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Abstract

This paper studies whether the Rietz-Barro �disaster�model, extended for a time-varying prob-

ability of disaster, can match the empirical evidence on predictability of stock returns. It is shown

that when utility is CRRA, the model cannot replicate these �ndings, regardless of parameter val-

ues. This motivates extending the disaster model to allow for Epstein-Zin utility. Analytical results

show that when the probability of disaster is iid, the model with Epstein-Zin utility can match the

evidence on predictability qualitatively if the elasticity of substitution is greater than unity. The

case of a persistent probability of disaster is studied numerically, with partial success.

1 Introduction

There has been lately a revival of interest in the �disaster�explanation of asset prices, which was �rst

introduced by Rietz (1988). Rietz showed that the possibility of rare jumps in consumption, can solve

the equity premium puzzle of Mehra and Prescott (1985). Barro (2006) measures disasters during the

XXth century, and he �nds that they are frequent and large enough, and stock returns low enough

relative to bond returns during disasters, to make the explanation quantitatively plausible.

Given the success of the disaster model in accounting for the risk-free rate and equity premium

puzzles, it is important to study if the model can also account for additional asset pricing facts. In

this note I focus on the time-series predictability of stock returns and excess stock returns. Empirical

research documents that both the stock return and the excess stock return are forecastable. The basic

regression is:

Ret+1 �R
f
t+1 = �+ �

Dt
Pt
+ "t+1;

where Ret+1 is the equity return, R
f
t+1 the risk-free return, and

Dt

Pt
the dividend yield. As an illustration,

John Cochrane (2008) reports for the annual 1926-2004 U.S. sample: � = 3:83 (t-stat = 2.61, R2 =

7:4%). A key feature of the data is that using as the left-hand side the equity return Ret+1 rather than the

excess return Ret+1 �R
f
t+1 does not change the results markedly: � = 3:39 (t-stat = 2.28, R

2 = 5:8%).

�I thank participants in presentations at the AEA meetings, Clemson University, the Green Line Macro Meetings,

and Northwestern (Kellog) business school for comments. I also thank John Campbell, Xavier Gabaix, Ian Martin and

Adrien Verdelhan, and an anonymous referee for helpful comments. Contact information: Boston University, Department

of Economics, 270 Bay State Road, Boston MA 02215. Email: fgourio@bu.edu. Tel.: (617) 353 4534.

1



That is, equity returns are forecastable, because risk premia are forecastable, and not because of an

important predictable component in the risk-free interest rate. This note studies whether a reasonable

extension of the disaster model can match these empirical �ndings.1

More precisely, this note extends the disaster model to incorporate a time-varying probability (or

size) of disaster. The main result is that if utility is CRRA, the disaster model cannot account for both

�ndings of stock return and excess stock return predictability. The intuition is that risk-free rates are

too volatile in the model: a high probability of disaster reduces the risk-free rate more than it increases

the equity risk premium. Or to put this in a di¤erent way, the variance of P-D ratios is too low in the

model. Next, I show that analytically, in the case of i.i.d. shocks to the probability of disaster, that using

Epstein-Zin utility with an elasticity of substitution larger than unity can resolve this puzzle. Finally,

the more realistic case of Epstein-Zin utility and persistent changes in probability of disaster is analyzed

through numerical simulations, with some success. However, one must assume that the probability of

disaster is volatile and highly persistent to obtain an approximate quantitative match of the data.2

These results clarify and extend some �ndings of Xavier Gabaix (2007). Gabaix uses the �linearity-

generating�model (Gabaix 2007b), and expresses some of his results in terms of a �resilience�variable.

Expected returns change over time because the probability of a disaster, the potential size of consumption

disaster, or the potential size of dividend disaster changes over time, but my results show that only when

the potential size of dividend disaster changes over time, and the size of consumption disaster doesn�t,

is the model (with power utility) consistent with the evidence on time-series predictability. Empirical

research suggests that the expected return on many assets are correlated. In the consumption-based

model, expected returns can be positively correlated across assets because they are all a¤ected by

properties of consumption (e.g., Campbell and Cochrane (1999) or Bansal and Yaron (2004)). But if

variation in expected returns is due to variation in the potential size of dividend disaster, it is not clear

why the expected returns should be correlated across assets.

Beside this substantive contribution of spelling out the properties and limitations of the disaster

model, a technical contribution of the paper is to show a simple way in which to introduce time-varying

risk premia and interest rates in the consumption-based model. Most models with time-varying interest

rates and time-varying risk premia are untractable, and as a result they are usually analyzed numerically,

or through the Campbell-Shiller approximations (e.g., Campbell (1996)), which assume joint conditional

log-normality.

The note is organized as follows. Section 2 analyzes the model with power utility, and section 3

considers the case of Epstein-Zin utility and i.i.d. disasters. These two sections o¤er analytical results.

Section 4 provides some numerical simulations which illustrate the theoretical results and relax some

1 It may seem strange to concentrate on these regression results, which are somewhat fragile, as shown by Stambaugh

(1999), Ang and Bekaert (2007), Boudoukh, Richardson and Whitelaw (2006), and Goyal and Welch (2007) among others.

