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Abstract

L-Performance with an Application to Hedge Funds

This paper introduces a new fund performance measure, called the L-
performance. It is proposed as an alternative to the Sharpe performance mea-
sure that is commonly used for fund performance valuation despite its inability
to account for the skewness and thick tails of fund return distributions. The
L-performance improves upon the Sharpe measure in this respect. Technically,
the L-performance is based on sample statistics, called L-moments, which are
conceptually close to the conventional power moments, but provide more de-
tailed information about the extremes. For this reason, the L-moments are
used for prediction and assessment of extreme events, such as floods and earth-
quakes. In this paper, the new L-performance measure is calculated for a
variety of hedge funds and is used to derive a fund ranking.

Keywords: Hedge Fund, Sharpe Performance, L-moment, Distortion Risk
Measure, Ranking, Bias Ratio, Manipulation.

JEL number: .
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1 Introduction

The so-called Sharpe performance is a commonly accepted measure of fund performance.

It is defined as a ratio of the expected excess return and volatility, and used for seg-

mentation and fund ranking [see e.g. Sharpe (1966), Lo (2002), Darolles, Gourieroux

(2008)]. Its main shortcoming is that it relies on only two statistics, i.e. the sample

mean and volatility, which do not always provide a sufficiently precise characterization of

return distributions, especially when these distributions feature skewness and thick tails.

In particular, the sample mean may not provide a sufficiently robust approximation of

the location parameter, and the standard error may not properly account for the size of

tails. This is of special importance for the (unconditional) distributions of hedge fund

returns, whose departures from normality are related to some liquidity and management

characteristics [see e.g. Getmansky, Lo, Makarov (2003)].

The aim of this paper is to introduce a battery of alternative performance measures

which are robust to outliers and can accommodate the thick tailed distributions. The

new measures are based on the notion of trimmed L-moments, used in the analysis of

catastrophic events such as extreme floods or low flows [see e.g. Hosking, Wallis (1987),

Wang (1997), Bayazit, Onoz (2002), Moisello (2007)], rainfall extremes [see e.g. Guttman

et al. (1993), Lee, Maeng (2003)], extreme wind speed [see e.g. Whalen et al. (2004)],

or extreme traffic volumes in computer networks [see e.g. Hosking (2007)]. It seems that

there exists only two published applications of L-Moments to financial returns [Karvanen

(2006), Gourieroux, Jasiak (2008)].

In Section 2, we recall and extend the definitions of trimmed L-moments of orders

1 and 2, and discuss their interpretations in terms of the quantile and concentration

functions. The L-performances are defined in Section 3 as ratios of trimmed L-moments

of order 1 and 2. We explain how the L-performances are estimated and derive the

asymptotic distribution of the L-performance estimator. The performance measures are

used in Section 4 to rank a set of hedge funds. Section 5 concludes. Proofs are gathered

in Appendices.
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2 Trimmed L-Moments

The notion of a trimmed L-moment has been introduced in Elamir, Seheult (2003) as an

extension of the L-moments studied in Hosking (1990). Let us consider a continuous ran-

dom variable X with positive probability density function (pdf) f , cumulative distribution

function (cdf) F and quantile function Q = F−1. The trimmed L-moments are defined

from a so-called ”conceptual random sample” of size 2n + 1, drawn independently from

distribution F. The variables in the conceptual sample X̃1, . . . , X̃2n+1 are ranked in an

ascending order, providing the order statistics X̃1:2n+1 < X̃2:2n+1 < . . . < X̃2n+1:2n+1. In

particular, the sample minimum (resp. maximum) is X̃1:2n+1 (resp. X̃2n+1:2n+1).

2.1 Trimmed L-moments of order 1

The n-trimmed L-moment of order 1 is defined by:

λ1,n = E(X̃n+1:2n+1), n ≥ 0. (2.1)

It is equal to the expectation of the median of conceptual sample. The trimmed L-moment

of order 1 of X has the following expressions involving the cdf and the quantile function,

respectively [Elamir, Seheult (2003), Hosking (2007)]:

λ1,n =
(2n+ 1)!

(n!)2

∫
xF (x)n[1− F (x)]nf(x)dx

=
(2n+ 1)!

(n!)2

∫ 1

0
Q(u)un(1− u)ndu. (2.2)

The polynomials

P1,n(u) =
(2n+ 1)!

(n!)2
un(1− u)n, (2.3)

are nonnegative with unit mass. The polynomials P1,n define probability distributions,

called the distortion measures [Wang (2000a), (2000b), Gourieroux, Liu (2007)]. For a

fixed n, moment λ1,n is a weighted average over the quantile function with higher weights

assigned to arguments u close to 0.5 [see Greenwood et al. (1979) for this interpretation].

For n = 0, the mean is obtained: λ1,0 =
∫ 1
0 Q(u)du = EX and, when n tends to infinity,

the median is obtained: λ1,∞ = limn→∞ λ1,n = Q(0.5). When n increases, the trimmed



THIS VERSION: June 26, 2008 4

L-moments of order 1 bridge the mean and the median. The existence of trimmed L-

moments requires less restrictions than the existence of conventional moments. Indeed,

moment λ1,n exists if E(|X|1/(n+1)) < ∞ [see Hosking (2007), Theorem 1]. Thus, the

trimmed L-moments for n ≥ 1 can be defined even when the expectation of returns does

not exist, and they are less sensitive to outliers when n increases.

The patterns of polynomials P1,n are displayed in Figure 1.

