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1 Introduction

In production theory and efficiency analysis (see e.g. Shephard, 1970), one is willing to

estimate the boundary of a production set (the set of feasible combinations of inputs and

outputs). This boundary (the production frontier) represents the set of optimal production

plans so that the efficiency of a production unit (a firm, . . . ) is obtained by measuring the

distance from this unit to the estimated production frontier. Parametric approaches rely

on parametric models for the frontier and for the underlying stochastic process, whereas

nonparametric approaches offer much more flexible models for the Data Generating Process

(see e.g. Daraio and Simar 2007, for recent surveys on this topic).

Formally, we consider in this paper technologies where x ∈ R
p
+, a vector of produc-

tion factors (inputs) is used to produce a single quantity (output) y ∈ R+. The at-

tainable production set is then defined, in standard microeconomic theory of the firm, as

T = {(x, y) ∈ R
p
+×R+ | x can produce y}. Assumptions are usually done on this set, such as

free disposability of inputs and outputs, meaning that if (x, y) ∈ T, then (x′, y′) ∈ T, for any

(x′, y′) such that x′ ≥ x (with respect to the partial order) and y′ ≤ y. As far as efficiency

of a firm is of concern, the boundary of T is of interest. The efficient boundary (production

frontier) of T is the locus of optimal production plans (maximal achievable output for a given

level of the inputs). In our setup, the production frontier is represented by the graph of the

production function φ(x) = sup{y | (x, y) ∈ T}. Then the Farrell-Debreu output efficiency

score (Farrell 1957, Debreu 1951) of a firm operating at the level (x, y) is given by the ratio

φ(x)/y.

Cazals, Florens and Simar (2002) propose a probabilistic interpretation of the production

frontier. Let (Ω,A, P) be the probability space on which the random variables X and Y

are defined and let T be the support of the joint distribution of (X, Y ). The distribution

function of (X, Y ) can be denoted F (x, y) and F (·|x) = F (x, ·)/FX(x) will be used to denote

the conditional distribution function of Y given X ≤ x, with FX(x) = F (x,∞) > 0. It has

been proven in Cazals et al. (2002) that the function

ϕ(x) = sup{y ≥ 0|F (y|x) < 1}

is monotone nondecreasing with x. So for all x′ ≥ x with respect to the partial order,

ϕ(x′) ≥ ϕ(x). The graph of ϕ is the smallest nondecreasing surface which is larger than

or equal to the upper boundary of T. Further, it has been shown that under the free

disposability assumption, ϕ ≡ φ, i.e., the graph of ϕ coincides with the production frontier.

Since T is unknown, it has to be estimated from a sample of i.i.d. firms Xn = {(Xi, Yi)|i =

1, . . . , n}. The Free Disposal Hull (FDH) of Xn, introduced by Deprins, Simar and Tulkens
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(1984) is T̂FDH =
{
(x, y) ∈ R

p+1
+ | y ≤ Yi, x ≥ Xi, i = 1, . . . , n

}
. The resulting FDH esti-

mator of the frontier function ϕ(x) is defined as

ϕ̂1(x) = sup{y ≥ 0|F̂ (y|x) < 1} = max
i:Xi≤x

Yi

where F̂ (y|x) = F̂n(x, y)/F̂X(x) with F̂n(x, y) = (1/n)
∑n

i=1 1I(Xi ≤ x, Yi ≤ y) and F̂X(x) =

(1/n)
∑n

i=1 1I(Xi ≤ x). This estimator represents the lowest monotone step function covering

all the data points (Xi, Yi). The asymptotic behavior of ϕ̂1(x) was first derived by Korostelev,

Simar and Tsybakov (1995) for the consistency and by Park, Simar and Weiner (2000) and

Hwang, Park and Ryu (2002) for the asymptotic sampling distribution. To summarize, under

regularity conditions, the FDH estimator ϕ̂1(x) is consistent and converges to a Weibull

distribution with some unknown parameters. In Park et al (2000), the obtained convergence

rate n−1/(p+1) requires that the joint density of (X, Y ) has a jump at its support boundary.

In addition, the estimation of the parameters of the Weibull requires the specification of

smoothing parameters and the resulting procedure has very poor accuracy. In Hwang et

al (2002), the convergence of ϕ̂1(x) to the Weibull distribution has been established in a

general case where the density of (X, Y ) may decrease to zero or rise up to infinity at a

speed of power β (β > −1) of the distance from the frontier. They obtain the convergence

rate n−1/(β+2) and extend the particular result of Park et al (2000) where β = 0, but their

result is only derived in the simple case of one-dimensional inputs (p = 1) which may be of

less interest in practice.

In this paper we first analyze the properties of the FDH estimator from an extreme-value

theory perspective. By doing so, we generalize and extend the results of Park et al. (2000)

and Hwang et al. (2002) in at least three directions. First we provide the necessary and

sufficient condition for the FDH estimator to converge in distribution and we specify the

asymptotic distribution with the appropriate rate of convergence. We also provide a limit

theorem of moments in a general framework. Second, we show how the unknown parameter

ρx > 0 involved by the necessary and sufficient extreme-value condition, is linked to the

dimension p + 1 of the data and to the shape parameter β > −1 of the joint density: in the

general setting where p ≥ 1 and β = βx may depend on x, we obtain under a convenient

regularity condition the general convergence rate n−1/ρx = n−1/(βx+p+1) of the FDH estimator

ϕ̂1(x). Third, we suggest a strongly consistent and asymptotically normal estimator of the

unknown parameter ρx of the asymptotic Weibull distribution of ϕ̂1(x). This also answers

the important question of how to estimate the shape parameter βx of the joint density of

(X, Y ) when it approaches to the frontier of the support T.

By construction, the FDH estimator is very non-robust to extremes. Recently Aragon,

Daouia and Thomas-Agnan (2005) have built an original estimator of ϕ(x), which is more
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robust than ϕ̂1(x) but it keeps the same limiting Weibull distribution as ϕ̂1(x) under the

restrictive condition β = 0. In this paper, we give more insights and generalize their main

result. We also suggest attractive estimators of ϕ(x) converging to a normal distribution and

which appear to be robust to outliers. The study of the asymptotic properties of the different

estimators considered in this paper, is carried out in a simple and clever way by relating

them to an original dimensionless random sample and then applying standard extreme-

values theory.

The paper is organized as follows. Section 2 presents the main results of the paper and

Section 3 illustrates how the theoretical asymptotic results behave in finite sample situations

and shows an example with a real data set on the production activity of the French post

offices. Section 4 concludes and the proofs are reserved for the Appendix.
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2 The Main Results

Throughout this paper we will denote by ϕα(x) and ϕ̂α(x), respectively, the αth quantiles of

the distribution function F (·|x) and its empirical version F̂ (·|x), with α ∈]0, 1],

ϕα(x) = inf{y ≥ 0|F (y|x) ≥ α} and ϕ̂α(x) = inf{y ≥ 0|F̂ (y|x) ≥ α}.

Asymptotic Weibull distribution

We first derive the following interesting results on the problem of convergence in distribution

of suitably normalized maxima b−1
n (ϕ̂1(x)− ϕ(x)).

Theorem 2.1. (i) If there exist constants bn > 0 and some nondegenerate distribution

function Gx such that

b−1
n (ϕ̂1(x)− ϕ(x))

d−→ Gx, (2.1)

then Gx(y) coincides with the Weibull distribution function

Ψρx
(y) =

{
exp{−(−y)ρx} y < 0
1 y ≥ 0

for some ρx > 0.

(ii) There exists bn > 0 such that b−1
n (ϕ̂1(x)−ϕ(x)) converges in distribution if and only if

lim
t↑∞

1− F (ϕ(x)− 1
tz
|x)

1− F (ϕ(x)− 1
t
|x)

= z−ρx for all z > 0 (2.2)

[ regular variation with exponent − ρx, notation 1− F (ϕ(x)− 1
t
|x) ∈ RV−ρx

].

