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Abstract

This paper examines a model in which advertisers bid for “sponsored-link” positions
on a search engine. The value advertisers derive from each position is endogenized as
coming from sales to a population of consumers who make rational inferences about
firm qualities and search optimally. Consumer search strategies, equilibrium bidding,
and the welfare benefits of position auctions are analyzed. Implications for reserve
prices and a number of other auction design questions are discussed.
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1 Introduction

Google, Yahoo! and Microsoft allocate the small “sponsored links” one sees at the top and

on the right side of their search engine results via similar auction mechanisms. In just a few

years, this has become one of the most practically important applications of auctions, with

annual revenues surpassing $10 billion. Several analyses of these “position auctions” have

now appeared in the economics and computer science literature. The most fundamental

result is that the benchmark auction in which the kth highest bidder wins the kth slot and

pays the k + 1st highest bid is not equivalent to the VCG mechanism and thus does not

induce truthful bidding, but does result in the same revenue as the VCG mechanism.1

The literature has focused on position auctions as a topic in auction theory. Most papers

abstract away from the fact that the “objects” being auctioned are advertisements.2 We
∗Harvard University and Massachusetts Institute of Technology. E-mail: athey@fas.harvard.edu, gel-

lison@mit.edu. We thank Ben Edelman, Leslie Marx, John Morgan, Ilya Segal, Hal Varian, and various
seminar audiences for their comments and Eduardo Azevedo, Eric Budish, Stephanie Hurder, Scott Komin-
ers, and Dmitry Taubinsky for exceptional research assistance. This work was supported by NSF grants
SES-0550897 and SES-0351500 and the Toulouse Network for Information Technology.

1Edelman, Ostrovsky, and Schwarz (EOS) (2007), Aggarwal, Goel, and Motwani (2006), and Varian
(2007) all contain versions of this result.

2As discussed below, Chen and He (2006) is a noteworthy exception – they develop a model with optimal
consumer search and note that the fact that auctions lead to a sorting of advertisers by quality can rationalize
top-down search and be a channel through which sponsored link auctions contribute to social welfare.
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feel that this is an important omission because when the value of a link is due to consumers’

clicking on the links and making purchases, it is natural to assume that consumer behavior

and link values will be affected by the process by which links are selected for display. In this

paper, we develop this line of analysis. By incorporating consumers into our model, we are

able to answer questions about how the design of the advertising auction marketplace affects

overall welfare, as well as the division of surplus between consumers, search engines, and

advertisers. Our framework allows us to provide new insights about reserve prices policies,

click-through weighting, fostering product diversity, advertisers’ incentives to write accurate

ad text, “search-diverting”aggregators, different payment schemes (e.g. pay per click vs.

pay per action), and the possiblility of using multi-stage auction mechanisms.

Section 2 of the paper presents our base model. The most important assumptions are

that advertisers differ in quality (with high quality firms being more likely to meet each

consumer’s need), that consumers incur costs of clicking on ads, and that consumers act

rationally in deciding how many ads to click on and in what order. Section 2 also presents

some basic results on search and welfare: we characterize optimal consumer search strategies

and illustrate the welfare benefits that result when well sorted sponsored-link lists make

consumer search more efficient.

Section 3 contains our analysis of the sponsored-link auction. Because the value of

being in any given position on the search screen depends on the qualities of all of the

other advertisers, the auction is not a private-values model and does not fit within the

framework of Edelman, Ostrovsky and Schwarz (2007). But the analysis and equilibrium

are nonetheless similar. We derive a symmetric perfect Bayesian equilibrium with monotone

bidding functions and discuss some properties.

Section 4 discusses reserve-price policies and the extent to which consumer welfare and

social welfare are in conflict. Recall that in standard auctions with exogenous values, reserve

prices raise revenue for the auctioneer by eliminating efficient trades. In contrast, in our

model, reserve prices can enhance total social surplus, and in some cases can even be good

for advertisers. The reason is that reserve prices may can enhance welfare in two ways: they

help consumers avoid some of the inefficient search costs they incur when clicking on low

quality links; and they can increase the number of links that are examined in equilibrium.

We demonstrate that in one special case there is a perfect alignment of consumer-optimal

and socially optimal policies. Even in this special case, conflicts between search engines

and advertisers remain: the share of surplus received by the search engine is increasing in

the reserve price.
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Section 5 examines click-weighted auctions similar to those used by Google, Yahoo!

and Microsoft. Google’s introduction of click-through weighting in 2002 is regarded as

an important competitive advantage and Yahoo!’s introduction of click-through weights

into its ranking algorithm in early 2007 (“Panama”) was highly publicized as a critical

improvement.3 Although at first it might seem intuitive that weighting bids by click-

through rates should be unambiguously good for consumers – an advertisement cannot

generate surplus without clicks – our analysis places some caveats on the conventional

wisdom. In the presence of search costs, we show that the click-weighted auction does

not necessarily generate the right selection of ads – general ads may be displayed when it

would be more efficient to display an ads that serve a narrower population segment well.

There can also be welfare losses when asymmetries in the click-through weights make the

ordering of the ads less informative about quality. Finally, we note that the introduction

of click-weighting can create incentives for firms to write misleading and overly broad text.

The intuition for the latter result is that even though firms pay per click, in a click-weighted

auction, firms that generate more clicks on average must pay less per click to maintain their

position, and so they have no incentive to economize on consumer clicks. The result is also

robust to the use of pay-per-action pricing models, so long as the auction is action-weighted.

Section 6 discusses a few more auction design topics: the extent to which search-

diverting sites decrease revenue, as well as how incorporating consumer uncertainty about

search engine quality leads to a strong negative impact of allowing irrelevant advertisers to

purchase sponsored links on click-through rates and consumer welfare.

Our paper contributes to a growing literature. Edelman, Ostrovsky, and Schwarz (2007),

Aggarwal, Goel, and Motwani (2006), and Varian (2007), all contain versions of the result

that the all contain versions of the result that the standard unweighted position auction

(which EOS call the generalized second price or GSP auction) is not equivalent to a VCG

mechanism but can yield the same outcome in equilibrium. Such results can be derived in

the context of a perfect information model under certain equilibrium selection conditions.

EOS show they the equivalence can also be derived in an incomplete information ascending

bid auction, and that in this case the VCG-equivalent equilibrium is the unique perfect

Bayesian equilibrium. The papers also note conditions under which the results would carry

over to click-weighted auctions.

The above papers consider environments in which the value to advertiser i of being in
3Eisenmann and Hermann (2006) report that Google’s move was in part motivated by a desire for

improved ad relevance: “according to Google, this method ensured that users saw the most relevant ads
first.”
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position j on the screen is the product of a per-click value vi and a position-specific click-

through rate cj . Borgers, Cox, Pesendorfer and Petricek (BCPP) (2006) extend this model

to allow click-through rates and value per click to vary across positions in different ways

for different advertisers and emphasize that there can be a great multiplicity of equilibrium

outcomes in a perfect information setting.4 Our model does not fit in the BCPP framework

either, however, because they maintain the assumption that advertiser i’s click-through

rate in position j is independent of the characteristics of the other advertisers.

Chen and He (2006) is more closely related to our paper. They had previously in-

troduced a model that is like ours in several respects. Advertisers are assumed to have

different valuations because they have different probabilities of meeting consumers’ needs.

Consumers search optimally until their need is satisfied. They also include some desirable

elements which we do not include: they endogenize the prices advertisers charge consumers;

and allow firms to have different production costs.5 We are enthusiastic about these as-

sumptions as introducing important issues and think that the observations they make about

the basic economics of their model (and ours) are interesting and important: they note that

sponsored links provide a welfare benefit by directing consumer search and making it more

efficient; further, they note that without some refinement there will also be equilibria in

which consumers pay no attention to the order of sponsored links and the links are therefore

worthless.

Our work goes beyond theirs in several ways. They only consider what happens for one

particular realization of firm qualities, whereas we assume the qualities are independently

drawn from a distribution and examine an incomplete information game. They assume

that consumers know the (unordered) set of realized qualities, so there is no updating

about the quality of the set of advertisers as consumers move down the list. They have

no heterogeneity in consumer search costs and obviate the search duration problem by

assuming that search costs are such that all consumers will search all listed firms. As a

consequence, most of our paper addresses issues that don’t come up in their framework.

They have no analog to our derivation of optimal consumer search strategies because their

consumers simply click on all sponsored links (if necessary). They have no analog to our

derivation of the equilibrium strategies in an asymmetric information bidding game – they

compute Nash equilibria of a game where firms know each others values. And they do not

discuss reserve prices or the many other auction design issues we consider. (Many of the
4BCPP also contains an empirical analysis which includes methodological innovations and estimates of

how value-per-click changes with position in Yahoo! data.
5As in Diamond (1971) the equilibrium turns out to be that all firms charge the monopoly price.
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auction design questions hinge on how the design affects the information consumers get

about firm qualities and thereby influences consumer search, which is not something that

comes up when search costs are such that all consumers view all ads.)

2 A Base Model

A continuum of consumers have a “need.” They receive a benefit of 1 if the need is met.

To identify firms able to meet the need they visit a search site. The search site displays M

sponsored links. Consumer j can click on any of these at cost sj . Consumers click optimally

until their need is met or until the expected benefit from an additional click falls below sj .

We assume the sj have an atomless distribution G with support on [0, 1].

N advertisers wish to advertise on a website. Firm i has probability qi of meeting each

consumer’s need, which is private information. We assume that all firms draw their qi
independently from a common distribution, F, which is atomless and has support [0, 1].

Advertisers get a payoff of 1 every time they meet a need.

Informally, we follow EOS in assuming that the search site conducts an ascending bid

auction for the M positions: if the advertisers drop out at per-click bids b1, . . . , bN , the

search engine selects the advertisers with the M highest bids and lists them in order from

top to bottom. The kth highest bidder pays the k + 1st highest bid for each click it gets.6

To avoid some of the complications that arise in an infinite horizon continuous time models,

however, we formalize the auction as a simpler M -stage game in which the firms are simply

repeatedly asked to name the price at which they will next drop out if no other firm has

yet dropped out.7 In the first stage, which we call stage M + 1, the firms simultaneously

submit bids bM1, . . . bMN ∈ [0,∞) specifying a per-click price they are willing to pay to

be listed on the screen. The N −M lowest bidders are eliminated.8 Write bM+1 for the

highest bid among the firms that have been eliminated. In remaining stages k, which we’ll

index by the number of firms remaining, k ∈ {M,M − 1, . . . , 2}, the firms which have not

yet been eliminated simultaneously submit bids bkn ∈ [bk+1,∞). The firm with the single
6Note that this model differs from the real-world auctions by Google, Yahoo!, and MSN in that it does

not weight bids by clickthrough weights. We discuss such weighted auctions in Section 5. We present
results first for the unweighted auction because the environment is easier to analyze. It should also be an
approximation to real-world auctions in which differences in click-through rates across firms are minor, e.g.
where the bidders are retailers with similar business models.

7Two examples of issues we avoid dealing with in this way are formalizing a clock-process in which firms
can react instantaneously to dropouts and specifying what happens if two or more firms never drop out.
See Demange, Gale and Sotomayor (1986) for more on extensive form specifications of multi-unit auctins.

8If two or more firms are tied for the M th highest bid, we assume that the tie is broken randomly with
each tied firm being equally likely to be eliminated.
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lowest bid is assigned position k and eliminated from future bidding. We define bk to be

the bid of this player. At the end of the auction, the firms in positions 1, 2, . . . , M will

make per-click payments of b2, b3, . . . , bM+1 for the clicks they receive.

Before proceeding, we pause to mention the main simplifications incorporated in the

baseline model. First, advertisers are symmetric except for their probability of meeting

a need: profit-per-action is the same for all firms, and we do not consider the pricing

problem for the advertiser. By focusing on the probability of meeting a need rather than

pricing, we focus attention on the case–which we believe is most common on search engines

(as opposed to price comparison sites)–where search phrases are sufficiently broad that

many different user intentions correspond to the same search phrase, and so the first-order

difference among sites is whether they are even plausible candidates for the consumer’s

needs. If we allowed for firms to set prices but required consumers to search to learn

prices, firms would have an incentive to set monopoly prices, following the logic of Diamond

(1971) and Chen and He (2006); thus, the main consequence of our simplification is the

symmetry assumption. Generalizing the model to allow for heterogeneous values conditional

on meeting the consumer’s need would allow us to distinguish between the externality a

firm creates on others by being higher on the list, which is related to the probability of

meeting the need, and the value the firm gets from being in a position; we leave that for

future work.