[Insert Figure 1: Weighting Polynomials P1,n]

The distortion measure associated with polynomial P1,n is symmetric, centered at 0.5, and

becomes more peaked when n increases. In contrast, it tends to a uniform distribution

(resp. point mass at 0.5), when n tends to 0 (resp. infinity).

2.2 Trimmed L-moments of order 2

The (r, n) trimmed L-moment of order 2 is defined by1:

λ2,r,n = E(X̃2n−r+1:2n+1 − X̃r+1:2n+1), 0 ≤ r ≤ n− 1. (2.4)

It measures the expected range of a conceptual sample after deleting the r smallest and

r largest conceptual observations. These measures increase with r. This L-moment of

order 2 exists when E[|X|1/(r+1)] < ∞ [see Hosking (1990)]. Thus, the measures are less

sensitive to outliers when r increases. Definition (2.4) extends the concept introduced in

Elamir, Seheult (2003), which corresponds to the special case r = n − 1, and λ2,n−1,n =

E(X̃n+2:2n+1−X̃n:2n+1). For this particular value of r, the conceptual range is determined

by variables with ranks n and n+2. In financial applications, it seems preferable to choose

a value of r much smaller than n− 1 in order to better capture extreme risks.

The analytical expression of the trimmed L-moment of order 2 is:

λ2,r,n =
(2n+ 1)!
r!(2n− r)!

∫
x{F (x)2n−r[1− F (x)]r − F (x)r(1− F (x)]2n−r}f(x)dx

1The definition above assumes an odd size of the virtual sample. This definition does not include the
basic L-moment of order 2 initially introduced by Hosking (1990). This L-moment is:

λ2 = E(X̃2:2 − X̃1:2) =
∫ 1

0
Q(u)(2u− 1)du.

If we denote G(u) =
∫ 1

0
Q(x)dx the cumulated quantile function, that is the Gini (or concentration)

curve [Gini (1912)], we get by integrating by part: λ2 =
∫ 1

0
(2u− 1)dG(u) = G(1)− 2

∫ 1

0
G(u)du.
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=
(2n+ 1)!
r!(2n− r)!

∫ 1

0
Q(u)[u2n−r(1− u)r − ur(1− u)2n−r]du. (2.5)

The polynomials:

P2,r,n(u) =
(2n+ 1)!
r!(2n− r)! [u

2n−r(1− u)r − ur(1− u)2n−r] (2.6)

can be of any sign and have mass zero. Thus the associated distortion measures are not

positive. The patterns of polynomials P2,r,n vary with n and r, as shown in Figures 2

and 3.

[Insert Figure 2: Polynomials P2,r,n for r = 1 and varying n]

[Insert Figure 3: Polynomials P2,r,n for n = 5 and varying r]

The polynomials introduce shrinkages in the neighborhoods of values u = 0, 1 and

0.5. These shrinkages are controlled by the selected values of parameters r and n. It

follows that, when n→∞, r →∞, with r/(2n+ 1)→ α, the distortion measure tends to

−ε1−α + εα, where ε1−α, εα denote the point mass at 1 − α and α, respectively, and the

trimmed L-moment of order 2 tends to2 Q(1− α)−Q(α). This is the difference between

an upper- and a lower tail α-quantiles. For example, they can be calculated for a small α,

such as α = 1%, 5% or 10%.

The trimmed L-moments at order 2 are dispersion measures. They measure a slope of

the quantile function in the limiting case n =∞ (resp. the expected slope of the empirical

virtual quantile function, in general). By decreasing the ratio r/(2n + 1), we reveal the

differences between the right- and left-tail extremes. The trimmed L-moments are larger if

the slope is larger, or equivalently if the cumulative distribution function is less flat [about

the median since α+ (1− α) = 1].

The L-moment at order 2 has an integral representation equivalent to (2.5) and based

on the cumulated quantile function G(u) =
∫ u

0 Q(x)dx. Function G is the concentration

(or Lorentz) curve used in concentration analysis and in stochastic dominance of order 2.

By integrating by part, we get:

λ2,r,n =
∫ 1

0
P2,r,n(u)dG(u)

2When r = n − 1 as in Elamir, Sehenlt (2003) or Hosking (2007), the ratio r/(2n + 1) tends to 1/2
when n tends to infinity, and the trimmed L-moment of order 2 tends to Q(1/2)−Q(1/2) = 0.
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= P2,r,n(u)G(u)]10 +
∫ 1

0
G(u)[−dP2,r,n

du
(u)]du

=
∫ 1

0
G(u)[−dP2,r,n

du
(u)]du.

In Figure 2, we see that the L-moment assigns positive weights to the extremes (i.e. the

values of u close to 0 and 1), and thus focuses on extreme risks. Equivalently, the L-moment

of order 2 can also be written in terms of covariance, since λ2,r,n = cov(X,P2,r,n[F (X)]).

It measures the link between the return and its (historical) rank [Serfling, Xiao (2006)].

3 L-Performance

Let us now consider a sequence x1, ..., xT , say, of portfolio excess returns. In this paper

we consider the historical, i.e. the unconditional, measure of performance, in line with

the hedge fund literature and the publicly available hedge fund ratings. For ease of ex-

position we assume 3 that returns are independent and identically distributed (iid) with

a distribution characterized by cdf F and quantile function Q = F−1. The associated

observed order statistics are: x1:T ≤ . . . ≤ xT :T . The observed order statistics have to be

distinguished from the conceptual order statistics X̃1:2n+1 < . . . < X̃2n+1;2n+1 introduced

in Section 2. The latter ones are artificial, and are used to define the trimmed L-moment

of interest. A priori, there is no relation between the shrinkage parameters r, n, which

define the theoretical moment of interest, and the number of observations T .

