Good and Bad Licensing

Ari Hyytinen Bank of Finland & U. Jyväskylä

Tuomas Takalo Bank of Finland & U. Jyväskylä

Toulouse 14 January, 2011

1 Motivation

It is not clear how markets for IP work, whether they should be reformed, and how

- cf. FTC hearings on the evolving IP marketplace
- A key distinction between IP and tangible property:
 - In the case of IP it is difficult to clear rights prior to investing

A rise of new IP business model(s) over the past decade.

- Non-practicing entities (NPEs)
 - Firms that buy, sell/license and enforce IP
 - Do not primarily manufacture nor do R&D

In the market for IP many think NPEs are bad ("trolls")

• NPEs merely search for *ex post* licensing opportunities

- e.g., the cases of NTP v. RIM, eBay v. MercExchange

- \rightarrow NPEs are tax on innovation
- \rightarrow unnecessary enforcement costs

Like in other markets with frictions, many think "NPE-type" intermediaries are good

• via *ex ante* licensing NPEs provide technology sourcing

Our goal

Positive and normative analyses of licensing & technology markets abstracting from traditional R&D externalities

- Modeling costs and benefits of NPEs, ex ante and ex post licensing
- What leads to the entry of NPEs?
- How the recent U.S. supreme court decisions affect the licensing markets and welfare?
- How should the patent system reformed?

Literature

Weak patents: Shapiro (2006) and Farrel and Shapiro (2008)

Ex ante and ex post licensing: The works of Scotchmer etc

Economics of NPEs: Henkel and Reitzig (2007, 2008), Lerner (2008)

Patent system reform: Jaffe and Lerner (2004), Denicolò (2007), Bessen and Maurer (2008) etc

Search theoretic models: Acemoglu (2001)

Main results (in progress)

There is too little R&D in the market

• Both ex ante and ex post licensing reduce R&D incentives

There can be too little or too much NPE activity in the market

Tightening liability standards against practiced patents

- promotes R&D
- effect on the NPE activity ambiguous
 - stronger protection of practiced patents discourages NPE entry
 - increased R&D activity encourages NPE entry
- generally (but not necessarily always?) increases welfare

2 The model

Based on the Diamond-Mortenssen-Pissarides undirected search model

- Measure t of NPEs with a patent seeking to licensing deals
- Measure m of unlicensed (innovation projects by) established producers

 $\longrightarrow \frac{t}{m} \equiv \theta \approx \text{tightness of the market for patents}$

 \rightarrow matching function, $q(\theta)$, the rate with which a (unlicensed) producer meets a NPE (with an unlicensed patent)

2.1 Manufacturers

Each with an R&D project

Success rate: h

Flow cost of innovation: $\rho(h)$; $\rho' > 0$, $\rho'' > 0$.

Yields a patented innovation, with a revenue stream: y

Innovations become obsolete with Poisson rate λ

Limited number of R&D projects

• "Ideas are scarce"

2.2 Non-practicing entities (NPEs)

Each with a patent, searching for exclussive licensing deals

Search cost: *s* (includes the costs of acquiring patents)

Free-entry of NPEs

Undirected search -> both *ex ante* and *ex post* matching

2.3 Court process

If a NPE meets a producer with an unlicensed innovation, the NPE sends a notice of infringement

If they go to the court, the court decision arrives with Poisson rate δ

Litigation is costly (at least for the NPEs)

Remedy: damages (injunctions to be considered)

• If a NPE wins, it will receive a (damage) payment of d

An infringement is found with probability $\mathbf{1}-\alpha$

 $\rightarrow \alpha$ =the probability that the producer can escape infringement (e.g., NPE's patent is invalid)

 $\alpha \approx$ strength of a practiced patent, the probability that the practiced innovation is fully covered by the patent(s)

2.4 Licensing

In equilibrium the parties settle rather than go to the court

When a producer and a NPE meet, the producer can make a take-or-leave-it licensing offer to the NPE

• i.e. the NPE has no *formal* bargaining power

 \rightarrow The NPE's *real* bargaining power arises from the litigation threat $(1 - \alpha)$.

