Motivation and Sorting in Open Source Software
Innovation®

Sharon Belenzon'and Mark Schankerman®

October 7, 2008

Abstract

This paper studies the role of intrinsic motivation, reputation and reciprocity in driving
open source software innovation. We exploit the observed pattern of contributions - the
‘revealed preference’ of developers - to infer the underlying incentives. Using detailed
information on code contributions and project membership, we classify developers into
distinct groups and study how contributions from each developer type vary by license
(contract) type and other project characteristics. The central empirical finding is that
developers strongly sort by license type, project size and corporate sponsorship. This
evidence confirms the importance of heterogeneous motivations, specifically a key role for
motivated agents and reputation, but less for reciprocity.

Keywords: open source software, innovation, incentives, intrinsic motivation, moti-
vated agents, reputation, reciprocity
JEL Classification: L14, L17, L41, O31 and O32

*Acknowledgement: We thank Jacques Cremer, Alberto Galasso and seminar particiapants at the 2007
NBER Summer Institute for constructive comments. We gratefully acknowledge the financial support from the
Brtish Academy, and Hadar Gafni and Ofir Asbet for excellent research assistance throughout the project.

tFuqua, School of Business, Duke University

fLondon School of Economics, University of Arizona and CEPR

1. Introduction

This paper studies how incentives and sorting behavior affect open source software innovation.
In open source, the source code is made available for public use and development under specific
conditions that depend on the license governing the project. Programmers who contribute to
open source projects are typically unpaid, though corporate sponsorship and financing have in-
creased sharply in recent years. This raises an apparent paradox: How is open source innovation
sustained in the face of free-rider problems and the absence of direct monetary compensation?
This issue is important not only in the software sector, but also other areas in which ‘open com-
mons’ production has been proposed, including data bases, biotechnology and nanotechnology.!

There are four main competing explanations in the literature. First, contributions may be
viewed as an investment in the programmer’s reputation which yields payoffs in the form of peer
recognition (Raymond, 2001) or commercial rewards in the labor market (Lerner and Tirole,
2001, 2002; Johnson, 2002, 2004). Second, developers may expect to gain later from reciprocal
contributions from projects to whom they have previously contributed (Raymond, 2001; Lakhani
and von Hippel, 2003). Third, developers may be intrinsically motivated to contribute by their
strong identification with the ‘ideology’ underlying the open source movement (Raymond, 2001).
This ideology, whose origin is in the earlier ‘free software’ movement associated with Stallman
at MIT, is strongly tied to maintaining ’highly restrictive’ licenses that effectively prevent any
commercial use of the source code.? Lastly, developers may get pure utility value or learning
benefits from participation (put another way, their marginal utility of effort may be positive
over some range — Kreps, 1997; Glazer, 2004). The first two explanations involve extrinsic
incentives — even though they are not embodied in explicit employment contracts between the
contributor and open source project — whereas the other two arguments require some form of
intrinsic motivation.

There are a number of previous empirical studies of motivations in open source develop-
ment, but they suffer from two important limitations. First, these studies are typically based

on small sample surveys of programmers (e.g. Haruvy, Wu and Chakravarty, 2003; Hertel,

!Good general discussions of open source in software and other areas are available in Lerner and Tirole (2005)
and Maurer and Scotchmer (2006). For a recent book arguing the case for open source in biotechnology, see
Hope (2008), and on nanotechnology, Bryan Bruns (2001).

2The original open source license that embodies this view is the general purpose license (GPL), which requires
that the source code and any subsequent code that builds on it or embodies it must remain open source.

Krishnan and Slaughter, 2003). More importantly, they rely exclusively on what programmers
say their motivations are, without any way to corroborate these ‘announced preferences’. One
notable exception is Hann et. al. (2004), who test the labor market hypothesis of Lerner and
Tirole (2002) by studying the relationship between wages of developers and their contributions
to Apache, a major open source project. They find that wages are related to the contribut-
ing developers’ rankings by the Apache Software Foundation, but not to the volume of their
contributons, suggesting that contributions may be motivated more by labor market signalling
than by human capital accumulation.

The aim of this paper is to determine the extent to which intrinsic motivation, reputation
and reciprocity motives drive open source innovation. The empirical analysis is based on a
large scale data set with detailed information about software code contributions to open source
projects, including the license type, size, programming language, operating system and intended
audience for both the contributing and receiving projects. We study the empirical determinants
of software code contributions by focusing on distinct groups of developers. We classify each
developer according to the type of open source license governing the projects of which she is
a registered member. This yields four developer categories: highly restrictive, unrestrictive,
mixed, and anonymous. We investigate how the pattern of contributions from each developer
type varies across the license type and other characteristics of the contributing and receiv-
ing projects. The key innovation in our approach is that we exploit the observed pattern of
contributions — the ‘revealed preference’ of developers — to infer the underlying incentives.

Our econometric approach builds on the methodology used in the literature on patent cita-
tions. Until recently, that literature has focused exclusively on the determinants of citations at
the patent level, rather than the inventor level, because of the difficulty in identifying inventor
names (Jaffe and Trajtenberg, 2005).> We are able to avoid this problem because our data set
includes a unique identification number for each contributing developer. Our methodology is to
aggregate code contributions into cells defined by a set of characteristics of the contributing and
receiving projects, and then to use these cells as the observations in the estimation procedure.
The key identification assumption is that the license type and other characteristics of contribut-

ing and receiving projects are exogenous with respect to the decisions of individual developers

3Manuel Trajtenberg has pioneered efforts to construct inventor-level data, and a number of recent papers
explore patent citation flows at this micro-level. See Trajtenberg et. al. (2006).

to contribute. While we cannot rule out unobserved developer or project heterogeneity, our
focus is on the interactions between the contributing developer type and project characteristics
(not on the level effects of these characteristics), and such heterogeneity would induce bias only
if it is correlated with these interactions.

The central empirical finding in this paper is that developers strongly sort on a variety of
observed project characteristics. We interpret this finding as showing that software developers
are heterogeneous with respect to their motivations. First, we find assortative matching on
the project license type. Highly restrictive developers almost exclusively contribute to projects
with highly restrictive licenses, indicating an important role for ‘motivated agents’ — develop-
ers dedicated to the ideology of the open source movement. Unrestrictive developers primarily
contribute to projects with unrestrictive (more commerical) licenses. If unrestrictive developers
understand that such matching occurs, this finding is consistent with the reputation incentive —
they go where reputation gains are most likely to be obtained. Second, developers from unre-
strictive projects are more likely to contribute to larger projects and to those that are sponsored
by corporations. This evidence confirms that labor market reputation (career concerns) plays
an important role, as emphasized by Lerner and Tirole (2002). At the same time, however, we
find that the size of the receiving project also matters for other developer types, albeit to a lesser
extent, which indicates that the peer recognition motive also plays a role. Third, restrictive
developers are much more likely to contribute to projects aimed at end users (e.g. computer
games), whereas unrestrictive developers target developer oriented (programming tool) projects.
This is potentially important since the development of software tools is the ‘basic research’ that
is critical to the long run sustainability of the sector. These findings also suggest that open
source development by motivated agents is more a substitute for proprietary software innovation
on the end-product side.* All three of these findings on sorting behavior are robust to various
empirical specifications including a wide range of control variables.

Finally, we find that reciprocity plays a limited role in sustaining innovation. Developers are
more likely to contribute to projects from which they have previously received contributions,
controlling for various observed project characteristics. Reciprocity is more common among un-

restrictive (commercially oriented) developers than for highly restrictive developers (motivated

1But it is important to note that our data set does not include the Linux open source project, which is a
widely used operating system.

agents). This suggests that reciprocity is associated more with building reputations than with
intrinsic motivation. Lastly, while reciprocity accounts for a large fraction of contributions for
a few projects, the vast majority of projects does not involve such behaviour.

We believe our empirical findings — in particular, the heterogeneity of motivations and the
strong sorting behavior it induces — are relevant for thinking about employment contract design
in other contexts. Principal agency theory, with its focus on extrinsic rewards, has been the
dominant paradigm for thinking about employment contracts. But in the last ten years a number
of studies have begun to explore the interaction between intrinsic and extrinsic motivations and
its implications for optimal contracting. This work has focused primarily on government and
non-profit organizations, where it is believed that workers may be either intrinsically motivated
or, more strongly, motivated agents in the sense that their preferences are aligned with the
employer’s mission.” Among other things, this literature shows that optimal incentives depends
strongly on the form, and heterogeneity, of worker motivation. When instrinsic motivation is
strong (e.g., the academic and NGO sectors), low-powered incentives may be more efficient
for the principal. Frey (1997) shows that extrinsic incentives may even crowd out intrinsic
motivation (for an empirical test, see Frey and Oberholzer-Gee, 1997). In addition, the sorting
behavior that can arise from heterogeneous motivations, and other characteristics of the agent,
is important to take into account in econometric studies of contract design (Ackerberg and
Botticini, 2002).

Despite the progress on the theory, however, there are very few empirical studies of moti-
vation and contracts. In large part, this is due to the difficulty of identifying different worker
‘types’ in a way that allows one to study how they sort across contracts and the implications
for performance outcomes. In this paper, we are able to sidestep the problem by characterising
software developers a priori on the basis of the open source projects of which they are mem-
bers. The key to doing this is our use of data at the individual developer level. This allows us
to study the empirical pattern of contributions by each developer type and to infer from this
pattern their underlying motivations.