3.1 Definition

By analogy to the Sharpe performance ratio, which is the ratio of the expected net return

and volatility [Sharpe (1966)], the L-performance is defined as the ratio of a trimmed

L-moment of order 1 and a trimmed L-moment of order 2:

Lr,n = λ1,n/λ2,r,n (3.7)
3For the standard Sharpe performance measures, two extensions to non-iid returns are possible:

i) First, one can still consider the historical performance measures, and in addition derive their as-
ymptotic distributions in a non-iid framework [see e.g. Lo (2002) for this approach applied to Sharpe
performance].

ii) Second, one can consider the conditional performance measures instead of unconditional ones [see
e.e. Darolles, Gourieroux (2008) for conditional Sharpe performances and Gourieroux, Jasiak (2008) for
the definition of conditional L-Moments].

These extensions are clearly out of the scope of the present paper.
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=
r!(2n− r)!

(n!)2

∫ 1

0
Q(u)un(1− u)ndu

[∫ 1

0
Q(u)[u2n−r(1− u)r − ur(1− u)2n−r]du

]−1

.

This leads to a battery of L-performances that depend on the selected shrinkage parameters

r and n. For example, we have:

L0,1 = 2
∫ 1

0
Q(u)u(1− u)du

[∫ 1

0
Q(u)(2u− 1)du

]−1

L1,2 = 3/2
∫ 1

0
Q(u)u2(1− u)2du

[∫ 1

0
Q(u)[u3(1− u)− u(1− u)3]du

]−1

= 3/2
∫ 1

0
Q(u)u2(1− u)2du

[∫ 1

0
Q(u)u(1− u)(2u− 1)du

]−1

.

When n→∞ , r →∞, and r/(2n+ 1)→ 5%, say, we have:

lim
r,n→∞Lr,n =

Q(50%)
Q(95%)−Q(5%)

=
V aR(50%)

V aR(95%)− V aR(5%)
, (3.8)

where VaR denotes the Value-at-Risk computed by historical simulation as suggested in

the standard approach by Basle Committee. In fact, the L-performance measures extend

the (inverse) Gini concentration index [Gini (1912)]. Indeed λ2/λ1 = 1−2
∫ 1

0 G(u)du/G(1)

is exactly the Gini index formula.

When the returns are such that xt = m+σut, where the error terms have a symmetric

distribution and m,σ are the location and scale parameters, respectively, we have: Q(u) =

m + σG(u), where G is the quantile function of the standardized error term. By the

symmetry condition, we have: G(−u) = G(1− u). It follows that:

Lr,n =
r!(2n− r)!

(n!)2

m

σ

[∫ 1

0
G(u)[u2n−r(1− u)r − ur(1− u)2n−r]du

]−1

.

In this framework, the L-performances are proportional to the ratio m/σ, up to a scale

factor depending on r, n, and on the error term distribution. In particular, for Gaussian

errors, the L-performance is equivalent to the standard Sharpe performance measure, up

to a multiplicative scalar function of the shrinkage parameters only.
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3.2 Estimation of L-performance

The L-performances are easily estimated from their sample counterparts. The estimator

is defined by (see Appendix 1):

L̂r,n,T =
∑T
t=1 xt:TP1,n(t/T )∑T
t=1 xt:TP2,r,n(t/T )

. (3.9)

This is a ratio of two linear combinations of order statistics4. These estimators are consis-

tent, asymptotically normal under standard regularity conditions (see Appendix 1). For

instance, for independent and identically distributed5 excess returns, we have:

√
T (L̂r,n,T − Lr,n) d→ N(0, η2

r,n), (3.10)

where the asymptotic variance is given by:

η2
r,n = λ−2

2,r,n

∫ 1

0

∫ 1

0

min(u1, u2)− u1u2

f [Q(u1)]f [Q(u2)]
[P1,n(u1)−Lr,nP2,r,n(u1)][P1,n(u2)−Lr,nP2,r,n(u2)]du1du2.

(3.11)

3.3 Estimation of the asymptotic variance of L̂r,n,T

The asymptotic variance can be alternatively written as:

η2
r,n = λ−2

2,r,n

∫ ∫
min(F (x1), F (x2))− F (x1)F (x2)[P1,n(F (x1))− Lr,nP2,r,n(F (x1))]

[P1,n(F (x2))− Lr,nP2,r,n(F (x2))]dx1dx2,

by applying the change of variable x = Q(u), and given that 1/f [Q(u)] is the derivative

of the quantile function Q.

The sample counterpart of the expression above provides a consistent estimator of the

asymptotic variance [see e.g. Jones, Zitikis (2003), (2005)]:
4A linear combination of order statistics is called a L-statistic in the statistical literature. This justifies

the terminology ”L-moment” and ”L-performance”.
5The asymptotic behavior can also be derived for stationary, serially dependent excess returns [see e.g.

Gourieroux, Liu (2007)].
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η̂2
r,n,T = λ̂−2

2,r,n,T

T−1∑

i=1

T−1∑

j=1

{(min(i/T, j/T )− i/T j/T )

[P1,n(i/T )− L̂r,n,TP2,r,n(i/T )] [P1,n(j/T )− L̂r,n,TP2,r,n(j/T )](xi+1:T − xi:T )(xj+1:T − xj:T )
}
,

where:

λ̂2,r,n,T = T−1
T∑

t=1

[xt:TP2,r,n(t/T )]. (3.12)

4 Application to Hedge Funds

In this section we derive and compare the rankings of hedge funds according to the uncon-

ditional Sharpe performance and a set of unconditional L-performance measures. The first

section describes the set of pure hedge funds used in the application. The second section

provides the summary statistics of fund return distributions to highlight the differences in

fund behaviors, depending on their style. Finally, the third section compares the rankings

obtained from the performance measures of interest.

