{with probability } 1 - p; \end{array}$

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

• And *d_t* follows some Markov process.

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

 $\begin{array}{lll} \Delta \log C_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{and } \Delta \log D_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{with probability } 1 - p; \end{array}$

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

- And *d_t* follows some Markov process.
- Then, interest rates are constant and volatile risk premia.

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

 $\begin{array}{lll} \Delta \log C_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{and } \Delta \log D_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{with probability } 1 - p; \end{array}$

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

- And *d_t* follows some Markov process.
- Then, interest rates are constant and volatile risk premia.
- Matches the facts above, but

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

 $\begin{array}{lll} \Delta \log C_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{and } \Delta \log D_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{with probability } 1 - p; \end{array}$

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

- And *d_t* follows some Markov process.
- Then, interest rates are constant and volatile risk premia.
- Matches the facts above, but
 - unusual "time-varying expected leverage" of stocks.

• One resolution: size of dividend disaster change over time, but **not** size of consumption disaster:

 $\begin{array}{lll} \Delta \log C_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{and } \Delta \log D_{t+1} &=& \mu + \sigma \varepsilon_{t+1}, \\ \text{with probability } 1 - p; \end{array}$

or $\Delta \log C_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-b)$, and $\Delta \log D_{t+1} = \mu + \sigma \varepsilon_{t+1} + \log(1-\mathbf{d}_t)$, with probability p,

- And *d_t* follows some Markov process.
- Then, interest rates are constant and volatile risk premia.
- Matches the facts above, but
 - unusual "time-varying expected leverage" of stocks.
 - does not explain why "risk premia move all together"

Another solution: Epstein-Zin utility

ullet Can show analytically than an IES >1 allows to get the correct sign.

(日) (同) (三) (三)
- ullet Can show analytically than an IES > 1 allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.

イロト イ押ト イヨト イヨト

- ullet Can show analytically than an IES > 1 allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.
- Leverage = 3, IES = 1.5.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Can show analytically than an $\mathsf{IES}>1$ allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.
- Leverage = 3, IES = 1.5.
- Probability of disaster oscillates between high and low state: transition probability π .

$$p_h = .017 + \varepsilon$$
, $p_l = .017 - \varepsilon$

- 4 同 6 4 日 6 4 日 6

- Can show analytically than an $\mathsf{IES}>1$ allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.
- Leverage = 3, IES = 1.5.
- Probability of disaster oscillates between high and low state: transition probability π.

$$p_h = .017 + \varepsilon$$
, $p_l = .017 - \varepsilon$

• Pick parameters π, ε to match $\sigma(P - D)$, regression slope:

$$\pi =$$
 0.043, $\varepsilon \simeq$.017.

イロト 人間ト イヨト イヨト

- Can show analytically than an $\mathsf{IES}>1$ allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.
- Leverage = 3, IES = 1.5.
- Probability of disaster oscillates between high and low state: transition probability π.

$$p_h = .017 + \varepsilon$$
, $p_l = .017 - \varepsilon$

• Pick parameters π, ε to match $\sigma(P - D)$, regression slope:

$$\pi = 0.043, \ \varepsilon \simeq .017.$$

• Highly volatile probability of disaster.

イロト イポト イヨト イヨト 二日

- Can show analytically than an $\mathsf{IES}>1$ allows to get the correct sign.
- Trying to match this quantitatively using Barro's parameters.
- Leverage = 3, IES = 1.5.
- Probability of disaster oscillates between high and low state: transition probability π.

$$p_h = .017 + \varepsilon$$
, $p_l = .017 - \varepsilon$

• Pick parameters π, ε to match $\sigma(P - D)$, regression slope:

$$\pi = 0.043, \ \varepsilon \simeq .017.$$

- Highly volatile probability of disaster.
- Equity premium too high then.

イロト イポト イヨト イヨト 二日

• If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.

(日) (同) (三) (三)

- If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.
- Ex.: defense stocks, gold, ...