While there are no formal employment contracts between contributing developers and open

source projects, the project license is itself a contract governing the subsequent use and openness

’Leading examples include Frey (1997), Kreps (1997), Francois (2000), Murdock (2002), Benabou and Tirole
(2003), Delfgauuw and Perez-Castrillo (2004), Besley and Ghatak (2005), Delfgauuw and Dur (2007, 2008), and
Prendergast (2008).

of the contributed software code. Thus our paper can be viewed as a contribution to the empirical
literature on motivation and contracts, in that we show that contract design has strong sorting
effects. In this paper we treat the contract choice as exogenous. Lerner and Tirole (2002)
study the choice of open source license, arguing that the relevant tradeoff is between greater
proprietary control with the more commerical, unrestrictive licenses and a potentially greater
pool of contributors with more restrictive licenses. The sorting effect of the project license plays
a central role in their theory, and our results provide econometric evidence supporting their
perspective. We leave for future work the task of incorporating both contract choice and the
resulting sorting effects into one empirical framework.

The paper is organised as follows: Section 2 describes the data set and the key variables used
in the empirical analysis. Section 3 sets out the main hypotheses about developer motivations
for open source innovation. Section 4 presents descriptive evidence on the main features of
the patterns of developer contributions. Section 5 presents the econometric framework. The
empirical results and their implications are discussed in Section 6. Brief concluding remarks

follow.

2. Data

The data are taken from SourceForge, the largest web host for open source software projects.
SourceForge provides a publicly accessible platform, introduced in 1999, where developers inter-
act during the software development process. We developed a specialised software algorithm that
accessed each project registered on SourceForge and extracted all available information about
the project, the participating developers and their software code contributions. We launched
this software in November 2005 and collected detailed information on all 61,514 open source
projects listed on SourceForge and all code contributions (‘patches’) made to these projects.®
The data set covers the period 1999-2005.

The key variables in the empirical analysis are as follows:

Project License Type: The most important project characteristic we consider in this paper
is license type. Each project is governed by a set of rules that define the terms of use of the

software developed by its members and other participants. These terms of use are defined by

6Table A.2 in the appendix provide information about the most active receiving and contributing projects in
our dataset.

the project license, which focuses mainly on the extent to which commercial use is allowed.
More restrictive licenses constrain such use more severely. Two main features define the re-
strictiveness of a license: (1) the extent to which the code and any of its modifications can
be subsequently embodied in commercial software and (2) whether modifications to the code
have to remain open source (i.e., the binary code must remain open and accessible).” The
projects in our data cover about 44 license types. Using the description of each license type
(http://www.opensource.org/licenses), we classify licenses into three categories:

(1) Highly restrictive (HR): This type includes the GPL (General Purpose License) license.
It requires that any file, regardless of code origin, which is combined under certain circumstances
with a file under GPL must be licensed under GPL. This license type is regarded as ideologically
closest to the original idea behind the ‘free software movement’, and its objective is to preserve
a fully open software commons and limit commercial gains from software development to the
maximum possible extent.

(2) Restrictive (R): The license requires that modified versions of the program can only be
distributed if the source code remains open source, but it can be used commercially. There are
no restrictions on the license conditions of the modifications and extensions of the code, provided
that they remain open source. Examples include Lesser GPL, Common Public License, and Sun
Public License.

(8) Unrestrictive (UR): The license allows modifications and extensions of the open source
code to be integrated into commercial software and these do not have to remain open source.
Examples include BSD, Python and MIT.

Projects may have more than one license type. In cases of multiple licenses (this applies to
7 percent of projects), we classify the project as highly restrictive if at least one of its licenses
is highly restrictive, and as unrestrictive if all of its licenses are unrestrictive.® The remaining
projects are classified as restrictive. In the complete sample of 61,514 projects, 65 percent

operate under a highly restrictive license and 13 percent under an unrestrictive license.” A

"For a good discussion of different license types and their restrictions, see Lerner and Tirole (2002). Table
A.1 in the appendix to this paper summarizes the conditions defining each type and provides some examples.

8The results reported in the paper are robust to alternative assumptions, such as classifying projects as highly
restrictive only if all of their licenses are highly restrictive, or classifying projects as unrestrictive only if the
majority of their licenses are unrestrictive.

9In their study of the determinants of project license type, Lerner and Tirole (2002) use an earlier and smaller
sample but find a very similar distribution of license types.

project can receive contributions from its members or developers who are not affiliated with
the focal project. In what follows, we focus the analysis on the more interesting case where
contributions are made by developers who have no formal affiliations with the receiving project.'’

Among projects that receive at least one code contribution, 60 percent operate under HR li-
censes, and 20 percent under UR licenses. This difference reflects that fact that highly restrictive
projects receive fewer contributions per project than those under unrestrictive licenses.

Developer Type: The developer type is based on the projects of which she is a member. We
classify a developer as highly restrictive if all of the projects to which she belongs operate under
highly restrictive licenses, as defined above. We define a developer as unrestrictive if all of the
projects to which she belongs operate under unrestrictive licenses. All other developers who are
members of projects are classified as Mixed.!? We include two other categories: ’Anonymous’ —
developers who submit patches without revealing their identity to the receiving project manager
or members, though the contribution itself is made public; and ‘Non-members’ — contributors
who are not registered as members of any project.

Size of Project: The size of the project is defined by the number of developers registered as
formal members, including the project manager.!?

Resoultion of the code contribution: From information on SourceForge, we know whether
the open source projects reveal to outsiders that individual code contributons have been ac-
cepted (i.e., incorporated ino the project software). About 75 percent of projects registered on
SourceForge reveal the outcome of (at least some) contributions.

Programming Language: Projects fall under one of 70 different programming languages.
Based on discussions with software developers, we group these languages into five broad cate-

gories: object-oriented, imperative, scriptive, dynamic, and other.'?

10Tn the overall sample, 39 percent of contributions are made by project members, i.e., these contributions
are internal to the receiving project. The remaining 61 percent are from developers that are either members of
other projects, not members of any project, or do not reveal their identity when making their contribution
(anonymous). The percentage of internal contributions is higher for unrestrictive projects than for highly
restrictive projects (50 and 34 percent, respectively).

10On average, developers belong to 1.28 projects that either receive or contribute patches. Members of
unrestrictive projects are somewhat more diversified than those of highly restrictive projects — they belong to
1.5 and 1.3 projects, on average, respectively.

12The alternative way to measure size would be to use the total number of patches received by the project.
Since we want to explain the pattern of code contributions by developers, it would be problematic to treat this
measure as exogenous for small projects since the developer’s decision to contribute may have a non-negligible
effect on project size.

13The programming languages included in each of the five categories are as follows:

Operating System: Each project is conducted on one or more operating system, which is the
platform on which the program runs. We use four systems, roughly following Lerner and Tirole
(2002): Microsoft, Open Source Independent, POSIX, and Mixed!?.

Intended Audience: Each software project is listed as targeted to different intended audiences
(user groups). We group the 19 audience types in SourceForge into five categories: developers
(programming tools), end users (desk top applications, computer games etc), system adminis-
trators, mixed (of the preceding three), and other'>. About 30 percent of receiving projects are

developer oriented and 18 percent are end user oriented.

3. Motivations behind Open Source Innovation

We focus on four main motivations: (1) Motivated agents, (2) Reputation, (3) Reciprocity, and
(4) Utility /Learning. The literature and available small sample survey evidence suggest a role
for each of these motivations in open source developement (e.g. Haruvy, Wu and Chakravarty,
2003; Lakhani and von Hippel, 2003; Hertel, Krishnan and Slaughter, 2003; Lerner and Tirole,
2002).

Motivated agents: Following Francois (2000) and Besley and Ghatak (2005), ‘motivated
agents’ are those whose utility from participation is greater when they match to employers of
their own type. In our context, ‘type’ refers to the restrictiveness of the license associated with
the open source project. It has been claimed that many software developers have a strong
(ideological) preference for maintaining fully open source code in all software embodying it, i.e.

highly restrictive GPL licenses. This was the original driving force behind the ‘free software’

Object-oriented: Java, C++, Smalltalk, Visual Basic NET, C#, Object Pascal", Delphi/Kylix, Visual Basic,
Ada, D, Groovy, PL/SQL, AspectJ, COBOL, JSP, LPC, REALbasic, Visual FoxPro, Zope, OCaml, and Simula.
Imperative: C, Fortran, Standard ML, PROGRESS, and Pascal. Scriptive: JavaScript, PHP, Tcl, Rexx, Action-
Script, Emacs-Lisp, VBScript, Cold Fusion, AWK, and AppleScript. Dynamic: Perl, Python, Dylan, Erlang,
Forth, Lisp, Logo, Scheme, Lua, and Modula. Objective: C, Ruby, ASP.NET, Common Lisp, Pike, Prolog, Eiffel,
REBOL, and Euler. Other: Assembly, UnixShell, ASP, Haskell, APL, MATLAB, BASIC, XBasic, Euphoria,
IDL, LabVIEW, XSL, and VHDL/Veril.

HIn addition to Lerner and Tirole (2002), we use Wikipedia and
http://osapa.org/wiki/index.php/SF /Freshmean Trove to group operating systems to the four main cate-
gories. The POSIX category includes Linux, Solaris and BSD; OS independent includes only OS independent
operating systems; Microsoft includes all of Microsoft’s operating systems (such as MS-DOS and WinXP). The
remaining category includes software that operates on more than one operating system.