In this case the norming constants bn can be chosen as : bn = ϕ(x)− ϕ1−(1/nFX (x))(x).

(iii) Given (2.2), if E(Y k|X ≤ x) < ∞ for some integer k ≥ 1, then

lim
n→∞

E{b−1
n (ϕ(x)− ϕ̂1(x))}k = Γ(1 + kρ−1

x ),

where Γ(·) denotes the gamma function.

(iv) Given (2.2), if E(Y 2|X ≤ x) < ∞ then

lim
n→∞

P

[
ϕ̂1(x)− E(ϕ̂1(x))

{Var(ϕ̂1(x))}1/2
≤ y

]
= Ψρx

[{Γ(1 + 2ρ−1
x )− Γ2(1 + ρ−1

x )}1/2y − Γ(1 + ρ−1
x )].

Remark 2.1. Since FX(x)[1 − F (ϕ(x) − 1
t
| x)] ∈ RV−ρx

by (2.2), this function can be

represented as t−ρxLx(t) with Lx(·) ∈ RV0 (Lx being slowly varying) and so, the extreme-

value condition (2.2) holds if and only if we have the following representation

FX(x)[1− F (y | x)] = Lx

(
1

ϕ(x)− y

)
(ϕ(x)− y)ρx as y ↑ ϕ(x). (2.3)
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In the particular case where Lx

(
1

ϕ(x)−y

)
= `x is a strictly positive function in x, it is shown

in the following corollary that bn ∼ (n`x)
−1/ρx.

Corollary 2.1. Given (2.3) or equivalently (2.2) with Lx

(
1

ϕ(x)−y

)
= `x > 0, we have

(n`x)
1/ρx

(
ϕ(x)− ϕ̂1(x)

) d−→ Weibull(1, ρx) as n →∞.

Remark 2.2. Consider the assumption that the joint density function of (X, Y ) satisfies

f(x, y) = cx {ϕ(x)− y}β + o({ϕ(x)− y}β) as y ↑ ϕ(x), (2.4)

for some constant β > −1, with cx being a strictly positive function in x. Under the

restrictive condition that the density f is strictly positive on the frontier (i.e. β = 0)

among others, Park et al (2000) have obtained the limiting Weibull distribution of the FDH

estimator with the convergence rate n−1/(p+1). When β may be non nul, Hwang et al (2002)

have obtained the asymptotic Weibull distribution with the convergence rate n−1/(β+2) in the

simple case where p = 1 (here it is also assumed that (2.4) holds uniformly in a neighborhood

of the point at which we want to estmate ϕ(·) and that this frontier function is strictly

increasing in that neighborhood and satisfies a Lipschitz condition of order 1). In the general

setting where p ≥ 1 and β = βx > −1 may depend on x, we have the following more general

result which involves the link between the regular variation index ρx, the dimension p + 1 of

the data and the shape parameter βx of the joint density near the boundary.

Corollary 2.2. If the condition of Corollary 2.1 holds with the functions `x > 0, ρx > p

and ϕ(x) being differentiable and the partial derivatives of ϕ(x) being strictly positive, then

(2.4) holds with βx = ρx − (p + 1) and we have

(n`x)
1/(βx+p+1)

(
ϕ(x)− ϕ̂1(x)

) d−→ Weibull(1, βx + p + 1) as n →∞.

Remark 2.3. We assume the diffrentiability of the functions `x, ρx with ρx > p and ϕ(x) in

order to ensure the existence of the joint density near its support boundary. We distinguich

between three different behaviors of this density at the frontier point (x, ϕ(x)) ∈ R
p+1

following the value of ρx compared with the dimension (p + 1): when ρx > p + 1 the joint

density decays to zero at a speed of power ρx − (p + 1) of the distance from the frontier;

when ρx = p + 1 the density has a sudden jump at the frontier; when ρx < p + 1 the density

rises up to infinity at a speed of power ρx − (p + 1) of the distance from the frontier. The

case ρx ≤ p + 1 corresponds to sharp or fault-type frontiers.

As an immediate consequence of Corollary 2.2, when p = 1 and βx = β (or equivalently

ρx = ρ) does not depend on x, we obtain the convergence in distribution of the FDH
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estimator as in Hwang et al (2002) with the same convergence rate n−1/(β+2) (in the notations

of Theorem 1 in Hwang et al (2002), µ(x) = `x(β + 2)ϕ′(x) = `xρxϕ
′(x)). In the other

particular case where the joint density is strictly positive on the frontier, we achieve the best

rate of convergence n−1/(p+1) as in Park et al, 2000 (in the notations of Theorem 3.1 in Park

et al (2000), µNW,0/y = `
1/(p+1)
x = `

1/ρx
x ).

Note also that the condition (2.4) has been considered by Hardle, Park and Tsybakov

(1995) and by Hall, Park and Stern (1998). In a next section (see Conditional tail index

extimation) we answer the important question of how to estimate the shape parameter βx

in (2.4) or equivalently the regular variation exponent ρx in (2.2).

On the other hand, as an immediate consequence of Theorem 2.1 (iii) in conjunction

with Corollary 2.2, we obtain

E{ϕ(x)−ϕ̂1(x)}k = k{βx+p+1}−1{n`x}−k/(βx+p+1)Γ

(
k

βx + p + 1

)
+o(n−k/(βx+p+1)). (2.5)

This extends the limit theorem of moments of Park et al (2000, Theorem 3.3) to the more

general setting where βx may be non nul. Likewise, Hwang et al (2002, see Remark 1)

provides (2.5) only for k ∈ {1, 2}, p = 1 and βx = β. The result (2.5) also reflects the well

known curse of dimensionality from which suffers the FDH estimator ϕ̂1(x) as the number

p of inputs-usage increases, pointed out earlier by Park et al (2000) in the particular case

where βx = 0.

Robust frontier estimators

By an appropriate choice of the order α as a function of n, Aragon et al (2005) have shown

that the empirical partial frontier ϕ̂α(x) estimates the full frontier ϕ(x) itself and convereges

to the same Weibull distribution as the FDH ϕ̂1(x) under the restrictive conditions of Park

et al (2000). The next theorem gives more insights and generalizes their main result.

Theorem 2.2. (i) If b−1
n (ϕ̂1(x)−ϕ(x))

d−→ Gx, then for each k ∈ {0, 1, . . . , nF̂X(x)−1},

b−1
n

(
ϕ̂1− k

nF̂X (x)

(x)− ϕ(x)

)
d−→ Hx

for the distribution function Hx(y) = Gx(y)
∑k

i=0(− log Gx(y))i/i!.

(ii) Suppose the upper bound of the support of Y is finite. If b−1
n (ϕ̂1(x) − ϕ(x))

d−→ Gx,

then b−1
n (ϕ̂αn

(x)−ϕ(x))
d−→ Gx for all sequences αn → 1 satisfying nb−1

n (1−αn) → 0.

Remark 2.4. When the FDH ϕ̂1(x) converges in distribution, the conditional quantile-based

estimator ϕ̂α(n)(x), for α(n) = 1− k/nF̂X(x), estimates the frontier function ϕ(x) itself and
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converges in distribution as well, with the same scaling but a different limit distribution

(here nb−1
n (1− α(n)) → ∞). To recover the same limit distribution as the FDH estimator,

it suffices to choose α(n) → 1 rapidly so that nb−1
n (1 − α(n)) → 0. This extends the main

result of Aragon et al (2005, Theorem 4.3) where the convergence rate achieves n−1/(p+1)

under the restrictive assumption that the joint density of (X, Y ) is strictly positive on the

frontier. Note also that the estimate ϕ̂α(n) does not envelop all the data points providing a

robust alternative to the FDH frontier ϕ̂1: see Daouia and Ruiz-Gazen (2006) for an analysis

of its quantitative and qualitative robustness properties.

Conditional tail index extimation

An important question in the setup of the obtaind results, is how to estimate ρx from the

multivariate random sample of production units (Xi, Yi), i = 1, . . . , n. This problem is very

similar to that of the estimation of the so-called extreme value index based rather on a sample

of univariate random variables (see, e.g., Embrechts et al., 1997 and the references therein).