The reason why I focus on these results is that the dividend yield (or similar measures of fundamentals scaled by price)

is the most common predictor of returns. These results have motivated the development of models with time-varying risk

premia such as Campbell and Cochrane (1999). Finally and most importantly, these results show that the volatility of

the price-dividend ratio is largely due to the volatility of expected returns rather than dividends. Hence, matching this

regression evidence is tantamount to tackling the stock-market volatility puzzle.
2The results of this paper are closely related to results in Wachter (2008), which was written simultaneously.

2



of the assumptions, and �nally considers the more promising case of Epstein-Zin utility and persistent

shocks to the probability of disasters.

2 Time-varying Disaster Probability with Power utility

The model is a standard �Lucas tree� endowment economy. There is a representative consumer who

has power utility (constant relative risk aversion):

E
1X
t=0

�t
C1�
t

1� 
 :

Following Barro (2006) and Rietz (1988), I assume that the main risk in the economy is a rare, large

downward jump. To match the regression evidence outlined in the introduction, we need to generate

variation in expected returns over time, which requires introducing some variation over time in the

riskiness of the economy. The natural idea is to make the probability of disaster time-varying. For

instance, the perceived risk of war certainly varies over time: it was higher during the Cold War than

during the 1990s. (The case of a time-varying size of disasters is tackled below.) Assume, then, that

the endowment follows the stochastic process:

� logCt+1 = �+ �"t+1; with probability 1� pt;

= �+ �"t+1 + log(1� b), with probability pt;

where "t+1 is iid N(0; 1) and 0 < b < 1 is the size of the disaster. Hence, in period t+1; with probability

pt, consumption drops by a factor b: The disaster probability pt 2 [p; p] evolves over time according to

a �rst-order Markov process, governed by the transition probabilities F (pt+1jpt): Note that pt is the

probability of a disaster at time t+ 1; and it is drawn at time t: The Markov process is assumed to be

monotone, i.e. F (xjy1) � F (xjy2) for any x 2 [p; p] and for any y1 � y2: This assumption means that

pt is positively autocorrelated. The Markov process is also assumed to have the Feller property.3 The

realization of the disaster, and the process fptg are further assumed to be statistically independent of "t
at all dates. Finally, I assume that the realization of pt+1 is independent of the realization of disasters

at time t + 1, conditional on pt: That is, the new draw for the probability of disaster at time t + 2;

labelled pt+1; is independent of whether there is a disaster at time t+ 1: This assumption implies that

the P-D ratio is conditionally uncorrelated with current dividend growth or consumption growth, and

hence the innovations to the state variable pt are not priced.4 This simpli�cation is crucial to obtain

analytical results.5 In Section 4, I relax this assumption in numerical simulations and it seems to have

a small quantitative impact.
3That is, the conditional expectation of a continuous function of the state tomorrow is itself a continuous function of

the state today.
4 In the data used by Cochrane (2008), the unconditional correlation between the dividend yield and dividend growth

is .046 (s.e.: 0.111). The conditional correlation is .085 (s.e.: 0.119) if one uses the lagged dividend yield as conditioning

variable.
5This assumption could be wrong either way: a disaster today may indicate that the economy is entering a phase of

low growth or is less resilient than thought; but on the other hand, if a disaster occurred today, and GDP fell by 43%, it

is unlikely that GDP will fall again by a large amount. Rather, historical evidence suggests that the economy is likely to

grow above trend for a while (Gourio (2008)).
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This simple economy has a single state variable, the probability of disaster p. We can express the

asset prices as a function of this state variable, which is assumed to be perfectly observed by the agents

in the economy. The gross risk-free rate Rft+1satis�es the usual Euler equation:

Et

 
�

�
Ct+1
Ct

��
!
Rft+1 = 1:

Computing this conditional expectation6 yields:

logRf (p) = � log � + 
�� 

2�2

2
� log

�
1� p+ p(1� b)�


�
:

The risk-free rate varies over time with p. When p = 0, this formula collapses to the well-known result

of the i.i.d. lognormal model. Because b < 1, we see that the risk-free rate is lower when p > 0;

and the higher the probability of a disaster, the lower the risk-free rate. This re�ects that a higher

probability of disaster reduces expected growth and increases risk, and thus leads agents to save, both

for intertemporal substitution and for precautionary reasons. (However, the later are more important

quantitatively.) This drives the risk-free rate down.7

The second asset we consider is a �stock�, i.e. an asset which pays out the consumption process.

The stock price satis�es the standard recursion:

Pt
Ct
= Et

 
�

�
Ct+1
Ct

�1�
 �
Pt+1
Ct+1

+ 1

�!
:

As usual, the price-dividend ratio depends only on the state variable, in this case p: Denote q(p) the

P-D ratio when pt = p: Given the assumption that the realization of disaster is independent of the new

draw for p, conditional on the current value of p; q satis�es the functional equation:

q(p) = �e(1�
)�+(1�
)
2 �2

2

�
1� p+ p(1� b)1�


� Z p

p

(q(p0) + 1) dF (p0jp): (1)

Let g(p) = �e(1�
)�+(1�
)
2 �2

2

�
1� p+ p(1� b)1�


�
: The function g is increasing if 
 > 1 and is de-

creasing if 
 < 1: This equation can be analyzed using standard tools from Stokey, Lucas and Prescott

(1989). De�ne �
def
= maxp�p�p g(p): To prove the result, we need to assume that � < 1:8

Proposition 1 Assume that � < 1: Then there exists a unique solution q� to equation (1). Moreover,

q� is nondecreasing if g is nondecreasing and is nonincreasing if g is nonincreasing.

