

Skills and Openness of OSS Projects: implications for performance

Paola Giuri*, Matteo Ploner*, Francesco Rullani*, Salvatore Torrisi*°

* Laboratory of Economics and Management
Sant’Anna School of Advanced Studies

P.zza Martiri della Libertà, 33, 56127 Pisa, Italy
Tel. ++39-050-883359, Fax ++39-050-883344

e-mail: giuri@sssup.it, ploner@sssup.it, rullani@sssup.it

° Corresponding author: Dept. of Law and Political Sciences, Università di Camerino
Palazzo Ducale, Piazza Cavour 19 62032 Camerino (MC), Italy

Tel. ++39-0737-403070, Fax ++39-0737-403011
e-mail: svtorrisi@libero.it, salvatore.torrisi@unicam.it

DRAFT: October 2004

Abstract
This paper is about open source software projects’ activity and the characteristics of different categories
of contributors. Our empirical analysis draws on a very large sample of OSS projects registered at the
Sourceforge website. For each project we have information about individual contributors such as skills,
roles, and tasks assigned. Key variables at the project level are the number of project members or internal
contributors (i.e., people who have subscribed to the project), the number of external contributors
(project openness), the overall skill combination of contributors, the number of different intended
audiences (e.g., developers and end users), and various measures of activity (e.g., number of file releases,
bugs and patches closed over time).
We conduct a multinomial logit analysis to see whether skills’ level, experience and variety of project
members predict their role played in the project (e.g., developer or project manager). We then carry out
an econometric analysis to estimate the contribution of skills and openness to projects’ survival and
activity.

 1

1. Introduction

This paper is about skills and roles played by members of open source software (OSS) projects.

We also investigate the importance of internal contributors (members) and external contributors

for the performance of the projects (survival and level of activity).

Most theoretical works on OSS try to understand the motivations for disclosure of the source

code, the social norms and the patterns of collaboration among distributed developers, and the

implications for dynamic efficiency and social welfare (e.g., Lerner and Tirole 2002b; von Hippel

2001; Dalle and Jullien 2001; Dalle and David 2003).

Several empirical technical papers ask how OSS performs compared with proprietary software in

terms of quality, time of response to problems encountered by users, stability or security (e.g.,

Wheeler 2002).

Most of the empirical analysis focuses on one or few OSS projects with the aim of testing

hypotheses drawn from the software engineering, economics or management literature.

The contribution of this paper to the economics and management literature is twofold. First, we

provide an empirical investigation of individuals and project characteristics based on a large

sample of OSS projects. To our knowledge, this is the first attempt at providing a wide empirical

overview of some fundamental characteristics concerning individual contributors and projects

like skills, roles, project activity by internal members and outside contributors. Second, unlike

many earlier works this paper does not try to compare OSS software with proprietary software.

Instead, we compare different OSS projects to understand: a) skills, experience, and roles of

contributors; b) the distribution of projects by size and contributors characteristics (skills and

roles); c) the determinants of survival and activity (bugs fixed, patches etc.) of the projects.

2. Theoretical background

An increasing number of papers in the economics and management literature have analyzed the

fundamental characteristics of the OSS organization and the motivations of participants (see, for

 2

instance, von Hippel 2001; Lahkani and von Hippel 2000; Lerner and Tirole 2002b).

A vast body of works have been produced by lead software developers or scholars who are

strong supporters of OSS (See Di Bona et al. 1999, for a collection of contributions). This

stream of the literature tries to demonstrate the superior performance of OSS vs. proprietary

software. The most popular example of these studies is the “The Cathedral and the Bazaar” by

Eric Raymond. He draws on the case of Linux to show the strengths of the OSS development

paradigm (the “Bazaar”) compared to the traditional software engineering approach (the

“Cathedral”). A key characteristic of the Linux development process - as described by Raymond

- is the role played by various contributors (developers and users). The Linux community

members (both users and developers) can download the source code, make modifications

(further development of lines of code, debugging, etc.) and post it to the responsible of the

project (i.e., Linus Torvalds). The project leader, along with core developers, examines the

proposed modifications and releases a new version of the program to the community. The

product evolves rapidly thanks to the continuous feedbacks and improvements from different

users and developers.

The active participation of users is not a novelty if compared to the Unix community’s tradition

for which the free exchange of code was a diffused practice. However, as argued by Raymond,

the distinctive feature of the Linux process is that new releases including modifications, fixed

bugs and improvements are distributed quite rapidly, and it is often the case that new releases

still contain bugs (“release early, release often”). This practice, which provides strong incentives

to the community members, is common to other OSS projects. Raymond compares the

development process of Linux (and OSS in general) to the traditional software engineering

process, characterised by a rigid hierarchical organisation in which each group of tasks is

associated to a team of developers.

He argues that the OSS development process is more efficient than the traditional one, and

yields a higher level of product quality. He also argues that open source developers are self-

 3

selected, so that only the most talented people participate in the process. Furthermore, according

to Raymond, OSS developers are free to express their creativity and are highly motivated by fun,

while developers working in traditional groups perform their task mainly because of economic

incentives. Finally, the intense activity of debugging makes software more reliable and its pace of

evolution more rapid (the essence of what Raymond calls the ‘Linux’s law’ is that “given enough

eyeballs, all bugs are shallow”, Raymond 1999). A critical assessment of the comparative

performance of OSS as discussed by Raymond and other OSS advocates is beyond the scope of

this work. However, it is worth to recall that some of these scholars have recognized that OSS

has important weaknesses. For example, the lack of an explicit design can imply that the project’s

quality is limited and constrain the long term performance of open source products (see Giuri et

al. 2002, for a survey).

In the following part of this section we focus on some issues about OSS that are relevant to the

purposes of our empirical analysis.

The distribution of developers and skills across projects. As mentioned before, OSS is

viewed by many observers as a radically new development model (the Bazaar), based on a large

community that share values (generalized reciprocity and meritocracy), conduct rules and

institutions (such as priority, peer review principles, and the refuse of formal development

methodologies and management systems). These social norms and institutions conform to the

concepts of self-organization and gift economy rather than the principles of engineering and

market economy (e.g., Raymond 1999 and 2001; Di Bona et al. 1999).

As a matter of fact, an increasingly large number of programmers offer their voluntary

contribution to several OSS projects. However, several studies show that a large number of

projects are participated by a small number of active, highly committed programmers who

contribute to only one or few projects. With few exceptions, the literature focuses on specific

OSS projects, especially large ones. For instance, Koch and Schneider (2002) have analyzed the

CVS (concurrent versions system) of the GNOME project (an OSS project dedicated to a

 4

desktop environment for users and an application framework for developers) and found that

only a small number of programmers work together on the same file. The number of co-

developers increases with the size of the file and more active programmers work more for large

files compared with less active programmers. Similarly, Mockus et al. (2000) found that in the

case of the Apache server project the top 15 developers contributed more than 83% of changes

to Apache source code during the period 1995-19991. Moreover, only 25 developers submitted

changes on a regular basis. Mockus et al. (2000) also show that a wider community of

contributors participated in bug reporting and repairing.

In the same research line, Ghosh and David (2003) have analyzed three Linux kernel versions

and found that that a large proportion of modules have been developed by less than five

developers while a significant number of modules have only one developer. They also found that

over 70% of authors contribute to only one or two projects or packages (large, self-contained,

integrated modules). However, they also found that the vast majority of developers have

contributed to modules with a large number of co-developers and virtually all developers have at

least a co-developer. As Gosh and David argue, the fact that most developers contribute to only

one project suggests that developers tend to join large projects, with large numbers of

developers. Reputation effects or social group agglomeration processes may explain this pattern

of collaboration among developers. Even if they do not mention possible scale effects, one

might also ask whether productivity increases with the number of participants.