An attractive estimation method has been proposed by Pickands (1975). This procedure can

be easily adapted to our approach: let k = kn be a sequence of integers tending to infinity

and let k/n → 0 as n →∞. A Pickands type estimate of ρx can be derived as:

ρ̂x = log 2


log

ϕ̂1− 2k−1

nF̂X (x)

(x)− ϕ̂1− 4k−1

nF̂X (x)

(x)

ϕ̂1− k−1

nF̂X (x)

(x)− ϕ̂1− 2k−1

nF̂X (x)

(x)



−1

. (2.6)

We show in the next theorem that this estimate is weakly consistent and that if kn increases

suitably rapidly, then there is strong consistency. We also give extreme-value conditions

under which ρ̂x is asymptotically normal. This result is particularly important since it

allows to test the hypothesis ρx > 0 and will be employed in the next section (see Asymptotic

Normal distribution) to derive confidence intervals for ϕ(x).

Theorem 2.3. (i) If (2.2) holds, kn →∞ and kn/n → 0, then ρ̂x
P−→ ρx.

(ii) If (2.2) holds, kn/n → 0 and kn/ log log n →∞, then ρ̂x
a.s.−→ ρx.

(iii) Assume that U(t) := ϕ1− 1
tFX (x)

(x) has a positive derivative and that there exists a

positive function A(·) such that for z > 0

lim
t↑∞

(tz)1+ 1
ρx U ′(tz)− t1+

1
ρx U ′(t)

A(t)
= ± log(z),

for either choice of the sign [ Π-variation, notation ±t1+
1

ρx U ′(t) ∈ Π(A) ]. Then

√
kn(ρ̂x − ρx)

d−→ N (0, σ2(ρx)), (2.7)
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with asymptotic variance σ2(ρx) = (21− 2
ρx + 1)/{(2− 1

ρx − 1) log 4}2, for kn → ∞ sat-

isfying kn = o(n/g−1(n)), where g−1 is the generalized inverse function of g(t) =

t3+
2

ρx {U ′(t)/A(t)}2.

(iv) If for some κ > 0 and δ > 0 the function
{
tρx−1F ′(ϕ(x)− 1

t
|x)− δ

}
∈ RV−κ, then√

kn(ρ̂x − ρx)
d−→ N (0, σ2(ρx)), for kn →∞ satisfying kn = o(n/g−1(n)), with g(t) =

t3+
2

ρx

{
U ′(t)/

(
t1+

1
ρx U ′(t)− [δFX(x)]−1/ρx(ρx)

1
ρx
−1

)}2

.

Remark 2.5. Note that the second-order regular variation conditions (iii) and (iv) of The-

orem 2.3 are difficult to check in practice, which makes the theoretical choice of the sequence

{kn} a hard problem. In practice, in order to choose a reasonable estimate ρ̂x(kn) of ρx, one

can make the plot of ρ̂x consisting of the points {(k, ρ̂x(k)), 1 ≤ k < nF̂X(x)/4}, and pick

out a value of ρx at which the obtained graph looks stable (see also Remark 2.7). As it will

be illustrated in Section 3, good plots of ρ̂x may require a large sample of the order of several

thousand.

Asymptotic Normal distribution

Another question of particular interest is how to derive asymptotically normal estimates of

high partial frontiers ϕα(x), when α = α(n) ↑ 1, and of the true full frontier ϕ(x) itself.

Theorem 2.4. (i) Assume that F (·|x) has a positive density F ′(·|x) and that F ′(ϕ(x)−
1
t
|x) ∈ RV1−ρx

. Then

√
2kn

ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ1− pn
FX(x)

(x)

ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)

d−→ N (0, V1(ρx)) (2.8)

where V1(ρx) = ρ−2
x 21− 2

ρx /
(
2−1/ρx − 1

)2
, provided pn → 0, npn →∞ and kn = [npn].

(ii) Suppose the conditions of Theorem 2.3 (iii) or (iv) hold and define

ϕ̂∗1(x) :=
ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)

21/ρ̂x − 1
+ ϕ̂1− kn−1

nF̂X (x)

(x). (2.9)

Then

√
2kn

ϕ̂∗1(x)− ϕ(x)

ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)

d−→ N (0, V2(ρx)), (2.10)

where V2(ρx) = 3ρ−2
x 2−1− 2

ρx /
(
2−1/ρx − 1

)6
.
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Let us now consider the asymptotic behavior of ϕ̂∗1(x) in two particular cases: the case

when ρx is known (here we will denote the resulting estimator ϕ̃∗1(x)) and the case where k

is fixed (here we denote the estimator ϕ∗1(x)).

Theorem 2.5. (i) Suppose the conditions of Theorem 2.3 (iii) or (iv) hold and define

ϕ̃∗1(x) :=
ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)

21/ρx − 1
+ ϕ̂1− kn−1

nF̂X (x)

(x). (2.11)

Then

√
2kn

ϕ̃∗1(x)− ϕ(x)

ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)

d−→ N (0, V3(ρx)), (2.12)

where V3(ρx) = ρ−2
x 2−

2
ρx /

(
2−1/ρx − 1

)4
.

(ii) Assume that (2.2) holds and define ϕ∗1(x) := ϕ̂∗1(x) with k fixed. Then

ϕ∗1(x)− ϕ(x)

ϕ̂1− k−1

nF̂X (x)

(x)− ϕ̂1− 2k−1

nF̂X (x)

(x)

d−→ (1− 2−1/ρx)−1 + {e−Hk/ρx − 1}−1, (2.13)

where Hk is a random variable having a beta-type density function:

fk(z) =
(2k)!

k!(k − 1)!
e−(k+1)z(1− e−z)k−1, for z ≥ 0.

Remark 2.6. Note that Theorem 2.4 (ii) is still valid if the estimate ρ̂x is replaced by the

true value ρx up to a change of the asymptotic variance.

Remark 2.7. Theorems 2.1-2.5 follow easily by applying the elegant devices of Dekkers and

de Haan (1989), among others, in conjunction with the clever idea that ϕ(x) coincides with

the right endpoint of the common distribution of the univariate random variables Zx
i :=

Yi1I(Xi ≤ x), i = 1, ..., n. It is also clear from the proofs that ρ̂x as well as the estimates

of the partial and full frontiers can be easily computed in practice by employing the order

statistics Zx
(n−k) = ϕ̂1− k

nF̂X (x)
(x). This identity can also be of some help in finding an optimal

choice for the sequence kn. Indeed various selection methods for kn suggested in the context

of univariate extreme value estimation (see e.g. Guillou and Hall 2001 and the references

therein) could be adapted to our problem. Of course, the selected number kn of extreme

observations Zx
i involved in the definition of the estimators ρ̂x, ϕ̂∗1(x) and ϕ̃∗1(x) should

depend on the fixed level x ∈ R
p of inputs-usage. In Section 3, we suggest a simple data

driven method for selecting reasonable values of kn(x) for a set of grid of values for x.
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Remark 2.8. In the particular case where Lx

(
1

ϕ(x)−y

)
= `x in (2.3), the condition of

Theorem 2.4 (i) holds, that is F ′(ϕ(x) − 1
t
| x) = `xρx

FX(x)

(
1
t

)ρx−1 ∈ RV1−ρx
. But the condi-

tions of Theorem 2.3 (iii) and (iv) do not hold in this particular case since both functions

t1+
1

ρx U ′(t) = 1
ρx

(
1
`x

)1/ρx

and tρx−1F ′(ϕ(x) − 1
t
| x) = `xρx

FX(x)
are constant in t. Nevertheless,

we have t1−γxU ′(t) ≡ constant (with the notation γx of our proofs), so that the left-hand

side of Equation (2.3) in Dekkers and de Haan (1989) is identically zero. It follows that the

conclusion of Theorem 2.3 (iii) or (iv) holds for all sequences kn → ∞ satisfying kn

n
→ 0.