Our baseline model assumes that advertisers receive no benefit when consumers see their

ad but do not click on it. Incorporating such impression values (as in BCPP) places a wedge

between the externality created by a firm and its value to being in a given position. In

addition, consumers get no information about whether listed firms are more or less likely to

meet their needs from reading the text of their ads. In Section 5, we consider extensions of

our model where the ad text of firms is informative, leading to heteroeneous click-through

rates, and its accuracy is endogenous; we also consider the effect of advertiser value for

impressions in this context.

2.1 Consumer welfare with sorted lists

One of the main ideas that we wish to bring out in our model is that one channel through

which sponsored-link auctions affect consumer utility is through their effect on the efficiency

of consumer search. We introduce this idea in this section by characterizing consumer

welfare with sorted and unsorted lists. This section also contains important building blocks

for all of our analyses: an analysis of the Bayesian updating that occurs whenever consumers
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find that a particular link does not meet their needs; and a derivation of optimal search

strategies.

A benchmark for comparison is what happens if the advertisements are presented to

consumers in a random order. Define q̄ = E(qi). In that case, the consumer expects each

website to meet the need with probability q̄.

Proposition 1 If the ads are sorted randomly, then consumers with s > q̄ don’t click on

any ads. Consumers with s < q̄ click on ads until their need is met or they run out of ads.

Expected consumer surplus is

E(CS(s)) =

{
0 if s ≥ q̄
(q̄ − s)1−(1−q̄)M

q̄ if s < q̄

Proof: The clicking strategies are obvious. Consumers who are willing to search get

(q̄−s) from the first search. If this is unsuccessful (which happens with probability (1− q̄))
they get (q̄− s) from their second search. The total payoff is (q̄− s)(1 + (1− q̄) + (1− q̄)2 +

...+ (1− q̄)M−1).

QED

Suppose now that the bidding model has an equilibrium in which strategies are strictly

monotone in q. Then, in equilibrium the firms will be sorted so that the firm with the

highest q is on top. Consumers know this, so the expected utility from clicking on the top

firm is the highest order statistic, q1:N .9 Their expected payoff for any addition clicks must

be determined by Bayesian updating: the fact that the first website didn’t meet their needs

makes them reduce their estimate of its quality and of all lower websites’ qualities.

Let q1:N , . . . , qN :N be the order statistics of the N firms’ qualities and let z1, . . . , zN be

Bernoulli random variables equal to one with these probabilities. Let q̄k be the expected

quality of website k in a sorted list, given that the consumer has failed to fulfill his need

from the first k − 1 advertisers:

q̄k = E(qk:N |z1 = . . . = zk−1 = 0).

Proposition 2 If the firms are sorted by quality in equilibrium, then consumers follow a

top-down strategy: they start at the top and continue clicking until their need is met or

until the expected quality of the next website is below the search cost: q̄k < s. The numbers
9As is Ellison, Fudenberg, and Möbius (2004) we write q1:N for the highest value, in contrast to the usual

convention in statistics, which is to call the highest value the N th order statistic.
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q̄k are given by

q̄k = E(qk:N |z1 = . . . = zk−1 = 0)

=

∫ 1
0 xf

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx∫ 1
0 f

k:N (x)Prob{z1 = . . . = zk−1 = 0|qk:N = x}dx

A firm in position k will receive (1− q1:N ) · · · (1− qk−1:N )G(q̄k) clicks.

Proof: Consumers search in a top-down manner because the likelihood of that a site

meets a consumer’s need is consumer-independent, and hence maximized for each consumer

at the site with the highest q. A consumer searches the kth site if and only if the probability

of success at this site is greater than s. The expected payoff to a consumer from searching

the kth site conditional on having gotten failures from the first k − 1 is E(qk:N |z1 = . . . =

zk−1 = 0). (The fk:N in the formula is the PDF of the kth order statistic of F .)

QED

One feature of our model which we’ll exploit at several points is that the special case

with uniformly-distributed valuations is surprisingly tractable: fairly simple closed-form

expressions can be given for many of the terms that come up in the propositions. We

present these formulas at several points to help build intuition and to present more explicit

results. The following results are proved in the Appendix:

Lemma 1 For uniform F , if consumers search an ordered list from the top down, then

E(qk:N |z1 = . . . = zk−1 = 0) =
N + 1− k
N + k

Prob{z1 = . . . = zk−1 = 0} =
k−1∏
j=1

2j − 1
N + j

Corollary 1 If the firms are sorted by quality in equilibrium and the distribution F of firm

qualities is uniform, then a consumer with search cost s stops clicking when she reaches

position kmax(s), where

kmax(s) =
⌈

1− s
1 + s

N +
1

1 + s

⌉
.

Assuming that the quality distribution is uniform also makes it easy to compute ex-

pected consumer surplus. The expected payoff from clicking on the top link is E(q1:N )−s =

N/(N + 1)− s. If the first link is unsuccessful, which happens with probability 1/(N + 1),

then (using Lemma 1) the consumer gets utility E(q2:N |z1 = 0)− s = (N − 1)/(N + 2)− s
from clicking on the second. Adding up these payoffs over the number of searches that will

be done gives
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Proposition 3 If the distribution of firm quality F is uniform, the expected utility of a

consumer with search cost s is:

E(CS(s)) =



0 if s ∈
[

N
N+1 , 1

]
N
N+1 − s if s ∈

[
N−1
N+2 ,

N
N+1

]
N
N+1 − s+ 1

N+1

(
N−1
N+2 − s

)
if s ∈

[
N−2
N+3 ,

N−1
N+2

]
N
N+1 − s+ 1

N+1

(
N−1
N+2 − s

)
+ 1

N+1
3

N+2

(
N−2
N+3 − s

)
if s ∈

[
N−3
N+4 ,

N−2
N+3

]
. . .
1− 1/2M if s ≈ 0

When N is large, the graph of the function above approaches 1−s whereas the unordered

payoff is approximately 1 − 2s. N doesn’t need to be very large at all for the function to

be close to its limiting value. For example, just looking at the first term we know that for

N = 5 we have E(CS(s)) > 5/6 − s for all s. The figure below graphs the relationship

between E(CS) and s for N = 4.
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Figure 1: Consumer surplus with sorted and unsorted links: N = 4

3 Equilibrium Analysis

In this section we solve for the equilibrium of our base model taking both consumer and

advertiser behavior into account. Advertisers’ bids are influenced by click-through rates,

so we start with an analysis of consumer behavior. We then analyze the bidding among

advertisers.

We restrict our attention to equilibria in which advertisers’ bids are monotone increasing

in quality, so that consumers expect the list of firms to be sorted from highest to lowest
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quality and search in a top-down manner.10

3.1 Clickthrough rates with uniform distributions

Clickthrough rates (CTRs) are more complicated in our model than in the standard position

auction model because the number of clicks that a firm receives depends not only on its

position on the list, but also on consumer beliefs about its quality and on the realized

qualities of other firms. In this section we characterize both unconditional CTRs and

conditional CTRs taking into account what a firm infers about the firm-quality distribution

when a change to its bid is pivotal.

In a search model, the clicks received by the kth firm is decreasing in k for two reasons:

some consumers will have already met their need before getting to the kth position on

the list; and a lower position signals to consumers that the firm’s quality is lower, which

reduces the number of consumers willing to click on the link. When consumer search costs

are uniformly distributed, the probability that a consumer whose needs have not been met

by the first k − 1 websites will click on the kth website is just the expected quality of the

kth website conditional on the consumer having had k − 1 unsuccessful experiences, which

we derived in the previous section.

Proposition 4 Assume s and q ∼ U [0, 1]. Write D(k) for the ex ante expected clicks

received by the kth website and D(k, q) for the number of clicks a website of quality q

expects to receive if it plays the equilibrium strategy and ends up in the kth position. We

have

D(k, q) =
(

1 + q

2

)k−1 N + 1− k
N + k

D(k) =
1 · 3 · · · · · (2k − 3)

(N + 1)(N + 2) . . . (N + k − 1)
N + 1− k
N + k

Details of the calculations are in the Appendix.

3.2 Equilibrium in the bidding game

Consider now our formalization of an “ascending auction” in which the N firms bid for the

M < N positions.
10In a model with endogenous search there will also be other equilibria. For example, if all remaining

bidders drop out immediately once M firms remain and are ordered arbitrarily by an auctioneer that cannot
distinguish among them, then consumers beliefs will be that the ordering of firms is meaningless, so it would
be rational for consumers to ignore the order in which the firms appear and for firms to drop out of the
bidding as soon as possible.
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Note that conditional on being clicked on, a firm will be able to meet a consumer’s need

with probability q. We’ve exogenously fixed the per-consumer profit at one, so q is like the

value of a click in a standard position auction model.

Although one can think of our auction game as being like the EOS model with endoge-

nous click-through rates, the auction part of our model cannot be made to fit within the

EOS framework. The reason is that the click-through rates are a function of the bidders’

types as well as of the positions on the list.11 The equilibrium derivation, however, is similar

to that of EOS.

Our first observation is that, as in that model, firms will bid up to their true value to

get on the list, but will then shade their bids in the subsequent bidding for higher positions

on the list.

In the initial stage (stage M + 1) when N > M firms remain, firms will get zero if they

are eliminated. Hence, for a firm with quality q it is a weakly dominant strategy to bid q.

We assume that all bidders behave in this way.

Once firms are sure to be on the list, however, they will not want to remain in the

bidding until it reaches their value. To see this, suppose that k firms remain and the k+1st

firm dropped out at bk+1. As the bid level b approaches q, a firm knows that it will get

q − bk+1 per click if it drops out now. If it stays in and no one else drops out before b

reaches q, nothing will change. If another firm drops out at q − ε, however, the firm would

do much worse: it will get more clicks, but its payoff per click will just be q − (q − ε) = ε.

Hence, the firm must drop out before the bid reaches its value.

Assume for now that the model has a symmetric strictly monotone equilibrium in which

drop out points b∗(k, bk+1; q) are only a function of (1) the number of firms k that remain;

(2) the current k + 1st highest bid, bk+1; and (3) the firm’s privately known quality q.12

Suppose that the equilibrium is such that a firm will be indifferent between dropping

out at b∗(k, bk+1; q) and remaining in the auction for an extra db and then dropping out

at b∗(k, bk+1; q) + db. This change in the strategy does not affect the firm’s payoff if no

other firm drops out in the db bid interval. Hence, to be locally indifferent the firm must

be indifferent between remaining for the extra db conditional on having another firm drop

out at b∗(k, bk+1; q). In this case the firm’s expected payoff if it is the first to drop out is

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k) · (q − bk+1).

11BCPP have a more general setup, but they still assume that click-through rates do not depend on the
types of the other bidders.

12In principle, drop out points could condition on the history of drop out points in other ways. One can
set bk+1 = 0 in the initial stage when no firm has yet to drop out.
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The first term in this expression is the probability that all higher websites will not meet a

consumer’s need. The second is the demand term coming from the expected quality. The

third is the per-click profit. If the firm is the second to drop out in this db interval then its

payoff is

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1) · (q − b∗).

The first two terms in this expression are greater reflecting the two mechanisms by which

higher positions lead to more clicks. The final is smaller reflecting the lower markup.

Indifference gives

G(q̄k)(1− q)(q − bk+1) = G(q̄k−1)(q − b∗)

This can be solved for b∗.

Proposition 5 The auction game has a symmetric strictly monotone pure strategy equi-

librium. In particular, it is a Perfect Bayesian equilibrium for firms to choose their dropout

points according to

b∗(k, bk+1; q) =

{
q if k > M

bk+1 + (q − bk+1)
(

1− G(q̄k)
G(q̄k−1)(1− q)

)
if k ≤M.

(1)

When both qualities and search costs are uniform, the latter expression is

b∗(k, bk+1; q) = bk+1 + (q − bk+1)
(

1− (1− q)
(

1− 2N + 1
(N + 1)2 − (k − 1)2

))
.

Sketch of proof: First, it is easy to show by induction on k that the strategies defined

in the proposition are symmetric strictly monotone increasing and always have qi ≥ bk+1

on the equilibrium path. The calculations above establish that the given bidding functions

satisfy a first-order condition.