15The End Users category includes end users/desktop and advanced end users. The ‘Other’ category, which
account for about 4 percent of the projects, includes mainly aerospace, education, science/research and health-
care.

movement (Raymond, 2001). In economic terms, this means that the utility a highly restrictive
developer gets from making a code contribution is larger if it is made to a highly restrictive
project (in the extreme form, it is zero if made to a project with any other license type). Thus,
the motivated agents hypothesis predicts positive (but not necessarily exclusive) sorting of
highly restrictive developers to projects with highly restrictive licenses. This hypothesis makes
no prediction about sorting of unrestrictive developers.

Reputation: There are two distinct types of reputation that may be important: commercial
reputation and peer recognition. Lerner and Tirole (2002) argue that developers improve their
labor market prospects by signalling their quality through participation in open source projects.
These signalling benefits are likely to be greater: (1) when the project to which they contribute
is larger and hence more visible (Johnson, 2002), (2) when the project reveals the outcome
of the contribution (i.e., whether it has been accepted by the project manger), (3) when the
project is sponsored by commercial firms, and (4) when the project is aimed at developers
(programming tools) rather than end users. The prediction of the commercial reputation (labor
market signalling) hypothesis is that unrestrictive developers should sort positively on these
four dimensions.

The second type of reputation gain is peer recognition, unrelated to labor market payoffs.
Peer recognition should also be greater for larger projects, projects that reveal patch outcomes,
and those aimed at programming tools rather than end users. The peer recognition hypothesis
predicts sorting on these three dimensions, but this motivation should be unrelated to commer-
cial sponsorship of projects. Finally, neither the commercial reputation nor peer recognition
motivation should operate for anonymous contributors.

One last point concerns sorting by unrestrictive developers on license type. If unrestrictive
developers understand that assortative matching in the population occurs, then the (commer-
cial) reputation hypothesis predicts that these developers would tend to sort on projects with
unrestrictive licenses. That is, they would tend to contribute to projects where reputation gains
are most likely to be obtained.

Reciprocity: Developers who are members of a project may make contributions in response to

(or anticipation of) contributions made by other developers to their project.'® This hypothesis

16Tn principle, reciprocity can be sustained as an equilibrium in a repeated game setting, though in practice it
may be difficult in the open source context to detect deviation (i.e., knowing what level of contribution reveals
non-deviation) and to punish it.

10

implies that contributions from project ¢ to project j in year t should be related to whether
project 7 has contributed to project ¢ prior to year ¢. Notice that the reciprocity motive should
not apply to anonymous contributors or to contributors who are not members of any projects.

Utility/learning: Developers may contribute code to projects because they enjoy doing so
and /or because they learn from the process.!” The learning benefits from making contributions
are likely to be stronger if the contributing and receiving projects use the same programming
language or operating system. Thus, the utility/learning hypothesis predicts sorting on these
dimensions, but no sorting on license type.

Costs of contributions: Developers incur effort costs in making code contributions, and
are more likely to contribute when these costs are lower. This should be the case when the
programming languages, and possibly the intended audience, of the contributing and receiving
project are similar. Note that these predictions are essentially the same as for the utility /learning
hypothesis, so it is not possible to distinguish empirically between the role of effort costs and

utility /learning benefits.

4. Descriptive Statistics

Table 1 summarizes characteristics of ‘receiving projects’ (those that receive at least one code
contribution). Notice first that the distribution of code contributions is highly concentrated.
Excluding contributions by developers affiliated with the receiving project, only five percent
of projects receive any contributions over the ten years covered by the data.'®. Second, most
receiving projects are small — 90 percent have 10 or fewer members. The mean number of
received contributions rises monotonically, and very strongly, with project size. In part this
may reflect correlation between unobserved project quality (which affects contributions) and
project size, but it is likely also to reflect the reputation incentive of contributors, as discussed
earlier.

Third, project license type is correlated with other project characteristics. highly restrictive
projects receive fewer contributions than unrestrictive projects (13.1 and 20.7 patches, respec-

tively). Highly restrictive projects are also much more likely to focus on end user software as

1"Tn addition, they may hope to influence the direction of the software project in ways from which they expect
to benefit.
18Even if we include internal contributions, the figure is only 6.1 percent.

11

opposed to developer oriented programming tools (not shown in table). Of the highly restric-
tive projects, 25 percent focus on end users and 16 percent on developer tools; for unrestrictive
projects the figures are 10 and 42 percent, respectively. License type is not systematically related
to programming language or operating system (about 7 percent of both highly restrictive and
unrestrictive projects adopt Microsoft as their operating system, with the remaining projects
mostly adopting OS Independent and POSIX).
[TABLE 1 ABOUT HERE]
Table 2 summarizes characteristics of ‘contributing projects’ that made at least one code

t.19 As with receiving projects, we observe that contribution

contribution to another projec
activity is very concentrated. Only about 10 percent of projects make any contributions to
other projects over the ten years of the sample. There is variation across license types in the
pattern of contributions. Highly restrictive projects make fewer contributons than other license
types, despite the fact that they are larger, and they are more focused on end user software, as
compared to unrestrictive projects. The mean number of contributions also rises with project
size, but much less sharply than for receiving projects.
[TABLE 2 ABOUT HERE]

In Table 3 we examine how the level of contribution activity varies with individual developer
(rather than project) type. Of the 113,191 developers listed on SourceForge, only 14 percent
make any contributions, and only 11.5 percent make contributions to projects with which they
are not affiliated. Moreover, the distribution of contributions by developers is highly skewed. In
total, highly restrictive developers account for four times as many contributions as unrestrictive
developers (16 versus 4 percent), though the mean number of contributions is very similar for
the two groups. Anonymous contributors account for about 10 percent. If we made the strong
assumption that anonymous contributors and highly restrictive developers are pure motivated
agents, we would conclude that this motivation accounts for as much as 25 percent of total
contributions. But this is an upper bound, since we will show that the contribution patterns of
these developer types indicate that they have mixed motivations.

[TABLE 3 ABOUT HERE]

Finally, we examine how the pattern of contributions varies with the developer type and

19We treat a project as contributing if at least one of its members made one or more contributions to a different
project. Since a developer can be a member of more than one project, we include only contributions where the
contributing developer is not a member of the receiving project as well.

12

receiving project characteristics. Table 4 identifies three key aspects of sorting behavior that
will be confirmed in the subsequent econometric analysis. First, anonymous and highly restric-
tive developers are much more likely to contribute to projects with highly restrictive licenses
than other types, while unrestrictive developers focus more heavily on projects with unrestric-
tive licenses. Second, anonymous and highly restrictive developers focus much more heavily on
projects targeted at end users, while unrestrictive developers are more likely to contribute to
projects aimed at developer programming tools. This is interesting because, given the impor-
tance of cumulative innovation in software, programming tools are likely to contribute more
to the long run technological advance in this sector than end user products. Third, unrestric-
tive developers are much more likely to contribute to the very large projects (>50 members)
than anonymous or highly restrictive developers. These last two findings are consistent with
the hypothesis that unrestrictive developers are more driven by commerical motives, since pro-
gramming skills are likely to be more effectively signalled by contributing to developer tools and
larger projects.

[TABLE 4 ABOUT HERE]

5. Econometric Specification

We want to estimate the effect of project characteristics on the pattern of code contributions.?’

To do this, we adopt the approach used in the literature on patent citations. We aggregate
patches into cells, where each cell is defined by a set of characteristics of the contributing and
receiving projects. These cells become the observations in the estimation procedure. This allows
us to estimate the effect of cell characteristics (and interactions) on the number and pattern
of patches. In these regressions, we control for the number of potentially contributing and
receiving projects in the same cell, where the latter include all projects in the data (including
those that receive zero contributions).

Since the number of patches is an integer, we use an econometric specification for count

data. The general model is
Eyer|xer) = G(%e, x,) ((1)

20A contributing project is defined as the project of which the contributing developer is a member. If the
developer belongs to more than one, we treat each separate project as a contributing project. As before, we
exclude contributions by developers to projects of which they are a member.

13

where, y., denotes the number of contributions made by developers who are members of projects
in cell ¢ to projects in cell r, x. is a vector of characteristics of the contributing project ¢
(including the developer type), x,. is a vector of characteristics of the receiving project r, and
G is a functional form which we need to assume. The main choice for G is between Poisson
and Negative Binomial models. The Poisson model imposes the strong restriction Var(y..,|
-) = E(Yer| +); the Negative Binomial allows for ‘over-dispersion’ which is a common feature of
count data. But this generality comes at a cost — if the specification of the conditional variance in
the Negative Binomial is wrong, the parameter estimates of the condition mean are inconsistent,
whereas the Poisson estimates of the conditional mean are consistent even with over-dispersion.
For this reason we adopt the Poisson specification. To allow for over-dispersion, we use the
Poisson QMLE estimation procedure with variance specified as Var(ye,| -) = N> E(ye,| -).

An observation is defined as a combination of characteristics of the contributing and receiv-
ing projects. We study five contributing project characteristics: developer type (t), intended
audience (u), number of members (project size, m), programming language (p), and operating
system (0). We denote the vector of contributing project characteristics by ¢ = (¢, u, m, p,0).
We study five characteristics of receiving projects: license type (L), intended audience (U),
number of members (project size, M), programming language (P), operating system (O), and
year of registration (V). We let r = (L, U, M, P,O,Y).

