
Public Subsidies for Open Source?

Some Economic Policy Issues of the Software Market1

Klaus M. Schmidt∗

University of Munich, CEPR and CESifo

Monika Schnitzer∗∗

University of Munich, CEPR and CESifo

Preliminary version: June 14, 2002

Abstract: This paper discusses the economic merits of direct or indirect govern-
mental support for open source projects. Software markets differ from standard
textbook markets in three important respects that may give rise to market failures:
(i) large economies of scale, (ii) crucially important innovations, (iii) significant net-
work effects and switching costs. We analyze the differences between proprietary
software and open source software with respect to these market features and ask
whether open source as an alternative to proprietary software can mitigate these
problems. Then we discuss the implications of various forms of governmental sup-
port for open source.

JEL classification numbers: H41, O31, O38

Keywords: Software Market, Open Source, Public Goods, Innovation Incentives,
Public Subsidies

1We would like to thank Bernard Reddy for many helpful comments and suggestions. Financial support
by National Economic Research Associates (NERA) is gratefully acknowledged.

∗Department of Economics, Universität München, Ludwigstr. 28 (Rgb.), D-80539 München, Germany, Tel.:
+49-89-2180 2250, email: klaus.schmidt@lrz.uni-muenchen.de.

∗∗Department of Economics, Universität München, Akademiestr. 1, D-80799 München, Germany, Tel.:
+49-89-2180 2217, email: schnitzer@lrz.uni-muenchen.de.



1 Introduction

The open source movement has been very successful in developing software products such as

Linux, Apache or Sendmail that are now serious competitors to well established proprietary

software. It is attracting a lot of attention not just in the computing community, but also in the

media, by academic economists and, most recently, by politicians. In many different countries

there are political initiatives trying to get public support for Open Source, e.g. by paying

direct subsidies to open source projects or by requiring government agencies and schools and

universities to replace proprietary software by open source software whenever this is possible.2

There is also a small but rapidly growing economic literature on open source. Most of

this literature tries to understand the governance structure of open source projects.3 Why

do programmers voluntarily contribute to the public good of open source, even if there are

no direct financial rewards? Why have some projects attracted more voluntary support by

programmers than others? Why do large corporations such as IBM, HP, or Intel contribute

significant capital investments to open source projects? What business models are likely to

be successful in an open source market?

However, to the best of our knowledge the literature did not yet address the question

of the economic merits of direct or indirect public subsidies for open source projects. This

paper tries to fill this gap. We do not seek to develop new theoretical models to address this

question. The idea is rather to use modern economic theory in order to analyze the specific

aspects of the software market in general and of open source software in particular. This

allows us to better understand the functioning of this market and to develop a framework

in which the implications of governmental support for open source projects can be discussed

systematically.

In Section 2 we briefly describe what is meant by “open source”, what objectives and

motivations drive the developers of open source software, and how this software is protected

by different types of licenses. In Section 3 we discuss potential market failures of the software

2See Section 4 for several examples.
3The economic literature on open source includes Lerner and Tirole (2002), Johnson (2001), Bessen (2001),

Harhoff et.al. (2000) and Evans (2001). Many additional working papers are collected at and can be down-
loaded from http://opensource.mit.edu.

1



market. This market differs from standard textbook markets in three important respects: (i)

it is characterized by large economies of scale, (ii) innovations and rapid technological progress

are crucially important, and (iii) there may be strong direct and indirect network effects and

high switching costs for consumers. Each of these characteristics may give rise to inefficient

market outcomes. We analyze the differences between proprietary software and open source

software with respect to these potential market failures and ask whether open source as an

alternative to proprietary software can mitigate these problems. In Section 4 we discuss the

economic merits of various policies of direct or indirect governmental support for open source,

some of which are already being implemented by several countries. Section 5 concludes.

2 What is Open Source?

The general idea of “open source” is that the source code of a software program should be

made available to everybody at no extra charge and that everybody should have the right not

only to use the software, but also to extend it, to adapt it to his or her own needs, and to

redistribute the original or modified software to others. Source code is written in a computer

language such as Java, C, or C++, which is easy to read for an experienced programmer.

However, before it can be processed by a computer, it has to be compiled, i.e. translated to

machine code, which is just a sequence of zeros and ones. This machine code is very difficult to

read for humans, and it is also difficult and time consuming to re-translate it into source code.