To show that the solution to the first-order condition is indeed a global best response we

combine a natural single-crossing property of the payoff functions – the marginal benefit of

a higher bid is greater for a higher quality firm – and the indifference on which the bidding

strategies are based. For example, we can show that the change in profits when a type q′

bidder increases his bid from b∗(q′) to b∗(q̂) is negative using

π(b∗(q′); q′)− π(b∗(q̂); q′) =
∫ q̂

q′

∂π

∂b
(b∗(q), q′)

db∗

dq
(q)dq

≤
∫ q̂

q′

∂π

∂b
(b∗(q), q)

db∗

dq
(q)dq

= 0.
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Formalizing this argument is a little tedious, so we have left it to the appendix.

The expression for the uniform distribution is obtained by substituting the expression

for G(q̄k) from Lemma 1 into the general formula and simplifying:

G(q̄k)
G(q̄k−1)

=
(N + 1− k)/(N + k)

(N + 1− (k − 1))/(N + (k − 1))
= 1− 2N + 1

(N + 1)2 − (k − 1)2
.

QED

Remarks

1. In this equilibrium firms start out bidding up to their true value until they make it

onto the list. Once they make it onto the list they start shading their bids. If q is

close to one, then the bid shading is very small. When q is small, in contrast, bids

increase slowly with increases in a firm’s quality because there isn’t much gain from

outbidding one more bidder.

2. The strategies have the property that when a firm drops out of the final M, it is

common knowledge that no other firm will drop out for a nonzero period of time.

3. Bidders shade their bids less when bidding for higher positions, i.e. b∗(k, b′; q) is

decreasing in k with b′ and q fixed, if and only if G(q̄k−1)
G(q̄k) is decreasing in k. This can

be seen most easily by rewriting (1) as

b∗ = q − G(q̄k)
G(q̄k−1)

(1− q)(q − bk+1).

One may get some intuition for whether the condition is likely to hold in practice

by examining the growth in click-through rates as a firm moves from position k to

position k−1. In the model this is G(q̄k−1)

(1−qk−1:N )G(q̄k)
, and industry sources report that it

decreases moderately to rapidly in k, which is consistent with less bid shading at the

top positions. However, since qk:N is also declining in k, the declining click-through

rates could also be due to rapidly decreasing quality lower down the list.

4. EOS show that the similar equilibrium of their model is unique among equilibria in

strategies that are continuous in types and note that there are other equilibria that

are discontinuous in types. The indifference condition we derive should imply that

equilibrium is also unique in our model if one restricts attention to an appropriate class

of strategies with continuous strictly monotone bidding functions. As Chen and He

(2006) also note, however, there are also other equilibria. For example, if consumers

believe that the links are sorted randomly (and therefore search in a random order),
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then there will be an equilibrium in which all firms drop out as soon as M firms

remain.

4 Reserve Prices

In this section we note that the profit-welfare tradeoffs that arise when considering reserve

prices are very different in our model as compared to standard auction models. In a

standard auction model reserve prices increase the auctioneer’s expected revenues. At

the same time, however, they reduce social welfare. Hence, they could inhibit seller or

buyer entry in a model in which these were endogenous, and might not be optimal in such

models.13 Edelman and Schwarz (2006) provide theoretical and numerical analyses of the

the impact of reserve prices in the position auction model and show that the GSP auction

with an optimally chosen reserve price is an optimal mechanism. Here, we show that the

considerations are somewhat different in our model: reserve prices can increase both the

profits of the auctioneer and social welfare. The reason for this difference is that consumers

incur search costs on the basis of their expectation of firm quality. When the quality of

a firm’s product is low relative to this expectation, the search costs consumers incur are

inefficient. By instituting a reserve price, the auctioneer commits not to list products of

sufficiently low quality and can reduce this source of welfare loss. This in turn, can increase

the number of searches that consumers are willing to carry out. Increases in the volume of

trade are another channel through which welfare can increase.

We first discuss the special case of uniformly distributed search costs, which yields neat

results and highlights some qualitative forces that remain present in more general models.

We then evaluate the robustness of these results for general search cost distributions.

4.1 Reserve prices when search costs are uniformly distributed

In this subsection, we examine the special case of our model in which the search costs

distribution G is uniform on [0, 1]. We restrict our analyses to equilibria like those described

in the previous section in which firms use strictly monotone bidding strategies and bid their

true value when they will not be on the sponsored-link list. We intially consider a general

quality distriubtion F , and later give some results for F uniform.
13See Ellison, Fudenberg and Möbius (2004) for more on a competing auction model in which this effect

would be important.
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4.1.1 The optimal reserve price for consumers also maximizes social welfare

In this section we present a striking result on the alignment of consumer and adver-

tiser/search engine preferences: the welfare maximizing and consumer surplus maximizing

policies coincide. Moreover, for any reserve price, the sum of advertiser profit and search

engine profit is twice the consumer surplus. This occurs because producer surplus is directly

related to the probability that consumers have their needs satisfied and because consumers

search optimally and have uniformly distributed search costs.

Proposition 6 Suppose the distribution of search costs is uniform. Consumer surplus

and social welfare are maximized for the same reserve price. Given any bidding behavior

by advertisers and any reserve price policy of the search engine, equilibrium behavior by

consumers implies E(W ) = 3E(CS).

Proof: Write GCS for the gross consumer surplus in the model: GCS = CS + Search

Costs.14 Write GPS for the gross producer surplus: GPS = Advertiser Profit + Search-

engine fees. Because a search produces one unit of GCS and one unit of GPS if a consumer

need is met and zero units of each otherwise we have E(GCS) = E(GPS).

Welfare is given by W = GCS +GPS − Search Costs. Hence, to prove the theorem we

only need to show that E(Search Costs) = 1
2E(GCS). This is an immediate consequence

of the optimality of consumer search and the uniform distribution of search costs: each ad

is clicked on by all consumers with s ∈ [0, E(q|X)] who have not yet had their needs met,

where X is the information available to consumers at the time the ad is presented. Hence,

the average search costs expended are exactly equal to one-half of the expected GCS from

each click.

QED

Remarks

1. Note that the alignment result is fully general in the dimension of not requiring any

assumptions on the distribution F of firm qualities.

2. The alignment result does not depend on the assumption that consumers and advertis-

ers both receive exactly one unit of surplus from a met need. If advertisers receive ben-

efit α from meeting a consumer’s need, then W = (1
2 +α)E(GCS) = (1 + 2α)E(CS).

14More precisely, GCS is the population average gross consumer surplus. It is a random variable, with
the realized value being a function of the realized qualities. The other measures of welfare and consumer
and producer surplus we discuss should be understood similarly.
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3. The alignment result pertains to producer surplus, but it does not say anything about

the distinct reserve price preferences of advertisers and search engines. As shown in

more detail in the next section, advertisers and the search engine are typically in

conflict with one another and with consumers about the level of reserve prices.

Our next result is a corollary that follows neatly from Proposition 6: we show that

the socially optimal reserve price coincides with the reserve price that would be chosen by

a consumer-surplus maximizing search engine both when commitment to a reserve price

is possible and when it is not (e.g.,the search engine can trick the consumers into click-

ing on ads by claiming it has a higher reserve price than it really uses). This result is

of interest for two distinct reasons. First, it is plausible to think that, so long as mar-

ket shares remain somewhat balanced, some real-world search engines may use consumer-

surplus maximization as an objective function. Search engines are in dynamic competition

to attract consumers and to the extent that the future is very important (and foregone

profits small), designing the search engine to maximize consumer surplus may be a good

rule-of-thumb approximation to the optimal dynamic policy. Second, the observation about

the no-commitment model turns out to be a useful computational tool – it can be easier to

find the equilibrium in the no commitment model than to find the maximizer of the social

welfare function.

Corollary 2 Suppose the distribution of search costs is uniform. Suppose that reserve price

rW maximizes social welfare when the search engine has the ability to commit to a reserve

price. Then, rW is an equilibrium choice for a consumer-surplus maximizing search engine

regardless of whether the search engine has the ability to commit to a reserve price.

Proof: The coincidence of the two reserve prices with commitment is an immediate

consequence of Proposition 6.

To see that the socially optimal reserve price is also an equilibrium outcome when the

search engine lacks commitment power, write CS(q, q′) for the expected consumer surplus

if consumers believe that the search engine displays a sorted list of all advertisers with

quality at least q, but the search engine actually displays all advertisers with quality at

least q′. The optimality of consumer search behavior implies CS(q, q′) ≤ CS(q′, q′). The

assumption that advertisers play an equilibrium with strictly monotone strategies for any

reserve price and that rW is the socially optimal reserve price imply that for any q′ we

have CS(q′, q′) ≤ CS(rW , rW ). Any deviation by the firm to a different reserve price yields
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consumer surplus of CS(rW , q′) for some q′. This cannot improve consumer surplus because

CS(rW , q′) ≤ CS(q′, q′) ≤ CS(rW , rW ).

QED

Remark

1. Note that the result is that a consumer-surplus maximizing search engine will not

suffer from a lack of commitment power. A social-welfare maximizing search engine

would suffer if it lacked commitment power. Proposition 6 shows that consumer

surplus and welfare are proportional if consumers have correct beliefs. If the search

engine deviates from its equilibrium strategy, then consumers will have incorrect

beliefs. Hence, such deviations can increase welfare. Indeed, a deviation to a lower

reserve price would typically be expected to increase welfare because consumers do

not internalize the profits that advertisers and the search engine get from their clicks.

When a deviation to a slightly lower reserve price results in additional links being

displayed it will lead to more clicks and raise welfare. In equilibrium, of course, this

incentive cannot exist, so the result will be that the equilibrium reserve price is too

low.

4.1.2 Socially optimal reserve prices with one-position lists

To bring out the economics of setting reserve prices and the tradeoffs for the welfare of

participants, we first consider the simplest version of our model: when the position auction

lists only a single firm (M = 1). In this case, if the auctioneer commits to a reserve price

of r, then consumers’ expectations of the quality of a listed firm is

E(q1:N |q1:N > r) =

∫ 1
r xNF (x)N−1f(x)dx∫ 1
r NF (x)N−1f(x)dx

Because consumers with s ∈ [0, E(q1:N |q1:N > r)) will examine a link if it is presented, the

average search cost of searching consumers is 1
2E(q1:N |q1:N > r). In the no-commitment

model the search engine will only display a link if the net benefit is positive. This implies

that it will display links with quality at least 1
2E(q1:N |q1:N > r). Equilibrium therefore

requires that r = 1
2E(q1:N |q1:N > r).

The probability that a link is displayed is 1− F (r)N . The mass of consumers who will

click on a link if one is displayed is E(q1:N |q1:N > r). Hence, expected consumer surplus is

E(CS) = (1− F (r)N )G(q̄1(r))
(
E(q1:N |q1:N > r)− E(s|s < E(q1:N |q1:N > r))

)
(2)

=
1
2
E(q1:N |q1:N > r)2(1− F (r)N ).
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For the case of uniform qualities, this can be worked out to

E(CS) =
1
2

(
N

N + 1

)2 (1− rN+1)2

1− rN
.15

By Proposition 6, the socially optimal reserve price is the maximizer of this expression.

Maximizing this expression gives the second part of the proposition below.

Proposition 7 Suppose that the list has one position and that the distribution of search

costs is uniform.

(i) Consumer surplus and welfare are maximized for the same reserve price. The optimal

r satisfies

r =
1
2
E(q1:N |q1:N ≥ r). (3)

(ii) If in addition the distribution F of firm qualities is uniform, then the welfare max-

imizing reserve price r is the positive solution to r + r2 + . . . + rN = N/(N + 2). The

welfare-maximizing reserve price is one-third when N = 1. It is increasing in N and con-

verges to one-half as N →∞.

Remarks

1. Note that the formula (3) applies for any advertiser-quality distribution, not just

when advertiser qualities are uniform. Providing a general result is easier here than

in some other places because with lists of length one it is not necessary to consider

how consumers Bayesian update when links do not meet their needs.

2. The N = 1 result for a uniform F follows easily from (3): when r = 1/3, consumer

expectations will be that q ∼ U [1/3, 1], and consumers search if and only if s ∈ [0, 2/3],

so the average search costs is indeed 1/3. The N large result extends to general

distributions: E(q1:N |q1:N > r) ≈ 1 for N large, so the solution has r ≈ 1
2 .