4.1 The Selected Funds

The Hedge Fund Research, Inc. (HFR) database includes 3654 pure hedge funds and 1926

funds of funds, for which the return data are available for the period July 2004-June 2007.

All returns are expressed in US dollars. They add up to a total value of $ 1400 billion for

both types of funds and $ 860 billion for the pure hedge funds only.

At issuing, the hedge funds can be self-declared in one or several categories, called the

styles, from a given list [see e.g. Das, Das (2004) for a description of styles in various

databases]. These categories describe either the type of assets in the portfolio (as the

styles ”Currencies”, ”Distressed Securities”), or the type of portfolio management (for

instance the styles ”Global Macro”, ”Merger Arbitrage”), or both of these (as ”Fixed

Income Arbitrage”, ”Equity Long/Short”). A majority of pure hedge funds belong in 9

categories, that are ”Equity Long/Short”, ”Fixed Income”, ”Global Macro”, ”Currency”,

”Futures”, ”Equity Long Short Equally Weighted”, ”Fixed Income Arbitrage”, ”Merger

Arbitrage” and ”Distressed Securities”.

We select 36 funds from various categories and report the information on the man-

agement company, the self-declared strategy and the assets under management. This
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information is displayed in Table 1, where tickers are used to abbreviate the name of each

fund in the sample.

[Insert Table 1 : Funds by Strategy]

4.2 Fund Return Distributions

The unconditional return distribution of the hedge fund excess return is summarized by

its conventional and L-moments of order 1 to 4.

[Insert Table 2 : L-Moments of order 1]

The first and last columns in Table 2 provide the mean and the median, respectively.

Since the L-moments of order 1 are constructed from a basis of symmetric distortion poly-

nomials, the distribution is symmetric if and only if all L-moments of order 1 are equal.

For several funds such as CSS ED or DF MF, the distribution is almost symmetric, but

in general the distribution of fund returns is skewed. We also note that a simple test of

symmetry based on a comparison of the mean and the median can be misleading. For

instance, the mean and median are rather close for funds IC EH or FX MA. We observe

that the L-moments at order 1 in columns 2 to 6 are significantly smaller for fund IC

EH, whereas the L-moment for n = 2 in column 3 is very high for fund FX MA, showing

that the skewness concerns rather the central part of the distribution than the tails. This

characteristic can reveal that some hedge fund managers avoid reporting losses to attract

investors [Burgstahler, Dichev (1997), Asness, Krail, Liew (2001), Weinstein, Abdulali

(2002)]. If some assets in a hedge fund portfolio are illiquid and if the portfolio manager

uses some return smoothing techniques, then the return distribution can become skewed

about zero. The manager can arbitrarily increase the number of small positive returns to

have the number of small gains exceed the number of small losses [Bollen, Pool (2007),

Figure 1]. Such data manipulation can be detected by measuring the departure of fund

return distribution from a symmetric distribution in the neighbourhood of the median.

The difference λ1,2 − λ1,1 is a measure of this effect, and can be used as a test statistic

in a test of manipulation. For example, an L-moment of order 1 with n = 2 higher than

the mean and the median is a warning that such a manipulation could have occurred for

fund FX MA. The L-moment analysis is an alternative to the Bias Ratio, which compares

the number of positive returns to the number of negative returns within one standard
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deviation of 0 [Abdulali (2006)]. It is more flexible, since it does not assume the existence

of standard deviation and allows for different trimmings.

[Insert Table 3 : Power Moments and L-Moments of order 2]

The L-moments of order 2 for n varying provide similar classifications of risks. For

instance the fund RO ED, with the largest variance, has also the largest L-moments of

order 2 for any value of trimming parameters. However, the funds next in the variance

ranking, in a descending order such as funds DF MF, RC EH or WI MA, have a different

ranking with respect to their L-moments of order 2. In particular, fund RC EH is more

risky than WI MA in variance, but less risky in all L-moments of order 2 in columns 2-6.

[Insert Table 4 : Power Moments and L-Moments of order 3 and 4]

Table 4 provides the conventional skewness and excess kurtosis. It also displays the

L-skewness and L-kurtosis defined by λ3/λ2, λ4/λ2 where: λ3 = 1
3E(X̃3:3− 2X̃2:3 + X̃1:3),

λ4 = 1
4E(X̃4:4 − 3X̃3:4 + 3X̃2:4 − X̃1:4). The L-skewness (resp. L-kurtosis) measures

the difference between the slopes of the quantile function for u smaller and greater than

the median, respectively, to detect asymmetries (resp. outside and within the quartile

interval to detect the magnitude of the tail). The standard Gaussian L-kurtosis is equal

to λ4/λ2 = [30
π arctg

√
2 − 9] 1√

π
= 0.0692 [Hosking, Wallis (1997)]. As expected, the

conventional and L-skewness of funds CSS ED and DF MF are close to zero (see the

discussion of Table 2). More importantly, some of the funds which appear very risky in

Table 3, with respect to their moments of order 2, can feature L-kurtosis smaller than the

Gaussian L-kurtosis, which is equal to 0.0692. For example, funds WI MA or DF MF have

large risks in the central part of the distribution, and rather small risks associated with

the extremes.