Therefore, open source requires that not just the machine code, but also the source code is

made freely available. Given the ready availability of the source code for open source software,

firms generally can charge only low prices for such software: any recipient of the source code

(which must be made available with the software) can freely redistribute the software, driving

prices down toward average distribution costs.

In contrast, a license for “proprietary software” is sold like any other good or service.

Because the firm that develops the software wants to make a profit, it has to be able to protect

its intellectual property rights. The creator of a software program can obtain a copyright and

(in some countries) a patent which enables her to prevent others from copying or modifying

her work. However, copyrights and patents are imperfect because it is often possible to

2



circumvent them by modifying the software without violating the legal rights of the owner.

Thus, for the protection of intellectual property rights in the software industry it is at least

equally important to maintain the “trade secret” of how the software works. Therefore, most

commercial software packages contain only the machine code while the source code is kept

secret. When the source code is made available to other firms, it is typically licensed under

very restrictive conditions.

Open source software (OSS) must also be distinguished from “freeware” and “shareware”.

Freeware is distributed for free, but users do not get access to the source code of the program,

and they are not allowed to modify or extend the software. The same holds for “shareware”

which is often offered for free for a trial period only or in a “light” version, so that consumers

can try out the software before they are going to buy it. There is a great deal of freeware and

shareware available, including such well known products as the Adobe Acrobat Reader.

While the open source movement shares some general principles, there are also important

differences in motivations and objectives. For example, the “Free Software Foundation”, whose

founder and most prominent speaker is Richard Stallman, argues that “free software” is (like,

e.g. “free speech”) a moral principle: “Free software is a matter of freedom: people should be

free to use software in all the ways that are socially useful.”4 Restricting the use of software

and not sharing the source code is unethical, and the ultimate goal is “that all published

software should be free software”.5 Other participants in the open source movement have a

more pragmatic point of view: “When programmers can read, redistribute, and modify the

source code of a piece of software, the software evolves” and “this rapid evolutionary progress

produces better software than the traditional closed model”.6 They want to make this case to

the commercial world and are prepared to co-operate with proprietary software developers in

order to foster software development.

If open source software was not protected by copyrights or patents, anybody could take

the software, modify it, obtain a copyright for the modified version, and exclude others from

using it. Therefore, open source software has to rely on the protection of intellectual property

4See http://www.gnu.org/philosophy/ (accessed on May 11, 2002)
5Richard Stallman, “Free Software: Freedom and Cooperation”, speech delivered at NYU, New York, 29

May 2001, http://www.gnu.org/events/rms-nyu-2001-transcript.txt (accessed on May 11, 2002, answer
to last question).

6Open Source Initiative, http://www.opensource.org/ (accessed on May 11, 2002)

3



rights as well. One of the first licenses for open source software was developed by the Free

Software Foundation (FSF), founded by Richard Stallman of the MIT Articifial Intelligence

Laboratory in 1985, and related to the GNU software. This “GNU/General Public License”

(GPL) requires that if somebody wants to use and/or modify a piece of software that is

protected by the GPL, she has to agree to make the source code available to others for free (or

at a nominal fee that may not exceed distribution costs).7 Furthermore, users have to agree

that all enhancements of the code - and even code that combines the open source software

with some other, separately developed software, has to be licensed according to the terms of

the GPL. Thus, the GPL is “viral” in the sense that any program making use of code covered

by the GPL becomes covered by the GPL as well.

An example of a different and more liberal license is the Berkeley Software Distribution

(BSD) license: A user who chooses to redistribute a BSD-licensed program (whether modified

or not) must retain the copyright notices in the program code, but faces no other serious

restrictions. In particular, software licensed under BSD is not viral and does not render

proprietary software, that builds on or interacts with it, open source. There are many other

licenses that have been developed to preclude the commercialization of open source software.

The Open Source Initiative (OSI) publishes a list of the most frequently used licenses and

offers a guide to the terms a software license should (and should not) contain in order to be

considered open source.8

3 Potential Market Failures of the Software Market

3.1 Static Efficiency

In a static market (with a given technology and no innovations) the standard welfare measure

is the sum of consumer surplus and producer surplus.9 Total surplus is maximized if the

good is priced at marginal cost. If the minimum efficient scale is small as compared to the

7The FSF calls this feature of the GPL (and similar lincenses) “copyleft”.
8http://www.opensource.org/licenses/index.html (accessed May 10, 2002)
9Strictly speaking, this measure is appropriate only if there are no income effects. However, Willig (1976)

has shown that even if there are non-zero income effects, the measure of consumer surplus obtained from a
Marshallian demand function serves to approximate the actual welfare change quite closely.