The baseline specification is

Yer = G(axc + ﬁxr + 7chr) + Ee,r ((2))

where (o, 8,) denotes the vector of parameters to be estimated and we assume E(e. X, X,) =
0. In this specification, we focus on the interactions between the developer type and the char-
acteristics of the receiving project, controlling for a full set of linear dummies to capture both
the contributing and receiving project characteristics.?!’ Our main objective is to determine
whether there is sorting of developers according to the license type of receiving projects (moti-
vated agents) and project size (reputation), which is revealed by the coefficients on the set of
interaction variables. We also test whether there is sorting of developers on other dimensions of

the contributing and receving projects. In the set of duumy variables for interactions between

2L As explained earlier, we do not directly observe the developer type. We infer it from the project affiliations
(membership) of the developer.

14

developer and project license types, we drop the dummy for HR developer-HR license type. All
other interaction coefficients measure impacts relative to this reference group.

The key identifcation assumption is that the license type and other characteristics of con-
tributing and receiving projects are exogenous with respect to the decisions of individual devel-
opers to contribute. The main source of concern is that unobserved developer characteristics,
especially quality, may induce correlation. For example, high quality developers may sort on
some dimensions of contributing or receiving projects. But our primary focus is on the inter-
actions between the contributing developer type and project characteristics, the v coefficients
in equation (2) — not on level effects given by (a,3). Unobserved heterogeneity will induce
bias only if it is correlated with these interactions. It is hard to assess a priori what direction
any such bias might take (i.e., how developer quality might be correlated with specific project

characteristics).

6. Econometric Results

6.1. Baseline Specification

Table 5 presents the parameter estimates for the interaction terms between the type of the
contributing developer and the license and size of the receiving project. The specification also
includes a complete set of linear dummy variables for receiving project characteristics — year of
registration, intended audience, operating system, and programming language. The empirical
results confirm strong sorting behaviour by different types of developers. First, highly restrictive
developers are much more likely to contribute to projects that have highly restrictive licenses
and least likely to contribute to projects with unrestrictive licenses. The H R — H R coefficient is
normalised to zero, while the interaction coefficients of highly restrictive developers with mixed
and unrestrictive projects are -0.858 and -1.38, respectively. This means that the marginal
effect of changing a project’s licsense type from highly restrictive to unrestrictive is to reduce
the number of contributions by highly restricive developers by 1.38, which is nearly a third of
the mean number of contributions by such developers. We strongly reject the hypothesis that
there is no sorting by license type for these highly restrictive developers (p — value < .001).
Contributions by anonymous developers cannot be driven by career concerns because they
do not reveal their identity and cannot gain peer recognition. Thus anonymous contribution

activity indicates either the importance of motivated agents or pure utility value/learning from

15

contributing. If they are primarily motivated agents, we expect them to sort on highly restrictive
projects, whereas the utility value/learning incentive predicts no systematic sorting on license
type. Table 5 shows that anonymous developers sort in a way similar to highly restrictive
developers — they are more likely to contribute to highly restrictive projects than to either mixed
or unrestrictive ones. Moving from a highly restrictive license to an unrestrictive one reduces
the number of contributions by anonymous developers by 16 percent (0.55/3.21). These results
for highly restrictive and anonymous developers support the motivated agents hypothesis.

For unrestrictive developers we also find strong sorting but of the opposite pattern. They
are much more likely to contribute to unestrictive projects, as compared to highly restrictive
ones (compare the coefficients on the interaction with unrestrictive projects, -2.22, with the one
on highly restricted projects, -3.08). These estimates imply that moving from an unrestrictive
to a highly restrictive license reduces the contributions of unrestrictive developers by about
90 percent, evaluated at the means. We decisively reject the null hypothesis of no sorting by
unrestrictive developers (p — value < .001).

We also find that the size of the receiving project affects the flow of incoming contributions.
This holds for all developer types, but the largest impact is found for unrestrictive developers. A
ten percent increase in the number of members (our measure of project size) raises the number
of contributions by unrestrictive developers by 0.25, which is about 25 percent of the mean. The
corresponding percentage increases are much smaller for the other developer types: 6.1 percent
for anonymous, 4.2 percent for highly restrictive, and 2.1 percent for mixed. This finding
indicates that reputation building plays a role for all developer types, but it is particularly
important for the more commercially-oriented (unrestrictive) developers.??

[TABLE 5 ABOUT HERE]

6.2. Robustness Analysis

The first robustness check is to generalise the empirical specification by allowing for interaction

effects (sorting) between the developer type and both intended audience and programming

22Two points should be noted. First, the fact that the estimated coefficient on project size is also significant
for anonymous developers (for whom reputation gains do not apply) suggests that there is also a utility /learning
benefit that may be related to the size of the project. Second, we also estimated the baseline specification in
Table 5 separately for different receiving project sizes. The results show the same pattern of sorting between
developer type and receiving project license, for each size category. The only difference is that for small receiving
projects, anonymous developers exhibit no sorting on license type.

16

language of the receiving project. Table 6 presents the results (for brevity, we omit coefficients
on the interactions between developer type and programming language, which have no intrinsic
interest). All of the key findings about sorting on license type are preserved. The project
size effects are also robust, confirming the special importance of the reputation incentive for
unrestrictive developers. The new finding is that anonymous and highly restrictive developers
are more likely to contribute to end user oriented projects, as compared to developer oriented
projects. This is shown by the coefficients in rows (d) and (e). The opposite is true for
unrestrictive developers. We easily reject the null hypothesis that there is no sorting by intended
audience, for each developer type (p — values < 0.001).These findings confirm that the choice
of license type and project orientation (a decision made by the project manager or sponsor)
strongly affects the composition of contributing developers.?
[TABLE 6 ABOUT HERE]

Second, thus far we have included controls only for the characteristics of the receiving project.
Table 7 expands the specification by adding a set of linear dummy variables for the intended
audience and programming language of the contributing project. Since the analysis is based on
cells defined by the interactive characteristics, we need to use more narrowly defined cells here
(this accounts for the larger number of potential flow links - ‘observations’ - listed in the table).
Unfortuantely, we cannot include anonymous contributors in this analysis because we cannot
identify the relevant contributing project characteristics for those developers.

Including the characteristics of the contributing projects does not change our earlier findings
about how developers sort on project license type. Contributions by highly restrictive developers
are more more likely to go to projects with highly restrictive licenses, and the reverse holds for
unrestrictive (and to a lesser extent, mixed) developers. The estimated marginal effects in Table
7 are much smaller than those in Table 6, but this is simply an artifact of having much more
disaggregated cells. This is apparent from a comparison of the mean number of contributons by
developer type in the two tables. In fact, the implied marginal effects from Table 7, expressed
as a percentage of the mean contributions, are very similar to those in Table 6. For example,
using Table 6, we find that moving from a highly restrictive to an unrestrictive license reduces
contributions of highly restrictive developers by 28.6 percent (—1.16/4.06 = 0.286), evaluated
at the mean. The corresponding figure from Table 7 is 29.1 percent (—0.145/0.499 = 0.291). In

23This was the assumption underlying the important paper by Lerner and Tirole (2002).

17

addition, we again find that all developer types sort on the size of the receiving projects, and
that the contributions from unrestrictive developers are most sensitive to project size, consistent
with their greater reliance on (commercial) reputation motivation.

[TABLE 7 ABOUT HERE]

Third, we generalise the specification given in Table 7 by adding dummy variables for whether
there is matching on the intended audience and the programming language of the contributing
and receiving projects. For brevity we do not present the full set of results. All of the key findings
about sorting on license type and the effects of receiving project size are very similar to those
presented in Table 7. The new finding is that the number of contributions is significantly greater
when there is such matching. We began by introducing two dummy variables, one for whether
there is any matching on intended audience (end users versus developer tools) and another for
matching on programming language (there are four language groups). The estimated marginal
effects (standard error) are 0.284 (0.011) and 0.087 (.007), respectively, which are equivalent to
7.1 and 2.2 percent of the mean number of contributions. We also estimated a specification in
which we allow the effects of matching to be different for each type of intended audience and
programming language. While we find that the impact of matching does vary across types, the
estimated marginal effects are statistically very significant in every case.?*

There are two explanations for the matching on intended audience and programming lan-
guage. The first is that reputation building is likely to be more effective and more valuable
among developers with similar ‘tastes’ and experiences. At the same, however, the utility and
learning benefits for the contributing developer are also likely to be greater, and the effort cost
of making contributions lower, when there is matching on these two dimensions. With the

available data, we cannot distinguish between these two effects.

6.3. Extensions

In this section we discuss two additional empirical experiments designed to refine our inferences
about the role of reputation.

Public Resolution of Contributions: The first extension exploits information on whether the

24The marginal effects (standard error) are 0.268 (.021) for developer tools and 0.155 (.024) for end users.
For programming languages the estimates are 0.272 (.039) for Object Oriented, 0.443 (.028) for Imperative,
0.119 (.015) for Scriptive, and 0.947 (.084) for Dynamic. The reference category for intended audience and
programming language is Other. For details of languages in each category, see note 13.

18

receiving project publishes whether the contribution made by a developer is accepted or rejected.
After a developer makes a code contribution, the project manager (or members) decides whether
to accept the new code and to make that decision public on SourceForge. While the decision is
made for each contribution separately, projects differ systematically on the degree to which they
publish these outcomes. In our sample, 1,991 projects that receive contributions have at least
one ‘closed’ (resolved) patch.? For these projects, the average share of patches with reported
resolution is 0.65 (median is 0.88).