The vertical and horizontal axes of Figure 4 measure the L-skewness and L-kurtosis,

respectively. The set of admissible values of the L-skewness and L-kurtosis is the grey

region above the lowest parabola [Hosking, Wallis (1997)]. The parabolic curves represent

various 3-parameter families of distributions, and the points with coordinates x= sample

L-skewness and y=L-kurtosis, respectively, represent the funds. Each curve represents a

particular distribution family: glo (resp. gev, gpa, pe3) corresponds to the generalized lo-

gistic (resp. generalized extreme value, generalized Pareto, Pearson type III) distribution.
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Among the standard 3-parameter families, the generalized logistic distributions feature

the heaviest tails. We observe that almost half of the funds have fatter tails than the

generalized logistic.

[Insert Figure 4 : L-skewness/kurtosis plot]

4.3 Comparison of estimated performances

In the next step, we compute the estimated Sharpe performance ŜT and the estimated

L-performances L̂0,1,T , L̂1,2,T , L̂1,3,T , L̂1,4,T , L̂1,5,T . These statistics correspond to the con-

ceptual samples of size 3, 5, 7, 9, 11, respectively, and to ratios r/(2n + 1) = α equal to

0%, 20%, 14%, 11%, 9%, respectively. The estimated performances and the associated

rankings are provided in Table 5.

[Insert Table 5 : Sharpe and L-Performances]

The values of different performance measures cannot be compared directly, as they do

not have the same interpretation. In contrast, the rankings are comparable. We observe

that the rankings based on the unconditional distributions are quite stable. For example,

LES SS is always the worst performing fund, while FS EM is always the best performer. It

is important to detect the hedge funds that have significantly changed their rankings. For

example, the ranking of SP EH fluctuates between 3 and 15, which reveals the presence

of extreme returns. This is largely due to the bias ratio observed in Table 2 with a jump

in the L-moment of order 1 from 1.74% to 2.37%, which is not strictly in line with the

self-declared ”Equity Hedge” strategy.

5 Concluding Remarks

The Sharpe ratio is commonly used in the hedge fund industry and provides a reliable

performance measure for retail investors. However, the Sharpe ratio can be misleading

for other types of investors such as banks, or regulators. Indeed, it is very sensitive to

outliers, unable to correctly assess the sizes of tails that reflect extreme risks, or to detect

manipulations of fund valuation. In the applied and theoretical literature, there exist

alternative measures, such as the ratio mean/VaR(5%) [see e.g. Dowd (1999), Gregoriou,

Gueyle (2003)], the ratio TVaR(α)/VaR (α), where TVaR denotes the so-called Tail-VaR
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[see e.g. Gourieroux, Liu (2007)]. The measures introduced in this paper have the same

objective to improve upon the Sharpe ratio in these respects. The L-performances are

based on the trimmed L-moment estimates to ensure the robustness and to account for

thick tails. An additional feature of our measures is that the shrinkage parameters allow for

fine-tunning of the L-performance measure that can produce a set of fund performances

and rankings 6. Such a set can be used to provide a comprehensive fund performance

analysis and detect return smoothing and other manipulations by fund managers. They

also provide alternative definitions of efficient portfolios and efficiency frontiers, formed by

the L-performance maximizing portfolios, in the spirit of Roy [Roy (1952), see also Haly,

McGee (2006)].

The literature on Sharpe performance measures would suggest to extend the methods

proposed in this paper to the conditional and fitted performance measures, where the

latter ones are suitable for hedge fund investments that completes another investment.

i) The conditional L-performance measure is computed from the conditional hedge fund

excess return distribution. It can be obtained by estimating the conditional L-moments,

i.e. by applying the conditional trimming proposed in Gourieroux, Jasiak (2008) for

dynamic analysis of VaR. When the information is summarized by a single statistic, such

as for instance the lagged market return, the L-performance can alternatively be computed

from the concomitant ranks, that are the order statistics ranked according to the values

of the lagged market return [Serfling, Xiao (2006)].

ii) The fitted performance is computed, for instance, when there is a portfolio of two assets,

which are the fund and a market index (tracker). Then, it is necessary to disentangle

the component of the hedge fund return which can be hedged by the market from its

idiosyncratic component. The fitted L-performance is simply the L-performance applied

to the residual plus intercept from the linear regression of hedge fund excess return on

market excess return.

6”The numerical representations of funds require arrays because such funds represent sufficiently com-
plicated objects that a single scalar most always proves inadequate at a summary level”.
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Appendix 1

Asymptotic Properties of Estimated L-Performance

1. Asymptotic Properties of L-moments

A trimmed L-moment is a linear form of the quantile fonction. It can be written as

λ(Q,P ) =
∫ 1

0
Q(u)P (u)du,

where P is a polynomial. It can consistently be estimated by the sample counterpart.

λ̂T (Q,P ) = λ(Q̂T , P ) =
∫ 1

0
Q̂T (u)P (u)du,

where Q̂T (u) = inf{x : 1
T

∑T
t=1 1l(Xt≤x) ≥ u} is the sample quantile function. This

estimator is also equal to

λ̂T (Q,P ) =
1
T

T∑

t=1

xt:TP (t/T ).

The asymptotic properties of the estimated L-moment are deduced from the asymptotic

properties of the estimated quantile function.