The same is true for the conclusion of Theorem 2.4 (ii). The next theorem gives another

variant of this result.

Theorem 2.6. Suppose the condition of Corollary 2.1 holds. Then

ρxk
1/2
n

(kn/n`x)
1/ρx

[
ϕ̂1− kn−1

nF̂X (x)

(x) + (kn/n`x)
1/ρx − ϕ(x)

]
d−→ N (0, 1) as n →∞,

provided that kn →∞ and kn/n → 0 as n →∞.

Alternatively, we have the following formulation.

Corollary 2.3. Suppose αn ↑ 1 and n(1− αn) →∞ as n →∞. Then, under the condition

of Theorem 2.6,

ρxk
1/2
n

Bn
[ϕ̂αn

(x)− ϕ(x) + Bn]
d−→ N (0, 1) as n →∞,

where Bn = (kn/n`x)
1/ρx with kn − 1 being the integral part of n(1− αn)F̂X(x).

Example 2.1. We consider the case where the monotone boundary of the support of (X, Y )

is linear. We choose (X, Y ) uniformly distributed over the region D = {(x, y) | ≤ x ≤ 1, 0 ≤
y ≤ x}. In this case (see Florens and Simar 2005, Daouia and Ruiz-Gazen 2006, among

others), it can be easily seen that ϕ(x) = x and FX(x)[1 − F (y | x)] = (ϕ(x) − y)2 for all

0 ≤ y ≤ ϕ(x). Thus Lx(·) = `x = 1 and ρx = 2 for all x. Therefore the conclusions of all

Theorems 2.1-2.6 hold (see Remark 2.8).

Example 2.2. We now choose a non linear monotone upper boundary given by the Cobb-

Douglas model Y = X1/2 exp (−U), where X is uniform on [0, 1] and U , independent of

X, is Exponential with parameter λ = 3 (see, e.g., Gijbels, Mammen, Park and Simar

1999). Here, the frontier function is ϕ(x) = x1/2 and the conditional distribution function

is F (y|x) = 3x−1y2 − 2x−3/2y3, for 0 < x ≤ 1 and 0 ≤ y ≤ ϕ(x). It is then easy to

see that the extreme-value condition (2.2), or equivalently (2.3), holds with ρx = 3 and

Lx(z) = FX(x)[3ϕ(x)− 2
z
]/[ϕ(x)]4 for all x ∈]0, 1] and z > 0.
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3 Finite Sample Performance

The simulation experiments of this section illustrate how the convergence results work out

in practice. We also apply our approach to a real data set.

3.1 Simulated samples

We will simulate a sample of size n = 1000 and one of size n = 5000 according the scenario of

Example 2.1 above. Here ϕ(x) = x and ρx = 2. By construction of the estimators ρ̂x, ϕ̂∗1(x)

and ϕ̃∗1(x), the threshold kn(x) can vary between 1 and nF̂X(x)/4. Denote by Nx = nF̂X(x)

the number of observations (Xi, Yi) with Xi ≤ x.

The number of extreme observations (Xi, Yi), with Xi ≤ x, used to estimate ρx and ϕ(x)

is 4kn(x) for ρ̂x and ϕ̂∗1(x), whereas it is 2kn(x) for ϕ̃∗1(x). Then, as it can be expected, if

kn(x) or Nx is too small, the variance of the estimator of ρ̂x may be large because of the large

variation of the few extreme observations (Xi, Yi), with Xi ≤ x, involved in the estimation

of ρx: this large variation may result in negative or too large values of ρ̂x. It is easy to see

that ρ̂x ≥ 0 if and only if

ϕ̂
1− kn(x)−1

nF̂X (x)

(x)− ϕ̂
1− 2kn(x)−1

nF̂X(x)

(x) ≤ ϕ̂
1− 2kn(x)−1

nF̂X (x)

(x)− ϕ̂
1− 4kn(x)−1

nF̂X (x)

(x).

Likewise, the confidence bands ρ̂x±1.96σ(ρ̂x)/
√

kn(x) of ρx obtained from (2.7) may be neg-

ative or too large. In particular, the use of small input valuex x may result in disappointing

estimates ρ̂x (and also for ϕ̂∗1(x) that suffers from the vexing defects of ρ̂x) and corresponding

confidence bands due to the conditioning by X ≤ x (this is a border effect).

This exactly what happens for the first case when our sample size n = 1000 and for

values of x as small as 0.25 (see Table 1). On the contrary, the estimator ϕ̃∗1(x) computed

with the true value of ρx = 2 provides more reasonable estimates of ϕ(x) and is rather stable

with respect to the choice of kn(x).

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

12 2.99 0.03 5.96 0.336 -0.414 1.087 0.264 0.179 0.348
11 2.48 -0.08 5.04 0.294 -0.221 0.808 0.261 0.178 0.343
10 1.68 -0.13 3.50 0.228 0.003 0.453 0.246 0.172 0.320
9 4.97 -0.77 10.71 0.480 -1.648 2.607 0.277 0.187 0.368
8 3.66 -0.80 8.12 0.397 -0.861 1.656 0.284 0.187 0.380
7 3.55 -1.07 8.16 0.379 -0.812 1.570 0.280 0.183 0.376
6 1.98 -0.78 4.74 0.262 -0.083 0.607 0.263 0.179 0.347
5 2.27 -1.20 5.75 0.262 -0.147 0.672 0.251 0.173 0.328

Table 1: Estimation at x = 0.25, sample size n = 1000. Here Nx = nF̂X(x) = 67.
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Tables 2–4 show the results for larger values of x and, as expected, the estimators ρ̂x and

ϕ̂∗1(x) behaves better, at least for appropriate values of kn(x). Again ϕ̃∗1(x) performs rather

well and is stable to the selected value of kn(x).

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

67 1.45 0.85 2.06 0.435 0.269 0.600 0.515 0.443 0.586
63 1.44 0.82 2.06 0.437 0.271 0.604 0.518 0.445 0.590
59 1.52 0.84 2.19 0.456 0.268 0.643 0.525 0.450 0.599
55 1.17 0.63 1.71 0.404 0.295 0.513 0.510 0.441 0.580
51 1.34 0.70 1.98 0.425 0.285 0.565 0.508 0.438 0.578
47 1.25 0.63 1.87 0.407 0.292 0.522 0.490 0.425 0.555
43 1.10 0.52 1.68 0.382 0.300 0.463 0.467 0.409 0.525
39 1.08 0.48 1.67 0.384 0.307 0.461 0.466 0.409 0.523

Table 2: Estimation at x = 0.50, sample size n = 1000. Here Nx = nF̂X(x) = 268.

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

121 1.52 1.05 1.99 0.615 0.448 0.782 0.702 0.636 0.768
113 1.49 1.01 1.96 0.596 0.445 0.747 0.680 0.618 0.743
105 1.41 0.94 1.88 0.581 0.447 0.716 0.673 0.612 0.734
97 1.61 1.05 2.16 0.619 0.443 0.796 0.680 0.617 0.743
89 1.77 1.13 2.42 0.654 0.438 0.871 0.689 0.624 0.753
81 2.32 1.44 3.20 0.744 0.375 1.113 0.696 0.629 0.763
73 2.15 1.29 3.02 0.714 0.400 1.028 0.693 0.627 0.758
65 2.23 1.29 3.18 0.738 0.393 1.083 0.706 0.639 0.774

Table 3: Estimation at x = 0.75, sample size n = 1000. Here Nx = nF̂X(x) = 582.

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

194 2.38 1.80 2.97 1.084 0.655 1.512 0.985 0.911 1.059
180 1.88 1.40 2.36 0.925 0.665 1.185 0.952 0.883 1.022
166 2.69 1.97 3.41 1.159 0.611 1.707 0.991 0.916 1.066
152 2.96 2.13 3.78 1.220 0.558 1.882 0.995 0.919 1.071
138 2.23 1.58 2.88 1.032 0.655 1.409 0.983 0.909 1.056
124 3.96 2.73 5.19 1.449 0.241 2.657 1.013 0.934 1.093
110 1.95 1.31 2.58 0.982 0.685 1.279 0.992 0.918 1.067
96 2.41 1.57 3.25 1.079 0.624 1.535 1.002 0.925 1.079

Table 4: Estimation at x = 1.00, sample size n = 1000. Here Nx = nF̂X(x) = 1000.