イロト イ押ト イヨト イヨト

- If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.
- Ex.: defense stocks, gold, ...
- Puzzles in the finance literature: value size momentum.

- If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.
- Ex.: defense stocks, gold, ...
- Puzzles in the finance literature: value size momentum.
- Distinguish two models:

- If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.
- Ex.: defense stocks, gold, ...
- Puzzles in the finance literature: value size momentum.
- Distinguish two models:
 - baseline Barro-Rietz model: constant probability of disaster, but different exposures to disasters.

イロト 人間ト イヨト イヨト

- If disasters drive equity risk premia, assets which do relatively better in disasters should have low average returns.
- Ex.: defense stocks, gold, ...
- Puzzles in the finance literature: value size momentum.
- Distinguish two models:
 - baseline Barro-Rietz model: constant probability of disaster, but different exposures to disasters.
 - Gabaix-style model: time-varying prob of disaster, and perhaps no disaster realized in sample.

イロト 人間ト イヨト イヨト

9/11 as 'Natural Experiment'

• Use the return on 9/17 as a proxy for exposure to disaster:

2008 24 / 41

-

9/11 as 'Natural Experiment'

• Use the return on 9/17 as a proxy for exposure to disaster:

• Mean return of defense, gold, tobacco stocks is not low!

François Gourio (BU)

Disasters and Asset Pricing

2008 24 / 41

Fama-French 25 returns on 9-17 vs. mean excess returns

François Gourio (BU)

Disasters and Asset Pricing

2008 25 / 41

Data from 9-17-01

	E(R)	Return on 9-17
HML	0.40	-0.93
t-stat	3.47	
SMB	0.24	0.24
t-stat	2.19	
UMD	0.76	2.72
t-stat	5.01	
SV-SG	0.49	-0.20
t-stat	4.14	

François Gourio (BU)

2008 26 / 41

(日) (四) (三) (三) (三)

Measuring the Exposure to Large Negative Market Returns

• Measure exposure to large decreases in the stock market.

2008 27 / 41

- Measure exposure to large decreases in the stock market.
- First step: find β_i^d by a time-series regression, for each asset:

$$R_{t+1}^{i} - R_{t+1}^{f} = \alpha_{i} + \beta_{i}^{d} \left(R_{t+1}^{m} - R_{t+1}^{f} \right) imes \mathbf{1}_{R_{t+1}^{m} - R_{t+1}^{f} < -10} + \varepsilon_{it+1}.$$

- Measure exposure to large decreases in the stock market.
- First step: find β_i^d by a time-series regression, for each asset:

$$R_{t+1}^{i} - R_{t+1}^{f} = lpha_{i} + eta_{i}^{d} \left(R_{t+1}^{m} - R_{t+1}^{f}
ight) imes \mathbb{1}_{R_{t+1}^{m} - R_{t+1}^{f} < -10} + \varepsilon_{it+1}.$$

• Second step: do β_i^d "explain" the differences in average returns?

- Measure exposure to large decreases in the stock market.
- First step: find β_i^d by a time-series regression, for each asset:

$$R_{t+1}^{i} - R_{t+1}^{f} = lpha_{i} + eta_{i}^{d} \left(R_{t+1}^{m} - R_{t+1}^{f}
ight) imes \mathbb{1}_{R_{t+1}^{m} - R_{t+1}^{f} < -10} + arepsilon_{it+1}.$$

Second step: do β^d_i "explain" the differences in average returns?
"Disaster CAPM"

- Measure exposure to large decreases in the stock market.
- First step: find β_i^d by a time-series regression, for each asset:

$$R_{t+1}^{i} - R_{t+1}^{f} = \alpha_{i} + \beta_{i}^{d} \left(R_{t+1}^{m} - R_{t+1}^{f} \right) imes \mathbf{1}_{R_{t+1}^{m} - R_{t+1}^{f} < -10} + \varepsilon_{it+1}.$$

- Second step: do β_i^d "explain" the differences in average returns?
- Disaster CAPM"
- Data: US, portfolios of stocks, 1926-2006.