We use this information to identify the reputation incentive more sharply. We expect de-
velopers motivated by commercial reputation to be much more likely to contribute to projects
with public resolution than other developers. To investigate this hypothesis, we define a dummy
variable equal to one for projects that reveal the outcome for at least 50 percent of the (closed)
contributions they receive over the sample period.?® With this threshold, 65.8 percent of the
projects are identified as having public resolution. It is worth noting that they tend to be larger
than those that do not publicly disclose outcomes (mean numbers of contributions received are
32.7.and 11.8, respectively).

Table 8 presents the results for the baseline specification where we include the dummy
variable for public resolution. The key findings about sorting on license type and the effects
of receiving project size are very similar to the baseline results in Table 5. The new finding is
that public resolution strongly affects the flow of contributions. The estimated marginal effect
is statistically significant for all developer groups, but the point estimate is about three times
larger for unrestrictive developers. Adding public resolution raises contributions by unrestrictive
developers by 2.77, which is twice as large as their average number of contributions. To put it
another way, unrestrictive developers very rarely contribute to projects which do not reveal the
outcome of the contribution. These results are consistent with the hypothesis that unrestrictive
developers are much more driven by commercial reputation motives than other groups. But
the fact that public resolution appears to matter for other developer groups indicates that
reputation in the form of peer recognition also plays some role.

[TABLE 8 ABOUT HERE]

25Tn total these projects receive 38,912 ‘closed’ patches of which 8,945 do not report resolution, 24,855 report
an ‘Accepted’ resolution and the remaining 5,112 projects report a ‘Rejected’ resolution.

26We also tried two alternative thresholds — 25 and 75 percent — to define the dummy variable for public
resolution. While the parameter estimates depend on the threshold, the basic conclusion is robust.

19

Corporate Sponsorship of Projects: The second extension involves the role of corporate spon-
sorship of projects. Thus far we have inferred the role of reputation from the impact of receiving
project size on the flow of contributions. But increasingly, large firms have invested substantial
financial and technical resources to develop open source software innovation, including paying

employees to participate in such projects.?”

It is highly likely that this investment involves
corporate sponsorship of open source projects. Knowing which projects have such sponsorship
should help pin down more sharply the role of the commerical repuation, as distinct from rep-
utation associated with peer recognition. For developers motivated by commercial reputation,
we would corporate sponsorship to increase the flow of contributions, conditional on the license
type of the receiving project. We expect no such effect for anonymous or highly restrictive
developers.?

Unfortunately, SourceForge does not identify whether the project has some form of com-
mercial sponsorship. To examine this issue, we conducted an email survey of project managers
of 500 projects listed on SourceForge to determine whether there was such sponsorship. We
received answers from 222 projects, of which 45 percent reported corporate sponsorship. The
distribution of projects licenses is similar for the survey respondents and the overall sample.?”
The survey projects are much larger than the average in the data set (mean numbers of patches
received are 121 and 16.4, respectively), but within the survey, project size and the pattern of
licenses are similar for corporate sponsored and individual projects.

Using this survey sample, we re-estimated the specification with linear dummies for receiving
and contributing project characteristics (corresponding to Table 6) but including an interaction
between developer type and corporate sponsorship. Table 9 presents the results. We get similar
sorting patterns as in Table 6 for this much smaller sample — the magnitudes of the coefficients
differ (as does the mean number of contributions) because of the focus on larger projects here.
The key new finding is that corporate sponsorship has a powerful and highly significant effect on

contributions by unrestrictive developers. The impact is nearly three times as large as the mean

number of contributions for that group. There is no statistically significant effect for the other

2TA discussion of IBM’s involvement in open source software is available at
http://www.research.ibm.com/journal/sj/442/capek.pdf

28In fact, the coefficient could be negative for these developers if their intrinsic motivation is associated with
an assertive dislike for corporate sponsored software.

2In the SourceForge data, 58.5 percent of projects have highly restrictive licenses, and 18.6 percent are
unrestrictive. The corresponding figures for the survey respondents are 49.5 and 21.2 percent.

20

developer groups. This finding strongy supports the importance of the commercial reputation

motive for unrestrictive developers.
[TABLE 9 ABOUT HERE]

6.4. Evidence on Reciprocity

We begin with some summary statistics on the incidence of reciprocity among projects in open
source development (Table 10).3° We distinguish between two types of reciprocity. Outward
reciprocity is the percentage of all the contributions made by project ¢ which go to projects that
previously contributed to project i. Inward reciprocity is the percentage of all contributions
received by project ¢ that come from projects to which project ¢ had contributed previously. If
all projects behaved symmetrically, outward and inward reciprocity would be the same. But we
will see that they are very different.
[TABLE 10 ABOUT HERE]
Three features are striking. First, recpirocal contributions are very rare. Overall, only 1.37

31 Second, unrestrictive projects are

percent of projects involve any reciprocal contributions.
much more likely to involve reciprocity (7.35 percent for unrestrictive versus 0.76 percent for
highly restrictive projects). This is somewhat surprising since one might think that motivated
agents would be more likely to reciprocate than commerically oriented developers. Third, among
those projects involving some degree of reciprocal contributions, outward reciprocity plays a
large role — accounting for 27 percent of all outgoing contributions for those projects, and again
the degree of reciprocity is greatest for unrestrictive projects. Finally, outward reciprocity is
much more frequent than inward reciprocity. This reveals that there is strong sorting by projects
in terms of the degree to which they reciprocate for past contributions received.

These simple statistics may overstate the importance of genuine recirprocity because some
two-way contributions may simply reflect similarities between projects. To examine this hy-

pothesis, we performed probit regressions on the probability that a contribution is reciprocal

against a set of dummy variables that capture whether the contributing and receiving projects

30We focus on reciprocity at the project level because we want to be able to control for matching between
projects on various dimensions. We also examined reciprocity at the developer level and found that the frequency
and patterns are similar to those reported in the text.

31'While truncation may cause us to underestimate the occurenece of reciprocation somewhat — since Source-
Forge has only been operating since 1999 — the number is so low that we think truncation is very unlikely to
reverse this finding.

21

match on license type, programming language, operating system and intended audience (Table
11).
[TABLE 11 ABOUT HERE]

We find that the only matching that signficantly affects reciprocity is matching on license
type (column 1). Reciprocity is much stronger between projects with the same license — the
implied marginal effect is 0.192, which is a 50 percent increase in the mean probability of reci-
procity. When we include the size of the contributing and receiving projects, the matching
coefficients are nearly identical (column 2). The basic story does not change when we allow for
the matching coefficients to vary with license type (column 3) and with intended audience (col-
umn 4). While the estimated coefficients on the license matching dummies are not statistically
significant individually, they are significant jointly (p — value = .049). It is interesting to note
that the point estimates suggest that matching is a less important determinant of reciprocity
for highly restrictive projects, which is consistent with the raw statistics in Table 10. We do
not reject the joint hypothesis that there is positive (and equal) matching for restrictive and
unrestrictive projects, but no matching for highly restrictive projects.(p — value < .001). Col-
umn (4) presents the estimates under these restrictions. We also find evidence that reciprocity
is stronger when both developers belong to end user projects.

In short, there is strong sorting of projects in terms of reciprocity. It plays a large role for a
very small percentage of projects. But overall, this evidence shows that the reciprocity motive
is not what sustains open source development. This finding does not support the strong claims

about the importance of reciprocity, made first by Raymond (2001) and others since.

6.5. Implications of Developer Sorting Behavior

Our empirical findings show that the choice of license type and other project characteristics
affect the pattern of contributions. For example, more restrictive licences increase contributions
by highly restrictive developers but, at the same time, reduce those of other developer types.
Thus project managers (or sponsors) face tradeoffs in choosing project characteristics. Lerner
and Tirole (2002) emphasize the tradeoff between the number of contributions and proprietary
control in choosing the license type. But our evidence shows that there is also another tradeoff
— with sorting behavior, the license type can affect the number of incoming contributions itself.

To illustrate this, we begin with a simple computation to show how the restrictiveness

22

of the license affects the expected total number of contributions received by a project. Let
A;_,;, denote the change in the expected number of contributions received associated with
a change in license type from [to L. Using the parameter estimates from Table 6, we get
Apgp_r = —1.05, Agr_.yr = —1.27 and Ar__yr = —0.22. At the aggregate level (pooling
different project profiles), these calculations indicate that highly restrictive licenses maximize
the expected number of contributions.?? Of course this does not mean that such licenses are the
preferred choice since they involve more limited ability to appropriate commercial returns from
the project. But the computation shows that the nature of the project license can make a real
difference to the rate of innovation in open source software. Of course, a full analysis of this
impact would require that we take into account the quality, as well as quantity, of contributions
(we are currently doing this in a new research project).

Next, we show how the choice of license affects the number of contributions for projects
with different intended audiences, and compare the predictions on which license maximizes
contributions to the observed frequency of license types. To do this, we re-estimated the model
in Table 6 separately for projects whose intended audience is end users and those aimed at
developers. The results (not reported for brevity) show the same pattern of sorting behavior by
developers on license type, but the responsiveness coefficients differ depending on the intended
audience of the receiving project.>> We use these estimated marginal effects to predict how the
choice of license type affects total contributions for each project type.

For end user projects, we get Agr_.r = —3.92, Ayr_yr = —4.54 and Ar__.yr = —0.62.
For developer tool projects, the computations yield Agr_.r = 0.40, Agr_.yr = 3.44 and
Ar_yr = 3.04. These calculations imply that highly restrictive licenses would maximize the
flow of contributions for end user projects, but that unrestrictive licenses do so for developer
tool projects. To check consistency with the data, we compute the ratio between the actual

frequency and the one predicted by a random (multinomial) distribution. A ratio greater (resp.