When the sample size increases, the estimators behave much better, even for moderate

values of x. Tables 5–8 display the results for n = 5000. The improvements of ρ̂x and ϕ̂∗1(x)

are remarkable, although the convergence is rather slow.
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kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

40 2.29 1.05 3.53 0.292 0.085 0.500 0.275 0.236 0.313
37 1.74 0.77 2.72 0.253 0.135 0.371 0.267 0.231 0.304
34 1.86 0.77 2.94 0.257 0.127 0.386 0.264 0.229 0.299
31 1.42 0.55 2.29 0.231 0.157 0.305 0.258 0.224 0.291
28 1.65 0.59 2.72 0.243 0.145 0.341 0.258 0.225 0.291
25 1.27 0.40 2.13 0.224 0.168 0.280 0.252 0.221 0.283
22 1.35 0.37 2.33 0.233 0.167 0.299 0.258 0.225 0.290
19 1.79 0.39 3.19 0.251 0.137 0.365 0.259 0.225 0.292

Table 5: Estimation at x = 0.25, sample size n = 5000. Here Nx = nF̂X(x) = 306.

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

300 1.83 1.47 2.19 0.487 0.367 0.606 0.512 0.478 0.546
270 2.19 1.73 2.65 0.553 0.378 0.729 0.526 0.490 0.561
240 2.51 1.96 3.07 0.605 0.371 0.839 0.532 0.496 0.569
210 2.01 1.54 2.48 0.510 0.367 0.653 0.509 0.475 0.543
180 1.68 1.26 2.11 0.467 0.368 0.565 0.501 0.469 0.533
150 1.56 1.12 1.99 0.447 0.367 0.528 0.489 0.458 0.519
120 1.18 0.81 1.55 0.418 0.372 0.464 0.482 0.453 0.510
90 1.45 0.93 1.97 0.441 0.376 0.506 0.478 0.450 0.506

Table 6: Estimation at x = 0.50, sample size n = 5000. Here Nx = nF̂X(x) = 1261.

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

500 1.94 1.65 2.24 0.744 0.612 0.876 0.755 0.721 0.788
465 2.02 1.70 2.34 0.762 0.619 0.905 0.759 0.725 0.793
430 2.44 2.04 2.84 0.848 0.637 1.059 0.769 0.734 0.804
395 2.36 1.96 2.77 0.832 0.633 1.032 0.769 0.734 0.804
360 2.18 1.79 2.58 0.790 0.622 0.958 0.760 0.726 0.794
325 2.39 1.94 2.85 0.822 0.622 1.022 0.762 0.727 0.796
290 2.55 2.04 3.06 0.838 0.614 1.063 0.758 0.724 0.792
255 2.11 1.66 2.56 0.774 0.618 0.931 0.759 0.725 0.793

Table 7: Estimation at x = 0.75, sample size n = 5000. Here Nx = nF̂X(x) = 2843.

kn(x) ρ̂x CI low CI up ϕ̂∗1(x) CI low CI up ϕ̃∗1(x) CI low CI up

1126 2.01 1.81 2.22 1.010 0.867 1.152 1.006 0.972 1.039
1064 2.04 1.82 2.25 1.015 0.869 1.161 1.005 0.971 1.038
1002 2.21 1.97 2.45 1.066 0.894 1.237 1.008 0.974 1.042
940 2.01 1.78 2.23 1.001 0.861 1.142 0.999 0.966 1.032
878 2.31 2.05 2.58 1.096 0.907 1.285 1.016 0.981 1.050
816 1.94 1.71 2.17 0.988 0.855 1.120 1.002 0.968 1.035
754 1.88 1.65 2.11 0.968 0.845 1.090 0.995 0.962 1.028
692 1.88 1.64 2.12 0.966 0.844 1.087 0.991 0.959 1.024

Table 8: Estimation at x = 1.00, sample size n = 5000. Here Nx = nF̂X(x) = 5000.
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3.2 Monte-Carlo experiment

We simulated 5000 samples of size n = 1000 to analyze the bias and the mean squared error

of the different estimators. Here k̄n(x) and N̄x are the average values observed over the

5000 Monte-Carlo replications. In the caption of each table, we also specify the bias and

the MSE of the FDH estimator. For the case n = 1000 (see Tables 9-12), the comments

above are confirmed: we have disappointing estimates ρ̂x and ϕ̂∗1(x), in particular for small

values of x . We see the improvement of ϕ̃∗1(x) over the FDH in terms of the bias, without

increasing too much the MSE. Remember also that these extreme-value estimators have a

normal limiting distribution and so that they are much more easy to handle for providing

confidence intervals. The same exercise was done for the case n = 5000 (see Tables 13-16)

confirming the excellent behavior of the various estimators, in particular for larger values of

x.

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

15.2 -0.371250 2076.162199 -0.040702 17.936723 0.000981 0.001468
14.2 -3.755379 55378.220022 -0.322270 418.449614 0.001193 0.001464
13.2 -4.144351 92811.628558 -0.289035 474.677747 0.001219 0.001477
12.2 -3.104349 54401.318738 -0.287991 375.844276 0.001344 0.001477
11.2 -0.546109 3405.493177 -0.047624 21.182847 0.001541 0.001475
10.2 -2.331159 6147.906639 -0.176869 34.096812 0.001791 0.001446
9.2 -0.978040 4221.365859 -0.078110 17.370830 0.002526 0.001441

Table 9: 5000 Monte-Carlo simulations. Estimation at x = 0.25, sample size n = 1000. Here
N̄x = 62.4. For the FDH estimator we have Bϕ̂1(x) = −0.027853 and MSEϕ̂1(x) = 0.000988

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

51.5 0.625810 290.102767 0.103443 8.618906 0.000120 0.001447
48.0 0.388598 932.254086 0.063367 24.204135 0.000254 0.001445
44.4 -0.150934 4253.678818 -0.028357 104.883774 -0.000206 0.001441
40.9 4.530279 60967.002870 0.597043 1078.215861 -0.000202 0.001427
37.3 15.068476 986776.259939 2.103253 19385.905948 -0.000417 0.001445
33.8 0.225957 915.667792 0.035012 16.368848 -0.000057 0.001424
30.2 0.939559 1700.529419 0.110049 22.505675 -0.000082 0.001460
26.7 -1.318316 4942.662655 -0.138662 54.347023 -0.000961 0.001569

Table 10: 5000 Monte-Carlo simulations. Estimation at x = 0.50, sample size n = 1000.
Here N̄x = 250.1, Bϕ̂1(x) = −0.028417 and MSEϕ̂1(x) = 0.001024
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k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

140.3 0.230635 4.049966 0.063638 0.302785 -0.000492 0.001463
131.7 0.377855 88.847625 0.101028 6.350934 -0.000508 0.001432
123.0 0.446401 104.217617 0.114126 6.651523 -0.000508 0.001432
114.3 0.877701 1327.752528 0.213208 76.116650 -0.000020 0.001438
105.7 -0.859698 7682.098671 -0.211983 455.487287 0.000388 0.001456
97.0 0.392573 59.642659 0.090922 3.382413 0.000781 0.001453
88.4 -0.080519 6226.584550 -0.001355 268.189614 0.001195 0.001473
79.7 0.154144 1486.535566 0.030968 60.918632 0.001474 0.001505

Table 11: 5000 Monte-Carlo simulations. Estimation at x = 0.75, sample size n = 1000.
Here N̄x = 562.7, Bϕ̂1(x) = −0.027926 and MSEϕ̂1(x) = 0.000993