008 27 / 41

Evaluating the "Disaster CAPM"

Figure: CAPM (top panel) and Disaster CAPM (bottom panel).

François Gourio (BU)

Disasters and Asset Pricing

2008 28 / 41

Disaster Beta and Market Beta are highly correlated

Francois Gourio (BU)

Disasters and Asset Pricing

29 / 41

• probability of disaster unobservable⇒SDF unobserved.

2008 30 / 41

- 4 週 ト - 4 三 ト - 4 三 ト

- probability of disaster unobservable⇒SDF unobserved.
- solution: extract probability of disaster from asset prices.

2008 30 / 41

- probability of disaster unobservable⇒SDF unobserved.
- solution: extract probability of disaster from asset prices.
- e.g., use the P-D ratio: $\frac{P_t}{D_t} = f(p_t; \text{parameters})$.

- probability of disaster unobservable⇒SDF unobserved.
- solution: extract probability of disaster from asset prices.
- e.g., use the P-D ratio: $\frac{P_t}{D_t} = f(p_t; \text{parameters})$.
- given p_t , construct the SDF M and test the conditions $E(MR_i^e) = 0$.

Implied Probability of Disaster

François Gourio (BU)

Disasters and Asset Pricing

2008 31 / 41

Predicted mean returns vs. Data mean returns

François Gourio (BU)

2008 32 / 41

• In the data, most disasters are **not** permanent.

<ロ> (日) (日) (日) (日) (日)

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:

(日) (同) (三) (三)

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.

(日) (同) (三) (三)

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.

.

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.
 - Impossible to get with CRRA and changing probability of disaster.

008 33 / 41

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.
 - Impossible to get with CRRA and changing probability of disaster.
 - Requires highly volatile prob of disaster with E-Zin utility.

008 33 / 41
Conclusions

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.
 - Impossible to get with CRRA and changing probability of disaster.
 - Requires highly volatile prob of disaster with E-Zin utility.
 - Time-varying size of dividend disaster. Unappealing.

008 33 / 41

イロト 人間ト イヨト イヨト

Conclusions

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.
 - Impossible to get with CRRA and changing probability of disaster.
 - Requires highly volatile prob of disaster with E-Zin utility.
 - Time-varying size of dividend disaster. Unappealing.
 - $\bullet~$ Need high IES $\rightarrow~$ tension with the need for low IES for recoveries.

008 33 / 41

イロト 不得下 イヨト イヨト

Conclusions

- In the data, most disasters are **not** permanent.
- Incorporating this in the model changes the conclusions:
 - IES>1 \rightarrow lower risk premia.
 - IES $<1\rightarrow$ higher risk premia.
- TS predictability hard to reconcile with the disaster model.
 - Impossible to get with CRRA and changing probability of disaster.
 - Requires highly volatile prob of disaster with E-Zin utility.
 - Time-varying size of dividend disaster. Unappealing.
 - $\bullet~$ Need high IES $\rightarrow~$ tension with the need for low IES for recoveries.
- Cross-sectional evidence is mixed

008 33 / 41

イロト 不得下 イヨト イヨト

Backup

_					_		
_	KO DOO		A	· ^ ·	_		
	ranco	15 V1	our	10 1	- 2 1	U	
		_	_				

2008 34 / 41

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

- Data on **GDP per capita** in XXth century (Maddison).
- 20 OECD countries + 15 countries from Latin America and Asia.
- Defines disaster as fall in GDP greater than 15% (peak-to-trough).
- Finds 60 disasters.
- Prob of disaster = $\frac{60}{35}$ =1.7% per year.
- Average peak-to-trough decline is 29%.
- Mainly WWI, Great Depression, WWII, Latin America post WWII.
- Barro and Ursua (2008): measuring consumption disasters.