Proof. De�ne B the set of continuous (and thus bounded) functions mapping [p; p] into R+. De�ne

the operator T : B ! B, which maps a function q 2 B into a new function eq 2 B; de�ned by the
6Note that this conditional expectation is an integral over three random variables: (1) the business cycle shock "t+1,

which is N(0; �2); (2) the realization of the disaster, which is a binomial variable parametrized by pt, (3) the probability

of disaster next period pt+1, which is drawn according to the Markov process F given pt. The assumptions above imply

that these three variables are independent conditional on pt, which is why the computation of the integral is simple.
7An extension of the disaster model would have positive as well as negative disasters, thus creating a pure precautionary

savings e¤ect. However, diminishing marginal utility implies that the positive disasters typically do not matter much.
8The assumption that � < 1 ensures that the price of a consumption claim is �nite; see section 4 for some numerical

experiments to gauge its empirical realism. Because it is only a su¢ cient condition for prices to be �nite, it could be that

prices are indeed �nite but the condition is violated, which would invalidate my proofs. It might be possible however to

extend the proofs to allow for a weaker condition (e.g. looking for a �xed point in a di¤erent functional space).
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right-hand-side of (1), i.e.:

eq(p) = (Tq)(p) = g(p)Z p

p

(q(p0) + 1) dF (p0jp) = g(p) + g(p)
Z p

p

q(p0)dF (p0jp): (2)

Since the Markov process F has the Feller property; T indeed maps B into B. Next we show that T is

a contraction. To see this, pick any two q1; q2 2 B, then for any p 2 [p; p] :

(Tq1)(p)� (Tq2)(p) = g(p)

Z p

p

(q1(p
0)� q2(p0)) dF (p0jp);

j(Tq1)(p)� (Tq2)(p)j � �

Z p

p

j(q1(p0)� q2(p0))j dF (p0jp);

� � kq1 � q2k1 ;

hence sup[p;p] j(Tq1)(p)� (Tq2)(p)j = kTq1 � Tq2k1 � � kq1 � q2k1 ; where kfk1 = supx2[p;p] jf(x)j is

the sup norm. Since � < 1, this shows that T is a contraction.9 The contraction mapping theorem

implies that there exists a unique solution q� to the �xed point problem Tq = q: Because the Markov

process F is monotone, T satis�es a monotonicity property. More precisely, if g is nondecreasing, then

T maps nondecreasing functions into nondecreasing functions; and if g is nonincreasing, then T maps

nonincreasing functions into nonincreasing functions. This can be seen from (2). For instance if g is

nondecreasing: we know that if q is nondecreasing, the function p!
R p
p
q(p0)dF (p0jp) is nondecreasing;

because both g and q are nonnegative and nondecreasing, the product g(p)
R 1
0
q(p0)dF (p0jp) is nonde-

creasing, and thus g(p)+ g(p)
R 1
0
q(p0)dF (p0jp) is nondecreasing. Because the set of nondecreasing (resp.

nonincreasing) functions is closed under the sup norm, this result implies that the �xed point q� is

nondecreasing if g is nondecreasing and is nonincreasing if g is nonincreasing (Theorem 4.7 in Stokey,

Lucas and Prescott (1989)).

We are now in position to compute the expected return on equity. Given the de�nition EtRet+1 =

Et (Pt+1 + Ct+1) =Pt; and our assumptions regarding the process of shocks, we have:

ERe(p) = Et

�
Ct+1
Ct

�
Ep0jp

�
q(p0) + 1

q(p)

�
:

The Euler equation (1) implies that Ep0jp
�
q(p0)+1
q(p)

�
= 1

g(p) ; hence:

ERe(p) =
e�+

�2

2 (1� p+ p(1� b))
�e(1�
)�+(1�
)

2 �2

2 (1� p+ p(1� b)1�
)
:

Rearranging and taking logs yields:

logERe(p) = 
�� 

2�2

2
+ 
�2 � log � + log

�
1� p+ p(1� b)

1� p+ p(1� b)1�


�
:

Again we recognize the �rst four terms as the i.i.d. lognormal model. The last term, which varies over

time with p; is decreasing in p; as can be easily veri�ed by taking derivatives. A higher probability of

disaster reduces expected growth, increases the risk premium, and reduces the risk-free rate, and the

total e¤ect is to reduce the expected return on equity.

9When g is increasing, we can alternatively use the Blackwell su¢ cient conditions (see Stokey, Lucas and Prescott

(1989), chapter 4) to establish this result, but when g is decreasing the Blackwell su¢ cient conditions do not hold.
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The log equity premium is �nally obtained as:

log
ERe(p)

Rf (p)
= 
�2 + log

(1� p+ p(1� b)) (1� p+ p(1� b)�
)
(1� p+ p(1� b)1�
) :

Taking derivatives in this expression shows that this is an increasing function of p when p is small

enough.10 This is intuitive: when the probability of disaster of high, the risk is high, and the equity

premium is high. The following proposition summarizes the results:

Proposition 2 Assume that the Markov process F is monotone and satis�es the Feller property, and

that maxp2[p;p] �e(1�
)�+(1�
)
2 �2

2

�
1� p+ p(1� b)1�


�
< 1: Then, (a) the risk-free rate and the expected

equity return are decreasing in p; (b) the price-dividend ratio is increasing in p if and only if 
 > 1; (c)

for p small enough, the equity premium is increasing in p.