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

250.0 0.114960 0.611321 0.042945 0.084115 0.000632 0.001462
234.3 0.140516 1.446132 0.050816 0.193949 0.001038 0.001469
218.5 0.149288 0.690302 0.051984 0.085653 0.001134 0.001460
202.8 0.191437 4.403866 0.063331 0.453027 0.000791 0.001467
187.0 0.171695 0.606067 0.054599 0.059936 0.000609 0.001436
171.3 0.189518 0.939087 0.057629 0.083464 0.000282 0.001420
155.6 0.211142 1.844034 0.061681 0.144070 0.000126 0.001429
139.8 0.245505 8.868598 0.067017 0.565693 0.000639 0.001464

Table 12: 5000 Monte-Carlo simulations. Estimation at x = 1.00, sample size n = 1000.
Here N̄x = 1000.0, Bϕ̂1(x) = −0.028166 and MSEϕ̂1(x) = 0.001005

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

77.8 0.265806 363.990553 0.023532 3.175978 0.000379 0.000290
74.4 0.420226 43.632246 0.037947 0.372272 0.000427 0.000284
71.1 0.313375 282.300865 0.028278 2.210215 0.000401 0.000284
67.7 -1.326063 13787.214141 -0.117202 106.834595 0.000409 0.000283
64.4 0.860081 493.882481 0.071043 3.372632 0.000456 0.000287
61.0 0.459680 48.319968 0.038234 0.302038 0.000662 0.000290
57.7 -0.971909 13717.553317 -0.076138 78.373638 0.000581 0.000285
54.3 0.784383 846.926494 0.056539 4.762474 0.000641 0.000289

Table 13: 5000 Monte-Carlo simulations. Estimation at x = 0.25, sample size n = 5000.
Here N̄x = 312.6, Bϕ̂1(x) = −0.012577 and MSEϕ̂1(x) = 0.000201
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k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

312.1 0.086268 0.224352 0.015670 0.007356 -0.000087 0.000290
297.0 0.086851 0.248763 0.015382 0.007745 -0.000225 0.000286
281.8 0.090149 0.263425 0.015550 0.007781 -0.000278 0.000284
266.7 0.091899 0.286461 0.015474 0.008059 -0.000371 0.000284
251.6 0.092156 0.309629 0.015032 0.008238 -0.000612 0.000285
236.5 0.104809 0.340925 0.016595 0.008506 -0.000505 0.000288
221.4 0.125818 0.422421 0.019278 0.009943 -0.000388 0.000293
206.3 0.134020 0.513226 0.019892 0.011207 -0.000475 0.000296

Table 14: 5000 Monte-Carlo simulations. Estimation at x = 0.50, sample size n = 5000.
Here N̄x = 1249.7, Bϕ̂1(x) = −0.012617 and MSEϕ̂1(x) = 0.000202

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

702.8 0.035728 0.079383 0.009740 0.005874 -0.000052 0.000292
668.2 0.038507 0.085129 0.010421 0.005992 0.000183 0.000288
633.5 0.043920 0.092585 0.011551 0.006156 0.000316 0.000286
598.8 0.044422 0.095697 0.011334 0.006017 0.000239 0.000282
564.2 0.051037 0.102044 0.012665 0.006044 0.000459 0.000277
529.5 0.050885 0.109137 0.012209 0.006040 0.000287 0.000277
494.8 0.055984 0.120578 0.012913 0.006236 0.000266 0.000277
460.1 0.067703 0.139597 0.015060 0.006759 0.000489 0.000283

Table 15: 5000 Monte-Carlo simulations. Estimation at x = 0.75, sample size n = 5000.
Here N̄x = 2812.9, Bϕ̂1(x) = −0.012698 and MSEϕ̂1(x) = 0.000206

k̄n(x) Bρ̂x
MSEρ̂x

Bϕ̂∗
1
(x) MSEϕ̂∗

1
(x) Bϕ̃∗

1
(x) MSEϕ̃∗

1
(x)

1250.0 0.022876 0.042506 0.008493 0.005594 0.000340 0.000290
1188.0 0.024300 0.046131 0.008811 0.005795 0.000335 0.000296
1126.0 0.023621 0.049323 0.008382 0.005870 0.000227 0.000296
1064.0 0.022926 0.052949 0.007950 0.005959 0.000102 0.000299
1002.0 0.024986 0.054950 0.008414 0.005816 0.000191 0.000297
940.0 0.025146 0.058081 0.008216 0.005764 0.000129 0.000297
878.0 0.027870 0.063172 0.008820 0.005854 0.000216 0.000297
816.0 0.031612 0.069223 0.009598 0.005932 0.000294 0.000289

Table 16: 5000 Monte-Carlo simulations. Estimation at x = 1.00, sample size n = 5000.
Here N̄x = 5000.0, Bϕ̂1(x) = −0.012661 and MSEϕ̂1(x) = 0.000203

3.3 A data driven method for selecting kn(x)

In a real data set situation, the question of selecting the optimal value of kn(x) is still an

open issue and is not addressed here. We only suggest an empirical rule that turns out to

give reasonable estimates of the frontier in the simulated samples above.

The idea is to select a set of grid of values for x, then for each x, we select a grid of values

for kn(x) = [Nx/4] − k + 1, where k is an integer varying between 1 and the integral part
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[Nx/4] of Nx/4. For each pair we evaluate ρ̂x(k) and we select the k where the variation of

the results is the smaller. We achieve this by computing the standard deviations of ρ̂x(k) over

a “window” of 5 successive values of k. For the sample generated with n = 5000 illustrated

above (Tables 5–8) we obtain the results shown in Figure 1. This empirical rule seems to

provide reasonable estimates. The estimator ϕ̃∗1(x) is computed with the true value ρx = 2.
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Data points
FDH frontier
hat φ
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Figure 1: One sample of size n = 5000 from Example 2.1.

3.4 An application

We use the same real data example as in Cazals et al. (2002) and Daouia and Simar (2005)

on the frontier analysis of 9521 French post offices observed in 1994, with X as the quantity

of labor and Y as the volume of delivered mail. In this illustration, we only consider the

n = 4000 observed post offices with the smallest levels xi. We used the emprical rule

explained above for selecting reasonable values for kn(x).
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The cloud of points and the resulting estimates are provided in the top of Figure 2. The

FDH estimator is clearly determined by only a few very extreme points. If we delete one

extreme point from the sample (a clearly outlying point at the North-West of the cloud),

we obtain the bottom picture: the FDH estimator changes drastically, whereas the extreme-

values based estimators are very robust. We also display the values of ϕ̃∗1(x) computed with

ρx = ρ̄x = 1.0189 being the average value of ρ̂x computed over the 200 grid points of x:

ϕ̃∗1(x) and ϕ̂∗1(x) are very similar in this example.
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Figure 2: French post offices data example.
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4 Conclusions

In our approach, we provide the necessary and sufficient condition for the FDH estimator to

converge in distibution, we specify its asymptotic distribution with the appropriate conver-

gence rate and provide a limit theorem of moments in a general framework. As an immediate

consequence, we extend the previuos results of Park et al (2000) and Hwang et al (2002) to

the general setting where p ≥ 1 and β = βx may depend on x in the condition (2.4). We also

give more insights and generalize the main result of Aragon et al (2005) on robust variants

of the FDH estimator ϕ̂1(x) and we provide a strongly consistent and asymptotically normal

estimator of the unknown parameter ρx of the asymptotic Weibull distribution of ϕ̂1(x).

Moreover we answer the question of how ρx is linked to the dimension p + 1 of the data and

to the shape parameter βx of the joint density of (X, Y ) near its support boundary.

Compared to the frontier estimators defined by optimization problems (see, e.g., Hall

et al. 1998), our extreme value-based estimators ϕ̂1(x), ϕ̂αn
(x), ϕ̂∗1(x) and ϕ̃∗1(x) benefit

from explicit and easy formulations. They also have the advantage to not be limited to

a bidimensional support T since they do not require a partition of T as it is the case of

the other extreme value-based estimators (see, e.g., Gardes 2002) or piecewise polynomial

estimators (see, e.g., Korostelev and Tsybakov 1993, Hardle et al. 1995). Moreover, the

new estimators ϕ̂∗1(x) and ϕ̃∗1(x) are asymptotically normally distributed and provide useful

asymptotic confidence bands for the monotone frontier function ϕ(x). The study of extreme-

value properties of the estimators considered in this paper, is easily carried out by relating

them to a simple dimensionless random sample and then applying standard extreme-values

theory (Dekkers and de Haan 1989,...).