008 35 / 41

More dynamics

Figure: Impact of the speed of recovery on the unconditional equity premium in the model, for two elasticities of substitution parameters.

François Gourio (BU)

Disasters and Asset Pricing

2008 36 / 41

► < ∃ ►</p>

• Another interesting case: disasters not "pure jumps" but occur over several years.

2008 37 / 41

(日) (同) (三) (三)

- Another interesting case: disasters not "pure jumps" but occur over several years.
- i.e. positive autocorrelation at beginning of disasters.

- 4 同 6 4 日 6 4 日 6

- Another interesting case: disasters not "pure jumps" but occur over several years.
- i.e. positive autocorrelation at beginning of disasters.
- The previous analysis applies in reverse:

- Another interesting case: disasters not "pure jumps" but occur over several years.
- i.e. positive autocorrelation at beginning of disasters.
- The previous analysis applies in reverse:
 - low IES \rightarrow lower risk premia;

- 4 目 ト - 4 日 ト - 4 日 ト

- Another interesting case: disasters not "pure jumps" but occur over several years.
- i.e. positive autocorrelation at beginning of disasters.
- The previous analysis applies in reverse:
 - low IES \rightarrow lower risk premia;
 - high IES \rightarrow higher risk premia.

- 4 週 ト - 4 三 ト - 4 三 ト

Cross-Sectional Tests: Theory

$$\begin{aligned} \Delta \log D_{it} &= \mu_i + \lambda_i \varepsilon_t \\ &= \mu_i + \lambda_i \varepsilon_t + \eta_i \log(1-b) \end{aligned}$$

• Exposure to "business cycle shocks" λ_i .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cross-Sectional Tests: Theory

$$\Delta \log D_{it} = \mu_i + \lambda_i \varepsilon_t = \mu_i + \lambda_i \varepsilon_t + \eta_i \log(1-b)$$

- Exposure to "business cycle shocks" λ_i .
- Exposure to disasters η_i .

2008 38 / 41

(日) (同) (三) (三)

Cross-Sectional Tests: Theory

$$\begin{aligned} \Delta \log D_{it} &= \mu_i + \lambda_i \varepsilon_t \\ &= \mu_i + \lambda_i \varepsilon_t + \eta_i \log(1-b) \end{aligned}$$

- Exposure to "business cycle shocks" λ_i .
- Exposure to disasters η_i .
- Implied stock *i* excess return:

$$\log \frac{\textit{ER}^{e}_{i}}{\textit{R}^{f}} = \lambda_{i}\sigma\gamma + \log\left(\frac{\left(1-\textit{p}+\textit{p}(1-\textit{b})^{-\gamma}\right)\left(1-\textit{p}+\textit{p}(1-\textit{b})^{\eta_{i}}\right)}{1-\textit{p}+\textit{p}(1-\textit{b})^{\eta_{i}-\gamma}}\right)$$

- ∢ ∃ ▶

Motivation for 1-factor disaster model

François Gourio (BU)

2008 39 / 41

Probability of a recovery π	0.00	0.30	0.60	0.90	1.00
IES = 0.25	3.31	4.62	5.91	7.19	7.64
IES = 0.50	3.31	3.30	3.03	2.26	1.68
IES = 1	3.31	2.69	1.94	1.00	0.54
IES = 2	3.31	2.42	1.52	0.63	0.30

Table: Equity premium, as a function of the intertemporal elasticity of substitution (IES) and the probability of a recovery.

(日) (同) (三) (三)

Effect of Recoveries with Epstein-Zin utility

	ER ^b	ER ^e	$\sigma(R^e)$	$\sigma(R^b)$	$\sigma(D)$	$\sigma(pd)$	$\beta_{R^e R^b}$	β_{R^e}
Model	1.62	16.47	23.55	2.55	6.48	.411	3.77	2.750
Data	1.03	8.91	15.04	4.36	14.9	.415	3.83	3.39

イロト イヨト イヨト イヨト