Marketing Strategies in the Presence of Network Effects

Christopher R. Dance, Xerox Research Centre Europe

The Economics of Intellectual Property, Software and the Internet (2011)

Aim: maximize revenue when selling to a social network

Setting:

- Positive externalities:
 - a set S_t of buyers have purchased before time t
 - valuation v_i(S_t) of buyer i depends on S_t
 - assume that $v_i(A) \leq v_i(B)$ for $A \subseteq B$

• Myopic: buy as soon as valuation exceeds price $v_i(S_t) \ge p_{i,t}$

Aim: maximize revenue when selling to a social network

Setting:

- Positive externalities:
 - a set S_t of buyers have purchased before time t
 - valuation $v_i(S_t)$ of buyer *i* depends on S_t
 - assume that $v_i(A) \leq v_i(B)$ for $A \subseteq B$
- Myopic: buy as soon as valuation exceeds price $v_i(S_t) \ge p_{i,t}$

Optimal revenue: maximize total revenue

over all policies π which set price $p_{i,t}$ for each buyer *i* given set S_t

The authors also restrict the class of policies as follows

- Optimal seeding:
 - Initially, a seed set of buyers of given size is given the item for free
 - All other sales are at fixed price p^{*}
- Optimal non-discriminatory selling:
 - A sequence of prices $(p_t)_{t=1}^T$ is decided in advance

Optimal revenue: maximize total revenue

over all policies π which set price $p_{i,t}$ for each buyer *i* given set S_t

The authors also restrict the class of policies as follows

Optimal seeding:

- Initially, a seed set of buyers of given size is given the item for free
- All other sales are at fixed price p^{*}
- Optimal non-discriminatory selling:
 - A sequence of prices $(p_t)_{t=1}^T$ is decided in advance

Optimal revenue: maximize total revenue

over all policies π which set price $p_{i,t}$ for each buyer *i* given set S_t

The authors also restrict the class of policies as follows

Optimal seeding:

- Initially, a seed set of buyers of given size is given the item for free
- All other sales are at fixed price p^{*}
- Optimal non-discriminatory selling:
 - A sequence of prices $(p_t)_{t=1}^T$ is decided in advance

Thm 1. Optimal revenue is NP-hard.

Thm 2. Optimal seeding is NP-hard. But a greedy method gives a constant factor approximation.

Thm 3. Optimal non-discriminatory selling can be solved by dynamic programming.

The runtime is polynomial in the maximum possible price, assuming prices are integers.

A (10) A (10)

- Thm 1. Optimal revenue is NP-hard.
- Thm 2. Optimal seeding is NP-hard. But a greedy method gives a constant factor approximation.
- Thm 3. Optimal non-discriminatory selling can be solved by dynamic programming. The runtime is polynomial in the maximum possible price.

assuming prices are integers.

A (10) > A (10) > A

- Thm 1. Optimal revenue is NP-hard.
- Thm 2. Optimal seeding is NP-hard. But a greedy method gives a constant factor approximation.
- Thm 3. Optimal non-discriminatory selling can be solved by dynamic programming.

The runtime is polynomial in the maximum possible price, assuming prices are integers.

Seed'n'Sell: What if you do optimal seeding followed by non-discriminatory selling?

Answer: Given enough price changes,

revenue[non-discriminatory selling] ≥ 0.88 revenue[seed'n'sell]

Good News: Simulations suggest that "enough price changes" is a small number.

Seed'n'Sell: What if you do optimal seeding followed by non-discriminatory selling?

Answer: Given enough price changes,

 $revenue[non-discriminatory\ selling] \geq 0.88\ revenue[seed'n'sell]$

Good News: Simulations suggest that "enough price changes" is a small number.

Seed'n'Sell: What if you do optimal seeding followed by non-discriminatory selling?

Answer: Given enough price changes,

revenue[non-discriminatory selling] ≥ 0.88 revenue[seed'n'sell]

Good News: Simulations suggest that "enough price changes" is a small number. Vazirani (2001) shows that the linear programming relaxation of vertex cover enables a 2-approximation.

- You prove optimal revenue is hard by reduction from vertex cover. So, when is there a constant factor approximation for the full optimal revenue problem?
- The strength of your numerical results is limited by the fact that you cannot compare with an optimal solution to the full problem. Perhaps you could use a relaxation to provide a tight upper bound on the optimal revenue?

• • • • • • • • • • • • •

Vazirani (2001) shows that the linear programming relaxation of vertex cover enables a 2-approximation.

- You prove optimal revenue is hard by reduction from vertex cover. So, when is there a constant factor approximation for the full optimal revenue problem?
- The strength of your numerical results is limited by the fact that you cannot compare with an optimal solution to the full problem. Perhaps you could use a relaxation to provide a tight upper bound on the optimal revenue?

- Non-discriminatory policies are limited as they do not adapt (*i.e.* the price schedule does not change given observations of S_t) Could you get even better results by running the DP algorithm at each time step to select p_t given S_t?
- The DP algorithm is only polynomial in p_{max}, the maximum possible price, for integer prices Could you reformulate this as a fully-polynomial time approximation scheme (FPTAS)?

< ロ > < 同 > < 回 > < 回 >

- Non-discriminatory policies are limited as they do not adapt (*i.e.* the price schedule does not change given observations of S_t) Could you get even better results by running the DP algorithm at each time step to select p_t given S_t?
- The DP algorithm is only polynomial in p_{max}, the maximum possible price, for integer prices Could you reformulate this as a fully-polynomial time approximation scheme (FPTAS)?