4



size of the market, the competitive price in a long-run equilibrium with free entry equals

marginal cost which in turn equals average cost, so that all firms will make zero profits (which

include a risk-adjusted normal return to capital). However, the production of any substantial

piece of software requires a significant fixed cost (sometimes called first copy cost) in order to

develop the software, while the costs of duplication and distribution are typically very small

and constant or decreasing with the level of output. For large volumes, the largest component

of marginal cost may be support costs, which may have both fixed and constant marginal

components. Thus, the production of a given software product is characterized by economies

of scale, and the market for a given software product is a “natural monopoly”.10 Therefore,

static efficiency requires that the whole market is served by just one firm, and that this firm

charges prices equal to marginal costs.

From a static point of view, open source software has the advantage that it is distributed

for free (or at a small fee reflecting distribution costs), which is socially efficient. A proprietary

software developer cannot price at marginal cost. If she does not charge at least average costs,

where average costs include a risk-adjusted normal return on capital, she will make (expected)

losses. Of course, a profit-maximizing software developer would like to charge higher prices.

However, even if she serves the market as a monopolist, it is not necessarily the case that

prices significantly above average costs can be sustained. There are several reasons why a

monopolist may not be able to achieve supra-normal profits.

• Even if competition within the market is not possible, there may be competition for the

market (Demsetz, 1968, Baumol, Panzar, and Willig, 1982). If there are no barriers to

entry competition for the market forces the incumbent monopolist to price at average

cost in order to prevent the market being taken over by a competitor. Thus, the crucial

question is how large the barriers to entry are in the software market. The fixed costs

that are necessary to develop a software product are largely sunk, so they are a bygone

for the monopolist in the event of entry by a new firm. Thus, the incumbent monopolist

may price below average cost if entry occurs which may turn entry unprofitable and deter

potential entrants. Second, there may be network effects (in particular if the products

offered by the incumbent and by the entrant are not compatible) and switching costs
10Note that increasing returns to scale imply here that the cost function is “strictly subadditive” which is

the formal requirement for a “natural monopoly” in the sense of Baumol, Panzar and Willig (1982, p. 17).

5



on the side of consumers which may prevent them from adopting the entrant’s product

even if it is priced below the incumbent’s software (see Section 3.3 below). On the other

hand, rapid technological progress on the software market may facilitate entry. There are

many examples in the software industry where new products offered by new companies

have driven incumbent products with large market shares out of the market. Therefore,

the threat of entry does impose some restrictions on the pricing policy of incumbent

software producers.

• Software is a durable good. Once installed, it could in principle run forever, and it

“wears out” only due to technological change. Thus, once the monopolist has sold the

software at a high price to those consumers who value it most, she has an incentive to

lower the price in order to sell to those who have not yet bought it but who have a

willingness to pay that is higher than her marginal cost. This implies that over time

prices are going to fall until they reach marginal cost. If consumers anticipate that this

is going to happen, they will wait in order to buy at lower future prices. The Coase

Conjecture11 suggests that this may force the monopolist to lower her price very rapidly

and to sell at close to marginal cost almost instantaneously.

However, the extreme result suggested by the Coase Conjecture is unlikely to apply to

the software market. For example, if there is a constant flow of new customers with

high valuations entering the market, the monopolist’s incentive to lower her price is

reduced.12 Furthermore, if there is rapid technological progress and the monopolist

continues to improve her product, then the software becomes less durable and “wears

out” more quickly, so old customers with high valuations may be willing to upgrade at

high prices. Again, this reduces the monopolist’s incentive to lower the price. Finally,

sometimes the monopolist can use contractual provisions in order to commit not to lower

her price in the future.13

• The monopolist often faces competition from a large stock of older versions of her own

software. Consumers are not going to buy the new version if the cost of this new version

11See Coase (1972) and Gul, Sonnenschein and Wilson (1986)
12See Sobel (1991).
13For example, she can rent rather than sell the software to her customers. In this case, if she lowers the

price, she has to do so for all customers, not just for new ones. Much software can in effect be “rented” through
the payment of periodic license or maintenance fees.