It is interesting to relate these results to the empirical evidence outlined in the introduction. In

the data, Covt(Pt=Dt; EtRet+1) < 0 and Covt(Pt=Dt; EtR
e
t+1 � R

f
t+1) < 0: Proposition 2 implies that,

whatever the value of 
, the model cannot match both facts. If 
 > 1; then the equity premium and

the P-D ratio are both increasing in p; hence a high P-D ratio forecasts a high excess stock return,

contrary to the data. (The fact that a high P-D ratio corresponds to a high probability of disaster p is

also counterintuitive.) If 
 < 1, then the P-D ratio and the equity return are both decreasing in p; and

hence a high P-D ratio forecasts a high equity return, contrary to the data. The reason why the disaster

model generates these counterfactual implications is that it predicts large variations in risk-free interest

rates: the risk-free rate moves by more than the equity risk premium, so that the expected equity return

and the equity risk premium move in opposite directions.

It is straightforward to allow for leverage, using the standard formulationDt = C�t ; where �measures

the degree of leverage. The formulas above need to be modi�ed: replace the factor (1�b)1�
 by (1�b)��
 ;

and the factor (1� b) by (1� b)�: As a result, the P-D ratio is increasing in p if and only if 
 > �: The

equity premium is now

log
ERe(p)

Rf (p)
= 
��2 + log

�
1� p+ p(1� b)�

�
(1� p+ p(1� b)�
)

(1� p+ p(1� b)��
) ;

but the fundamental conundrum remains: neither 
 > � nor � > 
 allows the model to generate both

the stock return and the excess stock return predictability.

We can also extend the results to the realistic case where government bonds are not risk-free during

disasters. For instance, if the government defaults by an amount 1� r in disasters (i.e. r is the recovery

rate), it is easy to show that the log expected return on the government bond is:

logERb(p) = � log � + 
�� 

2�2

2
+ log

�
1� p+ p� r

1� p+ p(1� b)�
r

�
;

a formula which incorporates the special case of a truly risk-free asset (r = 1). The equity risk premium

is then:

log
ERe(p)

ERb(p)
= 
�2 + log

(1� p+ p(1� b)�
r) (1� p+ p(1� b))
(1� p+ p(1� b)1�
) (1� p+ p� r) ;

10Because disasters are a binomial variable, the uncertainty is highest for intermediate values of p, and hence the risk

premium is not increasing over the entire range of values: if p is large enough, a further increase reduces the uncertainty

and thus the risk premium. This remark is not important in practice because disasters are always calibrated as rare events.
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but the results are unchanged as long as r > 1� b; so that government bonds are less risky than equities

during disasters.

Rather than having the probability of disaster p change over time, one may assume that it is the

size of disasters b that changes over time, i.e.

� logCt+1 = �+ �"t+1; with probability 1� p;

� logCt+1 = �+ �"t+1 + log(1� bt); with probability p:

If we make the same assumptions for b as the ones we did for p above, it is straightforward to prove

the following analogous result. More precisely, de�ne g(b) = �e(1�
)�+(1�
)
2 �2

2

�
1� p+ p(1� b)1�


�
.

Assume b follows a Markov process with support
�
b; b
�
with transition function F; and assume that the

Markov process is monotone and satis�es the Feller property, and that the independence assumptions

hold.

Proposition 3 Assume maxb�b�b g(b) < 1: Then there exists a unique solution q� to the functional

equation de�ning the price-dividend ratio. Moreover, (a) the risk-free rate and the expected equity return

are decreasing in b; (b) the price-dividend ratio is increasing in b if and only if 
 > 1; (c) if p is small

enough, the equity premium is increasing in b.

This extension thus does not resolve the previously noted conundrum. Finally, a last extension is to

only allow the size of dividend disasters to change over time. Assume, then, that the stochastic processes

for consumption and dividends satisfy:

� logCt+1 = �+ �"t+1,

and � logDt+1 = �+ �"t+1, with probability 1� p;

or � logCt+1 = �+ �"t+1 + log(1� b);

and � logDt+1 = �+ �"t+1 + log(1� dt), with probability p;

where dt follows a monotone Feller Markov process with support
�
d; d

�
, and the independence as-

sumptions hold. Let g(d) = �e(1�
)�+(1�
)
2 �2

2 (1� p+ p(1� d)(1� b)�
) : In this case, g is always

nonincreasing.

Proposition 4 Assume maxd�d�d g(d) < 1: Then there exists a unique solution q� to the functional

equation de�ning the price-dividend ratio. Moreover, (a) the risk-free rate is constant, (b) the price-

dividend ratio is decreasing in d; (c) the expected equity return and equity premium are increasing in

d.