It is unclear whether these results are specific to large, successful projects. What do we know

about the majority of smaller OSS projects? Krishnamurthy (2002) has analyzed the top 100

mature projects in Sourceforge and found that the median number of co-developers was only 4.

Moreover, the vast majority of these projects have generated a small number of messages in their

1 Modification requests are changes submitted to the Apache CVS archive. This archive makes it possible to identify
the developers who submitted the change (or patch), the files involved, the number of lines of code added or
deleted, and a description of the change (Mockus et al. 2000: 3). Changes associated to problems (bugs) can be
distinguished from changes concerning new features added to the code. Modification requests and problem reports
are measures of development of new functionality and maintenance of existing features.

 5

forums and about one third of them had no messages at all. According to Krishnamurthy these

data suggest that the development stage of OSS products does not conform to the Bazaar model.

Instead, according to Krishnamurthy, these projects are in line with the ‘cave’ (lone producers)

model. If we consider that less than 2% of all Sourceforge projects reached the maturity stage in

2004, 18 % reached the production/stable stage and a large share (22 %) were still in their

planning stage, the data collected by Krishnamurthy suggest that the majority of OSS are small

and generate only limited informal exchange among users.

The evidence discussed before suggests that a strong selection of projects takes place in the OSS

community, with many small projects remaining isolated from the rest of the community and

never reaching the maturity stage. In a world characterized by network externalities and strong

social ties among participants this strong selection is not surprising. A typical outcome of

selection under these conditions is that few successful projects attract the majority of good

developers and discussion while the majority of projects below a given threshold are

marginalized from the main information and knowledge exchange network. For instance, Linux

has become the indisputable leader among the OSS operating systems like the BSD Unix. It has

then attracted development resources and users away from alternative systems. This ‘winner-

takes-all’ outcome indicates the strength of network externalities. Another factor that drives the

selection mechanism is represented by the signaling incentives of programmers. Similar to the

academic world, were popular research agenda attract many researchers and provides a large

audience, good programmers prefer large, successful projects because these offer a larger

audience and higher reputation opportunities (Lerner and Tirole 2002a, Dalle and David 2003).

The division of labor at the project level. The romantic view of OSS as a large community of

skilled users freely contributing to a process of collective invention appears to be somewhat in

contrast with the evidence of a quite well defined division of labor between groups of ‘core

developers’ who control the evolution of the base code and a wider ‘periphery’ of contributors

who provide feedbacks that are critical for product quality improvement. For instance, in the

 6

case of the Apache HTTP Server Project, the ‘core’ corresponds approximately to the Apache

Group, the organization responsible for the management of the Project. The maintainers of this

project (about 15 people) are primarily devoted to developing or reviewing new functionalities to

the base code and, to a lesser extent, to fixing defects. The division of labor among core

developers is blurred. All of them contribute code to various modules. Moreover, the role of

release manager (a quite time-consuming and critical task) is rotated among them (Mockus et al.

2000). The periphery of less active contributors is made of non core developers (about 250

people during the time window of Mockus et al.’s analysis) which, relative to core developers, is

more active in bugs or problem-related changes (patches). The most external part of the Apache

server’s periphery is made of a wider community of over 3,000 users who only report bugs.

This apparently complex organization relies on two important infrastructures: modular design

and the use of Internet. Internet (email, newsgroups, forums etc.) reduces transaction and

communication costs among developers and therefore provides a fundamental infrastructure for

distributed development across space and over time.

Product modularity reduces the systemic interdependencies between different files of the same

product and therefore allows a higher level of task partitioning and a lower level of explicit

coordination and interaction among programmers. In large projects like Linux kernel or Apache

server, a significant level of modularity is achieved thanks to a clear division of labor between the

core product architecture and more ‘external’ features that are ‘located in modules that can be

selectively compiled and configured’ (Mockus et al. 2000: 4). In the case of Apache, new

developers try to avoid duplication of efforts by focusing on task that the ‘code owner’ is not

working at (Mockus et al. ibid.). Even in these large projects, however, it is difficult to proceed

with a sharp division of tasks among teams or individual developers because participants are

volunteers distributed across space and over time. Developers then contribute their work to a

project or a specific task according to their preferences and time (generally they have a job and

contribute to OSS in their free time) (Elliot and Scacchi 2003). Moreover, the evolution of

 7

specific tasks/modules cannot be easily predicted since new features and problems are

discovered during the process (Kaisla 2001). According to some scholars, then, there is no

formal organization in OSS projects and participants self-organize without the use of timelines

or roadmaps. Personal motivation, shared beliefs and values tie these virtual organization

together (Elliot and Scacchi 2003).

As Lerner and Tirole (2002a) pointed out, the leader has to carry out some critical tasks : a) to

provide a ‘vision’ that is provided through a critical mass of code that demonstrates her expertise

and credibility; b) to attract new programmers by posing challenging issues and, at the same time,

leaving to potential contributors significant opportunities for future improvements to the initial

code; c) to ensure an efficient division of the project into modules and to allow contributors to

perform their tasks independently from the rest of the contributors; d) to avoid that conflicting

views and approaches among participants lead to dropouts and forking (p. 21).

Leadership can rely on important technologies like the Internet and concurrent versions systems

(CVS), which represents an important instrument for the coordination of different contributors.

But cultural norms and organizational technology are also critical to keep the level of duplication

and conflict under control, therefore supporting the task of leaders or project maintainers.

Organization theory suggests a rich menu of organizational structures that fit different levels of

complexity in the division of tasks (Minzberg, 1979). As mentioned before, modular design and

standard interfaces represent an important organizational technology adopted in the OSS

environment. Formal organization of authority is also adopted in the largest projects like Linux,

where Linus Torvald has the last word for any change to the source code that is officially

released. By the same token, the Apache Group relies on a formal voting system for approval of

changes to the source code.

Even if success and large size put a strong pressure on project managers and call for formal

organization, according to some observers, even large projects still rely on ‘low-level

coordination’ mechanisms (e.g., CVS, bugs tracking systems and mailing lists) while they lack

 8

higher-level coordination such as group decision making, knowledge management and task

scheduling (Cubranic and Booth 1999).

Project performance. A rising number of studies have tried to assess the performance of OSS

projects, especially in comparison with proprietary software. For instance, Kuan (2001) has

analyzed the rate of bugs resolution in three OSS projects – Apache, FreeBSD and Gnome. The

rate of bug resolution is used as a proxy for product improvement or quality. The quality

outcomes of these three products are compared with those of equivalent proprietary software

with results suggesting a high relative performance of OSS vs. proprietary software. These results

may be explained by the fact that users of OSS have access to the source code and therefore they

are not purely bug reporters. As such, they can conduct a deeper analysis of the problems and,

on some occasions, fix the bugs by themselves and submit the patches to the project maintainers

(Hecker 1999).

Similarly, Mockus el al. (2000) have studied different measures of quality for the Apache Server

such as defect density (defects per thousand lines of code added) and response time to problems

reported by users. This study also shows that Apache software performs relatively well compared

with proprietary software.

These results suggest that a strong core of developers is necessary but not sufficient for the

success of OSS projects. Highly skilled core developers may lead to many new functionalities.