The quantile estimator is related to the sample cdf by the Bahadur representation [see

e.g. Koenker (2005), Section 4.3] :

√
T [Q̂T (u)−Q(u)] = − 1

f [Q(u)]

√
T [F̂T (Q(u))− u] + oP (1)

where F̂T (x) = 1
T

∑T
t=1 1lxt≤x is the sample cdf and oP (1) denotes a negligible term in

probability. Moreover, it is known that
√
T [F̂T (Q(u))−u] weakly converges to a Brownian

bridge B defined on [0, 1]. Recall that a Brownian bridge is a Gaussian process on [0, 1],

with zero-mean and covariance Cov [B(u1), B(u2)] = min(u1, u2)−u1u2. Thus, we deduce

the (functional) limit theorem for the sample quantile :

√
T [Q̂T (u)−Q(u)]⇒ − 1

f [Q(u)]
B(u),

where ⇒ denotes the weak convergence (convergence in distribution), and the asymptotic

behaviour of a trimmed L-moment:
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√
T [λ(Q̂T , P )− λ(Q,P )] =

∫ 1
0

√
T [Q̂T (u)−Q(u)]P (u)du

d→ − ∫ 1
0

1
f [Q(u)]B(u)du.

In particular, the estimator λ(Q̂T , P ) is consistent, asymptotically Gaussian with zero-

mean and a variance given by :

Vas(
√
T [λ(Q̂T , P )− λ(Q,P )]) =

∫ 1

0

∫ 1

0

min(u1, u2)− u1u2

f [Q(u1)]f [Q(u2)]
P (u1)P (u2)du1du2. (A.1)

2. Application to estimated L-performance

We have :

L̂r,n,T = λ̂1,n,T /λ̂2,r,n,T ,

where λ̂ denotes the estimated L-moment. Since λ̂1,n,T (resp. λ̂2,r,n,T ) converges to λ1,n

(resp. λ2,r,n), and since λ2,r,n is strictly positive, we deduce that L̂r,n,T tends to Lr,n.

Moreover, we have :

√
T
(
L̂r,n,T − Lr,n

)

=
√
T

(
λ̂1,n,T

λ̂2,r,n,T
− λ1,n

λ2,r,n

)

= 1
λ2,r,n

√
T (λ̂1,n,T − λ1,n)− λ1,n

λ2
2,r,n

√
T (λ̂2,r,n,T − λ2,r,n) + oP (1),

(by the delta method)

=
1

λ2,r,n

∫ 1

0

√
T [Q̂T (u)−Q(u)][P1,n(u)− Lr,nP2,n(u)]du.

The expression of the asymptotic variance of the estimated L-performance directly

follows from (A.1) applied to polynomial P = 1
λ2,r,n

(P1,n − Lr,nP2,n).
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Figure 4: L-skewness/kurtosis plot
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Table 2: L-Moments of order 1

Ticker λ1,n=0 λ1,n=1 λ1,n=2 λ1,n=3 λ1,n=4 λ1,n=5 λ1,n=∞
AC CA 0.056% 0.027% 0.078% 0.071% 0.081% 0.087% 0.202%
AI CA 0.371% 0.292% 0.414% 0.305% 0.308% 0.310% 0.325%

APM MA 0.546% 0.419% 0.538% 0.359% 0.333% 0.311% 0.276%
AS MA 0.814% 0.906% 1.349% 0.986% 0.978% 0.962% 0.601%
BF FI -0.071% -0.065% -0.076% -0.050% -0.048% -0.046% -0.026%
BR FI 0.820% 0.725% 1.050% 0.769% 0.770% 0.767% 0.593%

CG RV 0.348% 0.262% 0.369% 0.270% 0.272% 0.275% 0.291%
CSS ED 0.499% 0.436% 0.615% 0.448% 0.450% 0.452% 0.443%
DF MF 2.344% 2.138% 2.994% 2.174% 2.182% 2.187% 2.256%
DM FI 1.072% 0.770% 1.010% 0.712% 0.704% 0.701% 0.781%
EF RV 0.042% -0.024% -0.023% -0.013% -0.012% -0.013% -0.164%

FO MA 0.909% 0.838% 1.145% 0.814% 0.805% 0.800% 0.865%
FS EM 0.303% 0.260% 0.357% 0.259% 0.262% 0.264% 0.304%
FX MA 0.859% 1.016% 1.533% 1.128% 1.127% 1.116% 0.883%
GU EH 0.197% 0.215% 0.319% 0.235% 0.236% 0.236% 0.228%
HC MA 0.806% 0.873% 1.351% 1.033% 1.069% 1.095% 1.252%

I EM 1.091% 1.065% 1.559% 1.167% 1.196% 1.217% 1.426%
IC EH 0.470% 0.187% 0.298% 0.231% 0.241% 0.246% 0.455%
LC EN 0.908% 0.922% 1.383% 1.042% 1.067% 1.083% 1.063%
LES SS -1.076% -1.392% -2.045% -1.530% -1.564% -1.586% -1.584%
ML MA 0.460% 0.373% 0.525% 0.370% 0.359% 0.348% 0.309%

OAM EH 0.688% 0.488% 0.653% 0.452% 0.435% 0.420% 0.483%
PE MA 1.277% 1.156% 1.613% 1.152% 1.134% 1.116% 1.099%
PF EH 0.636% 0.609% 0.908% 0.683% 0.698% 0.708% 0.680%
PI MA 1.222% 0.796% 1.072% 0.772% 0.775% 0.779% 0.852%