We illustrate how the large sample theory applies in practice, by analyzing some simulated

samples and by doing some Monte-Carlo experiment. Good estimates of the frontier and the

conditional tail index may require a large sample of the order of several thousand. Selecting

theoretically the optimal extreme conditional quantiles ϕ̂α(kn(x)) for estimating the frontier

and/or the tail index is a difficult question that deserves for future work. Here, we suggest

a simple data driven method that provides a reasonable choice of the sequence {kn(x)} for

large samples.
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Appendix: Proofs

Proof of Theorem 2.1 (i) Let Zx = Y 1I(X ≤ x) and Fx(·) = 1−FX(x)[1−F (·|x)]. It can be

easily seen that P(Zx ≤ y) = Fx(y) for any y ≥ 0. Therefore {Zx
i = Yi1I(Xi ≤ x), i = 1, ..., n}

is an iid sequence of random variables with common distribution function Fx. Moreover, it is

easy to see that the right endpoint of Fx coincides with ϕ(x) and that maxi=1,...,n Zx
i coincides

with ϕ̂1(x). Thus according to the Fisher-Tippett Theorem, if there exists bn > 0 such that

b−1
n (ϕ̂1(x) − ϕ(x))

d→ G for a nondegenerate distribution function G, then G(y) = e−(−y)ρ

with support ]−∞, 0] and ρ > 0 (see e.g. Embrechts et al. (1997), Theorem 3.2.3, p. 121).

(ii) On the other hand (see e.g. Embrechts et al. (1997), Theorem 3.3.12, p. 135), there

exist norming constants bn such that b−1
n (ϕ̂1(x)−ϕ(x))

d→ G (i.e., Fx belongs to the domain

of attraction of G = Ψρx
) if and only if

F̄x

(
ϕ(x)− 1

t

)
∈ RV−ρx

, (A.1)

where F̄x = 1 − Fx. This necessary and sufficient condition is equivalent to (2.2). In this

case, bn can be taken equal to ϕ(x) − inf{y ≥ 0|Fx(y) ≥ 1 − 1
n
} which coincides with

ϕ(x)− inf{y ≥ 0|F (y|x) ≥ 1− 1
nFX(x)

}.
(iii)-(iv) Under the given regularity conditions, we know that (A.1) holds and it is easy

to see that
∫ ϕ(x)

−∞
|y|kFx(dy) < ∞. Then it is immediate (see e.g. Resnick 1987, Proposition

2.1, p.77) that limn→∞ E{b−1
n (ϕ̂1(x)− ϕ(x))}k = (−1)kΓ(1 + k/ρx). Likewise, the last result

follows from e.g. Resnick (1987, Corollary 2.3, p.83). �

Proof of Corollary 2.1 Following the proof of Theorem 2.1, we can set bn = ϕ(x)−F−1
x (1−

1
n
) where F−1

x (t) = inf{y ∈]0, ϕ(x)] : Fx(y) ≥ t} for all t ∈]0, 1]. It follows from the regular-

ity condition (2.3) that F−1
x (t) = ϕ(x) − ((1− t)/`x)

1/ρx as t ↑ 1. Whence bn = (1/n`x)
1/ρx

for all n sufficiently large. �

Proof of Corollary 2.2 Under the given conditions, it can be easily seen from (2.3) that

f(x, y) = (ϕ(x)− y)ρx−(p+1)

[
`xρx(ρx − 1) · · · (ρx − p)

∂

∂x1
ϕ(x) · · · ∂

∂xp
ϕ(x) + o(1)

]

as y ↑ ϕ(x), where the term o(1) depends on the partial derivatives of x 7→ `x, x 7→ ρx and

x 7→ ϕ(x). �

Proof of Theorem 2.2 (i) Let Zx
(i) be the ith order statistic generated by the random

variables Zx
1 , ..., Zx

n. Following the standard extreme value theory (see e.g. van der Vaart
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1998, Theorem 21.18, p. 313), if b−1
n (Zx

(n) − ϕ(x))
d→ G, then b−1

n (Zx
(n−k) − ϕ(x))

d→ H for

the distribution function H(y) = G(y)
∑k

i=0(− log G(y))i/i!. The conclusion follows from

Zx
(n−k) = inf

{
y ≥ 0| 1

n

n∑

i=1

1I(Zx
i ≤y) ≥ 1− k

n

}
= inf

{
y ≥ 0|F̂n(x, y) + 1− F̂X(x) ≥ 1− k

n

}

= inf

{
y ≥ 0|F̂ (x|y) ≥ 1− k

nF̂X(x)

}
= ϕ̂1− k

nF̂X(x)

(x)

and from the fact that ϕ̂1(x) = Zx
(n).

(ii) Writting b−1
n (ϕ̂α(x)− ϕ(x)) = b−1

n (ϕ̂α(x)− ϕ̂1(x)) + b−1
n (ϕ̂1(x)− ϕ(x)), it suffices to

find an appropriate sequence α = αn → 1 so that b−1
n (ϕ̂αn

(x) − ϕ̂1(x))
d−→ 0. Aragon et al

(2005, see the proof of Theorem 4.3, Equation (20)) showed that for any α > 0:

|ϕ̂α(x)− ϕ̂1(x)| ≤ (1− α)nF̂X(x)M with probability 1,

where M < ∞ is the upper bound of the support of Y . Thus it suffices to choose α = αn → 1

such that nb−1
n (1− αn) → 0. �

Proof of Theorem 2.3 (i) Let us consider the random sample of univariate variables

Zx
1 , . . . , Zx

n introduced in the proof of Theorem 2.1, and let γx = −1/ρx in (A.1). Then the

Pickands estimate of the exponent of variation γx < 0 is given by:

γ̂x := (log 2)−1 log
Zx

(n−k+1) − Zx
(n−2k+1)

Zx
(n−2k+1) − Zx

(n−4k+1)

≡ − 1

ρ̂x
.

Under (2.2), the condition (A.1) holds and so there exists bn > 0 such that

lim
n→∞

P
[
b−1
n (Zx

(n) − ϕ(x)) ≤ y
]

= Ψ−1/γx
(y).

Since this limit is unique only up to affine transformations, we have

lim
n→∞

P
[
c−1
n (Zx

(n) − dn) ≤ y
]

= Ψ−1/γx
(−γxy − 1) = exp

{
−(1 + γxy)−1/γx

}
,

for all y ≤ 0, where cn = −γxbn and dn = ϕ(x)− bn. Thus condition (1.1) in Dekkers and de

Haan (1989) holds. Therefore γ̂x
P−→ γx if kn → ∞ and kn

n
→ 0 in view of Theorem 2.1 of

Dekkers and de Haan (1989). This ends the proof of the weak consistency of ρ̂x = −1/γ̂x.

(ii) Likewise, if kn

n
→ 0 and kn

log log n
→ ∞, then γ̂x

a.s.−→ γx via Theorem 2.2 of Dekkers

and de Haan (1989).

(iii) We have U(t) = inf{y ≥ 0 | 1
1−Fx(y)

≥ t} which corresponds to the arrow means

inverse function (1/(1 − Fx))
−1(t). Since ±t1−γxU ′(t) ∈ Π(A) with γx = −1/ρx < 0, it
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follows from Dekkers and de Haan (1989, Theorem 2.3) that
√

kn(γ̂x− γx)
d−→ N (0, σ2(γx))

with σ2(γx) = γ2
x(2

2γx+1 + 1)/ {2(2γx − 1) log 2}2 for kn → ∞ satisfying kn = o(n/g−1(n)),

where g(t) := t3−2γx {U ′(t)/A(t)}2. By the delta method we conclude that
√

kn(ρ̂x− ρx)
d−→

N (0, σ2(ρx)), with asymptotic variance σ2(ρx) = σ2(γx)/γ
2
x.