However, if a wider set of peripheral contributors does not join the core developers, the project

cannot survive because it will lack the resource needed to find and repair bugs (Mockus et al.

2000). This is a relevant issue because, as mentioned before, only few projects reach the maturity

stage and very few are integrated into OSS packages that are distributed through traditional retail

channels.

Other studies suggest other indicators of performance such as the ‘popularity score’ (an index

based on a combination of record hits, URL hits and subscriptions) and the ‘vitality score’

(calculated from the announcements of official releases) (www.FreshMeat.net).

 9

More recently, a few studies have started to explore more conventional economic indicators of

performance like the contributor productivity measured with source lines of code per

contributor (developer). For instance, Fershtman and Gandal (2004) have analyzed a sample of

71 OSS projects hosted at the SourceForge website between 2002 and 2003 and found that

productivity is lower for projects with more restrictive licenses such as the GPL.

From an economics and managerial perspective it is important to understand what are the

project characteristics that help to attract the interest of outsiders, i.e. skilled users that have not

participated in the foundation of the project but are interested to contribute by pointing out

problems and participating to the discussion about the evolution of the product.

A potentially important characteristic is related to the capabilities of core developers (technical,

communication or people skills). Good core developers are more likely to attract new users

because their software addresses relevant problems that are not met by commercial products or

because it raises technical puzzles that are challenging to the community of developers. In the

strategic management literature the capabilities and skills of the founding or core team are

considered as a key determinant for the success of new ventures. Well balanced founding teams

(or highly skilled single founders) are able to attract financial resources, customers and

collaborators (see, for instance, Bhidé 2000; Baron and Hannah 2002) and are more likely to

enter new ventures (Lazear 2002). The OSS world in this respect is not very different from the

traditional entrepreneurial sector, where new ventures have to overcome the ‘liability of newness’

and must convince potential stakeholders to pour their resources to support new ideas. The

different performance across projects then can be predicted by the different human capital

endowment. 2

The share of external contributors and the variety of intended audience may also impact on the

performance of a project. In theory, projects that have diversified intended audiences can

 10

leverage their innovations on a wider potential user community and therefore have more

feedbacks that help the product to evolve over time.

2.2. Hypotheses

Drawing on the earlier discussion of the characteristics and performance of OSS development

we submit the following hypotheses that will be tested in subsequent sections.

Hypothesis 1. The division of labor at the project level leads to the emergence of leaders which

have skill profiles different from those of other contributors such as pure developers and

users.

Hypothesis 2. OSS projects with a high level of different skills generate more new

functionalities (new patches and new features) and have a higher likelihood of survival

compared with other projects.

Hypothesis 3. Project performance (survival and activity) is also determined by the ability to

attract users beyond the set of core contributors. External contributors represent a

fundamental resource to improve the quality of the base code.

3. Methods

3.1. Sample

We use a unique dataset containing information on projects and users of the Sourceforge.net

website (SF.net) from November 3rd 1999 to January 10th 2003. SF.net is the world largest

repository of OSS projects. The number of projects registered to Sf.net has increased quite

rapidly since its foundation. Currently, the number of registered projects is over 86,000 and the

number of registered users is about 905,000. Other websites hosting open source projects are

much smaller than SF.net. For example, Savannah hosts 2,048 GNU and non-GNU projects and

2 Obviously, the relationship between performance and skills over a long time is bidirectional. The performance
observed at any given time results from the past interaction between initial skill endowment, performance

 11

29,639 users have registered to this website (savannah.gnu.org and savannah.nongnu.org). Each

one of these virtual spaces aims at facilitating the development of OSS emerged from a particular

background. For example, while SF.net is a proprietary infrastructure built-up by VA Linux,

Savannah is a totally free space created by the Free Software Foundation. So, none of these

spaces represents the entire OSS community. Nevertheless, as said, SF.net is one of the most

diffused tool among developers and one of the most analyzed spaces where development takes

place, so that it can be fruitfully used to give a picture wide enough of the OSS phenomenon.

As noted in the previous sections, some authors have used data on small samples of projects.

Some of these studies have drawn their information from the SF website (Krishnamurthy 2002;

Fershtman and Gandal 2004). But, to our knowledge, only few authors have been able to use a

large sample of projects hosted in Sf.net (Lerner and Tirole 2002b, for an analysis of the OSS

licences; Newby et al. 2002, for an account of the Lotka’s Law in understanding software

development productivity).

We have obtained from the Sourceforge staff the complete dataset updated at January 2003. This

represents a special opportunity for testing our hypotheses on a large scale sample which is

representative of the entire population of OSS projects.

Even if the SF dataset does not include a few large and popular projects like Linux, Apache, and

Sendmail, several other large and widespread projects like Postgresql, phpMyadmin, Gaim,

Python are registered to SF.net. Some of the SF projects are normally present in the list of top 20

popular projects of the Freshmeat.net website, hosting the largest index of software with an

open source license.

The SF dataset includes several information at different levels of aggregation: the single project,

the user, the skills of each user, the single contribution to the project. For the purposes of our

outcomes, and new human capital formation. Skills at time 0 may yield a given performance outcome at time 1
which in turn may attract new skilled members at time 2 and so forth.

 12

analysis we use data on 65,535 projects3 and 544,669 users. It is worth to note that only 83,119

users (15.26% of the sample) are registered to a project.

A “project” is carried out by a group of users working on specific tasks, such as bug fixing,

patch developing and reviewing, or broader tasks, such as web site maintenance and release

management. A “user” is an individual who contributes to one or more projects. We classified

users as internal contributors of a given project if they have registered with that project; otherwise

they are classified as external contributors.4

3.2. Measures and descriptive statistics

Our analysis draws on the data about individual users and projects. As far as users are concerned

our critical variables are skills and experience, and the role played in the project. For what

concerns the projects, the key variables are the level of activity, survival and openness (measured

with the participation of external contributors). In this section we describes these measures and

show the descriptive statistics of the main regressors used in the econometric analysis to test our

hypotheses.

Skills. Data on individual skills are normally very difficult to obtain. The most typical information

provided by survey data is about educational background or working experience. The SF dataset

provides detailed information on 33 types of skills which can be grouped into three categories: a)

Technical expertise (programming languages); b) analysis and design expertise; c) domain or

application skills (e.g., networking, security and databases) and c) knowledge of spoken

languages.5 This information can be provided by users at the time of registration at Sf.net, when

they are requested to self-assess the level and the experience with each skill declared.

Information about skills is available for 51,023 users, 24,563 of which are registered as members

3 In the SF dataset, what is commonly know as “project” is labelled as “group”. Throughout the paper we follow the
website notation because it is the most commonly used in the literature and by practitioners.
4 External contributors include individuals who have not registered to SF.net and individuals who have registered to
SF.net but have not registered to any specific project.

 13

of one or more projects (29,446 are the projects with at least one member who declared its skills)

while 26,460 are external contributors6. Most of our empirical analysis is based on these

restricted samples.

Another indirect indicator of skills and ability is the number of projects to which each user

contributes.

Drawing on these data we calculated the following measures of skills at the individual level.

- N_skills: the number of skills mastered by the user.

- Skill_level: the average level of the individuals’ skills measured on a five point Likert scale7.

- Skill_experience: the average experience of skills per user measured on a five point Likert

scale8.