3. In the model with a uniform F it is easy to see that expected consumer surplus, search

engine profits and social welfare are all higher with a small positive reserve price than

with no reserve price. Writing SR(r) for the search engine’s revenue when it uses a

reserve price of r we find

E(SR(r)) =
N

N + 1
1− rN+1

1− rN

∫ 1

r

(
(r/x)N−1r +

∫ x

r
(N − 1)(z/x)N−2zdz

)
NxN−1dx

This is increasing in r for small r.

15The expected quality is E(q1:N |q1:N > r) = N
N+1

1−rN+1

1−rN .
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4.1.3 Welfare and the distribution of rents with one-position lists

We noted above that that expected consumer surplus and expected producer surplus are

proportional, and hence maximized at the same reserve price. The “producer surplus” in

that calculation is the sum of search engine revenue and advertiser surplus. In this section

we note that these two components of producer surplus are less aligned: search engines may

prefer a reserve price much greater than the social optimum and advertisers may prefer a

reserve price much smaller than the social optimum.

Write SR(r), AS(r) and GPS(r) for the random variables giving the search engine

revenue, advertiser surplus, and producer surplus, respectively, which result when the search

engine uses a reserve price of r (and this is known to consumers). These expectations of

these are related by a simple division-of-surplus function:

E(SR(r)) = (1− F (r)N )G(q̄1(r))E(max(q2:N , r)|q1:N ≥ r)

= τ(r)E(GPS(r))

E(AS(r)) = (1− τ(r))E(GPS(r)),

where the division-of-surplus function τ(r) is given by

τ(r) ≡ E(max(q2:N , r)|q1:N ≥ r)
E(q1:N |q1:N ≥ r)

,

The τ(r) function has r ≤ τ(r) ≤ 1 and hence satisfies limr→1 τ(r) = 1 for any quality

distribution. For many distributions, including the uniform, it is strictly increasing on

[0, 1], although this is not true for all distributions.16 When the division of surplus function

τ(r) is increasing in r, the profit-maximizing reserve price for the search engine is greater

than the social optimum.17

Consumers are worse off with the profit-maximizing reserve price than with the socially

optimal reserve price because consumer surplus is proportional to social welfare. Advertisers

are also worse off with the profit-maximizing reserve price: total producer surplus is lower

and advertisers are getting a smaller share of the total producer surplus.18

16The τ(r) function is also increasing when F (r) = rα for any α > 0. A simple example to show that it
is not always increasing would be a two point distribution with mass 1 − ε on q = 1

2
and mass ε on q = 1.

For this distribution we have τ( 1
2
) ≈ 1 and τ( 1

2
+ ε) ≈ 1

2
.

17More precisely, the profit-maximizing reserve price is always weakly greater than the social optimum
if τ(r) is weakly increasing and strictly greater if one assumes other regularity conditions. For example, if
E(CS(r)) is differentiable at the social optimum and τ(r) has a nonzero derivative at this point.

18The advertiser share must be lower because otherwise the search engine could increase its profits by
shifting to the socially optimal reserve price.
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In section 4.1.1 we argued that consumer-surplus maximization might be a reasonable

approximation to the objective function of a search engine in a competitive dynamic en-

vironment. If a search engine instead maximizes a weighted average of consumer surplus

and profit and the consumer surplus and profit functions are single-peaked, then a lesser

weight on consumer surplus will result in a reserve price that is worse for social welfare,

consumers, and advertisers, but better for the search engine. This comparison could be

relevant for evaluating changes in industry structure that make search engines less willing

to invest in attracting consumers instead of maximizing short-run profits.

Figure 2 illustrates the conflicting preferences of advertisers, consumers, and the search

engine in two specifications of the model. In each panel, we have graphed expected adver-

tiser surplus, expected consumer surplus, and expected search engine profit as a function

of the reserve price and drawn vertical lines at the values of r that maximize each of these

functions.

The right panel is for a model with three firms drawn from a uniform quality distribution.

In this model, consumer surplus turns out to be fairly flat over a wide range of reserve prices.

The advertiser-optimal and search engine profit-maximizing prices are quite far apart, but

consumer surplus at both of these points is not very far from its optimum. An intuition for

the flatness of the consumer surplus function is that reserve prices in this range are rarely

binding, and hence there is little direct effect on the probability of a link being displayed

and little indirect effect via changes in consumer beliefs. The main effect of a shift from

consumer-optimal to profit-maximizing reserve prices is a redistribution in surplus from

advertisers to the search engine.

The left panel is for a model with three firms with qualities drawn from the CDF

F (q) =
√
q. This distribution is more concentrated on low quality realizations, which

makes consumer surplus and advertiser profits more sensitive to the reserve price in the

relevant range. In each panel we have also graphed an equally weighted average of consumer

surplus and search-engine profit. The curvature of the functions involved is such that the

maximizer of this average is closer to the profit-maxizing level than to the socially optimal

level.

4.1.4 Optimal reserve price with M position lists

Thinking about the socially optimal reserve price as the equilibrium outcome with a consumer-

surplus maximizing search engine is also useful in the full M position model. Holding

consumer expectations about the reserve price fixed, making a small change dr to the
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Figure 2: Welfare and distribution of surplus for two specifications

search-engine’s reserve price makes no difference unless it leads to a change in the number

of ads displayed. We can again solve for the socially optimal r by finding the reserve price

for which an increase of dr that removes an ad from the list has no impact on consumer

surplus.

The calculation, however, is more complicated than in the one-position case because

there are two ways in which removing a link form the set of links displayed can affect

consumer surplus. First, as before there is a change in consumer surplus from consumers

who reach the bottom of the list and would have clicked on the final link with q = r if it

had been displayed, but will not click on it if it is not displayed. The benefit from these

clicks would have been r. The cost would have been the search cost, which is one-half of

the average of the consumers’ conditional expectations of q when considering clicking on

the final link on the list. Second, not displaying a link at the bottom of the list will reduce

consumer expectations about the quality of all higher-up links, and thereby deter some

consumers from clicking on these links. Any changes of this second type are beneficial:

when the list contains m < M links, consumer expectations when considering clicking on

the kth link, k < m are E(qk:N |z1 = . . . = zk−1 = 0, qm:N > r, qm+1:N < r). If the final link

is omitted, consumer beliefs will change to E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N <
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r). This latter belief coincides with E(qk:N |z1 = . . . = zk−1 = 0, qm−1:N > r, qm:N = r).

Hence, by not including the marginal link, consumers will be made to behave exactly as

they would with correct beliefs about the mth firm’s quality.

We write pm(r) for the probability that the mth highest quality is r conditional on one

of the M highest qualities being equal to r. The discussion above shows:

Proposition 8 Suppose the distributions of search costs and firm qualities are uniform.

For any N and M , the welfare-maximizing reserve price r is the solution to the first-order

condition ∂E(CS)
∂r = 0 with consumer behavior held constant. This reserve price has

r >
1
2

(
pM (r)E(qM :N |qM :N > r) +

M−1∑
m=1

pm(r)E(qm:N |qm:N > r, qm+1:N < r)

)
.

Remarks

1. We conjecture that for uniformly distributed qualities and search costs, the optimal

reserve price is decreasing in M and converges to 1
2 in the limit as N → ∞. We

computed the expected consumer surplus numerically for M = 2 and N ∈ {2, 3, 4, 5}.
For N = 2, expected consumer surplus is maximized at r ≈ 0.276968. For N = 5,

expected consumer surplus is maximized at r ≈ 0.469221.

4.1.5 More general policies

In the analysis above we considered policies that involved a single reserve price that applies

regardless of the number of links that are displayed. A search engine would obviously be

at least weakly better off if it could commit to a policy in which the reserve price was a

function of the position. For example, a search engine could have the policy that no ads will

be displayed unless the highest bid is at least r1, at most one ad will be displayed unless

the second-highest bid is at least r2, and so on. A rough intuition for how such reserve

prices might be set (from largely ignoring effects of the second type) is that they should

be set so that the reserve price for the mth position is approximately (but slightly greater

than) one-half of consumers’ expectations of quality when they are considering clicking on

the mth and final link on the list. This suggests that declining reserve prices may be better

than a constant reserve price.

The idea of using more general reserve prices illustrates a more general idea: as long

as an equilibrium in which advertisers’ qualities are revealed still exists, consumer surplus

(and hence welfare) is always improved if consumers are given more information about the
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advertisers’ qualities. In an idealized environment, the search engine could report inferred

qualities along with each ad. In practice, different positionings might be used to convey

this information graphically. One version of this already exists on the major search engines:

sponsored links are displayed both on the top of the search page and on the right side. The

top positions are the most desired by advertisers, but they are not always filled even when

some sponsored links are being displayed on the right side.

4.2 Reserve prices under general distributions

This section studies reserve prices under general assumptions on the distributions of search

costs and quality. The consumer optimal and socially optimal reserve prices will no longer

exactly coincide when search costs are not uniformly distributed, but informally one would

expect that there will typically be some rough alignment. In this section we present one

formal result illustrating robustness: we show that the consumer-optimal reserve price

is always positive. We also include a couple examples (one of which is clearly extreme)

illustrating how things can change: we show that the socally optimal reserve price may be

zero, and that the profit-maximizing reserve price can also be zero.

4.2.1 Consumer optimal reserve prices are positive

Our first result is that consumer-surplus maximization requires a positive reserve price. We

prove this by showing that consumer surplus is increased when small positive reserve prices

are implemented. The intuition for this is that the main effect of such reserve prices have

is to eliminate extremely low-quality firms from the sponsored-link list. These websites

provide almost no gross consumer surplus when consumers click on them. Hence, the

benefits are always outweighed by the much larger search costs incurred on such clicks.

Proposition 9 Consumer surplus is maximized at a strictly positive reserve price.

Proof:

Consider the effect on consumer surplus of a small increase in r starting from r = 0.

We show that consumer surplus is increased via a two step argument. The simple first step

is to note that consumer rationality implies that consumer surplus with optimal consumer

behavior is greater that the surplus that consumers would receive if they behaved as if

r = 0.19 The second step is to show that consumer surplus under this “r = 0” behavior is
19Formally, we suppose that consumers behave exactly as they would if the list had M links and r = 0

when deciding whether to click on any link that is displayed and do not click on links that are not displayed.
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greater when the search engine uses a small positive reserve price dr than when the search

engine uses r = 0.

If consumers use the r = 0 behavior, then consumer surplus is only affected by the

institution of a reserve price if the reserve price eliminates links from the list and consumers

would have clicked on these links if they were displayed. The gross consumer surplus from

each such click is bounded above by dr. The average search costs incurred on each such

click are bounded below by E(s|s ≤ q̄M ). The cost is independent of dr whereas the benefit

is proportional to dr, so the costs dominate for small dr.

QED

4.2.2 Social welfare and revenue need not increase with reserve prices

In this section we show that both social welfare and search engine revenues need not be

maximized at a positive reserve price. We do so by presenting examples in which this

occurs. The examples are somewhat special, but serve to illustrate mechanisms by which

reserve prices can have adverse effects on advertisers and the search engine.

We start with social welfare. The intuition for why this can be reduced by reserve

prices is that reserve prices affect social welfare in two ways. First, they directly prevent

consumers from clicking on websites with quality less than r. Second, they influence social

welfare via their other effects on consumer behavior. Consumers do too little searching

from a social perspective because they do not take firm profits into account. If changes

to the reserve price policies decrease the number of clicks that occur in equilibrium, then

social welfare can decrease.

Proposition 10 Social welfare can be strictly greater with a zero reserve price than with

any positive reserve price.

Proof:

Consider a model with M = N = 2 and the quality distribution F is uniform on [0, 1].

Suppose that a fraction γ1 of consumers have search costs uniformly distributed on [2
3−ε,

2
3 ],

a fraction γ2 have search costs uniformly distributed on [0, 1] and a fraction γ3 have have

search costs uniformly distributed on [0, ε].

In the first subpopulation (with s ≈ 2
3), small reserve prices reduce welfare. These

consumers click on the first website but not the second when there is no reserve price.

Hence, the gain in welfare derived from the search engine not displaying a site they would

have clicked on is just O(r2). Small reserve prices also have an effect that works through

24



changes consumer beliefs: given any small positive r, consumers will not click at all if only

one link is displayed. The expected gross surplus from clicking on a single link is 21+r
2 ,

whereas the search cost incurred is less than 2
3 , so losing these clicks is socially inefficient.