(iv) Under the regularity condition, we have ±
{

t−1− 1
γx F ′

x(ϕ(x)− 1
t
)− δFX(x)

}
∈ RV−κ.

The desired conclusion follows then immediately from Theorem 2.5 of Dekkers and de Haan

(1989). �

Proof of Theorem 2.4 (i) Under the regularity condition, the distribution function Fx of

Zx has a positive density F ′
x(y) = FX(x)F ′(y | x) and F ′

x(ϕ(x) − 1
t
) ∈ RV1+ 1

γx

. Therefore,

according to Dekkers and de Haan (1989, Theorem 3.1),
√

2kn

Zx
(n−kn−1) − F−1

x (1− pn)

Zx
(n−kn−1) − Zx

(n−2kn−1)

is

asymptotically normal with mean zero and variance 22γx+1γ2
x/(2γx − 1)2. We conclude by

using Zx
(n−k) = ϕ̂1− k

nF̂X (x)
(x) and F−1

x (1− pn) = ϕ1− pn
FX (x)

(x).

(ii) We have ϕ̂∗1(x) =
Zx

(n−kn+1)
−Zx

(n−2kn+1)

2−γ̂x−1
+Zx

(n−kn+1). Then following Dekkers and de Haan

(1989, Theorem 3.2),
√

2kn
ϕ̂∗1(x)− ϕ(x)

Zx
(n−kn+1) − Zx

(n−2kn+1)

is asymptotically normal with mean zero

and variance 3γ2
x2

2γx−1/(2γx − 1)6. This completes the proof. �

Proof of Theorem 2.5 (i) We have

√
2kn

ϕ̃∗1(x)− ϕ(x)

ϕ̂1− kn−1

nF̂X (x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)
=

√
2kn

{
1

2−γx − 1
+

Zx
(n−kn+1) − ϕ(x)

Zx
(n−kn+1) − Zx

(n−2kn+1)

}
.

Let E(1) ≤ . . . ≤ E(n) be the order statistics of iid exponential variables E1, . . . , En. Then

{Zx
(n−k+1)}n

k=1
d
= {U(eE(n−k+1))}n

k=1. Writing V (t) := U(et), we obtain

√
2kn

ϕ̃∗1(x)− ϕ(x)

ϕ̂1− kn−1

nF̂X(x)

(x)− ϕ̂1− 2kn−1

nF̂X (x)

(x)
d
=

√
2kn

{
1

2−γx − 1
+

V (E(n−kn+1))− ϕ(x)

V (E(n−kn+1))− V (E(n−2kn+1))

}

=

[
−

√
2kn

{
V (∞)− V (log n

2kn
)

V ′(log n
2kn

)
+

1

γx

}

+
√

2kn

{
V (E(n−kn+1))− V (E(n−2kn+1))

2γxV ′(E(n−2kn+1))
− 1− 2−γx

γx

}
2γx

1− 2γx

V ′(E(n−2kn+1))

V ′(log n
2kn

)

−
√

2kn

γx

{
V ′(E(n−2kn+1))

V ′(log n
2kn

)
− 1− γx

V (E(n−kn+1))− V (log n
2kn

)

V ′(log n
2kn

)

}]

×
V ′(log n

2kn
)

V (E(n−kn+1))− V (E(n−2kn+1))
.
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The first term at the right hand side tends to zero as established by Dekkers and de Haan

(1989, proof of Theorem 3.2, p. 1809). The second term converges in distribution toN (0, 1)×
2γx

1−2γx
in view of Lemma 3.1 and Corollary 3.1 of Dekkers and de Haan (1989). The third

term converges in probability to γx

2γx−1
by the same Corollary 3.1. This ends the proof of (i).

(ii) As indicated in the proof of Theorem 2.3 (i), the extreme-value condition (1.1) in

Dekkers and de Haan (1989) holds under (2.2). Therefore, it follows from Theorem 3.4 of

Dekkers and de Haan (1989) that

ϕ∗1(x)− ϕ(x)

ϕ̂1− k−1

nF̂X (x)

(x)− ϕ̂1− 2k−1

nF̂X (x)

(x)
=

ϕ̂∗1(x)− ϕ(x)

Zx
(n−k+1) − Zx

(n−2k+1)

converges in distribution to the random variable (1− 2γx)−1 + {eγxHk − 1}−1 where Hk has

the distribution of
∑2k

j=k+1 Ej/j with E1, E2, . . . being iid standard exponential. The density

of Hk is given in Remark 3.1 of Dekkers and de Haan (1989). This ends the proof of (ii). �

Proof of Theorem 2.6 Write F̄x(y) := FX(x)[1 − F (y|x)] and Fx(y) := 1 − F̄x(y) for all

y ≥ 0. Let Rx(y) := − log{F̄x(y)} for all y ∈ [0, ϕ(x)[, and let E(n−kn+1) be the (n−kn +1)th

order statistic generated by n independent standard exponential random variables. Then

Zx
(n−kn+1) has the same distribution as R−1

x [E(n−kn+1)], where

R−1
x (t) := inf {y ≥ 0|Rx(y) ≥ t} = inf{y ≥ 0|Fx(y) ≥ 1− e−t} := F−1

x (1− e−t).

Hence

Zx
(n−kn+1) − F−1

x

(
1− kn

n

)
d
= R−1

x [E(n−kn+1)]− R−1
x

[
log

(
n

kn

)]

=

[
E(n−kn+1) − log

(
n

kn

)]
(R−1

x )′
[
log

(
n

kn

)]
+

1

2

[
E(n−kn+1) − log

(
n

kn

)]2

(R−1
x )′′[δn],

provided that E(n−kn+1) ∧ log (n/kn) < δn < E(n−kn+1) ∨ log (n/kn). By the regularity

condition (2.3), we have R−1
x (t) = ϕ(x)− (e−t/`x)

1/γx for all t large enough. Whence, for all

n sufficiently large,

ρxk
1/2
n

(kn/n`x)
1/ρx

[
Zx

(n−kn+1) − F−1
x

(
1− kn

n

)]
d
= k1/2

n

[
E(n−kn+1) − log

(
n

kn

)]

− k
1/2
n

2ρx

[
E(n−kn+1) − log

(
n

kn

)]2

exp

{
− 1

ρx

[
δn − log

(
n

kn

)]}
.

Since k
1/2
n [E(n−kn+1)−log(n/kn)]

d→N (0, 1) and |δn−log(n/kn)| ≤ |E(n−kn+1)−log(n/kn)| P→
0, as n →∞, we obtain

ρxk
1/2
n

(kn/n`x)
1/ρx

[
Zx

(n−kn+1) − F−1
x (1− kn

n
)

]
d−→ N (0, 1) as n →∞.
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Since F−1
x (t) = ϕ(x)−((1− t)/`x)

1/ρx for all t < 1 large enough, we have ϕ(x)−F−1
x (1− kn

n
) =

(kn/n`x)
1/ρx for all n sufficiently large. Thus

ρxk
1/2
n

(kn/n`x)
1/ρx

[
Zx

(n−kn+1) + (kn/n`x)
1/ρx − ϕ(x)

]
d−→ N (0, 1) as n →∞. (A.2)

We conclude by using Zx
(n−kn+1) = ϕ̂1− kn−1

nF̂X (x)

(x). �

Proof of Corollary 2.3 We have n − kn + 1 ≥ n − n(1 − αn)F̂X(x) > n − kn, and so

ϕ̂αn
(x) = inf{y ≥ 0| 1

n

∑n
i=1 1I(Zx

i ≤y) ≥ 1 − (1 − αn)F̂X(x)} = Zx
(n−kn+1). We also have

kn →∞ and kn/n → 0 as n →∞, and so (A.2) holds. This ends the proof. �
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