- Skill_index: a synthetic measure which accounts for the number of different skills, the level

of each skill, and the experience. The skill index SI for the individual j is calculated as

follows: SIj=∑i (Sij), where Sij= (Lij*Eij) is the skill level and experience of skill i for user j;

Lij= level of skill i for user j; Eij= experience of skill i for user j.

- Herf_skill: the Herfindahl index is used as an indicator of skills diversification and is

calculated as follows: HSj = ∑i (Sij/ SIj)2.

- N_projects: the number of projects to which each individual contributes.

As Table 1 clearly shows, internal contributors (project members), on average, are more skilled

than external contributors, as indicated by the number of skills, the skill level, the skill experience

and the summary skill index. Moreover, internal contributors have more diversified skills

compared with outside contributors.

5 This classification is in line with those adopted in the literature on software development. For instance, Faraj and
Sproull (2000) point out three dimensions of development expertise: 1) technical expertise defined as knowledge of
specialised technologies and tools; 2) design expertise that refers to the knowledge of software design principles and
architecture; 3) domain expertise (knowledge about the application domain and customers operations) (p. 1559).
6 The number of users is lower than the number of projects because some individuals participate to more than one
project.
7 The range of level of skills is the following: 1) Want to learn; 2) Competent; 3) Wizard; 4) Wrote the book; 5)
Wrote it.

 14

As far as project participation is concerned, the average number of projects to which each user is

registered is 1.696 with a maximum number of 24 projects for a single user (Table 1). Users for

which information about skills is available are registered to a larger number of projects than the

average user9.

At the project level we computed the following measures based on the skills of their internal

members:

- N_skill_project: number of skills possessed by the members of the project.

- Skill_level_project: Average skill level of the project members.

- Skill_exper_project: Average skill experience of the project members.

- Skill_index_project: Average skill index of the project members.

- Herf_skill_project: Average Herfindahl index of the project members.

- Min_Herf_project: Minimum Herfindahl index of the project members.

The descriptive statistics of the skills of the projects in Table 1 show variability of the skill level,

experience and diversification across different projects.

[Table 1 about here]

Members’ role. As mentioned before, the dataset allows to distinguish if the user is an internal

member of the project or an external contributor. For internal members the role in the project is

specified (developer, project manager, web designer, content manager, all hands persons and

other roles)10. Information about role is useful for studying the organization of the projects and

the skills of individuals with different roles. It is however worth to remind that roles are normally

assigned after registration to the project while skills are declared at the time of registration.

8 The range of experience of skills is the following: 1) <6 months; 2) 6mo-2yr; 3) 2yr-5yr; 4) 5yr-10yr; 5) > 10yr.
9 We compared the distribution of number of projects per users in the whole sample of users registered to a project
and in the restricted sample of users with information with skills. The Mann-Whitney and the Kolmogorov-Smirnov
tests of equality of means and distributions of the number of groups in the two samples reject the null hypothesis of
equality.

 15

In our dataset the largest share of members who provided information about skills works as

developer (33.73%). The share of project managers is 18.19%. This share is larger in the sample

with skills than in the total sample of users registered to a project, suggesting that people with a

key position in the project are more willing to reveal their skills. 52.05% of members cover other

roles. Among these 3% are All hands persons and each other role is covered by no more than

1% of the internal members.

Group activity. The dataset provides information about bugs, patches, new features and support

requests, tasks11 and CVS that have been submitted and fixed in the period covered by the

dataset. The information on the number of file released is also available. Out of 29446 projects

in our sample, 4176 have closed at least one bug in the observed period, 1087 at least one patch,

2027 at least one feature request and 10922 have produced at least one file release. From these

numbers it is very clear that a very large number of projects does not produce any output, and

the activity is concentrated on a small share of projects. On average in each project internal

members fix about 8 bugs while external contributors about 11. These numbers are respectively

5.9 and 4.7 for patches, 6.5 and 6.7 for feature requests and 2 and s for support requests. Relying

on these data we study the level of activity and performance of individual contributors and

projects.

From the dataset it is also possible to know if the project is active, deleted, pending or hold. In

our sample 26254 projects are Active (about the 89%) and 3181 are Deleted (11%). Only 11

projects are classified in the remaining categories. These data are important to study project

survival and its determinants.

Group openness. As indicators of openness we rely on two sets of variables: a) the share of external

contributors to total contributors and the resolution rates of various activities submitted by

10 For internal members it is also possible to know if they registered as Master administrator. This role is responsible
for the overall project while project managers are responsible for project’s modules. A high share of members is
registered as master administrators (77.08%) and this depends on the large number of projects with only one
member. In these cases obviously the member is also the master administrator.

 16

internal and external contributors respectively; b) the use of communication channels like

surveys, forums and newsgroups which are typical in the OSS community.

We used the SF data at the project level and at the single activity level to generate the following

set of variables:

- N_users: the number of total contributors to the project.

- IN_contributors: the number of internal members who contributed.

- OUT_countributors: the number of external contributors.

- OUT/IN: share of external to internal contributors of activities (bugs, patches and feature

requests) whose resolution rate is closed. For computing this indicators we do not include

support requests as contribution to the project, also because they are mainly presented by

external contributors.

- Use_forum, Use_survey, Use_news, Use_cvs: Dummies for the existence of communication tools

with the community for each project. This information is provided for each project at the

time of registration to SF. In our sample, 84.8% of the projects have a forum toolbox,

91.6% have the newsgroup, 75.7% use surveys and 90.8% use the CVS.

Table 2 shows that on average each project is composed of 1.4 internal contributors12. 2083

projects in our sample have external contributors. On average 5 external individuals contribute

to these projects and the share of external to internal is around 2. This suggests that on average

for each internal contributors there are two external contributors to the project.

[Table 2 about here]

CONTROLS. The SF dataset classifies each project according to the following characteristics:

intended audience, type of license, programming language, natural language of projects and

11 The definition of “task” is not straightforward because each group uses different policies to manage this
instrument. Roughly, it can be defined as a specific objective the group decides to tackle in the next period.
12 We compared the distribution of number of users per project in the sample of projects with users who provided
information about skills and in the total sample of projects. This number is lower for the total sample and the
Mann-Whitney and the Kolmogorov-Smirnov tests of equality of means and distributions of the number of users in
the two samples reject the null hypothesis of equality.

 17

users, project’s date of registration and members’ date of registration. At the individual level we

also control if the member works in a company through her e-mail address.

4. Results

Before we start with the analysis of the research hypotheses, we present means, standard

deviations and correlations among the main explanatory variables used in the empirical models.

Most correlations reported in Table 3 are below 0.50 and this indicates that we do not have

serious multicollinearity problems.

[Table 3 about here]

Our Hypothesis 1 claims that the division of labor at the project level leads to the emergence of

leaders who have skill profiles different from those of other contributors such as occasional

developers and users. For our purposes here, we distinguish between three main categories of

project members. First, pure project managers (PM) are members who are responsible for

specific project tasks such as modules or tasks. They are not significantly involved in

development activities although, according to our dataset, they are assigned a considerable

number of bugs fixing and new feature requests. Second, pure developers (DV) are primarily

involved in technical tasks and are not involved in managerial tasks. It is worth to note that, on

average, these are assigned a limited number of tasks such as bugs fixing compared with project

managers. The Kolmogorov-Smirnov test for equality of distribution functions rejects the null

hypothesis (0.0317, p= 0.00).

The third category includes members who combine development and project management roles

(MPD). These carry out a larger number of technical tasks, such as bugs fixing, as compared with

DVs and MPs (K-S: 0.2889; p=0.000).