PM EH 1.133% 1.096% 1.559% 1.139% 1.146% 1.151% 1.357%
RA EH 0.839% 0.602% 0.788% 0.538% 0.512% 0.491% 0.305%

RCG DS 0.907% 0.694% 0.947% 0.681% 0.681% 0.682% 0.956%
RO ED 2.695% 2.477% 3.641% 2.735% 2.808% 2.860% 3.539%
RB EH 0.758% 0.736% 1.046% 0.760% 0.761% 0.761% 0.799%
SP EH 2.132% 1.744% 2.373% 1.718% 1.732% 1.749% 2.100%
RC EH -0.540% -0.950% -1.392% -1.043% -1.071% -1.093% -1.164%
TR EN 1.180% 1.199% 1.787% 1.337% 1.365% 1.385% 1.563%
TT ED 1.031% 0.986% 1.421% 1.046% 1.058% 1.066% 1.399%
WE RV 0.611% 0.461% 0.605% 0.428% 0.425% 0.426% 0.510%
WI MA 1.197% 1.241% 1.901% 1.462% 1.528% 1.581% 2.237%
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Table 3: Power Moments and L-Moments of order 2

Power Moments L-Moments

Ticker σ λ2,r=0,n=1 λ2,r=1,n=2 λ2,r=1,n=3 λ2,r=1,n=4 λ2,r=1,n=5
AC CA 1.14% 0.151% 0.138% 0.047% 0.012% 0. 003%
AI CA 0.95% 0.140% 0.131% 0.046% 0.011% 0. 003%

APM MA 1.90% 0.313% 0.297% 0.103% 0.026% 0. 006%
AS MA 3.63% 0.589% 0.556% 0.194% 0.049% 0. 011%
BF FI 0.30% 0.041% 0.036% 0.012% 0.003% 0. 001%
BR FI 2.80% 0.348% 0.288% 0.092% 0.022% 0. 005%

CG RV 1.22% 0.146% 0.123% 0.040% 0.010% 0. 002%
CSS ED 1.42% 0.209% 0.191% 0.066% 0.017% 0. 004%
DF MF 4.88% 0.785% 0.728% 0.249% 0.062% 0. 013%
DM FI 3.38% 0.458% 0.395% 0.130% 0.032% 0. 007%
EF RV 1.24% 0.167% 0.147% 0.049% 0.012% 0. 003%

FO MA 1.87% 0.249% 0.215% 0.071% 0.017% 0. 004%
FS EM 0.41% 0.056% 0.051% 0.017% 0.004% 0. 001%
FX MA 3.09% 0.377% 0.306% 0.096% 0.023% 0. 005%
GU EH 0.71% 0.084% 0.068% 0.022% 0.005% 0. 001%
HC MA 2.26% 0.295% 0.255% 0.084% 0.020% 0. 004%

I EM 2.24% 0.357% 0.328% 0.111% 0.027% 0. 006%
IC EH 3.36% 0.409% 0.357% 0.118% 0.029% 0. 006%
LC EN 2.35% 0.365% 0.328% 0.108% 0.026% 0. 005%
LES SS 3.23% 0.510% 0.471% 0.160% 0.039% 0. 008%
ML MA 1.67% 0.191% 0.160% 0.052% 0.012% 0. 003%

OAM EH 2.66% 0.366% 0.327% 0.111% 0.027% 0. 006%
PE MA 3.03% 0.447% 0.412% 0.142% 0.036% 0. 008%
PF EH 2.04% 0.297% 0.260% 0.086% 0.021% 0. 004%
PI MA 2.53% 0.234% 0.205% 0.069% 0.017% 0. 004%

PM EH 1.69% 0.247% 0.224% 0.077% 0.019% 0. 004%
RA EH 2.65% 0.330% 0.294% 0.099% 0.024% 0. 005%

RCG DS 2.11% 0.285% 0.258% 0.088% 0.022% 0. 005%
RO ED 5.93% 0.883% 0.812% 0.279% 0.069% 0. 015%
RB EH 1.67% 0.215% 0.182% 0.060% 0.015% 0. 003%
SP EH 3.31% 0.496% 0.471% 0.166% 0.042% 0. 009%
RC EH 4.88% 0.654% 0.582% 0.195% 0.048% 0. 010%
TR EN 2.74% 0.376% 0.333% 0.111% 0.027% 0. 006%
TT ED 2.20% 0.292% 0.251% 0.083% 0.020% 0. 004%
WE RV 1.05% 0.132% 0.113% 0.036% 0.009% 0. 002%
WI MA 4.21% 0.718% 0.691% 0.244% 0.062% 0.014%
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Table 4: Power Moments and L-Moments of order 3 and 4

Power Moments L Moments

Ticker Skewness Kurtosis L-skewness L-kurtosis
AC CA 0.12 1.49 -0.03 0.20
AI CA 0.61 0.80 0.07 0.09

APM MA 0.14 -1.12 0.04 0.02
AS MA -0.55 -0.50 -0.13 0.05
BF FI -0.49 1.43 -0.11 0.12
BR FI -0.14 0.81 -0.03 0.26

CG RV 0.34 1.45 0.06 0.25
CSS ED -0.04 -0.14 -0.01 0.14
DF MF -0.04 -0.89 -0.01 0.06
DM FI 0.38 0.17 0.08 0.19
EF RV 0.11 0.41 0.04 0.21

FO MA -0.40 0.90 -0.02 0.21
FS EM 0.62 0.47 0.09 0.13
FX MA -1.23 2.03 -0.20 0.27
GU EH -1.16 2.68 -0.14 0.28
HC MA -0.62 0.90 -0.14 0.23

I EM -0.24 -0.81 -0.07 0.06
IC EH 0.92 2.82 0.07 0.25
LC EN -0.39 -0.64 -0.11 0.09
LES SS 0.36 -0.87 0.09 0.05
ML MA 0.30 2.83 0.03 0.29