32Using nine bi-monthly observations on 71 SourceForge projects (not at the developer level), Fershtman
and Gandal (2007) find that the number of contributed lines of code is larger for projects with less restrictive
licenses. They include both contributions by members and non-members of the project, and they do not consider
the impact of heterogeneity of developers and sorting on contributions, which is the focus of our paper. These
differences, and the fact that they use lines of code rather than the number of contributors, may account for the
difference in findings.

33For end user projects, the results are very similar to those reported in Table 6. For developer oriented projects
we find only weak sorting by anonymous and highly restrictive developers (though always in the direction of more
restrictive licenses), but unrestrictive and mixed developers still strongly sort toward more restrictive licenses.

23

less) than one indicates over-representation (resp. under-representation) of projects with that
license type. For end user projects, the ratio of actual to predicted frequency is 1.49 for HR,
0.36 for R and 0.47 for UR. For developer tool projects the ratios are 0.63 for HR, 1.44 for
R and 1.29 for UR. As predicted, highly restrictive licenses are over-represented for end user

projects, while the opposite holds for developer tools.*

7. Concluding Remarks

This paper studies the role of intrinsic motivation, reputation and reciprocity motives in driving
open source software innovation. The empirical analysis is based on a large scale data set with
detailed information about software code contributions to open source projects and the charac-
teristics of the contributing and receiving projects. We study the pattern of contributions by
four distinct developer groups — highly restrictive, unrestrictive, mixed, and anonymous — and
infer the underlying motivations from the ‘revealed preference’ of developers. The central empir-
ical finding is that developers of different types strongly sort on observed project characteristics
— most notably, the restrictiveness of the license, project size, and corporate sponsorship. The
empirical pattern of sorting behaviour points to an important role for motivated agents, repu-
tation (especially commercial reputation, but also peer recognition), and to a lesser extent the
reciprocity motive, in sustaining open source software innovation.

There are several directions for further research. The first is to develop and estimate an em-
pirical framework that incorportes both the choice of license contract and the resulting sorting
effects — integrating the work in this paper with Lerner and Tirole (2002). A second direction
is to study how sorting affects the performance outcomes of projects — i.e., the quality of inno-
vation. The recently redesigned website for SourceForge provides potentially useful information
to study this link, such as the number of clicks and downloads for each project over time. Such
measures could also be used to control for unobserved heterogeneity at the project level and
thus more sharply identify the causal links underlying the sorting which we document in this
paper. Finally, it would be useful to exploit any available information on changes in project
license and corporate sponsorship to pin down the causal impact of these characteristics on

contributions and innovation outcomes.

34We strongly reject the null hypothesis that contributions by license type are independent of intended audience
(p — value < .001).

24

References

Ackerberg, Daniel and Maristella Botticini (2002), “Endogenous Matching and the Empirical

Determinants of Contract Form,” Journal of Political Economy, 110(3): 564-91

Benabou, Roland and Jean Tirole (2003), “Intrinsic and Extrinsic Motivation,” Review of Eco-

nomics Studies, 70(3): 489-520

Besley , Timothy and Maitreesh Ghatak (2005), “Competition and Incentives with Motivated

Agents,” American Economic Review, 95(3): 616-36

Bruns, Bryan (2001), “Open Sourcing Nanotechnology Research and Development: Issues and

Opportunities,” Nanotechnology (Institute of Physics), 12: 198-210

Delgaauw, Josse and David Perez-Castrillo (2004), “Incentives and Workers’ Motivation in the

Public Sector,” Center for Economic Studies, CESinfo Working Paper 1223

Delfgaauw, Josse and Robert Dur (2008), “Incentives and Workers’ Motivation in the Public

Sector,” Fconomic Journal, 118: 171-91

Delfgaauw, Josse and Robert Dur (2007), “Signalling and Screening of Workers’ Motivation,”

Journal of Economic Behavior and Organization, 62(4): 605-24

Fershtman, Chaim and Neil Gandal (2007), “Open Source Software: Motivation and Restrictive

Licensing,” International Economics and Economic Policy, 4: 209-25

Francois, Patrick (2000), “Public Service Motivation as an Argument for Government Provi-

sion,” Journal of Public Economics, 78(3): 275-99
Frey, Bruno (1997), Not Just for the Money (Cheltenham: Elgar Publishers)

Frey, Bruno and Felix Oberholzer-Gee (1997), “The Cost of Price Incentives: An Empirical

Analysis of Motivation Crowding-Out,” American Economic Review, 87(4): 746-55

25

Glazer, Amihai. (2004), “Motivating Devoted Workers,” International Journal of Industrial

Organization, 22(3): 427-40

Hann, II-Horn, Jeff Roberts, Sandra Slaughter, and Roy Fielding (2004), “An Empirical Analysis
of Economic Returns to Open Source Participation,” Working paper, Carnegie-Mellon Univer-

sity

Haruvy, Ernan, Fang Wu, and Sujoy Chakravarty (2003), “Incentives for Developers’ Contribu-
tions and Product Performance Metrics in Open Source Development: An Empirical Investiga-

tion,” Working paper, University of Texas at Dallas

Hertel, G., M. Krishnan and Sandra Slaughter (2003), “Motivation in Open Source Projects: An

Internet-based Survey of Contributors to the Linux Kernel,” Research Policy, 32(7): 1159-77

Johnson, Justin (2002), “Open Source Software: Private Provision of a Public Good,” Journal

of Economics and Management Strategy, 11: 637-62

Johnson, Justin (2004), “Collaboration, Peer Review and Open Source Software,” Unpublished

working paper, Cornell University

Kreps, David, “Intrinsic Motivation and Extrinsic Incentives,” American Economic Review Pa-

pers and Proceedings, 87(2): 359-64

Lakhani, Karim, and Eric von Hippel (2003), “How Open Source Software Works: ‘Free’ User-
to-User Assistance,” Research Policy, 32: 923-43

Lerner, Josh, and Jean Tirole (2001), “The Open Source Movement: Key Research Questions,”
European Economic Review, 45(4-6): 819-26

Lerner, Josh, and Jean Tirole (2002), “Some Simple Economics of Open Source,” Journal of

Industrial Economics, 52: 197-234

Lerner, Josh and Jean Tirole (2005), “The Economics of Technology Sharing: Open Source and

26

Beyond,” Journal of Economic Perspectives, 19(2): 99-120

Lerner, Josh, and Jean Tirole (2009), “The Scope of Open Source Licensing,” Journal of Law,

Economics, and Organization, 21: 20-56

Maurer, Stephen and Suzanne Scotchmer (2006), “Open Source Software: The New Intellectual
Property Paradigm,”NBER Working Paper 12148

Murdock, Kevin (2002), “Intrinsic Motivation and Optimal Incentive Contracts,” RAND Jour-

nal of Economics, 33(4): 650-71

Prendergast, Canice (2008), “Intrinsic Motivation and Incentives,” American Economic Review,

98(2): 201-05

Raymond, Eric (2001), The Cathedral and the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary (Cambridge: O’Reilly Press)

Trajtenberg, Manuel, Gil Shiff and Ran Melamed (2006), “The ‘Names Game’: Harnessing

Inventors’ Patent Data for Economic Research,” NBER Working Paper 12479

27

TABLE 1

CODE CONTRIBUTIONS AND RECEIVING PROJECT CHARACTERISTICS

Projects #I;Z;ta(i:\l/qu Mean Std. Dev. 50" go™
LICENSE TYPE
Highly Restrictive 2,143 28,100 13.1 74.5 3 21
Restrictive 613 14,636 23.9 211.7 4 29
Unrestrictive 601 12,455 20.7 151.3 3 33
INTENDED AUDIENCE
Developers 894 16,050 18.0 175.0 3 26
End-users/Desktop 606 9,635 15.9 123.4 3 20
Other 1,857 29,506 15.9 94.4 3 26
OF MEMBERS
Total 3,357 55,191 16.4 125.8 3 25
1 1,008 4,857 4.8 11.5 2 10
2-5 1487 11,514 7.7 16.5 3 17
6-10 502 10,258 20.4 43.6 6 52
11-50 337 21,821 64.8 3294 9 106
Above 50 23 6,741 293.1 749.6 29 682
OPERATING SYSTEM
Microsoft 225 3,555 15.8 69.7 2 16
OS Independent 989 12,956 13.1 42.9 3 24
POSIX 1,062 9,983 9.4 24.6 3 19
Multiple 1,081 28,647 26.5 213.9 3 35
PROGRAMMING LANGUAGE
Total 3,357 55,191 16.4 125.8 3 25
Object Oriented 1,185 19,644 16.6 154.2 3 25
Imperative 1,138 20,609 18.1 141.2 3 25
Scriptive 449 7,184 16.0 47.9 3 30
Dynamic 463 5,276 11.4 34.2 3 24
Other 122 2,478 20.3 77.5 3 26

Notes: This table reports the number of contributions (patches) received by projects with
different characteristics. The sample includes only projects that receive at least one contribution
from developers that are not members of the receiving project. The project license defines the
extent to which the developed code can be used for commercial purposes. Number of members
is the number of developers who are closely affiliated with the project. Intended audience is the
user group to whom the project is targeted. Operating system is the platform on which the
program runs.