The division of labor among these three categories of members then is not primarily based on a

sharp distinction between technical vs. managerial tasks. Instead, it points out different degrees

of involvement in the overall project activities, with PMDs being involved in a wide set of

 18

activities as compared with other categories. Finally, members who are not comprised in any of

these categories have very limited levels of involvement. This category includes a variety of roles

such as master administrators, who are responsible for the project website. The latter are not

neatly distinguishable from other categories of members because many projects have only one or

two members. In these cases the same person plays the role of master administrator and

developer.

As Table 4 illustrates, the three categories of members are also different in terms of skill profiles.

PMDs have a higher skill level and a more diversified range of skills as compared with PMs and

DVs. It is worth to note that all these three categories of users have higher skill levels and a

more diversified skill sets when compared with the rest of project members. Finally, they

contribute to a larger number of projects than other members.

[Table 4 about here]

A closer look at the main categories of internal contributors introduced before is made possible

by the relatively rich set of data about individuals. To explain which individual characteristics

predict the role played in OSS projects we conducted a multinomial logit analysis. Our

dependent variable takes on four values corresponding to the four roles described above (PM,

DV, DPM and other roles). Our main regressors include the time of registration at SF.net, the

number of projects subscribed by the individual, various measures of skills (average skill level,

skill experience), the average number of members in projects subscribed by the individual, a set

of tasks assigned (bugs, feature requests and support requests). Our controls include a dummy

for affiliation to a commercial organization and the natural language spoken by the individual.

After running a series of logit regressions for separate categories of roles, we carried out two

multinomial logits. The results of the multinomial logit analysis are shown in Table 5. The

advantage of multinomial analysis is that it allows pair-wise comparisons between different types

of roles. For the sake of simplicity we only show the results of multinomial logit analysis. Table 5

 19

shows two models. In the first model the fourth, residual group of members is used as the

comparison group while in the second model PMD is the comparison group.

When compared with the residual group, both DV and PM are more frequent among individuals

with more diversified skill sets (lower Herfindhal index). The level of skills has ambiguous or

insignificant effects on the likelihood to participate in projects as PM, DV or PMD. The average

size of projects participated by our sample individuals instead is an important predictor of their

role, especially for DV and PMD. This is in line with the theory that larger projects offer higher

opportunities for division of labour between specialists and more general-purpose tasks.

[Table 5 about here]

It is important to note that the effect of skill diversification is particularly strong in the case of

PMD. This supports the hypothesis that individuals with a managerial (entrepreneurial) role have

more balanced skill sets compared with individuals who play more specialised tasks (Lazear,

2002). Finally, all three categories (DV, PM and PMD) are predicted by the number of bugs

assigned and, to a lesser extent, by other categories of technical tasks assigned. As mentioned

before, this shows that the division of tasks among these three types of roles is not primarily

based on a distinction between purely technical vs. purely managerial activities.

The use of PMD as a reference group is interesting because it allows to compare specialist roles

(PM and DV) to more ‘horizontal’ ones. The first important point to note is that, compared with

PMD, both PM and DV have a narrower skill set (larger Herfindahl indexes increase the

probability to be in the PM or DV category, compared with PMD). This provides further

evidence about the importance of balanced skill sets for people who carry out complex, multi-

task jobs. The level of skills is a less important predictor, except for the case of pure DV.

Compared with PMD, DV are more likely to be found among less skilled people. Finally,

compared with PMD, other specialised roles are less likely to be observed among members of

large projects.

According to hypothesis 2, the skills of project members are important to explain the

 20

performance of the project. Our analysis relies on two measures of performance. The first

measure is the survival of the project. Our dataset includes 3,181 projects that have been

cancelled from SF (11% of total sample). Second, we counted the number of four different

types of activity during the last month of the project life (December 2002): bugs closed, patches

closed, new feature requests closed and software releases. The choice of this time window is

driven by the aim of minimizing the potential endogeneity of some regressors.

Table 7 shows the logit estimation of the determinants of the projects’ survival. The minimum

project’s Herfindahl index (a measure of skill diversification of the most diversified member of

the project) has always a negative effect on the probability of survival. This suggests that projects

with more varied skill sets have better chances to remain active. Due to the correlation with the

Herfindahl index and other regressors, the average skill level and the skill experience (average

number of years in each skill declared by projects’ users) have insignificant coefficients. The

average number of projects participated by the user is another proxy for users’ expertise. Skilled

users have probably more chances to be invited to join new projects as compared with other

users. The negative effect of this variable on the likelihood of survival indicates that the potential

benefits arising from the participation of skilled members may be offset by their over

commitment with too many projects.

[Table 7 about here]

To further explore the implications of member skills for project performance we estimated four

independent project activity equations. Estimates were obtained by maximum-likelihood zero-

inflated Negative Binomial regression. This specification was preferred to alternative ones

because of the nature of the dependent variables (nonnegative count data). In particular, we

opted for the negative zero-inflation binomial model to deal with cross-sectional heterogeneity

and the large number of zeroes in the dataset (see Greene, 1997).

The estimation results are reported in Table 8. By and large, a diversified mix of skills yields

positive effects on the number of closed bugs, patches, and feature requests. It also has a

 21

positive influence on the likelihood of project releases. The effect of skill level is more

ambiguous and often not significant at the conventional levels. Instead, with the exception of the

feature requests equation, skill experience has always a positive effect on project activity. Like in

the survival equation, the average number of projects participated by the members has a negative

effect on the project activity.

[Table 8 about here]

Our hypothesis 3 claims that external contributors or, more generally, the strength of the links

with the OSS community, are important for the project performance. The results of the survival

equation reported in Table 7 show that the share of external contributors (users who have not

subscribed with the project but have filed at least one contribution over the sample period) has a

positive additional effect beyond that of internal members’ skills. The positive effect of the

dummy that indicates the use of forums by the project also points out the importance of the

channels with the OSS community for survival.13 By the same token, a large number of diverse

audiences addressed by the project increases the opportunity of contacts with a wide portion of

the OSS community and this explains the positive effect on survival, although the estimates are

not significant at the conventional levels.

When we look at the estimates of activity equations we find that, by and large, the share of

external contributors have a positive and significant effect on different types of activities (Table

8). Similarly, the number of different audiences addressed has a positive influence on the number

of closed artifacts, except for the closed patches equation where the coefficient is estimated with

a low precision.

The skills of core developers are not enough to survive. Projects that do not attract users beyond

the set of core contributors will not survive because they will lack the resources needed to

improve the base code by finding and repairing bugs.

13 We have also analyzed the effects of other communication channels adopted by the projects, such as the use of
surveys and newsgroups. Since these variables (including use of forums) are highly correlated with each other, we
opted for the use of forum because it appears to be a quite popular communication channel in the OSS community.

 22

These results then provide substantial support to our hypotheses. For what concerns the activity

equations, as Table 8 shows, the large number of zero observations considerably reduces the

sample size. We then must warn against the generalization of our results to the rest of the OSS

population. However, these findings are interesting for the following reasons. First, they provide

further evidence in favor of our earlier results on survival. Second, they show that there exists a

quite limited number of projects that are really active in the population of OSS projects. Third,

for this subset of projects we have collected evidence that points out the importance of both

internal determinants of performance (member skills) and external factors (that is the links with

the community which are accounted for by the share of external contributors and the variety of

audiences addressed).