Hence, this model is the only variation consistent with both pieces of evidence on predictability

summarized in the introduction. It also generates the intuitive result that a high expected size of

disaster leads to a low P-D ratio. However, it is unclear if this assumption (that the size of the potential

dividend disaster changes over time, but the size of the potential consumption disaster does not) is

empirically reasonable. In general equilibrium, consumption and dividends must be somewhat related;
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at long horizons especially, we expect dividends and consumption to be cointegrated, so even if we think

that dividends or earnings may fall a lot if there is a disaster (e.g., Longsta¤ and Piazzesi (2004)),

they would surely increase back after a while.11 Second, as explained in the introduction, the empirical

�nance literature suggests that risk premia on various assets are correlated. Generating this pattern will

require that the size of dividend disasters on these various assets move over time and are correlated. This

seems somewhat ad-hoc, and certainly less appealing than a unifying explanation through consumption,

which a¤ects all the assets - i.e. the price of consumption risk changes over time.

While this section has shown that the model cannot reproduce these �ndings qualitatively, the

quantitative magnitude of these failures is not readily apparent. Section 4 presents some numerical

examples.

3 Epstein-Zin preferences and i.i.d. probability of disaster

Since the failure of the disaster model in Proposition 2 is due to the fact that interest rates vary too much,

it seems useful to allow for Epstein-Zin utility so as to separate intertemporal elasticity of substitution

(IES) from risk aversion, and to use the IES parameter to reduce the volatility of the risk-free rate.

Utility is de�ned recursively as

Vt =

�
(1� �)C1��t + �Et

�
V 1��t+1

� 1��
1��

� 1
1��

:

With these preferences, the IES is 1=� and the risk aversion to a static gamble is �: When � = �; or if

there is no risk, these preferences collapse to the familiar case of expected utility. In general we cannot

reduce compound lotteries, so that the intertemporal composition of risk matters: the agent prefers an

early resolution of uncertainty if � > �: The stochastic discount factor is:

Mt+1 = �

�
Ct+1
Ct

��� 
Vt+1

Et(V
1��
t+1 )

1
1��

!���
:

I assume that the stochastic process for the endowment is the same as in Proposition 2. This section

analyzes the case of an i.i.d. probability of disaster: at each date t, a new probability pt that a disaster

occurs at time t + 1 is drawn from the same distribution F: This is the only case which appears to be

solvable with pencil and paper. The next section studies numerically the case of a persistent probability

of disaster.

Proposition 5 Assume that the disaster probability is i.i.d., i:e: F (pt+1jpt) = F (pt+1): Then (a) if

� � 1, the P-D ratio is increasing in p if and only if � > 1; (b) if � � 1, the risk-free rate is decreasing

in p for p small enough, and the expected equity return is decreasing in p if � > 1, but can be increasing

or decreasing in p if � < 1; (c) the equity premium is always increasing in p, for p small enough.

Proof. First, rewrite the utility recursion as:

Vt
Ct
=

0@1� � + �Et � Vt+1
Ct+1

�1�� �
Ct+1
Ct

�1��! 1��
1��
1A

1
1��

:

11See Gourio (2008) for a simple analysis of the dynamics after disaster.
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The state variable is the probability of a disaster p: Let g(pt) = Vt=Ct: The two random variables Ct+1
Ct

and Vt+1
Ct+1

are independent, hence g satis�es the functional equation:

g(p)1�� = 1� � + �
�
Eg(p0)1��

� 1��
1��

�
1� p+ p(1� b)1��

� 1��
1�� e(1��)�+(1��)(1��)

�2

2 ;

where the expectation is over p0 next period; given the iid assumption, this expectation is independent

of p. The price-dividend ratio satis�es Pt=Ct = q(pt) with:

q(p) = Et

�
Mt+1

Ct+1
Ct

�
1 +

Pt+1
Ct+1

��
;

q(p) = Et

0@��Ct+1
Ct

�1�� 
Vt+1

Et(V
1��
t+1 )

1
1��

!��� �
1 +

Pt+1
Ct+1

�1A :
Straightforward computations yield:

q(p) = �e(1��)�+(1��)(1��)
�2

2

�
1� p+ p(1� b)1��

� 1��
1�� E(g(p

0)��� (1 + q(p0)))

E (g(p0)1��)
���
1��

:

The expectation on the right-hand side is independent of p, given the iid assumption. Hence, if � > 1;

the price-dividend ratio q(p) is increasing in p if and only if (1��)=(1� �) > 0 i.e. 1�� < 0 or � > 1;

i.e. an elasticity of substitution less than unity.

The expected equity return is:

EtR
e
t+1(p) = Et

�
q(pt+1) + 1

q(p)

Ct+1
Ct

�
;

=
E (q(p0)) + 1

q(p)
(1� p+ p(1� b)) e�+�2

2 ;

=
(1� p+ p(1� b)) e�+�2

2

�e(1��)�+(1��)(1��)
�2

2 (1� p+ p(1� b)1��)
1��
1��

E (q(p0) + 1)E
�
g(p0)1��

����
1��

E (g(p0)��� (1 + q(p0)))
:

Hence,

logERe(p) = constant � log � + ��+
�2

2
(1� (1� �)(1� �)) + log (1� p+ p(1� b))

(1� p+ p(1� b)1��)
1��
1��

:

Note that in contrast to Proposition 2, this need not be decreasing in p: Taking derivatives, one can see

that there are two e¤ects. If � > 1; the total e¤ect is negative, but if � < 1; it can be positive.