TABLE 2

CODE CONTRIBUTIONS AND CONTRIBUTING PROJECT CHARACTERISTICS

Projects ZEbar;?tr;gz Mean Std. Dev. 50" go™
LICENSE TYPE
Highly Restrictive 4,368 16,218 3.7 7.5 2 8
Restrictive 1,162 6,914 6.0 22.3 2 10
Unrestrictive 1,261 6,474 5.1 9.4 2 12
INTENDED AUDIENCE
Developers 1,826 8,491 54 18.5 2 11
End-users/Desktop 1,285 5,036 4.0 7.2 2 9
Other 3680 13,929 4.0 8.2 2 8
OF MEMBERS
Total 6,791 29,606 4.4 11.7 2 9
1 2,436 7,870 3.2 7.4 1 6
2-5 2,890 10,742 3.7 7.5 2 8
6-10 808 4,213 5.2 9.2 2 12
11-50 616 5,647 9.2 27.9 3 18
Above 50 41 1,134 27.7 37.0 12 88
OPERATING SYSTEM
Microsoft 479 2,009 4.2 11.3 1 8
OS Independent 2,092 8,625 4.1 111 2 8
POSIX 2,097 7,384 3.5 5.8 2 8
Multiple 2,123 11,588 55 16.1 2 11
PROGRAMMING LANGUAGE
Total 6,791 29,606 4.4 11.7 2 9
Object Oriented 2,604 11,829 4.5 15.7 2 8
Imperative 1,992 8,527 4.3 7.8 2 10
Scriptive 787 2,804 3.6 6.3 2 7
Dynamic 1,098 5,330 4.9 11.0 2 11
Other 310 1,116 3.6 6.1 2 7

Notes: This table reports the number of patches contributed by projects with different
characteristics. The sample includes only projects that make at least one contribution. We
exclude contributions by developers who are members of the receiving project. For definitions of
other variables, see notes to Table 1.

TABLE 3
CODE CONTRIBUTIONS BY DEVELOPER TYPE

Patches

#Developers o Mean Std. Dev. 50" go™
All listed developers: 113,191 81,267 0.72 8.6 0 1
Anonymous developers: 5,699
Origin of contribution:
External Contributors: 13,060 53,194 4.1 51.0 1 6
Internal Contributions: 2,839 33,772 11.9 41.8 3 21
DEVELOPER TYPE
Highly Restrictive 2,178 8,604 4.0 9.3 2 8
Mixed 2,501 19,446 7.8 21.8 3 15
Unrestrictive 524 1,991 3.8 6.7 2 8
Non-Members 7,856 17,454 2.2 5.2 1 4

Notes: This table reports the distribution of code contributions by developers of different types. We
exclude contributions by developers who are members of the receiving project. Developer types are as
follows: Anonymous — developers who do not reveal their identity when making code contributions;
Highly-restrictive — developers who are only members of projects with highly restrictive licenses;
Unrestrictive — developers who are only members of projects with unrestrictive licenses; Mixed -
developer who are members of both highly-restrictive and unrestrictive projects; Non-members —
developers who not belong to any project, but whose identity is known.

TABLE 4

DISRIBUTION OF CODE CONTRIBUTIONS BY DEVELOPER TYPE AND RECEIVING

PROJECT CHARACTERISTICS, %

Contributing developers

Highly

Anonymous Restrictive Unrestrictive Mixed Non-members
Receiveing projects
LICENSE TYPE
Highly Restrictive 60.7 66.8 26.9 41.2 57.6
Restrictive 21.5 21.0 23.2 28.3 23.1
Unrestrictive 17.8 12.3 49.9 30.5 19.3
INTENDED AUDIENCE
Developers 26.2 254 34.7 36.0 36.0
End users/Desktop 18.6 27.5 8.9 13.0 20.3
Other 55.2 47.1 56.4 51.0 83.8
OF MEMBERS
1 10.8 10.2 9.6 9.8 9.8
2-5 259 22.8 18.7 38.5 38.5
6-10 221 17.8 17.1 21.8 21.8
11 -50 34.2 40.2 30.7 16.2 16.2
Above 50 7.0 9.0 23.9 13.6 13.6

Notes: This table reports the pattern of code contributions by different developers groups to projects with
different characteristics. We exclude contributions by developers who are members of the receiving
project. For definitions of other variables, see notes to Table 1.

DEVELOPER TYPES AND THE LICENSE OF THE RECEIVING PROJECT

Table 5

DEPENDENT VARIABLE: # OF CONTRIBUTIONS (4,770 OBSERVATIONS)

Developer type

1)) ®) (4)
Receiving project license L .
type Anonymous Highly restrictive Unrestrictive Mixed
(@) |Highly restrictive -1.07** - -3.08** 1.32**
(0.244) (0.157) (0.436)
(b) [Restrictive -1.44%* -0.858** -2.29%* 1.84**
(0.216) (0.136) (0.149) (0.579)
(c) [|Unrestrictive -1.62** -1.38** -2.22%* 1.67**
(0.192) (0.135) (0.144) (0.562)
(c) |log(# of members) 1.95%* 1.69** 2.53** 1.26**
(0.197) (0.180) (0.267) (0.150)
Average # contributions 3.21 4.06 0.946 6.27
Hypotheses tests:
(@)=(c) X?=18.33** X?=56.52** X?=19.04** X?=1.13
(@)=(b)=(c) X?=22.25%* X?=69.42** X?=26.42%% X*=3.93

Notes: This table reports the estimated marginal effects (evaluated at the mean) of the

interaction terms between the contributing developer type and both the license type and
number of members of the receiving project. The regression also includes complete sets

linear dummies for receiving project year of registration, intended audience, operating
system and programming language. We also include a linear control for the number of
projects in the cell.

The model is estimated by Poisson QMLE. Estimated standard errors are in parentheses.

* denotes statistical significance at the 5% level, and ** at the 1% level.

of

Table 6

DEVELOPER TYPES AND THE LICENSE OF THE RECEIVING PROJECT,
ADDING INTENDED AUDIENCE INTERACTIONS

DEPENDENT VARIABLE: # OF CONTRIBUTIONS (4,770 OBSERVATIONS)

Developer type

@) 2 ®) (4)
Receiving projects Anonymous Highly restrictive Unrestrictive Mixed
(@) [Highly restrictive -0.259 - -3.562** 1.19%*
(0.924) (0.489) (0.174)
(b) [Restrictive -0.689 -0.627** -2.71%* 0.389
(0.769) (0.147) (0.272) (1.516)
() [|Unrestrictive -0.954 -1.16** -2.60** 0.852
(0.662) (0.145) (0.239) (1.689)
(c) |log(# of members) 1.91** 1.57** 2.62** 0.054
(0.189) (0.176) (0.272) (0.306)
(d) [Developers 14.56** 12.73** 20.19** 4.17**
(3.51) (3.08) (5.16) (0.699)
(e) |End user/Desktop 20.07** 18.55** 14.91** 2.99**
(4.70) (4.28) (4.61) (0.613)
Average # contributions 3.21 4.06 0.946 6.27
Hypotheses tests:
(@)=(c) X?=12.06** X?=38.19%* XP=7.62%% X2=0.07
(@)=(b)=(c) X*=13.96** X?=42.30%* X?=9.96%* X?=0.74
(d)=(e) X?=105.22%* X?=104.77%* X?=88.64** X2=96.30%*

Notes: This table reports the estimated marginal effects (evaluated at the mean) on the
interaction terms between the contributing developer type and the license type, number of
members, and two intended audience categories (developer tools and end-users) of the
receiving project. The regression includes complete sets of linear dummies for receiving
project year of registration, intended audience, operating system and programming

language. We also include a linear control for the number of projects in the cell.

The model is estimated by Poisson QMLE. Estimated standard errors are in parentheses.
* denotes statistical significance at the 5% level, and ** at the 1% level.

Table 7
DEVELOPER TYPES AND THE LICENSE OF THE RECEIVING
PROJECT, ADDING CONTRIBUTING PROJECT
CHARACTERISTICS

DEPENDENT VARIABLE: # OF CONTRIBUTIONS (32,710
OBSERVATIONS)

Contributing

@) 2 ®)
Receiving Highly restrictive| Unrestrictive Mixed
(@) [Highly restrictive - -0.368** 0.208**
(0.015) (0.035)
(b) [Restrictive -0.087** -0.265** 0.163**
(0.009) (0.013) (0.038)
() [|Unrestrictive -0.145** -0.238** 0.242**
(0.009) (0.014) (0.044)
(c) |log(# of members) 0.274** 0.323** 0.219**
(0.015) (0.021) (0.016)
Average # contributions 0.499 0.732 0.122
Hypotheses tests:
(@)=(c) X?=153.9** X2=111.9%* X=56.4%*
(@)=(b)=(c) X?=167.2** X?=115.6** X?=82.9%*

Notes: This table reports the estimated marginal effects (evaluated at the
mean) on the interaction terms between the contributing developer type and
the license type, number of members, and two intended audience categories
(developer tools and end users) of the receiving project. The regression
includes complete sets of linear dummies for receiving project year of
registration, intended audience, operating system and programming
language, and a complete set of linear dummies for the contributing project
intended audience and programming language. We also include a linear
control for the number of projects in the cell.

The model is estimated by Poisson QMLE. Estimated standard errors are in
parentheses. * denotes statistical significance at the 5% level, and ** at the
1% level.