The probability that this will occur is 2r(1 − r) so the loss in social welfare is O(r). The

appendix contains a formal derivation of this and shows that the per consumer loss in

welfare from using any reserve price in [0, 1
3 − 2ε] is at least 2

3r.

An example using just the first subpopulation does not suffice to prove the proposition

for two reasons: (1) the search cost distribution in this example does not have full support;

and (2) although small reserve prices reduce welfare in the first subpopulation it turns out

that a larger reserve price (r > 1
3−2ε) will increase welfare. (The argument above no longer

applies when r is sufficiently large so that consumers will click on the link when a single

link is displayed.)

The first problem is easily overcome by adding a very small fraction γ2 of consumers

with search costs uniformly distributed on [0, 1]. Welfare gains in this group are first-order

in r when r is small and bounded when r is large, so adding a sufficiently small fraction of

such consumers won’t affect the calculations.

The second problem is also easily overcome by adding a subpopulation of consumers

with search costs in [0, ε]. Welfare is improved in this subpopulation when a small positive

reserve price is implemented, but the effect is so weak that we can add a large mass of these

consumers without overturning the small r result from the first subpopulation.20 There

is a substantial welfare loss in this subpopulation if the search engine uses a large reserve

price. Hence, adding an appropriate mass of these consumers makes the net effect of using

a reserve price of 1
3 − 2ε or greater also negative.

QED

Our second result is a demonstration that using a small positive reserve prices can also

reduce search engine revenue. The example we use to demonstrate this highlights another

difference between our model and standard auction models. The crucial property of these

models that helps drive our examples is that increasing r increases consumer expectations

of the quality of all links, including the bottom one. This makes the M th position more

attractive, which can reduce bids for the M −1st position. Because bids depend recursively

on lower bids, this can reduce reduce bids on higher positions as well.

Proposition 11 There exist distributions F and G for which search engine revenue is
20The per consumer welfare benefit from a small reserve price is bounded above by total search costs

incurred in clicking on ads with quality less than Min{r, ε}, which is less than 2Min{r, ε}ε/2.
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decreasing in the reserve price in a neighborhood of r = 0.

To see why this can be true, consider the following stark example. Suppose M = N = 2,

and all consumers have search costs of exactly q̄2. Assume that with no reserve price

consumers click only on the top link. Hence, firms will bid up to their true value to be in

the top position and and search engine revenue is E(q2:N ). Given any positive reserve price

r, consumers will click on both links. The increased attractiveness of the second position

leads to a jump down in bids for the first position. This, of course, leads to a jump down

in revenue. To see this formally, bids for the first position (when two firms have q > r) will

satisfy the indifference condition:

(q − b∗(q)) = (1− q)(q − r).

This gives b∗(q) = r+q(q−r). When r ≈ 0 expected revenues are approximately E((q2:N )2).

This is a disrete jump down from E(q2:N ).

Again, the example is not a formal proof of the Proposition for two reasons: (1) the

search cost distribution does not have full support; and (2) we’ve assumed the search cost

distribution has a mass point at q̄2. One could easily modify the example to make it fit

within our model. Problem (1) could be overcome by adding a small mass γ2 of consumers

with search costs uniformly distributed on [0, 1]. And problem (2) could be overcome by

spreading out the first population to have search costs uniformly distributed on [q̄2, q̄2 + ε].

We did not feel, however, that the calculations would be sufficiently enlightening to make

it worth doing this for a uniform F or some other such example.

This example is obviously quite special. We include it to ilustrate the mechanism that

makes it possible, and do not mean to suggest that declining reserve prices are likely to be

seen in real-world auctions.

5 Click-weighted Auctions

In Google’s (and more recently in others’) ad auctions, the winning bidders are not the

firms with the highest per-click bids: advertisers are ranked on the basis of the product

of the their bid and a factor that is something like an estimated clickthrough rate. The

rough motivation for this is straightforward: weighting bids by their click-through rates

is akin to ranking them on their contributions to search-engine revenues (as opposed to

per-click revenues which is a less natural objective). In this section we develop a extension

of our model with observably heterogeneous firms and use it to examine the implications

of click-through weighting.
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Formally, we consider a model in which each firm has a two dimensional type (δ, q). A

firm of type (δ, q) is able to meet the needs of a fraction δq of consumers. Whether it can

meet the need is partially observable. A fraction δ of consumers know from reading the

advertisement that the firm can meet their need with probability q (but still don’t know the

value of q) and a fraction 1 − δ know that the firm cannot meet their need. For example,

a shoe web site might specify in the text that it serves only women or sells only athletic

shoes. We assume that whether a firm can potentially help a consumer is independent

across firms. We further assume that the δ parameters are known to the search site and to

consumers.

We assume that there are no costs incurred in reading the ads and learning whether a

firm is a potential match (recall the ads are text and are limited in length). Consumers do,

however, still need to pay s if they want to investigate a site further by clicking on it and

learn whether it does meet their need. Again, this happens with probabilty q if the firm is

a potential match.

5.1 A standard argument for click-weighting auctions

A model of the click-weighted auction is that the firms submit per-click bids b1, . . . , bN .21

The winning bidders are the M bidders for which δibi is largest. They are ranked in order

of δibi. If firm i is in the kth position, its per-click payment is the lowest bid that would

have placed it in this position, δk+1bk+1/δi.22

Proposition 12 In equilibrium, the winners of the click-weighted auction are the M firms

for which δiqi is largest. In the limit as s→ 0, social surplus converges to the first-best.

Proof: Each firm gets zero payoff if it is not on the list. Hence, as long as more that M

firms remain, each firm i will want to increase its bid until it reaches qi. This ensures that

the firms for which δiqi is largest are the winners.

When s is small, consumers will search all listed firms that are potential matches until

finding a match. The probability of finding a match is 1−
∏M
k=1(1−δkqk). This is maximized

when the listed firms are those for which δiqi is largest.

QED
21Again, we can think of this informally as an oral ascending bid auction, but our formalization will be

as a multistage game as in our base model.
22Note that as in our earlier discussions of bids we use subscripts as indexes when the index is a firm

identity and superscripts as indexes when the index is the rank of the firm in the bidding, e.g. δ1 is the
click-through weight of firm 1 and δ3 is the click-through weight of the firm that is the third-to-last to drop
out (in the weighted bidding).

27



5.2 Inefficiencies of click-weighting

The above proposition is only a partial efficiency theorem for a two reasons, however.

5.2.1 Inefficiency in the set of listed firms

First, when s is not extremely close to zero, utility is not necessarily maximized by choosing

the firms for which δiqi is largest. The reason is that consumers’ search costs are reduced if

we include firms for which qi is larger even if δiqi is lower. For example, if M is large, then

a list of the sites with the largest q’s would be almost sure to contain several sites that were

potential matches for each consumer, even if the δ’s for these sites are small. By searching

through the sites that are potential matches a consumer would meet his or her need with

high probability and incur minimal search costs.

One practical implication of this observation is that click-weighted auctions may allow

firms like eBay and Nextag to win more sponsored-link slots than would be socially optimal.

The breadth of these sites may allow them to meet more consumers’ needs than would a

more specialized site, but the extra revenues may be more than fully offset by additional

consumer search costs.

5.2.2 Inefficiency in the ordering of listed firms

Second, the click-weighted auction may provide consumers with less than ideal information

about the relative q’s of the different websites.

Proposition 13 The click-weighted auction always has an equilibrium in which all remain-

ing firms drop out immediately as soon as just M firms remain.

The equilibrium strategies are the obvious ones: firms remain in bidding until the

bid reaches q if there are more than M firms remaining and then drop out immediately

once M firms remain. When firms follow these strategies, consumers’ beliefs about the

quality of each remaining firm i conditioning on all available information X is E(qi|X) =

EbM+1E(qi|δiqi > δM+1bM+1). This is higher for firms with a lower δ, so it is an equilibrium

for consumers to ignore the ordering of the firms on the list and search in increasing order

of δ. With this consumer behavior there is no benefit to bidding for a higher position and

immediate drop out is optimal.

The lack of sorting by q means this auction loses the welfare gain from sorting discussed

in Section 3. Immediate dropout equilibria also existed in the unweighted auction model –

all consumers can search in a random order – but we mention them here because they seem
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more natural and robust when consumers have reason to believe that some advertisers are

better than others and strictly prefer to search in the way that they do. One robustness

criterion that would distinguish the click-weighted model from the unweighted model is that

behavior would not change substantially in the click-weighted model if consumers thought

that there was an ε probability that the ordering was informative and a 1 − ε probability

that the ordering was not.23

Although we think these incomplete-sorting equilibria are natural, it should be noted

that greater information revelation is also possible. In fact, the model also has an equilib-

rium with full sorting in one special case. To define this, let s be such that all consumers

with search costs s < s will search all listed websites as long as their need has not been

met.24

Proposition 14 Suppose that N = M = 2 and the support of the search cost distribution

G is a subset of [0, s]. Then, the click weighted auction has an equilibrium in which the two

firms bid according to b∗i (q) = δjq
2
i . In this equilibrium the firm with the highest q is always

in the first position on the list.

Proof: Note that the strategies are monotone and satisfy δ1b
∗
1(q) = δ2b

∗
2(q). Hence,

if firms follow these strategies the winner in a click-weighted auction is the firm with the

highest q. Because all consumers search both firms, firm i’s demand is δi if it is first on the

list and its expected demand from the second position (condition on the other firm being

about to drop out) is δi(1− δjq). Firm i’s indifference condition becomes

δi(q − b∗i (q)) = δi(1− δjq)(q − 0).

This condition is satisfied for the given bidding function.

QED

This example uses several special assumptions. These are largely necessary to get full

sorting. For example, one can show that there are no equilibria with full sorting when

δ1 6= δ2 if one assumes instead that N > 2 and/or that G has full support on [0, 1].25 A

rough intuition for this is that the solution to the asymmetric first-order condition will

not satisfy the symmetry condition necessary for full sorting, δib∗i (q) = δjb
∗
j (q), except in

particular special cases.
23Chen and He (2006) note that the immediate-dropout equilibria in the unweighted mdoel are nonrobust

to assuming that an ε fraction of consumers always search in a top down manner. This remains true in the
click-weighted auction.

24An s > 0 with this property will exist if the δ’s are bounded away from zero. For example, it suffices to
set s = E(qM |δM = 1, δ1 = . . . = δM−1 = δ, z1 = z2 = . . . = zM−1 = 0).

25We thank Dmitry Taubinsky for these results.
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5.3 A new auction design: two-stage auctions and efficient sorting

To eliminate the information loss due to imperfect sorting one could use a two step pro-

cedure.26 First, have the firms bid as in the standard click-weighted auction until only M

bidders remain. Then, continue the auction allowing bidders to raise bids further, but use

a different weighting scheme so that the equilibrium will have the firm with the highest q

winning.

In theory, this is not hard to do. For example, if M = 2 and N > 2 and firms 1 and

2 are the remaining firms it will suffice to choose asymmetric payment schedules p1(q) and

p2(q) such that it will be an equilibrium for firms to to announce their true qualities q1

and q2 if we ask firms to announce their qualities, put the firm with the highest announced

quality in the first position, and assign a per-click payment of pi(q−i)) to the winning firm

i and b3δ3/δj to the losing firm j.

To see that such payment schedules exist, note that if a firm is the last to drop out, its

expected profit is

µ1iδi(qi − pi(q−i)),

where µ1i = G(E(qi|qi > q−i, X)) with X the event that firms 1 and 2 are the two winning

bidders. If the firm is the second to drop out, its expected profit is

(µ2i(1− δj) + µ3iδj(1− q−i))δi(qi − b3δ3/δi),

where µ2i = G(E(qi|qi < q−i, X)) and µ3i = G(E(qi|qi < q−i, X, z−i = 0)). It is straight-

forward to choose pi(q) so that these two expressions are equal conditional on q−i = qi, in

which case the necessary indifference condition for a truth-telling equilibrium is satisfied.27

Note that to implement such rules the search engine needs to know the δ’s and also needs to

know what click-through rates each firm will receive given each possible ordering. Knowing

the δ’s is necessary for everything we’ve done in this section. The additional informational

requirements will be more of an obstacle to implementing such schemes in practice.