The risk-free rate is:

Rf (p) =
1

Et(Mt+1)
=

Et

��
Vt+1
Ct+1

�1�� �
Ct+1
Ct

�1������
1��

�Et

��
Ct+1
Ct

��� �
Vt+1
Ct+1

����� ;

=

�
1� p+ p(1� b)1��

����
1�� e(���)�+(���)(1��)

�2

2 E
�
g(p0)1��

����
1��

�e���+�
2 �2

2 (1� p+ p(1� b)��)E (g(p0)���)
:

Hence,

logRf (p) = constant� log � + ��+ (�� � � ��)�
2

2
+ log

�
1� p+ p(1� b)1��

����
1��

(1� p+ p(1� b)��) :

We want to prove that p! (1�p+p(1�b)1��)
���
1��

(1�p+p(1�b)��) is decreasing for any �. The derivative has the sign of

�� �
1� �

�
(1� b)1�� � 1

� �
1� p+ p(1� b)��

�
(1� p+ p(1� b)1��) �

�
(1� b)�� � 1

�
:
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To prove that this is positive, for any �, it is su¢ cient to show that

��
1� �

�
(1� b)1�� � 1

� �
1� p+ p(1� b)��

�
<
�
(1� b)�� � 1

� �
1� p+ p(1� b)1��

�
:

By continuity, this is true for small p if and only if

(1� b)1�� � 1
1� � >

(1� b)�� � 1
�� ;

which is true since it is easy to verify that the map �! x��1
� is increasing in � for � < 0 and 0 < x < 1:

Finally, the log equity premium is:

log
ERe(p)

Rf (p)
= constant +

�2

2
(1� (1� �)(1� �))� (�� � � ��)�

2

2

+ log
(1� p+ p(1� b))

�
1� p+ p(1� b)��

�
(1� p+ p(1� b)1��)

= constant + ��2 + log
(1� p+ p(1� b))

�
1� p+ p(1� b)��

�
(1� p+ p(1� b)1��) :

As in Section 2, it is easy to see by taking derivatives that this term is increasing in p for small p:

The main di¤erence with the case of power utility studied in the previous section, is that the expected

equity return need not be decreasing in p if the IES 1=� is larger than unity. Hence, this analysis reveals

that introducing Epstein-Zin preferences can potentially resolve the puzzle raised above: a calibration

with an IES above unity can generate that an increase in the probability of disaster lowers prices,

increases the equity premium and the expected equity return while lowering the risk-free rate. The next

section examines the quantitative success of this model.

Note that the computations above can be extended for leverage and government default. The more

general formulas are

q(p) = �e(���)�+((���)
2+(1��)(���))�

2

2

�
1� p+ p� (1� b)���

�
(1� p+ p� (1� b)1��)

���
1��

E(g(p0)��� (1 + q(p0)))

E (g(p0)1��)
���
1��

;

logERe(p) = ���2�(� � �+ ��) �
2

2
+log

�
1� p+ p(1� b)�

�
(1� p+ p� (1� b)���) (1� p+ p� (1� b)1��)

���
1��

+constant;

logERb(p) = � log � + ��+ (�� � � ��)�
2

2
+ log

(1� p+ pr)
�
1� p+ p(1� b)1��

����
1��

(1� p+ p(1� b)��r) + constant.

4 Numerical Results

This section illustrates the qualitative results of Sections 2 and 3, and relaxes some assumptions which

were necessary to obtain these qualitative results. Finally I consider in detail the most promising case

of Epstein-Zin utility with persistent probability of disaster. When the probability of disaster p follows

a Markov chain, the model can be solved numerically with standard techniques.12

4.1 Calibration of the model

Most of the parameters are drawn from Barro (2006). The discount factor is � = 0:97; the trend growth

rate is � = 0:025; the standard deviation of the normally distributed shock is � = 0:02, and risk aversion
12The details and code are are available on my website: http://people.bu.edu/fgourio/research.html.
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is � = 4. I will present the results for various intertemporal elasticities of substitution 1=�: The disaster

size is b = 0:43; and it is assumed that government bonds default by an amount 1� b with probability

0:4 when there is a disaster.13 The process for consumption growth is

� logCt+1 = �+ �"t+1; with probability 1� pt;

= �+ �"t+1 + log(1� b), with probability pt;

where "t+1 is iid N(0; 1). I assume that pt follows a two-state Markov chain, characterized by the two

values ph and pl and the transition matrix:

Q =

0@ 1� � �

� 1� �

1A :
Note that in the interest of parsimony, I assume that Q is symmetric. The new parameters to

calibrate are the probabilities of disaster in the high and low state, ph and pl; as well as the transition

probability �: To calibrate these parameters, I keep the average (over time) of the probability of disaster

equal to 1.7%, as in Barro (2006): hence ph = :017+ " and pl = :017� ", and this leaves two degrees of

freedom: � and ": There is little guidance for these parameters. I start by setting " = :01 and � = :1

and will later pick these parameters to maximize the �t of the model.

Note that given the values for �; 
; �; b; and �, the assumption that � < 1 is equivalent here to

ph < 0:03009: i.e. the probability of disaster is always less than 3% per year. This is much above the

average value of p estimated by Barro (2006), which is 1.7%, but of course some calibrations could require

that p sometimes wanders to 3% or higher, in which case my su¢ cient condition would be violated.14

For a higher level of risk aversion, the maximum p allowable will be smaller, e.g. if risk aversion is 6, it

is approximately 1.37%, and if risk aversion is 3, it is 4.65%.