Both *ex ante* and *ex post* licensing possible

• Ex post licensing: A NPE and a producer meet after the producer has come up with an innovation

 \rightarrow reduces the value of the manufacturer's innovation, like a tax -> "bad licensing"

- Ex ante licensing: A NPE and a producer meet before the producer has made an innovation
 - Technology transfer: the producer gets production technology,

 \rightarrow saves manufacturer's R&D costs -> "good licensing"

Timing

Exa	ante			
Entry by NPEs Investments in R&D	Search	Matching Ex-ante licensing	Innovation	
Ex	post			
Search	Ma Ex- sha liti	atching -post licensing in the adow of gation	Obsolescence Launch of a new project Exit by NPEs	

Manufacturer flows

 $\mu_0 = \text{conducting R&D}$

 μ_1 = producing with an exante license

 μ_2 = producing with ex ante and ex post licenses

 μ_3 = producing without licenses

 μ_{4} = producing with an expost license

 $\mu_0 + \mu_1 + \mu_2 + \mu_3 + \mu_4 = 1$

3 Equilibrium

Value of an unlicensed patent (for a NPE):

$$rV_T = (1-z)\frac{q(\theta)}{\theta} \left(L_T^{exante} - V_T\right) + z\frac{q(\theta)}{\theta} \left(L_T^{expost} - V_T\right)$$

where

- $z={\rm fraction}$ of ex post licensing opportunities to all licensing opportunities

- $L_T^e, e \in \{\text{exante, expost}\} = \text{value of a licensed patent}$
- we focus on the case with no iron-clad patents: $L_T^{\exp ost} \ge V_T$
- i.e., α cannot be too high

Value of an R&D project (for a manufacturer)

$$rV_{M}^{R\&D} = q\left(\theta\right) \left(L_{M}^{exante} - V_{M}^{R\&D}\right) + h\left(V_{M} - V_{M}^{R\&D}\right) - \rho\left(h\right)$$

where the value of the innovation

$$rV_{M} = y + \lambda \left(V_{M}^{R\&D} - V_{M} \right) + q \left(\theta \right) \left(L_{M}^{\exp ost} - V_{M} \right)$$

3.1 Ex Post Licensing

The value of litigation for a NPE:

$$rC_T = -c_T + \lambda \left(V_T - C_T \right) + \delta \left[(1 - \alpha) W_T + \alpha V_T - C_T \right]$$

where the value of a winning for a NPE

$$rW_T = d + \lambda \left(V_T - W_T \right).$$

Value of an expost license for a NPE

$$rL_T^{\exp ost} = f^{\exp ost} + \lambda \left(V_T - L_T^{\exp ost} \right)$$

Ex post licensing fee $f^{\exp ost}$ solves $L_T^{\exp ost} = C_T$

3.2 Equilibrium conditions

Free-entry of NPEs (TE) : $V_T = 0$

• Determines θ for a given h and implies that

$$L_T^{exante} = V_T = \mathbf{0} \to f^{exante} = \mathbf{0}.$$

Incentives to innovate (R&D):

$$\max_{h} r V_{M}^{R\&D} = (h + q(\theta)) \left(V_{M} - V_{M}^{R\&D} \right) - \rho(h)$$

• Determines h for a given θ

4 Results

Result 1: Unique Equilibrium

Result 2: Tightening Liability Standards

5 Welfare

Recall: no traditional R&D externalities (consumer surplus, spillovers, business stealing), just search externalities and incentive effects

The planner chooses h and θ to maximize

$$S = y - \mu_0 \left(y + \rho \left(h \right) + s \theta \right)$$

Welfare Results

Too little R&D in the market thanks to "tax effect" of ex post licensing and "search externalities" in the ex ante licensing markets

Result 3: Too Little R&D in the Market

α

There can be too little or too much NPE activity

- Ex post licensing is bad thanks to tax effect
- Ex ante licensing is good thanks to manufacturer R&D cost savings

Result 4: NPE Activity

α

6 (Tentative) Policy Implications

Tightening liability standards against practiced patents

- always increases R&D towards social optimum
- may or not may not make the volume of NPE activity "more efficient"
- nonetheless tends to improve welfare as the NPE effects tend to cancel out each others

7 Conclusions

- We build an equilibrium search model of licensing and technology markets
 - to study the effects of imprecise patent boundaries on
 - * NPEs' entry incentives
 - * Incentives to innovate
 - * Welfare

Results:

- 1. There is too little R&D in the market equilibrium even without traditional R&D externalities
- 2. There may or may not be too much NPE activity in the market
- 3. Tightening liability standards against practiced patents
 - increases R&D investments.
 - its effects on the NPE activity generally ambiguous
 - nonetheless tends to improve welfare