When s < s for all consumers the payment functions take a particularly simple form:

pi(q) = b3δ3/δi + δ−iqmax{(q − b3δ3/δi), 0}.
26Note that we leave aside the issues of selecting the correct firms to be on the page and whether providing

some other ordering might be better than sorting on quality.
27One can show that the pi(q) function defined in this way is monotone. Indifference need not hold when

the high δ firm drops out at a point when the other firm is known to have higher quality. To complete the
specification without interfering with the selection of the final two firms we set pi(q) = b3δ3/δi if δi < δ−i
and q < b3δ3/δi.
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Using this formula we can see that firm 2 is favored at low quality levels when δ1 < δ2 in the

sense that it makes a lower payment when the firms have equal qualities and these qualities

are near the lowest possible. At high quality levels the bid preference may be reversed.

5.4 Obfuscation

In this section we consider advertisers’ decisions on how much information to convey in ad

text. Consumers benefit from transparent ads that make it apparent whether a link will

meet their needs, because such ads let them to avoid unproductive clicks. In our base model

firms will also be happy to make ads completely transparent – they only receive a benefit if

they can meet a consumer’s need. In practice, firms may also receive a lesser benefit from a

click even if they cannot meet the consumer’s need. We consider such an extension here. We

note that the simplest pay per click auction works fairly well, but that both click-weighted

pay-per-click and pay-per-action auctions create incentives for obfuscation.28

We augment our base model in two ways. First, we assume that each firm i receives

some benefit z from each click it receives independent of whether it meets the consumer’s

need. There are several motivations for including such a benefit: firms could earn immediate

profits from sales of unrelated products; they could get earn profits on future sales; or they

could earn advertising revenues. Second, we assume that each firm chooses an obfuscation

level λi ∈ Λ ⊂ [0, 1]. If firm i chooses obfuscation level λi then a fraction 1 − λi of the

consumers whose needs will not be met by the website will realize this just by reading the

text of the firm’s ad (without incurring any search costs). We define δi ≡ qi + λi(1 − qi)
to be fraction of consumers who cannot tell whether site j will meet their need. Note that

our base model can be thought of as a special case of this model with z = 0 and no option

other than full obfuscation, Λ = {1}.
It is also necessary to specify how consumer inferences change with the possibility of

obfuscation. One possibility would be to assume that consumers understand the equilibrium

choice of λi(qi), observe λi for each website, and use this information to update their beliefs

about qi. We feel that this is unrealistic, however, and it leads to an unreasonable and

uninteresting degree of equilibrium multiplicity driven by the beliefs assigned when out-

of-equilibrium obfuscation levels are observed. We assume instead that consumers cannot

detect the obfuscation level chosen by any individual firm. We restrict our analysis to

equilibria in which firms are sorted on quality and consumers search in a top-down manner.
28See Ellison and Ellison (2004) for a discussion of obfuscation including a number of examples involving

e-retailers.
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Let γk be the fraction of consumers who will click on link k if the first k − 1 links do

not meet their needs and they are in the group that cannot tell whether the kth link meets

their needs. This will be a function of consumer beliefs about the quality of the kth website

and the equilibrium obfuscation strategies.29 One thing that simplifies our analysis is that

γk does not depend on the actual obfuscation level of the firm in position k.

5.4.1 Pay per click

Consider first the simplest unweighted pay-per-click auction. Conditional on having dropped

out of the auction at a bid that places firm i in the kth position (k ≤M), firm i’s payoff is

Π(k, λ, bk+1; qi) = Xγkδi(qi/δi + z − bk+1) = Xγk(qi + δiz − δibk+1),

where X is the number of consumers who reach position k without having their needs met.

In equilibrium, a small change in λi that does not affect firm i’s position on the list cannot

increase its profits. Note that

∂Π
∂λi

=
∂δi
∂λi

(z − bk+1)Xγk = (1− qi)(z − bk+1)Xγk.

In equilibrium bM+1 will be at least z + qM+1:N , so this is negative and no obfuscation

occurs in equilibrium. The intuition is simple. Firms must pay for any clicks they receive.

The willingness to pay of losing bidders puts a floor on how cheap clicks can be. And this

gives firms an incentive to avoid clicks that provide only incidental benefits.

If there was heterogeneity in the benefits zi that firms receive from clicks that do not

meet consumers’ needs, then it is possible that firms with large zi could engage in obfusca-

tion. But note that it would still be necessary for zi to be larger than the bid of the firm

in the next highest position, which suggests that obfuscation is unlikely to occur except

perhaps at very low positions on the list.

Consider now a click-weighted pay-per-click auction in which the search engine uses

click-through weights proportional to the δi.30 Conditional on being in the kth position

(k ≤M), firm i’s payoff is

Π(k, λ, bk+1; qi) = Xγk

(
qi + δiz − δi

δk+1bk+1

δi

)
.

29Note that beliefs about the quality of the kth firm will no longer be independent of the realized qualities
because consumers will get some information about the qualities of lower-ranked firms by observing whether
these firms can also potentially meet their needs.

30Note that we are implicitly assuming here that in equilibrium the search-engine has learned firm i’s
click-through rate and uses it in determining the rankings and the per-click price firm i must pay.
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This expression is monotone increasing in δi. Hence, in equilibrium we get full obfuscation:

all firms choose λi = 1. The intuition is that in the click-weighted auction, each firm’s total

payment to the search engine is equal to the total payments that the firm below it would

make. Importantly, this quantity is independent of the number of clicks firm i receives.

Hence, firm i will design its ad to maximize the total revenue it can generate, and has

no incentive to avoid unproductive clicks. In thinking about practical applications, it is

noteworthy that we get full obfuscation even if the benefit z is quite small.

In summary, the simplest pay-per-click auction first used by Overture/Yahoo! mini-

mized obfuscation, but the now-standard click-weighted auction has an adverse side effect:

it creates incentives for obfuscation, because firms are not penalized for unnecessary clicks.

Search engines may attempt to combat obfuscation in various ways. Real-world search

engines have rules forbidding misleading ad text. They can enforce these via manual re-

views and by using the technological capabilities they have because they are search engine

operators: advertisers’ landing pages can be examined for relevance to the query and adver-

tisements with irrelevant landing pages can be declined. Other approaches are also possible.

The pricing formula could be adjusted so that firm i’s total expected payment is no longer

completely independent of its click-through rate, or continuous relevance measures (based

on textual analysis or the number of consumers who immediately return to the search page)

could be added to the pricing formula.

5.4.2 Pay per action

Search engines have been developing the capability to track how sales are made by their

advertisers. This leads to the question of whether it is advantageous to charge producers

by sale made (“pay per action”), instead of charging them per click.31 Here, we discuss

what impact this might have on obfuscation.

To model pay-per-action auctions we suppose that firms submit bids bi which represent

payments to be made to the search engine every time a consumer clicks on their link and

meets their need. We assume the search engine tracks the fraction of clicks which result

in conversions, yi and uses the conversion rates as an additional weighting factor just as

click-through-rates are used in the click-weighted auctions: if the number of clicks that

website i willl receive in any position k is proportional to δi and the fraction of clicking

consumers who will have their need met is yi, then the search engine ranks the firms on the
31There are many reasons why pay-per-action pricing might be desirable for advertisers; for example, it

decreases risk for them if their ads are shown on a large network, where click fraud may be a problem.
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basis of δiyibi and firm i will make a payment of of δk+1yk+1bk+1

δiyi
every time it meets a need

if its ad is displayed in position k.32

Conditional on being in the kth position (k ≤M), firm i’s payoff is

Π(k, λ, bk+1; qi) = Xγk

(
qi + δiz − δiyi

δk+1yk+1bk+1

δiyi

)
.

This expression is virtually identical to the expression for the standard click-weighted auc-

tion. The result on obfuscation carries over: all firms chose full obfuscation. The intuition

is identical to that for the click-weighted auctions: each firm’s total payment to the search

engine is equal to the total payments that the firm below it would make. This is indepen-

dent of the number of clicks firm i receives, so firm i has no incentive to avoid unproductive

clicks.

Similar to the case of click-weighted pay per click auctions, to mitigate this problem,

the search engine might want to adjust the weights on the click-through rate and the action

rate, to place more weight on actions and less on clicks, taking into account consumer search

costs. However, since advertisers generally define the actions and they can be as broad as

arriving at a particular page in the advertiser’s web site, advertisers who are penalized by

low action rates might redefine their actions so that almost all clicks are also recorded as

actions; thus, in practice it may be difficult to place too much emphasis on actions.

5.5 Product variety

In our click-weighted model, each site was assumed to have an independent chance of meet-

ing each consumer’s needs. In practice these probabilities are unlikely to be independent.

For example, among the sponsored links provided on a recent search for “shorts” were An-

nTaylorLoft, ShopAdidas, and RalphLauren. A consumer who clicks on the Adidas site

will be more likely to be interested in other sites selling athletic shorts than in other sites

selling fashion shorts.

To consider this issue in the simplest extension of our model suppose that there are

three sites: site 1A, site 1B, and site 2. Suppose that a fraction δ1 > 1/2 of consumers are

type 1 consumers and can potentially have their needs met by both site 1A and site 1B.

The remaining δ2 = 1− δ1 consumers are type 2 consumers and can potentially have their
32An unrealistic aspect of this formulation is the search engine is assumed to know everything about the

advertisers and could directly implement any ordering/payment scheme without using an auction. One
could recreate a motivation for an auction by adding heterogeneity in the size of the surplus that consumers
and the advertiser split when a need is met, but the simpler formulation conveys the main idea.
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needs met only by site 2. Suppose that the sponsored link list contains two firms (M = 2).

Assume that the qualities are independent draws from a uniform distribution on [0, 1].

Intuitively, in such a model conducting a weighted auction instead of an unweighted

auction has two effects. First, regardless of whether the weights favor sites 1A and 1B

or site 2, weighting reduces the average quality of the listed sites. Second, increasing

(decreasing) the weight of site 2 makes it more (less) likely that site 2 will appear on the

list. When δ1 is very large, it is advantageous to have both sites 1A and 1B on the list for

same reason as in the standard click-weighting model. When δ1 is only slightly larger than

δ2, however, there is a benefit to having a diverse list: when site 1A is first on the list and

sites 1B and site 2 are of equal quality, the incremental benefit from including site 1B is

smaller than the incremental benefit including site 2 because some of site 1B’s potential

consumers will have had their needs met by site 1A.

This model gets complicated, so we again simplify the analysis by considering the special

case in which consumers have s ≈ 0, so that clicks decline at lower positions only because

needs are being met and not also because of quality-inferences.

In this environment, consider a weighted k + 1st price ascending bid auction in which

winning bidders are chosen by comparing b1A, b1B, and wb2.33 We focus on the case of

w ≥ 1 to discuss when favoring firm 2 is better than equal weighting.

Again, each firm i will bid up to qi to be included on the two-firm list. Once the bidding

is down to two firms, however, equilibrium bidding will produce a slightly different outcome

from the unweighted model of section 3. If firms 1A and 1B are on the list, there will again

be an equilibrium with full sorting. When firms 1x and 2 are on the list, however, there

cannot be an equilibrium with full sorting. Because demand is independent of the expected

quality of each site (due to the simplifying assumption that s ≈ 0 for all consumers and

the fact that customers served by the two sites are distinct), both firms will drop out

immediately.

Given these bidding strategies, suppose that firm 1A is first on the list and the weight

w is pivotal in determining which other firm appears, i.e. q1B = wq2. Having firm 1B also

on the list provides incremental utility only to type 1 buyers whose needs were not met by

firm 1A. Hence, the expected incremental value of including firm 1B (conditional on q1A) is

δ1(1− q1A)E(q1B|q1B < q1A, q1B = wq2) = δ1(1− q1A)q1A/2.34 Including firm 2 can provide

incremental utility to any type 2 buyer: the incremental benefit is (1 − δ1)E(q2|q1B <

33As in section 5.1, the bi are per-click bids and the per-click payment of firm k is the k+ 1st highest bid
adjusted for the weight difference (if a difference exists).

