

Ambiguity, learning and asset returns

Nengjiu Ju and Jianjun Miao

Discussion. Johannes Gierlinger (TSE)

Paris, September 1, 2008

Discussion. Johannes Gierlinger (TSE)

Main achievements

Theory pioneers Dynamic asset pricing with ambiguous dividends and KMM agents.

Numerical pioneers Analytical solutions. Joint calibration of degrees of risk- and ambiguity aversion.

They find that

- Ambiguity aversion is not "just another source of risk-averting investor behavior".
- The KMM framework is rich enough to simulatneously generate real world puzzles.

- Log-utility calibration yields relatively low level of AAA + It has a clear effect on the equity premium.
- Power-power specification requires extreme ambiguity aversion
 + It does not have a clear effect on the equity premium
 (Discontinuity in CRAA parameter).

Nengjiu Ju and Jianjun Miao Ambiguity, learning and asset returns

	Comments ○●○	
New puzzles		
Why?		

- The high growth regimes become the less desirable ones.
- The pessimistic average puts excessive weight on them.

Specification problem with $\gamma > 1$?

 Power functions are increasing and concave. But only on the positive domain.

Nengjiu Ju and Jianjun Miao

Ambiguity, learning and asset returns

New puzzles

Specification problem with $\gamma > 1$?

- Power functions are increasing and concave. But only on the positive domain.
- \blacksquare Levels of expected utility are bounded from above by 0 if $\gamma>1.$

Nengjiu Ju and Jianjun Miao

Ambiguity, learning and asset returns

New puzzles

Specification problem with $\gamma > 1$?

- Power functions are increasing and concave. But only on the positive domain.
- \blacksquare Levels of expected utility are bounded from above by 0 if $\gamma>1.$
- Ambiguity seeking behavior. Hence optimistic weighting. Cannot explain EPP.

Nengjiu Ju and Jianjun Miao Ambiguity, learning and asset returns

Verify

Pricing kernel

$$M_{t+1,z} = a(\phi, V_{t+1}) \frac{\phi'(E_{\pi}[V_{t+1}(C)])}{E_{\mu}[\phi'(E_{\pi}[V_{t+1}(C)])]} \frac{\beta u'(C_{t+1})}{u'(C_{t})}$$

with

$$a(\phi, V_{t+1}) = \frac{E_{\mu}[\phi'(E_{\pi}[V_{t+1}(C)]]}{\phi'(\phi^{-1}(E_{\mu}[\phi(E_{\pi}[V_{t+1}(C)])]))}$$

If ϕ exhibits nonincreasing absolute ambiguity aversion, then ambiguity aversion increases the share of the riskless asset if V_t and -u' "agree" on a ranking of states.

イロト イポト イヨト イ

Discussion. Johannes Gierlinger (TSE)

Nengjiu Ju and Jianjun Miao Ambiguity, learning and asset returns