4.2 Illustration of the Qualitative Results

I concentrate on the following moments: the unconditional means and standard deviation of the equity

return and the government bond return, the standard deviation of dividend growth and the price-

dividend ratio, and the slope coe¢ cients �Re and �ReRf in the regressions presented in the introduction

(equity return and equity excess return on dividend yield respectively). To make the mechanics of the

model transparent, Table 1 presents the model-implied P-D ratios and expected returns and excess

returns conditional on each state. State 1 has a low probability of disaster next period and state 2 has

a high probability of disaster next period. Table 2 computes the moments implied by the model. Table

3 presents the moments in a sample in which no disaster occurred.

Consider �rst the case of expected utility analyzed in section 2: we set � = 1=� = :25. The results

are reported in row 1. This model can generate large variations in the equity premium (from 1.77% in

the low probability state to 5.08% in the high probability state), but it also implies large changes in

13Barro (2006) actually uses the historical distribution of disaster sizes, but the equity premium he obtains is the same

as the one implied by a single b = :43:
14Numerically, even if p is sometimes higher than this critical value, prices are still �nite as long as p is not too high

�too often�. I did not �nd an example of �nite prices where the analytical results of sections 2 and 3 did not hold.
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the expected bond return (8.25% in the low probability state and -4.59% in the high probability state).

As proved in Section 2, the regression coe¢ cients �Re and �ReRf have opposite signs, contrary to the

data. As argued in section 2, the government bond return -which is not purely risk-free in this model-

is fairly volatile (6.78% vs. 4.36% in the data) and the price-dividend ratio is not volatile enough (.183

vs. .415).

Row 2 adds leverage to the model. Leverage allows to match more closely the volatility of dividend

growth. I follow the standard formulation: � logDt = �� logCt; and I set � = 2:5.15 The volatility of

dividends jumps from 2.05% to 5.33% without disasters (6.05% to 11.07% with disasters). This leads to

higher risk premia and lower P-D ratios, but does not a¤ect the signs of the regression coe¢ cients, since

the leverage � is less than risk aversion 
: Moreover, the volatility in prices is even lower. Of course,

bond returns are una¤ected by leverage.

It is easy to check now if the independence assumption (i.e., the new draw pt+1 is independent on

whether there was a disaster at t+1, conditional on pt) a¤ects the result quantitatively. Row 3 assumes

that if there is a disaster, the probability of drawing a high p is high, and row 4 considers the opposite

case. Formally, the matrix Q is di¤erent in the disaster state:

Q =

0@ 1� �0 �0

�00 1� �00

1A ;
with �0 > � and �00 < � for row 3 (and the opposite for row 4): if there is a disaster, the probability of

switching from low to high probability of disaster is higher than usual, and the probability of switching

from high to low probability of disaster is lower than usual. I set �0 = :15 and �00 = :05 to illustrate

this e¤ect. The changes are relatively minor: the expected equity return is 5.26% in row 1, 5.42% in

row 3 and 5.09% in row 4. The regression coe¢ cients, the volatility of P-D ratios, and the volatility of

the government bond return are also only slightly a¤ected.

Row 5 turns to the case of Epstein-Zin utility and i.i.d. probabilities of disasters: � = :5. For this

example, I set � = :67, corresponding to an elasticity of substitution of 1:5: As discussed in section 3,

the model now generates the correct sign for the two regressions. However, the magnitude is o¤, since

the expected equity return varies much less than the equity premium - the price-dividend ratio is not

volatile enough. This turns out to be mostly due to leverage.16

4.3 Epstein-Zin utility and persistent probability of disaster

I now evaluate the model by picking parameters to maximize its �t. Given that the model does reasonably

well for the average risk-free rate and equity premium (since on average this is the disaster model of

Barro (2006)), I pick � and " to match the standard deviation of the log price-dividend ratio and the

regression coe¢ cient of excess equity return on the dividend yield in a sample without disasters. For

these experiments I set the leverage parameter to the standard value � = 3, implying that dividends fall

by 80% during disasters. This is consistent with the view of Longsta¤and Piazzesi (2004) who argue that

15A higher value of �; such as the standard value of 3, leads to in�nite prices for these parameter values.
16 If the elasticity of substitution is unity, the price-dividend ratio is constant, as can be seen from the formulas of section

3. Adding leverage introduces some variation in the price-dividend ratio however.
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dividends were �obliterated�during the Great Depression. Matching the two targets without leverage

is impossible: the variation in the price-dividend ratio is much too low.

Row 6 reports the results of this experiment when � is set equal to .67: The best �tting parameters

are " = :169; so that the probability of disaster oscillates between almost 0% and 3:4%, and the transition

probability is � = 4:26%: Row 7 reports the results when � = 1: In this case the best �t is obtained

for " = :160 and � = 3:09%: Both of these calibrations yield attractive results: the volatility of equity

returns is high, the volatility of the bond return is low, the regression coe¢ cients are in the right ballpark.

Dividend volatility is high, given the high leverage, but this may be consistent with the data. The main

problem is that the average equity premium is too high: to generate enough return predictability, the

model needs to have very large equity premia on average. A calibration with a lower risk aversion

coe¢ cient can partially mitigate this issue.

Is this calibration reasonable? This crucial question is hard to answer, since the success of this

calibration is solely driven by the large and persistent variation in the disaster probability, which is

unobservable.