OAM EH 0.33 0.58 0.07 0.18
PE MA -0.08 -0.06 -0.02 0.14
PF EH -0.26 -0.24 -0.08 0.15
PI MA 2.78 11.03 0.30 0.32

PM EH -0.18 -0.03 -0.06 0.13
RA EH 0.62 2.65 0.08 0.21

RCG DS 0.72 1.14 0.10 0.16
RO ED 0.06 -0.25 -0.02 0.12
RB EH -0.51 1.07 -0.05 0.24
SP EH 0.66 0.07 0.13 0.08
RC EH 0.24 0.98 0.08 0.18
TR EN -0.38 0.63 -0.11 0.20
TT ED -0.28 0.53 -0.05 0.21
WE RV 1.02 1.06 0.23 0.21
WI MA -0.36 -1.16 -0.11 -0.00
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Table 5: Sharpe and L-Performances

Sharpe Performance L-Performances

Ticker SR Rank Skew. Kurt. L0,1 Rank L1,2 Rank L1,3 Rank L1,4 Rank L1,5 Rank
AC CA 0.05 32 0.12 1.49 0.18 32 0.57 32 1.51 32 6.80 32 33.68 32
AI CA 0.39 15 0.61 0.80 2.09 19 3.15 23 6.66 24 26.79 24 123.60 24

APM MA 0.29 23 0.14 -1.12 1.34 29 1.81 30 3.48 30 12.95 30 55.81 30
AS MA 0.22 30 -0.55 -0.50 1.54 28 2.43 28 5.08 28 19.97 28 89.86 28
BF FI -0.24 35 -0.49 1.43 -1.61 35 -2.10 34 -4.12 34 -15.94 34 -71.74 34
BR FI 0.29 22 -0.14 0.81 2.08 21 3.65 19 8.33 17 34.67 17 162.40 17

CG RV 0.28 25 0.34 1.45 1.79 25 3.00 24 6.74 23 28.02 22 132.30 21
CSS ED 0.35 18 -0.04 -0.14 2.09 20 3.22 22 6.78 22 27.07 23 124.04 23
DF MF 0.48 8 -0.04 -0.89 2.72 13 4.11 16 8.72 16 35.16 16 162.72 16
DM FI 0.32 19 0.38 0.17 1.68 27 2.56 27 5.48 26 22.21 26 103.29 26
EF RV 0.03 33 0.11 0.41 -0.14 33 -0.16 33 -0.27 33 -1.02 33 -4.85 33

FO MA 0.49 5 -0.40 0.90 3.36 8 5.34 7 11.53 9 46.88 9 218.13 9
FS EM 0.74 1 0.62 0.47 4.63 1 7.06 1 15.14 1 61.77 1 289.08 1
FX MA 0.28 26 -1.23 2.03 2.70 14 5.00 11 11.71 8 49.29 7 232.30 7
GU EH 0.28 27 -1.16 2.68 2.56 16 4.67 13 10.81 11 45.53 11 215.93 10
HC MA 0.36 17 -0.62 0.90 2.96 11 5.30 8 12.33 5 52.69 3 253.63 3

I EM 0.49 6 -0.24 -0.81 2.98 10 4.75 12 10.50 12 43.81 12 208.01 12
IC EH 0.14 31 0.92 2.82 0.46 31 0.84 31 1.95 31 8.28 31 39.50 31
LC EN 0.39 16 -0.39 -0.64 2.53 17 4.22 15 9.65 15 41.04 14 197.20 13
LES SS -0.33 36 0.36 -0.87 -2.73 36 -4.34 36 -9.56 36 -39.64 36 -187.19 36
ML MA 0.28 28 0.30 2.83 1.96 23 3.27 21 7.15 21 28.82 21 131.98 22

OAM EH 0.26 29 0.33 0.58 1.34 30 2.00 29 4.09 29 15.90 29 71.06 29
PE MA 0.42 14 -0.08 -0.06 2.58 15 3.91 17 8.09 18 31.71 19 142.90 19
PF EH 0.31 21 -0.26 -0.24 2.05 22 3.49 20 7.94 19 33.31 18 157.89 18
PI MA 0.48 7 2.78 11.03 3.40 6 5.22 9 11.24 10 45.74 10 212.83 11

PM EH 0.67 2 -0.18 -0.03 4.43 2 6.95 2 14.80 2 59.41 2 273.04 2
RA EH 0.32 20 0.62 2.65 1.82 24 2.68 26 5.44 27 21.07 27 94.08 27

RCG DS 0.43 13 0.72 1.14 2.44 18 3.67 18 7.70 20 30.81 20 141.79 20
RO ED 0.45 10 0.06 -0.25 2.81 12 4.48 14 9.82 14 40.46 15 189.94 14
RB EH 0.45 11 -0.51 1.07 3.42 5 5.73 3 12.68 3 51.92 4 241.81 5
SP EH 0.64 3 0.66 0.07 3.52 3 5.04 10 10.35 13 41.12 13 188.94 15
RC EH -0.11 34 0.24 0.98 -1.45 34 -2.39 35 -5.35 35 -22.49 35 -107.53 35
TR EN 0.43 12 -0.38 0.63 3.19 9 5.37 5 12.07 6 50.39 6 238.68 6
TT ED 0.47 9 -0.28 0.53 3.37 7 5.66 4 12.58 4 51.78 5 242.00 4
WE RV 0.58 4 1.02 1.06 3.49 4 5.36 6 11.74 7 48.79 8 231.91 8
WI MA 0.28 24 -0.36 -1.16 1.73 26 2.75 25 6.00 25 24.80 25 117.06 25