Finally, in future research we shall replicate our estimates by trying different time windows for

project activities. As mentioned before, the present choice of activities conducted during the last

month of the sample was induced by the need to deal with the potential endogeneity of

regressors.

5. Discussion and conclusions

The main purposes of this paper were: (i) to provide novel evidence about the characteristics of

OSS project leaders compared with other contributors; (ii) to study the main determinants of

projects’ survival and activity. To study these topics we have relied on a large sample of OSS

project registered with the Sourceforge dataset.

To address the first issue we have classified project members by their roles as reported in the

Sf.net dataset. More precisely, we have distinguished among three categories of members: pure

developers, pure project managers and multi-task contributors who carry out both development

and management activities at the project level. Moreover, for each individual contributor we

collected information about the date of registration with the project, the number of different

skills declared at the time of registration, the level of expertise in each skill, the number of

 23

different projects she contributes, and the number of artifacts contributed (e.g., bugs fixing and

patches assigned). Our multinomial logit estimations show that there exist marked differences

between ‘specialists’ (pure project managers and pure developers) on the one side and ‘multiple

task’ members on the other. It is important to recall that multiple task people carry out a larger

number of different technical tasks (such as bug fixing) as compared with ‘specialists’ (including

‘pure developers’). These individuals correspond to the ‘core’ of highly committed programmers

studied in earlier works (e.g., Koch and Schneider, 2002: Mockus et al., 2000). Moreover, these

individuals have more diversified skills as compared with ‘specialists’. It is worth to recall that the

skills considered in our study include three distinct categories of expertise: technical, application

or domain-related and people or communication skills (proxied by the knowledge of foreign

languages). In this respect, then, our analysis contributes to the literature on the economics and

management of OSS by offering a quantitative measure of different skill and task profiles at the

project level. In particular, we identify a set of individual characteristics that the literature has

pointed out as critical capabilities that leaders must possess to manage efficiently geographically

dispersed development teams. Previous studies have made the point that leaders have to be

credible, by convincing the community of their technical skills and programmers have to trust

the leadership. Trust results from experience and the leaders’ deliberate action. As Lerner and

Tirole put it ‘a good leadership should also clearly communicate its goals and evaluation

procedures’ (p. 24). Different software experts point out the importance of ‘people’ skills

relative to technical skills. Some authors claim that coordinators do not necessarily need strong

design expertise; instead, they have to identify good design ideas of other developers (Sanders

1998). Social and communication skills are important to attract and retain good developers.

Finally, leaders have to select developers and the team leaders (Hecker 1999).

To deal with the second issue we distinguished internal factors (the skill characteristics of

internal contributors or project members) from external ones (the participation of external

contributors and the number of intended audience of the project). As previous works have

 24

pointed out, the skill of internal contributors are not enough for project survival. The lack of

external contributions reduces the level of project activity and may lead to its failure (Mockus et

al., 2000). For the purposes here, we started with the analysis of project survival and found out

that a diversified skill set and skill experience have significant positive effects on the likelihood of

survival. Moreover, the share of external contributors over total contributors, the use of project

forums, and the number of different intended audiences (e.g., end users, developers and system

administrators) have a positive effect on project survival. To understand the effect of project’s

skills and external contributors on project activity we have we have counted the number of

closed bugs, feature requests and patches, and the new product releases over the last month of

activity in the dataset. Our results show that skill diversification and skill experience have also a

positive effect on project activity. The share of external contributors and the number of different

intended audiences have a significant effect beyond that of member skills. These findings

provides new evidence that supports previous research on the performance of OSS projects.

Many earlier works have emphasized the importance of external contributions as a key

distinctive characteristic of the OSS development paradigm as compared with the traditional

software development model (Raymond, 1999; von Hippel, 2001; Lerner and Tirole, 2002b).

Moreover, unlike earlier works that have focused on specific dimensions of performance (e.g.,

Kuan, 2001; and Fershtman and Gandal, 2004), our analysis provides insights into several

dimensions of performance (from survival to bugs fixing and new releases). Finally, to the best

of our knowledge, this is the first work which analyzes the joint action of ‘internal’ and ‘external’

determinants of project performance.

The large cross-sectional dataset at the level of single projects and users which we used for our

analysis offers new opportunities for exploring important characteristics of the OSS

development community that have remained unexplored so far because of lack of data. This

study shows the usefulness of large datasets for the analysis of the population ecology of OSS

projects. Our analysis has various limitations, some of which arising from the nature of data

 25

used. First, we relied on mere counts of tasks assigned to individual programmers but we had no

access to data on lines of codes produced. Future research should try to integrate the

information about different types of tasks with more precise measures of programming effort.

Second, our analysis provides a very incomplete picture of the linkages between projects. We

found out that external contributors have positive effects on the project performance but we

have not examined which projects are joined by whom. A deeper analysis of the matching

process between individuals and projects could provide additional information about the internal

composition of project teams. It can also help to get a finer grained picture of knowledge flows

across projects that take place through programmers’ mobility and joint participation in different

projects.

Third, additional information should be collected at the level of single users to have a better

understand their background (e.g., level of education and working experience) and affiliations.

References

Baron, J.N., M.T. Hanna. 2002. Organizational Blueprints for Success in High-Tech Start-ups.

California Management Review, 44(3) 8-36.

Bhidé, A.V. 2000. The Origin and Evolution of New Business. Oxford University Press, Oxford.

Cŭbranić D., Booth K. (1999), “Coordinating Open Source Software Development”, IEEE

Proceedings, 8th International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, (WET ICE '99), pp. 61–66.

Dalle, J., N. Jullien. 2001. Open-source vs. Proprietary Software. Working paper.

http://opensource.mit.edu/online_papers.php

Dalle, J.M., P.A. David. 2003. The allocation of software development resources in ‘open source’ production

mode. http://opensource.mit.edu/papers/dalledavid.pdf.

Di Bona, C., S. Ockman, M. Stone, eds. 1999. Open Sources: Voices from the Open Source Revolution.

O’Reilly, Sebastopol, CA.

 26

Elliot, M. S. and Scacchi, W. 2003, free software: a case study of software development in a

virtual organizational culture, Institute for Software Research, University of California, Irvine,

CA, mimeo, April.

Kaisla, J. 2001 Constutional dynamics of the open source software development, Dept. of

Industrial Economics and Strategy, Copenhagen Business School, mimeo, May.

Minzberg, H. 1979, the structuring of organization , Prentice Hall, Englewood Cliffs, NJ.

Faraj, S., L. Sproull. 2000. Coordinating Expertise in Software Development Teams. Management

Science, 46(12) 1554-1568.

Fershtman C. and Gandal, N. (2004) The determinants of output per contributor in open source

projects: an empirical examination, mimeo, Tel Aviv University, March 1st.

Ghosh, R. A., P.A. David 2003. The nature and composition of the Linux kernel developer community: a

dynamic analysis. Working Paper SIEPR-Project NOSTRA, http://dxm.org/papers/licks1/.

Giuri P., G. Rocchetti, S. Torrisi 2002. Open source software: from open science to new marketing models an

enquiry into the economics and management of open source software. Working Paper 23, LEM.

Greene, W. H. 1997. Econometric Analysis, Prentice-Hall International. Upper Saddle River, NJ.

Koch S. and Schneider, G. (2002) Effort, co-operation and co-ordination in an open source

software project: GNOME, Info Systems J. 12: 27-42.