5 Conclusions

One purpose of this note is to show a simple setup in which it is possible to obtain exact analytical results

in asset pricing models with time-varying risk premia and time-varying interest rates, without assuming

log-linearity or log-normality. The critical assumption is that the state variable determining risk premia

is conditionally independent of the variable(s) determining dividend growth and consumption growth.

As a result, this state variable itself is not priced, which simpli�es the analysis.

Substantially, my results suggest that it is di¢ cult for the disaster model to �t the facts on pre-

dictability of stock returns and excess stock returns. With Epstein-Zin utility, the model can �t the

facts qualitatively, and to some extent quantitatively, if we allow for a highly variable probability of dis-

aster, leverage, and an IES above unity. However, an IES above unity diminishes markedly the equity

premium implied by the model if disasters are not fully permanent, as explained in Gourio (2008).
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Parameters Low probability state High probability state

Row IES pl ph � � PD ERb ERe E(Re-ERb) PD ERb ERe E(Re-Rb)

1 0.250 0.7 2.7 0.100 1 31.4 8.2 10.0 1.77 45.25 -4.59 0.49 5.08

2 0.250 0.7 2.7 0.100 2.5 20.7 8.2 12.4 4.13 23.07 -4.59 7.85 12.43

3 0.250 0.7 2.7 0.100 1 33.4 8.2 9.95 1.70 48.52 -4.59 0.31 4.90

4 0.250 0.7 2.7 0.100 1 29.7 8.2 10.1 1.84 42.48 -4.59 0.67 5.26

5 1.5 0.7 2.7 0.500 1 32.6 3.2 4.9 1.72 32.30 -0.39 4.96 5.35

6 1.5 0.01 3.39 0.043 3 25.4 4.1 9.6 5.51 11.17 -1.55 20.10 21.64

7 1 0.1 3.3 0.031 3 25.5 5.4 10.3 4.96 11.63 -1.98 17.98 19.96

Table 1: This table reports, for various parameter values, the price-dividend ratio, the expected bond

return, equity return, and equity premium, in both the low probability state and the high probability

state. Rows 3 and 4 allow for disasters to be correlated with the future probability of disasters.

Row IES pl ph � � ERb ERe �(Re) �(Rb) �(D) �(p� d) �ReRb �Re

1 0.250 0.7 2.7 0.100 1 1.83 5.26 14.00 6.78 6.05 .183 -3.43 9.71

2 0.250 0.7 2.7 0.100 2.51 1.83 10.11 12.81 6.78 11.67 .055 -16.45 9.00

3 0.250 0.7 2.7 0.100 1 1.78 5.09 14.16 6.78 6.07 .187 -3.37 10.37

4 0.250 0.7 2.7 0.100 1 1.88 5.42 13.83 6.78 6.04 .179 -3.44 9.20

5 1.5 0.7 2.7 0.500 1 1.41 4.94 6.26 2.87 6.05 .005 126.90 0.75

6 1.5 0.01 3.39 0.043 3 1.29 14.87 26.30 3.58 13.07 .411 3.21 2.08

7 1 0.1 3.3 0.031 3 1.69 14.15 22.66 4.27 13.07 .392 3.20 1.63

Data � � � � � 1.03 8.91 15.04 4.36 14.86 .415 3.83 3.39

Table 2: This table reports, for various parameter values, the model-implied (full sample) unconditional

mean and standard deviation of the equity return and the government bond return; unconditional

standard deviation of dividend growth and the log price-dividend ratio; and the regression slopes of

equity return and excess return on the dividend yield. The data statistics are based on the 1926-2004

sample used by Cochrane (2008). Rows 3 and 4 allow for disasters to be correlated with the future

probability of disasters.
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Row IES pl ph � � ERb ERe �(Re) �(Rb) �(D) �(p� d) �ReRb �Re

1 0.250 0.700 2.700 0.100 1 2.169 6.050 12.679 6.260 2.051 0.183 -3.980 8.835

2 0.250 0.700 2.700 0.100 2.5 2.169 11.547 6.764 6.260 5.332 0.055 -19.064 5.769

3 0.250 0.700 2.700 0.100 1 2.116 5.868 12.935 6.260 2.051 0.187 -3.935 9.462

4 0.250 0.700 2.700 0.100 1 2.222 6.224 12.434 6.260 2.051 0.179 -3.983 8.349

5 1.5 0.700 2.700 0.500 1 1.702 5.715 2.217 1.625 2.051 0.005 150.973 34.306

6 1.5 0.010 3.390 0.043 3 1.623 16.474 23.551 2.551 6.485 0.411 3.768 2.750

7 1 0.100 3.300 0.031 3 2.030 15.741 19.344 3.402 6.485 0.392 3.772 2.315

Data � � � � � 1.03 8.91 15.04 4.36 14.86 .415 3.83 3.39

Table 3: This table reports, for various parameter values, the model-implied unconditional mean and

standard deviation of the equity return and the government bond return; unconditional standard de-

viation of dividend growth and the log price-dividend ratio; and regression slope of equity return and

excess return on the dividend yield. These statistics are computed for a sample without disasters. The

data statistics are based on the 1926-2004 sample used by Cochrane (2008). Rows 3 and 4 allow for

disasters to be correlated with the future probability of disasters.
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