DEVELOPER TYPES AND PUBLIC RESOLUTION

Table 8

DEPENDENT VARIABLE: # OF CONTRIBUTIONS (3,265 OBSERVATIONS)

Developer type

@) 2 ®) (4)
Receiving projects Anonymous | Highly restrictive| Unrestrictive Mixed
(@) |Highly restrictive -1.121** - -4.135** 1.999**
(0.439) (0.240) (0.742)
(b) [Restrictive -1.758** -1.019** -3.235%* 1.892**
(0.364) (0.231) (0.203) (0.844)
(c) |Unrestrictive -1.527** -1.421%* -2.508** 2.884**
(0.391) (0.246) (0.289) (0.999)
(d) [log(# of members) 1.810** 1.552** 2.149** 1.199**
(0.202) (0.191) (0.295) (0.158)
© Z‘;;Tl:':?:):‘or public 0.909%* 1.048%* 2.771%* 1.047%
(0.396) (0.372) (0.994) (0.308)
Average # contributions 4.016 4.860 1.387 7.698
Hypotheses tests:
(@)=(c) X?=3.04 X?=20.30%* X?=51.25** X?=2.50
(@)=(b)=(c) X?=10.44** X2=27.31%* X?=53.30%* X*=3.58

Notes: This table reports the estimated marginal effects (evaluated at the mean) of the
interaction terms between the contributing developer type and the license type, number of
members of the receiving project and a dummy for whether the receiving project publicly
reports the outcome of code contributions. The public resolution dummy takes a value of
one for projects that report resolution for at least fifty percent of the contributions they
receive. We drop contributions for which a decision has not been made as of the data
extraction date. The regression includes complete sets of linear dummies for receiving
project year of registration, intended audience, and operating system. We also include a
linear control for the number of projects in the cell.

Table 9

CORPORATE SPONSORSHIP

DEPENDENT VARIABLE: # OF CONTRIBUTIONS (728 OBSERVATIONS)

Developer type

1)) ®) (4)
Receiving project license L .
type Anonymous Highly restrictive Unrestrictive Mixed
(@) |Highly restrictive -8.046* - -14.769** -6.287*
(3.530) (2.062) (3.233)
(b) [Restrictive -10.648** -7.606** -13.214** -9.288**
(2.312) (1.612) (1.685) (2.217)
(c) [Unrestrictive -9.999** -8.006** -10.774** -2.550
(2.234) (1.678) (1.964) (4.535)
(d) |Pummy for corporate 4.390 -0.522 19.211* 4.384
sponsorship
(4.893) (2.794) (9.582) (2.643)
Average # contributions 12.61 24.5 7.33 47.66
Hypotheses tests:
(@)=(c) x?=2.31 X?=9.37%* X*=2.67 X?=4.97*
(@)=(b)=(c) X*=4.62 X?=15.66** x?=5.32 X?=27.38%*

Notes: This table reports the estimated marginal effects (evaluated at the mean) of the
interaction terms between the contributing developer type and the license type, number of
members of the receiving project and a dummy for whether the receiving project is
corporate-sponsored. The sample used for this regression is based on a sample of 222
projects in SourceForge, based on an email survey we sent to 500 of the larger projects to
determine whether they were corporate-sponsored. The regression includes complete sets of
linear dummies for receiving project year of registration, intended audience, and operating
system. We also include a linear control for the number of projects in the cell.

The model is estimated by Poisson QMLE. Estimated standard errors are in parentheses.
* denotes statistical significance at the 5% level, and ** at the 1% level.

Table 10
PATTERN OF RECIPROCITY

Receiving license : Total patches Total patches % outward patch % inward patch
. # of projects : . : ; . .
type: received contributed reciprocity reciprocity
All 83 11,442 2,703 26.97 5.22
Highly Restrictive 29 3,434 426 27.23 3.17
Restrictive 19 3,806 1,120 13.57 1.42
Unrestrictive 35 4,202 1,157 39.84 10.33

Notes: This table reports the pattern of reciprocity of contributions for projects with different license types. Outward reciprocity is
defined as the percentage of all the contributions made by project i which go to projects that previously contributed to project i.
Inward reciprocity is the percentage of all contributions received by project i that come from projects to which project i had

contributed previously.

DETERMINANTS OF RECIPROCITY

Table 11

DEPENDENT VARIABLE: DUMMY FOR RECIPROCITY (1,964 OBSERVATIONS)

1 2 3 4 (5)
Dummy for matching on 0.192** 0.183** 0.180**
license type (0.070) (0.067) (0.067)
Dummy for matching on 0.057 0.050 0.057 0.060
intended audience (0.059) (0.053) (0.053) (0.054)
Dummy for matching on -0.046 -0.029 -0.028 -0.026 -0.044
programming language (0.055) (0.047) (0.048) (0.048) (0.045)
Dummy for matching on 0.032 0.011 0.007 0.008 -0.001
operating systems (0.054) (0.058) (0.059) (0.059) (0.058)
Rceieving size 0.004** 0.004** 0.004** 0.004**
(0.002) (0.002) (0.002) (0.001)
Contributing size 0.003 0.003 0.003 0.003
(0.002) (0.002) (0.002) (0.002)
Dummy for matching on 0.076
Highly restrictive (0.131)
Dummy for matching on 0.261
Restrictive (0.177)
Dummy for matching on 0.234
Unrestrictive (0.162)
Dummy for matching on 0.253**
Restrictive or Unrestrictive (0.098)
Dummy for matching on 0.152
Developers (0.189)
Dummy for matching on End 0.634*
User (0.057)
Dummy for matching on -0.126
Multiple (0.155)
Average reciprocity: 0.371 0.371 0.371 0.371 0.371
R’ 0.036 0.109 0.110 0.110 0.118

Notes: This table reports estimates from (Probit) regressions for whether a code contribution is
reciprocal. The dummy equals one if the contribution is reciprocal and zero otherwise. A patch
from project i to project j made in year t is defined as reciprocal if project i received a
contribution from j prior to year t. The dummy variable for matching on license type takes the
value one if the contributing and receiving projects have the same license. Other matching
dummies are defined similarly. All regressions also include complete sets of dummies for
receiving license type, intended audience, programming language and operating systems.

Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial
correlation through clustering by receiving projects. * denotes statistical significance at the 5%
level, and ** at the 1% level.

TABLE Al

CLASSIFICATION OF LICENSE TYPES
License Name Highly Restrictive Restrictive Unrestrictive # of projects

Academic Free License X 240
Apache License X 1,451
Apple Public Source License X 50
Artistic License X 1,175
Attribution Assurance License X 25
BSD License X 4,550
Common Development and Distribution License X 22
Common Public License X 512
CUA Office Public License Version 1.0 X 2
Eclipse Public License X 78
Educational Community License X 8
Eiffel Forum License X 23
Fair License X 9
GNU General Public License 42,234
GNU Library or Lesser General Public License X 7,208
Historical Permission Notice and Disclaimer X 13
IBM Public License X 77
Intel Open Source License X 20
Jabber Open Source License X 38
MIT License X 1,156
MITRE Collaborative Virtual Workspace License X 2
Motosoto License X 1
Mozilla Public License X 974
Nethack General Public License X 31
Nokia Open Source License X 8
Open Group Test Suite License X 16
Open Software License X 275
PHP License X 144
Python License X 268
Qt Public License X 211
Reciprocal Public License X 19
Ricoh Source Code Public License X 8
Sleepycat License X 16
Sun Industry Standards Source License X 41
Sun Public License X 49
University of lllinois/NCSA Open Source License X 35
Vovida Software License 1.0 X 4
W3C License X 34
wxWindows Library Licence X 50
X.Net License X 7
zlib/libpng License X 323
Zope Public License X 27
Public Domain 1,525

TABLE A.2

PANEL A: MOST ACTIVE CONTRIBUTING PROJECTS

Name Topic License License Type Age # Developers # Patches received # Patches Contributed
Python Interpreters Python Unrestrictive 6 63 9,483 1,515
WinMerge Version Control GNU GPL Highly Restrictive 6 10 1,884 1,066
wxWidgets Frameworks wxWindows Library Restrictive 6 27 5,126 538
Tcl Interpreters BSD Unrestrictive 6 46 2,110 523
Tk Toolkit Desktop Environment BSD Unrestrictive 6 42 795 507
SpamBayes Filters Python Software Unrestrictive 6 25 160 490
BZFlag Simulation GNU Lesser GPL Restrictive 6 62 976 406
ht2html Site Management Python Unrestrictive 6 8 15 399
ScummVM Games/Entertainment GNU GPL Highly Restrictive 5 35 1,010 373
wxCode Software Development wxWindows Library Restrictive 6 22 7 361

PANEL B: MOST ACTIVE RECEIVING PROJECTS

Name Topic License License Type Age # Developers # Patches received # Patches Contributed
Python Interpreters Python Unrestrictive 6 63 9,483 1,515
wxWidgets Frameworks wxWindows Library Restrictive 6 27 5,126 538
Gaim Internet Relay Chat GNU GPL Highly Restrictive 7 14 3,718 318
Tcl Interpreters BSD Unrestrictive 6 46 2,110 523
WinMerge Version Control GNU GPL Highly Restrictive 6 10 1,884 1,066
ScummVM Games/Entertainment GNU GPL Highly Restrictive 5 35 1,010 373
BZFlag Simulation GNU Lesser GPL Restrictive 6 62 976 406
OpenTTD Simulation GNU GPL Highly Restrictive 2 11 874 182
net-snmp Internet BSD Unrestrictive 6 15 870 178
SCons Build Tools MIT Unrestrictive 5 15 838 192