6



exceeds the value added to the older version.

To summarize, there are several constraints on the pricing policy of a proprietary software

developer which may induce her to chare prices significantly lower than monopoly prices.

Nevertheless, open source software is more efficient from a static point of view because it is

priced at marginal cost (i.e. sold at distribution cost or given away for free).

3.2 Dynamic Efficiency

In a dynamic market (with rapid technological change) efficiency requires not only that the

good is sold to all consumers whose willingness to pay is higher than the marginal cost of

producing the good. It also requires that firms have the right incentives to innovate efficiently.

In such a Schumpeterian world, innovation is risky because only those firms will be able

to survive on the market who are more successful innovators than their competitors. Hence,

commercial firms engage in costly innovative activities only if they can protect their intellectual

property and can charge more than average cost in case of success in order to compensate for

the losses in case of failure.

Clearly, the market for software changed very rapidly over the last twenty years. Spurred

by the enormous technological progress in the production of computer hardware many new

and ever more sophisticated software products have been developed. Many software products

that dominated the market in the 1980s and early 1990s have been leap-frogged by new and

better products offered by different software companies and are now almost forgotten. Some

companies maintained or extended their market position by continuously improving the design

and functionality of their software products and by adding many new features. Thus, it is

obvious that innovation and technological process play a crucial role for the development of

the software market.

A profit maximizing firm would have an efficient incentive to innovate if the expected

profit from the innovation just equals the expected net gain of society from this innovation.

In reality, this is very unlikely to be the case. The literature on the incentives for R&D and

innovation has pointed out three external effects that may distort innovation incentives:14

14See e.g. Romer (1991), Grossman and Helpman (1991), and Aghion and Howitt (1992).

7



• The consumer surplus effect stems from the fact that the innovating firm cannot perfectly

price discriminate and therefore cannot capture the entire increase of consumer surplus

that is generated by the innovation. This is a positive externality of R&D that tends to

reduce the incentive to innovate as compared to the first best.

• The business stealing effect is that the introduction of a superior technology makes some

existing products less attractive and therefore takes away some of the rents that were

previously earned by the producers of these old products. This externality is negative.

Note that there is a private but no social return from this rent-shifting, so the business

stealing effect tends to induce too much R&D.

• Finally, there are positive technological spillover effects on other markets and technolo-

gies, because a new technology developed in one market may be usefully applied to other

markets. To the degree that the innovator is unable to fully control the use of her new

ideas by other firms, this R&D effect is a positive externality that tends to reduce the

innovation incentives.

The net effect of these three externalities is ambiguous. It is possible to construct examples

where the business-stealing externality outweights both the consumer-surplus and the R&D

externality, so that the incentives to innovate are too strong.15 However, it is generally believed

that the more much typical situation is for the overall externality of innovations to be positive,

so that the incentives to innovate are too weak. This is particularly plausible in the software

market, where the protection of intellectual property rights is difficult.

What are the incentives of programmers to contribute to the development of open source

software? At first glance, it seems puzzling that open source software exists at all. After

all, there are no direct pecuniary incentives to develop a piece of software that is afterwards

distributed for free to everybody who wants to use it. Some commentators have argued that

the open source community is a “gift culture” (Raymond 2000b) that is motivated by altruism

and reciprocity. According to this view, people contribute to the public good of open source

because they enjoy being part of the open source community and because they want to help

others and to reciprocate to those who have helped them. However, it is not clear why being

15Aghion and Howitt (1992).

8



“part of the community” is more exciting with open source than with any other industry.16

Furthermore, while it is now widely acknowledged that reciprocity does play an important

role for the interaction of people in small groups17 it is very unlikely that altruism and/or

reciprocity provide sufficient incentives to explain the enormous contributions in time and

effort to open source software. After all, we do not observe similar patterns of behavior in

most other areas of economic activity. So what additional incentives motivate programmers

to write open source software?

Many contributors to OSS are sophisticated users. For them, the cost of fixing a bug,

customizing a given software to their own needs, or developing a modest new application is

often fairly small. Most of them learned UNIX (from which many open source programs are

derived) at high school or university, so they do not have to invest in learning a new program.