Krishnamurthy, S. 2002. Cave or Community? An Empirical Examination of 100 Mature Open

Source Projects. First Monday 7(6). http://firstmonday.org/issues/issue7_6/.

Kuan, J. (2001) open source software as consumer integration into production, Haas School of

Business, Univesrity of California at Berkeley, CA, mimeo, January.

Hecker F. (1999), “Setting Up Shop: The Business of Open-Source Software”, IEEE Software,

Jan/February, pp. 45-51.

Lakhani, K., E. von Hippel 2000. How open Source software works: ‘Free’ user-to-user assistance.

Working paper 4117, MIT Sloan school of Management.

Lazear, E. P. 2002. Entrepreneurship, Working paper 9109, NBER.

 27

Lerner J., J. Tirole. 2002a. Some simple economics of Open Source. The Journal of Industrial

Economics L(2) 197-234.

Lerner, J., J. Tirole. 2002b. Working Paper Series The Scope Of Open Source Licensing. Working Paper

9363, NBER. http://www.nber.org/papers/w9363

Mockus, A., R.T. Fielding, J. Herbsleb. 2000. A Case Study of Open Source Software

Development: The Apache Server. Proc. of the Twenty-Second Internat. Conf. on Software Engineering

263 –272.

Newby, G. B., J. Greenberg, P. Jones. 2002. Open Source Software Development and Lotka’s

Law: Bibliometric Patterns in Programming. Journal Of The American Society For Information Science

And Technology. 54(2) 169-178.

Raymond, E. S. 1999. Linux and Open-Source Success. IEEE Software 16(1) 85-89.

Raymond, E. S. 2001. The Cathedral and the Bazaar. Musings on Linux and Open Source by an Accidental

Revolutionary. O’Reilly, Sebastopol, CA.

Von Hippel, E. 2001. Learning from Open Source Software. Sloan Management Review 42(4) 82-

86.

Wheeler, D. 2002. Why Open Source Software/Free Software (OSS/FS)? Look at the Numbers!.

http://www.dwheeler.com/oss_fs_why.html.

 28

Table 1. Users’ and projects’ skills

 N Min Max Median Mean SD

Internal contributors who provide
information about skills

N_skills 24563 1 29 6 6.570 3.607

Skill level 24563 1 5 2.18 2.243 .487

Skill experience 24563 1 5 2.75 2.765 .736

Skill index 24563 1 650 38 44.217 30.721

Herfindahl skills 24563 .03 1 .21 .279 .218

N_projects 24563 1 24 1 1.696 1.343

External contributors who provide information
about skills

N_skills 26460 1 33 5 5.888 3.495

Skill level 26460 1 5 2 2.166 .513

Skill experience 26460 1 5 2.71 2.747 .808

Skill index 26460 1 375 32 38.302 28.639

Herfindahl skills 26460 .04 1 .23 .322 .249

Projects with internal contributors who provide
information about skills

N_skill_project 29446 1 31 7 8.001 4.620

Skill_level_project 29446 1 5 2.21 2.271 .463

Skill_exper_project 29446 1 5 2.75 2.776 .687

Skill_index_project 29446 1 650 42 46.829 30.750

Herf_skill_project 29446 0.03 1 0.2 0.266 0.201

Herf_skill_min 29446 0.03 1 0.18 0.246 0.201

Table 2. Projects’ contributors

 N Min Max Median Mean SD

IN_contributors 29446 1 43 1 1.415 1.281

OUT_countributors 2083 1 1138 1 4.979 28.479

OUT/IN 1592 0.0435 162.571 1 2.193 6.704

 29

Table 3. Correlation matrix of main regressors at the individual level

 n_projects
Avgsizeothe

rproj. herf_index avg_sk_lev avg_sk_exp bugs_as. patches_as. feat_req_as. supp_req_a.
n_projects 1.0000
avgsizeotherproj -0.0279*** 1.0000
herf_index -0.0852*** -0.0061 1.0000
avg_skill_lev 0.0457*** -0.0179*** -0.0294*** 1.0000
avg_skill_exp 0.0233*** 0.0570*** -0.0422*** 0.4342*** 1.0000
bugs_assigned 0.1611*** 0.0437*** -0.0212*** 0.0180*** 0.0373*** 1.0000
patches_assigned 0.1292*** 0.0312*** -0.0137*** 0.0108** 0.0316*** 0.4679*** 1.0000
feat_req_assigned 0.0869*** 0.0170*** -0.0235*** 0.0125*** 0.0267*** 0.3963*** 0.1096*** 1.0000
supp_req_assigned 0.0414*** -0.0000 0.0015 0.0098** 0.0052 0.0704*** 0.0083*** 0.2087*** 1.0000

Table 4. Skill index in different roles

 Min Max Median Mean St dev N
 Skill index
Project Manager 1 279 42 48.060 31.870 3494
Developer 1 315 38 43.920 29.720 7311
Project Manager & Developer 2 220 48 53.648 33.030 973
Other 1 650 36 42.617 30.570 12784
 Diversification index
Project Manager .05 1 .20 .260 .199 3494
Developer .04 1 .20 .270 .212 7311
Project Manager & Developer .06 1 .17 .270 .212 973
Other .03 1 .21 .293 .228 12784
 Number of projects
Project Manager 1 24 1 1.596 1.208 8618
Developer 1 17 1 1.504 1.116 24726
Project Manager & Developer 2 33 3 3.781 2.474 1723
Other 1 5 1 1.268 0.765 48032

 30

Table 5. Multinomial logistic regression: Members’ role
 Multinomial logit

(Base=Others)
Multinomial logit
(Base=PM+Dev)

 Developer PM Dev+PM Other Dev PM
days 0.001

(0.000)***
0.001

(0.000)***
0.001

(0.000)***
-0.001

(0.000)***
0.001

(0.000)***
0.000

(0.000)
n_projects 0.454

(0.016)***
0.391

(0.019)***
0.847

(0.022)***
-0.847

(0.022)***
-0.393

(0.018)***
-0.456

(0.021)***
Avg_sizeotherproj 0.084

(0.003)***
-0.003
(0.005)

0.079
(0.005)***

-0.079
(0.005)***

0.005
(0.004)

-0.082
(0.006)***

herf_index -0.433
(0.073)***

-0.656
(0.096)***

-1.206
(0.212)***

1.206
(0.212)***

0.773
(0.213)***

0.550
(0.223)**

avg_skill_lev -0.171
(0.036)***

0.048
(0.043)

0.056
(0.085)

-0.056
(0.085)

-0.227
(0.085)***

-0.008
(0.089)

avg_skill_exp 0.031
(0.023)

0.089
(0.029)***

0.016
(0.056)

-0.016
(0.056)

0.016
(0.057)

0.073
(0.060)

bugs_assigned 0.012
(0.003)***

0.014
(0.003)***

0.013
(0.003)***

-0.013
(0.003)***

-0.001
(0.002)

0.001
(0.002)

patches_assigned -0.003
(0.014)

0.016
(0.014)

0.006
(0.015)

-0.006
(0.015)

-0.009
(0.010)

0.010
(0.007)

feat_req_assigned 0.018
(0.009)**

0.038
(0.008)***

0.046
(0.010)***

-0.046
(0.010)***

-0.028
(0.009)***

-0.009
(0.008)

supp_req_assigned -0.002
(0.004)

-0.001
(0.000)***

-0.001
(0.001)

0.001
(0.001)

-0.001
(0.004)

0.000
(0.001)

Constant -2.078
(0.119)

-2.549
(0.148)***

-4.965
(0.287)***

4.965
(0.287)***

2.887
(0.288)***

2.416
(0.303)***

Log likelihood -24797.788 -24797.788
Number of obs. 24546 24546
LR chi2 (d.f.) 4700.67 (51) 4700.67 (51)
Prob > chi2 0 0
Pseudo R2 0.0866 0.0866
* p<0.10, **p<0.05, ***p<0.01. Standard errors in parenthesis.
Controls: Dummies for natural language (English, Spanish, German, French, Italian, Russian), Dummy for e-mail
address.com).