34Conditioning on q1B = wq2 is irrelevant because conditional on wq2 < q1A, wq2 is uniform on [0, q1A].
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q1A, q1B = wq2) = (1 − δ1)q1A/2w. Using w > 1 will provide greater consumer surplus

than w = 1 if the second term is greater than the first (in expectation) when w = 1. The

distribution of q1A conditional on q1A being the largest of the three and the other two

satisfying q1B = wq2 is just the distribution of the larger of two uniform [0, 1] random

variables. This implies that the conditional expectation of q1A is 2/3 and the conditional

expectation of q2
1A = 1/2. Hence, there is a gain in consumer surplus from choosing w > 1

if δ1(1/3− 1/4) < (1− δ1)1/3. We have

Proposition 15 The consumer-surplus maximizing weighted auction is one that favors

diversity of the listings (w > 1) if δ1 < 4/5.

Proof: A formal proof is given in the Appendix.

The proof in the appendix includes an explicit formula for consumer surplus that could

be maximized over w to find the optimal weight for particular values of δ1.

Note that the sense in which diversity is favored in this proposition is quite strong. The

diversity-providing link is favored in an absolute sense, not just relative to the fraction of

consumers for which it is of interest.

To implement diversity-favoring weights, a search engine would need to infer which

sponsored links contributed to the diversity of a set of offerings. One way to do this

might be to estimate contributions to diversity by looking at whether the likelihood that

a particular consumer clicks on a particular site is positively or negatively correlated with

whether that consumer clicked on each other site.

What is meant by “standard” click-weighting is not obvious in models like this. One

description of the click-weighted auction one sees in the literature is the weight used is

the estimated CTR conditional on the firm being first on the list. In the example above,

the CTR’s for firms 1A, 1B, and 2 conditional on being first on the list are δ1, δ1, and

δ2, respectively so these standard weights would favor firms 1A and 1B for any δ1 > 1/2.

CTR’s could also be estimated using an average of observed CTR’s from when a firm is in

the first and second positions. This would still favor firm 2 for a smaller range of δ1 than

is optimal, however, because the optimal weights are entirely based on CTR’s when firms

are in the second position.

5.6 What does click-weighting mean?

The question of what is meant by the “standard” click-weight is of broader importance.

In the model of section 5.1, the click-weights were assumed to be the (known) parameters
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δ. In practice, click weights will be estimated from data on click-throughs as a function

of rankings. When the relationship between clicks and rankings is not a known function

independent of other website attributes it is not clear what these will mean.

One interesting example is our base model. In this model, suppose that click-through

rates are estimated via some regression estimated on data obtained when different subsets

of firms randomly choose to compete on different days. Suppose that each website has the

same q across days. In this situation, the the clicks that a given site gets when it is in the

kth position is a decreasing function of its quality. Conditional on k, the quality of sites

1, 2, . . . , k − 1 is higher when qk:N is higher. Hence, the likelihood that consumers will get

down to the kth position without satifying their need is lower.

Using click-weights like this will tend to disadvantage higher-quality sites, reducing both

the average quality of the set of sites presented and eliminating the sorting property of our

base model.

6 More auction design

6.1 Search-diverting Sites

In the U.S. market three main firms provide search services and sell keyword advertising:

Google, Yahoo!, Microsoft.35 Google is substantially larger than the others and earns

higher revenue per search. When keyword searches are performed on each of these search

engines, particularly on Microsoft and Yahoo!, sponsored link slots are not infrequently

occupied by sites like Nextag, Shopzilla, Bizrate, Smarter, Shopping, Cataloglink, and

Coupon Mountain. These sites provide some search and shopping comparison services,

but also earn revenues simply by prominently posting lists of sponsored links provided by

Google. We refer to them collectively as search-diverting sites.

Under particular assumptions, this could be an efficient way for Microsoft and Yahoo!

to monetize their searches in light of Google’s technology and scale advantages. Suppose

that Google pays 100% of the revenues generated by these sponsored links to the search-

diverting sites. Suppose that all consumers who click on a search-diverting site continue

their search on the list of sponsored links provided there exactly as they would on Google

itself. Suppose also that consumers recognize that all search-diverting sites provide exactly

the same list, and hence won’t click on a second site of this variety.36 Then, each of the
35The fourth largest search engine, Ask.com, displays ads provided by Google.
36This somewhat awkward assumption is necessary to allow Bertrand competition between identical search

diverters. Otherwise, search diverters would be unwilling to bid any positive per-click amount for a position
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search-diverting sites would be willing to bid up to Google’s total expected revenue for the

opportunity to be in the first position. Even though consumers usually just click on the

first search diverting ad and never return to the search engine they started from, Microsoft

and Yahoo! would receive the full Google revenues from this single click.

Under other assumptions, however, the presence of these search-diverting sites could

reduce search-engine profits and welfare. Here is a simple example. Suppose that all

sponsored link lists contain M places and there are N > M advertisers bidding for a

particular keyword on Google. Suppose that N + 1 firms are bidding for the same keyword

on Yahoo!/Microsoft: the sameN firms bidding on Google plus anN+1st “search-diverting”

firm that displays Google’s sponsored link list and receives a share φ < 1 of all revenues

that Google receives from clicks on this list. Suppose that consumers are unaware of this

asymmetry and therefore click on any ads in Yahoo!/Microsoft in the order in which they

are listed.37 Once they click on the search-diverting ad, however, assume that they realize

that it is providing a sponsored link list generated by N firms bidding against each other.

As long as the revenue share φ is not too small, the equilibrium of this model will have

the search diverting firm in the first position. It gets a fraction φ of Google’s revenues from

all clicks that take place, whereas the benefit to the highest q regular advertiser from being

listed first ahead of the search-diverting firm is just the increment in clicks that derives

from being thought to be first of N + 1 firms (which is the belief if it comes top on the

Yahoo!/Microsoft list) relative to being first of N firms (which is the belief that consumers

have after seing it on the Google list that the search-diverting firm presents).

Indeed, the model has an equilibrium in which all regular advertisers drop out at the

reservation price because consumers will see their ad on the Google list and hence they get

no incremental sales from clicks on their Yahoo!/Microsoft list.

Consumer surplus is reduced slightly by the presence of the search-diverting firm because

consumers have to make one extra click to begin the search process. Search engine profit is

reduced because because the search-engine only gets the search-diverting firm’s bid, which

is less than its revenue, which is a fraction φ of the revenue that would have been obtained

if the N regular advertisers were the only bidders.38

below another search diverter – consumers will already have seen the links displayed by the second search
diverter and hence the second search diverter will earn no revenue.

37Suppose also that their beliefs about quality before clicking on the links are as in our base model with
N + 1 firms.

38See Gunawardana et al. (2008) for more on search diversion.
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6.2 Ad relevance and consumer inference about search engine quality

Another dimension in which search engines differ is in their tolerance for irrelevant ads.

Google often presents no ads for certain types of queries (such as the names of ordinary

people), whereas Microsoft presents more non-specific ads such as ads for ringtones, eBay,

or Amazon. One way to think of such policies would be to regard them as similar to

reserve prices. In this section, we note that an additional way would be to add consumer

uncertainty as to the relevance of links to the model.

To model this, suppose the distribution of qi is either U [0, 1] with probability ρ (relevance

probability) or degenerate at zero with probability 1 − ρ. So either there is a distribution

of probabilities of matches, or it is certain that no firm offers a match.39 Consumers will

then update both with respect to ad quality and with respect to whether the set of ads

presented is relevant or irrelevant as they move down the list.

Given this model, we have

Pr
(
qi ∼ U [0, 1]| z1 = ... = zk−1 = 0

)
=

Pr
(
z1 = ... = zk−1 = 0|qi ∼ U [0, 1]

)
ρ

Pr (z1 = ... = zk−1 = 0|qi ∼ U [0, 1]) ρ+ (1− ρ)

=
ρΠk−1

j=1
2j−1
N+j

ρΠk−1
j=1

2j−1
N+j + (1− ρ)

.

Consumers’ expectations about the quality of the kth sponsored link conditional on

reaching it are:

E(qk:N |z1 = ... = zk−1 = 0, qi ∼ U [0, 1]) Pr
(
qi ∼ U [0, 1]|z1 = ... = zk−1 = 0

)

=
N + 1− k
N + k

ρΠk−1
j=1

2j−1
N+j

ρΠk−1
j=1

2j−1
N+j + (1− ρ)

.

Some obervations from these formula are:

1. Holding N and k fixed, Pr
(
qi ∼ U [0, 1]|z1 = ... = zk−1 = 0

)
is increasing and convex

in ρ. When k is large, even a small decrease in ρ away from 1 can lead to a large

decrease in beliefs about the quality of the kth site. If ρ is not close to one then most

consumers will only click on a small number of ads.
39This formulation does not provide a motivation for advertisers to provide non-specific advertisements.

Some firms appear to advertise with the strategy of attracting consumers who were not looking for their
products (e.g. ringtone companies, who historically were major advertisers on several search engines and
seemed to specialize in unrelated search terms such as common first names), or one could also add a benefit
independent of meeting consumers’ needs, as in a company that is interested in advertising its name rather
than generating a lead.
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2. Holding N and ρ fixed, Pr
(
qi ∼ U [0, 1]|z1 = ... = zk−1 = 0

)
is decreasing and convex

in k. When N is large, a consumer’s posterior belief in relevance drops dramatically

after failing to have his or her needs met at the first site.

The implications of this analysis for policy are that welfare can be hurt directly and

indirectly by allowing irrelevant links onto the search page. First, consumers waste search

costs when they click on irrelevant ads. Second, the optimal response to the irrelevant ads

is for many fewer consumers to search, which reduces welfare of all parties.

7 Conclusions

In this paper we have integrated a model of consumer search into a model of auctions for

sponsored-link advertising slots. General observations from previous papers about the form

of the auction equilibrium are not much affected by this extension: advertisers bid up to

their true value to be included in the sponsored-link list and then shade their bids when

competing for a higher rank.

The differences in the auction environment does, however, have a number of different

implications for auction design. One of these is that reserve prices can increase both search-

engine revenues and consumer surplus. The rationality of consumer search creates a strong

alignment between consumer surplus and social welfare in our model and a consumer-

surplus maximizing search engine will have a strong incentive to screen out ads so that

consumers don’t lose utility clicking on them. Another set of different implications arise

when we consider click-through weighting. Here, the auction that is efficient with no search

costs ceases to be efficient for two reasons: it may select the wrong firms and it may provide

consumers with little information to guide their searches. The informational inefficiency

can be avoided with an alternate auction mechanism. An additional worry about click-

weighted auctions is obfuscation – since advertisers’ steady-state payments do not vary

with their click-through rate (they are determined by the revenue bid of the bidder in the

next-lower position), advertisers have no incentive to design ad text to help consumers avoid

unnecessary clicks.

A more basic theme of our paper is that sponsored link auctions create surplus by

providing consumers with information about the quality of sponsored links which allows

consumers to search more efficiently. Sorting firms on the basis of their click-weighted bids

is part of this, but in principle one could imagine many other search engine designs that

produce different sets of sponsored links and/or present consumers with information in
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other ways. This should be an interesting area for pure and applied research.
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Appendix

Proofs of Lemma 1 and Corollary 1: When F is uniform, fk:N (x) = N !
(N−k)!(k−1)!(1−x)k−1xN−k.

Then the two probabilities from the previous expression are:

Prob{z1 = . . . = zk−1 = 0|qk:N = x} =
(

1− x
2

)k−1

.

Prob{z1 = . . . = zk−1 = 0} =
∫ 1

0

(
1− x

2

)k−1

fk:N (x)dx

Note that both the numerator and the denominator in the expression we’re evaluating are
equal to a constant times an integral of the form

∫ 1
0 x

a(1− x)bdx. Integrating by parts one
can show that this is equal to a!b!/(a+ b+ 1)!. Evaluating the integrals gives the proof of
Lemma 1.

The second part of Lemma 1 can also be proved more quickly by noting that

Prob{z1 = . . . = zk−1 = 0} = Prob{z1 = 0}Prob{z2 = 0|z1 = 0} . . .

=
k−1∏
j=1

(
1− E(qj:N |z1 = . . . zj−1 = 0)

)
The consumer will want to search the kth website if (N + 1 − k)/(N + k) > s. This

holds for k < kmax(s).
QED
Proof of Proposition 4: The first expression is derived by noting that the firm will

receive a click only if all higher firms do not meet the consumer’s need and the consumer
will decide to click on site k if he or she gets that far. The probability that site j will be
unsuccessful for the consumer conditioning on qj > q is 1−E(qj |qj > q) = (1 + q)/2.40 The
probability that all k− 1 clicks will be unsuccessful is ((1 + q)/2)k−1. The probability that
the consumer will click on the kth site is

Prob{s < E(qk:N |z1 = . . . = zk−1 = 0)} = E(qk:N |z1 = . . . = zk−1 = 0)
= (N + 1− k)/(N + k)

by Lemma 1.
The second expression is simply the expression for Prob{z1 = . . . = zk−1 = 0} in Lemma

1 multiplied by the consumer’s conditional expectation for qk:N .
QED

Proof of Proposition 5
First, we show by induction on k that the specified strategies are differentiable and

strictly monotone increasing in q and satisfy b∗(k, bk+1; q) ≤ q on the equilibrium path. For
k = M + 1 this is immediate from b∗(M + 1, 0; q) = q. If it holds for some K > 2 then for
any bK faced by a type q bidder on the equilibrium path we have

b∗(K − 1, bK ; q) = bK + (q − bK)
(

1− G(q̄K−1)
G(q̄K−2)

(1− q)
)

≤ bK + (q − bK) = q.

40Note that the j in this expression is a generic index and does not denote the jth highest value.
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The inequality here follows from two observations: q− bK > 0; and the term in parentheses
is between 0 and 1. (The first of these follows from the inductive hypothesis via q − bK ≥
qK:N−bK ≥ 0 and the second comes from 1−q < 1, q̄K−1 < q̄K−2, and G strictly monotone.)
To see that the bidding function is differentiable and strictly monotone increasing in q, one
can compute the derivative and see that it is positive. (The inductive hypothesis is again
used here via q − bK ≥ 0.)

We now show that the bidding functions are a perfect Bayesian equilibrium. By the
single-stage deviation principle, it suffices to show that no single-stage deviation can increase
the profit of a player i of type qi. We do this by another inductive argument. We first show
that this is true of deviations in the final stage (k = 2). And we then show that the
nonexistence of profitable deviations at all later stages (all k′ < k) implies that there is also
no profitable single stage deviation at stage k.

Consider the final stage of the game. Suppose firm i has quality qi and that b3 =
b∗(3, b4, q) so that firm i’s belief is that the other active firm has qj ∼ F |q>q. Firm i’s
expected payoff as a function of its dropout point q̂ can be written as 1

1−F (q)π(qi, q̂) where

π(qi, q̂) =

(∫ q̂

q
G(q̄1)(qi − b∗(3, b3; q))f(q)dq +

∫ 1

q̂
G(q̄2)(1− q)(qi − b3)f(q)dq

)
.

To show that this is maximized at q̂ = qi it suffices to show that π(qi, qi)− π(qi, q̂) ≥ 0 for
all q̂.

For q̂ ≤ qi we have

π(qi, qi)− π(qi, q̂) =
∫ qi

q̂

(
G(q̄1)(qi − b∗(3, b3; q))−G(q̄2)(1− q)(qi − b3)

)
f(q)dq.

To show that this is nonnegative it suffices to show that

G(q̄1)(qi − b∗(3, b3; q)) ≥ G(q̄2)(1− q)(qi − b3)

for all q ∈ [q̂, qi]. Because the bidding functions are differentiable and strictly monotone
increasing in q, the argument in the text before the proposition applies and therefore for
each q in this interval the local indifference condition holds:

G(q̄1)(q − b∗(3, b3, q)) = G(q̄2)(1− q)(q − b3)

Subtracting the two equations we find that it suffices to show

G(q̄1)(qi − q) ≥ G(q̄2)(1− q)(qi − q).

This is indeed satisfied for all q ∈ [q̂, qi] because G(q̄1) > G(q̄2) and (1 − q) < 1. The
argument for q̂ > qi is virtually identical. Together, these two cases establish that there is
no profitable single-stage deviation in the final stage.

Suppose now that there are no profitable deviations from the given strategies in stages
2, 3, . . . , k − 1 and consider a stage k history with bk+1 = b∗(k + 1, bk+2; q). To show
that there is no profitable single stage deviation, we’ll consider separately deviations to
b̂ > b∗(k, bk+1; qi) and deviations to b̂ < b∗(k, bk+1; qi).
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The first case is quite similar to the argument for k = 2. Deviating to b̂ > b∗(k, bk+1; qi)
makes no difference unless player i is eliminated in stage k when he bids b∗(k, bk+1; qi) and
is not eliminated when he bids b̂. Hence for all relevant realizations of the k − 1st highest
quality, player i will be the first to drop out in stage k−1 if he then follows the equilibrium
strategy. Hence, the change in payoff is proportional to∫ q̂

qi

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k) · (qi − bk+1)f(q)dq

−
∫ q̂

qi

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1)·(qi−b∗(k, bk+1, q))f(q)dq,

where q̂ is the solution to b∗(k, bk+1; q̂) = b̂. (A solution to this exists because the bidding
functions are differentiable and approach 1 in the limit as q → 1.) As above, this will be
nonnegative if

(1− q)G(q̄k)(qi − bk+1) ≥ G(q̄k−1)(qi − b∗(k, bk+1, q))

for all q ∈ [qi, q̂]. Subtracting the local indifference condition from the two sides of this
equation we again obtain that a sufficient condition is

(1− q)G(q̄k)(qi − q) ≥ G(q̄k−1)(qi − q) ∀q ∈ [qi, q̂].

This will hold because qi − q < 0 and 0 < (1− q)G(q̄k) < G(q̄k−1).
The argument for deviations to b̂ < b∗(k, bk+1; qi) is just a little more complicated. In

this case, the deviation makes no difference unless player i is eliminated in stage k when
he bids b̂ and is not eliminated at this stage when he bids b∗(k, bk+1; qi). We show that
the change in payoff is not positive by a two-step argument: we show that that the payoff
from dropping out at b̂ is worse than the payoff from bidding b∗(k, bk+1; qi) at stage k and
then dropping out immediately in stage k − 1; and that this in turn is less than the payoff
from bidding b∗(k, bk+1; qi) at stage k and then following the given strategies. The latter
comparison is immediate from the inductive hypothesis. Hence, it only remains to show
that∫ qi

q̂
E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )|qk−1:N = q
)
·G(q̄k−1)·(qi−b∗(k, bk+1; q))f(q)dq,

−
∫ qi

qh

E
(

(1− q1:N )(1− q2:N ) · · · (1− qk−2:N )(1− q)|qk−1:N = q
)
·G(q̄k)·(qi−bk+1)f(q)dq

is nonnegative where q̂ < qi is the solution to b∗(k, bk+1, q̂) = b̂. This is just like the
argument for the q̂ ≤ qi case above. The expresion is nonnegative if

G(q̄k−1)(qi − b∗(k, bk+1; q)) ≥ (1− q)G(q̄k)(qi − bk+1)

for all q ∈ [q̂, qi]. Subtracting the local indifference condition from the two sides of this
equation we again obtain that a sufficient condition is

G(q̄k−1)(qi − q) ≥ (1− q)G(q̄k)(qi − q) ∀q ∈ [q̂, qi].
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This will hold because qi − q > 0 and 0 < (1− q)G(q̄k) < G(q̄k−1).
This completes the proof that there is no profitable deviation at stage k and the result

follows by induction.
QED

Additional Details on the Proof of Proposition 10
With no reserve price, consumers with search costs in [2

3 − ε,
2
3 ] will click only on the

first link. Per consumer social welfare is

W = 2E
(
q1:N − 2

3
− ε

2

)
=

2
3

+
ε

2
.

Suppose now that the search engine uses a small positive reserve price r. (More precisely
assume r ∈ (0, 1

3 − 2ε)). These consumers now click on the first link only if two links are
displayed. Per consumer social welfare becomes

W = (2E(q1:N |q2:N ≥ r)− s)(1− r)2

= (2(
2
3

+
1
3
r)− (

2
3
− ε/2))(1− r)2

=
2
3

+
ε

2
− 2

3
r − 2

3
(r2 − r3)− ε

2
(2r − r2)

<
2
3

+
ε

2
− 2

3
r.

For somewhat larger r, specifically r ∈ [1
3 − 2ε, 5

9 −
4
3ε], consumers in the high search

cost group will click on the top link even if only one link is displayed. In the high search
cost population per-consumer welfare is now

W = (2E(q1:N |q2:N ≥ r)− s)(1− r)2 + (2E(q1:N |q1:N > r, q2:N < r)2r(1− r).

Using this, we one can show that the per consumer welfare gain in the high-search cost
subpopulation is at most 2

3r
2(1− 2r). This is negative for r > 1

2 and is uniformly bounded
above by 2

81 . Computing the mass of needs that go unmet because of the reserve price that
would have been met without a reserve price we find that the per consumer loss in welfare
in the low-search cost population is at least 2r(1− r)1−r

2 2 r2 + r2(4 r2 − 2 r
2

4 )− 2ε2. It is easy
to choose γ1 and γ3 so that this outweighs any gains in the high-search costs population
whenever r ≥ 1

3 − 2ε.
For even larger r the high search cost consumers will be willing to search both sites

when two are listed. But again, one can show that the welfare losses in the low search cost
population will outweigh this.

QED

Proof of Proposition 15
To compute expected consumer surplus we compute the probability that each subset of

firms is listed and the expected quality of the listed firms conditional on that subset being
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selected. Write L for the set of firms listed. The main probability fact we need is easy:

Prob{L = {1A, 1B}} = 1/3w

To see this, note that L = {1A, 1B} is possible only if q2 ∈ [0, 1/w]. This happens with
probability 1/w conditional on q2 being in this range, L = {1A, 1B} occurs with probability
1/3 (because wq2 is then uniformly distributed on [0, 1]).

The expected qualities are

E(q1x|L = {1A, 1B}, q1x > q1y) =
3
4

E(q1x|L = {1A, 1B}, q1x < q1y) =
1
2

E(q1x|L = {1x, 2}) =
8w − 3
12w − 4

E(q2|L = {1x, 2}) =
6w2 − 1

12w2 − 4w

The first two are again identical to the formulas for the unweighted case because this L
only arises when q2 ∈ [0, 1/w] and in this event wq2 is uniformly distributed on [0, 1]. The
latter two formulas can be derived fairly easily by conditioning separately on values with
q2 ∈ [0, 1/w] and values with q2 ∈ [1/w, 1]. For example,

E(q1x|L = {1x, 2}) =

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}E(q1x|L = {1x, 2}, q2 ∈ [ 1
w , 1])

+Pr{q2 ∈ [0, 1
w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1

w ]}E(q1x|L = {1x, 2}, q2 ∈ [0, 1
w ])

Pr{q2 ∈ [ 1
w , 1]}Pr{L = {1x, 2}|q2 ∈ [ 1

w , 1]}
+Pr{q2 ∈ [0, 1

w ]}Pr{L = {1x, 2}|q2 ∈ [0, 1
w ]}

=
(1− 1/w)(1/2)(2/3) + (1/w)(1/3)(5/8)

(1− 1/w)(1/2) + (1/w)(1/3)

Expected consumer surplus when weight w is used is then given by

E(CS(w)) = α

((
1− 1

3w

)
8w − 3
12w − 4

+
1

3w

(
3
4

+
1
4
· 1

2

))
+(1−α)

((
1− 1

3w

)
6w2 − 1

12w2 − 4w
+

1
3w
· 0
)

The difference between this expression and the expected consumer surplus from an un-
weighted auction can be put in a relatively simple form by grouping terms corresponding
to cases when the list is unaffected by the changes in weights and cases when it is affected.
We find

E(CS(w))− E(CS(1)) =
2
3

(
α

8w − 3
12w − 4

+ (1− α)
6w2 − 1

12w2 − 4w
− 5/8

)
+

1
3w

(
α

(
3
4

+
1
4

1
2

)
− α7

8

)
(

1
3
− 1

3w

)(
α

8w − 3
12w − 4

+ (1− α)
6w2 − 1

12w2 − 4w
− α7

8

)
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Writing f1(w), f2(w) and g3(w)h3(w) for the three lines of this expression note that all
three terms are equal to zero at w = 1. f2(w) is identically zero. The derivative of the
third evaluated at w = 1 is just dg3/dw|w=1h3(1). After these simplifications it takes just
a little algebra to show

d(E(CS(w))− E(CS(1))
dw

=
1
24

(4− 5α).

This implies that some w > 1 provides greater consumer surplus than w = 1 provided
that α < 4/5. To complete the proof, we should also work out the equations for consumer
surplus when w < 1 and show that these do not also provide an increase in consumer
surplus.

QED
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