Table 6. Correlation matrix of main regressors at the project level

 avg_n_pr. Min_herf.
avg_sk_

lev
avg_sk_

exp
Out/in
_con.

use_
forum

use_
survey use_cvs use_news

N_
audience

avg_n_projects_of_mem
bers 1.0000
Min_herf_ind -0.1093*** 1.0000
avg_skill_lev 0.0513*** -0.0012 1.0000
avg_skill_exp 0.0412*** -0.0603*** 0.3888*** 1.0000
Out/in_contributors 0.0213*** -0.0242*** 0.0068 0.0316*** 1.0000
use_forum -0.1180*** 0.0566*** -0.0006 -0.0488*** -0.0407*** 1.0000
use_survey -0.1000*** 0.0606*** 0.0061 -0.0382*** -0.0605*** 0.6540*** 1.0000
use_cvs -0.0260*** -0.0042 -0.0146** 0.0131** -0.0221*** 0.3643*** 0.4192*** 1.0000
use_news -0.0761*** 0.0226*** 0.0004 -0.0303*** -0.0220*** 0.5621*** 0.5196*** 0.3852*** 1.0000
N_audience -0.0069 -0.0528*** 0.0419*** -0.0183*** -0.0023 0.0220*** 0.0201*** -0.0112** 0.0269*** 1.0000

 31

Table 7. Logistic regression: Project Survival
 Active

(no controls)
Active

(with controls)
Active

(with controls +
use_forum)

avg_n_projectsbymembers -0.114
(0.015)***

-0.092
(0.021)***

-0.080
(0.021)***

Min_herfindahl_index -0.634
(0.223)***

-0.481
(0.293)

-0.490
(0.292)*

avg_skill_level -0.234
(0.110)**

-0.172
(0.138)

-0.171
(0.138)

avg_skill_experience 0.323
(0.078)***

0.221
(0.098)**

0.219
(0.099)**

Out/in_contributors 1.165
(0.325)***

0.761
(0.305)**

0.842
(0.314)***

use_forum 0.650
(0.132)***

N_audience 0.105
(0.061)*

0.148
(0.145)

0.138
(0.145)

Constant 3.657
(0.286)***

3.426
(0.596)***

2.968
(0.605)***

CONTROLS
Size Yes Yes
Dummies for entry cohorts Yes Yes
Dummies for Intended Audience Yes Yes
Dummies for type of licence Yes Yes
Dummies for programming language Yes Yes
Dummies for natural language Yes Yes

Log likelihood -2174.99 -1399.93 -1388.8478
Number of obs. 20774 15805 15805
LR chi2 (d.f.) 110.55 (6) 204.49 (32) 226.66 (33)
Prob > chi2 0 0 0
Pseudo R2 0.0248 0.0681 0.0754
* p<0.10, **p<0.05, ***p<0.01. Standard errors in parenthesis.
Controls: Dummies for entry cohorts: old, young; Dummies for Intended Audience: developers, users, system administrators;
Dummies for type of licence: GPL, LGPL, BSD, Public domain, Artistic licence, Apache; Dummies for Programming language:
C, C++; Java, Php, Perl, Python, Visual Basic, Unixshell; Dummies for natural language: English, Spanish, German, French,
Russian, Dummy for e-mail address.com, time of registration at SF.net).

 32

Table 8. Zero-Inflated Negative Binomial Regression (inflation model: Logit): Project Activity
 Bugs+

(no controls)
Bugs

(with controls)
Patches

(no controls)
Patches

(with controls)
Feature
requests

(no controls)

Feature
requests

(with controls)

File releases
(no controls)

File releases
(with controls)

avg_n_projectsbymembers - -0.104
(0.034)***

0.018
(0.047)

0.017
(0.059)

-0.220
(0.043) ***

-0.083
(0.047)*

-0.060
(0.019) ***

-0.056
(0.021) ***

Min_herfindahl_index - -1.017
(0.372)***

-3.060
(0.823) ***

-1.438
(0.897)

-2.420
(0.508) ***

-1.370
(0.565)**

-0.747
(0.206) ***

-0.426
(0.223)*

avg_skill_level - 0.103
(0.163)

-0.612
(0.327)*

-0.542
(0.398)

-0.334
(0.215)

-0.100
(0.235)

-0.248
(0.095) ***

-0.324
(0.101) ***

avg_skill_experience - 0.247
(0.106)**

1.070
(0.191) ***

0.773
(0.226) ***

0.189
(0.126)

0.172
(0.148)

0.344
(0.063) ***

0.380
(0.067) ***

Out/in_contributors - 0.597
(0.089)***

1.128
(0.123) ***

0.278
(0.132)**

0.863
(0.084) ***

0.428
(0.103) ***

0.255
(0.039) ***

0.212
(0.049) ***

use_forum - -0.853
(0.146) ***

-0.295
(0.249)

-0.288
(0.313)

-1.397
(0.163) ***

-1.310
(0.202) ***

-0.369
(0.090) ***

-0.494
(0.100) ***

N_audience - 0.356
(0.098) ***

0.079
(0.131)

0.159
(0.225)

0.060
(0.075)

0.358
(0.130) ***

0.149
(0.040) ***

0.217
(0.064) ***

constant - -4.726
(0.616) ***

-6.140
(0.831) ***

-7.176
(1.547) ***

-1.843
(0.542) ***

-4.843
(0.900) ***

-2.133
(0.240) ***

-2.518
(0.361) ***

CONTROLS
Size Yes Yes Yes Yes
Tot contributors Yes Yes Yes Yes
Dummies for entry cohorts Yes Yes Yes Yes
Dummies for Intended Audience Yes Yes Yes Yes
Dummies for type of licence Yes Yes Yes Yes
Dummies for programming language Yes Yes Yes Yes
Dummies for natural language Yes Yes Yes Yes

Log likelihood -3304.275 -1038.129 -694.5862 -2145.686 -1634.06 -6844.047 -5457.56
Number of obs. 15805 20774 15805 20774 15805 20774 15805
Number of non-zero obs. 563 151 106 334 270 1334 1125
LR chi2 (d.f.) 1034.11 (33) 332.96 (7) 297.02 (33) 574.2 (7) 641.9 (33) 189.81 (7) 531.98 (33)
Prob > chi2 0 0 0 0 0 0 0
* p<0.10, **p<0.05, ***p<0.01. Standard errors in parenthesis.
+ The regression relative to Bugs without controls does not converge.
Controls: Dummies for entry cohorts: old, young; Dummies for Intended Audience: developers, users, system administrators; Dummies for type of licence: GPL, LGPL, BSD, Public domain, Artistic
licence, Apache; Dummies for Programming language: C, C++; Java, Php, Perl, Python, Visual Basic, Unixshell; Dummies for natural language: English, Spanish, German, French, Russian, Dummy
for e-mail address.com, time of registration at SF.net).