If they have access to the source code, it is relatively easy to spot weak points and to write

new code for improvements. Furthermore, these improvements yield immediate benefits for

their daily work. The opportunity cost of sharing the new code with others is also small. If

the improvement is modest, it is not worthwhile to copyright or otherwise protect the idea

and try to sell it to other people. Furthermore, the Internet provides a very efficient and

inexpensive way to make the innovation accessible to the public. So why not share it with

other colleagues?18

While this argument can explain why bug-fixing and small improvements are provided by

thousands of programmers from all over the world, it cannot explain why some people devote

an enormous amount of time and effort in developing a major improvement or a completely

new piece of software. Like the writing of commercial code, this has to be done by a small

16See Lerner and Tirole (2002, Footnote 13)
17see e.g. Fehr and Schmidt (2002) for a survey on the recent theoretical and experimental literature on this

topic
18See Johnson (2001) for a formal game-theoretic model of the incentives to voluntarily contribute to the

public good of open source software. The open source movement is not the only user innovation community.
See von Hippel (1988) and Harhoff et.al. (2000) for many other examples of industries in which customers
frequently contribute to the development of new products and production techniques on a voluntary basis.
However, in all of these industries user innovation communities and proprietary innovation coexist. Harhoff
et.al. point out several additional incentives to freely reveal innovations. In particular, a user who made an
innovation may reveal it to the manufacturer in order to induce her to adopt the innovation and improve on
it. Furthermore, by freely revealing an innovation, a user may induce other users to adopt this solution as
well which may set a new “standard” which in turn induces other manufacturers to provide complementary
product improvements. These incentives are more likely to work if their is no competition between users.

9



group of people who coordinate their efforts and work closely together.19

Lerner and Tirole (2002) argue that there are strong signaling incentives that can explain

this behavior. A programmer who solved a difficult problem or contributed an important new

piece of software signals her outstanding abilities to the outside world. She is recognized by

her peers, may get better future job offers, may be invited to participate in commercial open

source projects, or may have better access to the venture capital market if she wants to start

her own business.20 Economic theory suggests that this signaling incentive is stronger the

more visible the performance of the programmer and the more informative the performance

is about her talent (see Holmström, 1999).

This is consistent with several empirical observations. First, giving credit to programmers

is strongly emphasized in the open source movement. Most projects recognize all contributors

on their website and highlight the contributions of the most committed programmers. Ray-

mond (2000b) points out that “removing a person’s name from a project history, credits or

maintainer list is absolutely not done without the person’s explicit consent. ... Surreptitiously

filing someone’s name off a project is, in cultural context, one of the ultimate crimes.”21 Sec-

ond, most open source programs have been written for sophisticated users who can evaluate

the difficulty of the task and the importance of the contribution. In particular, server oper-

ating systems and server applications have done very well, while there is far less mass market

application software written by the open source movement. Third, most open source projects

have a modular structure. This is not only necessary in order to facilitate the cooperation

of many independent programmers who may be spread all over the world. It also highlights

the individual contribution of each programmer. Finally, there is substantial evidence that

contributing to open source did help many programmers to get access to venture capital or to

be offered attractive jobs by commercial software developers.22

19Mockus et.al. (2000) report that 83% to 91% of changes in the Apache code have been written by just 15
top developers.

20These delayed pecuniary incentives are partially acknowledged by open source advocates. Fore example,
Eric Raymond (2000b, Chapter 5) writes: “It can get you a better job offer, or a consulting contract, or a
book deal”. But, according to Raymond, this “is at best rare and marginal for most hackers.”

21This is also emphasized in Point 4 of the Open Source Definition which says explicitly that “authors . . .
have the right . . . to protect their reputations”, http://www.opensource.org/docs/definition.html.

22For example, Lerner and Tirole (2002) report that the founders of Sun and Red Hat had signaled their
talent in the open source world. Their Table 2 summarizes several other examples.

10



Finally, some programmers who devote their time to the development of open source

software are employed by commercial software companies. These companies have an incentive

to invest in open source development, if the open source software is a complement to the

commercial software or hardware they produce. Some firms such as Red Hat, VA Linux

or SuSE provide services and products that are complementary to Linux but that are not

efficiently supplied by the open source movement. If Linux is improved and becomes more

widely adopted, these firms get access to a larger market. Similarly, since server hardware

and server operating systems are complements, server vendors who use operating systems

developed by others benefit. Their profits increase if an open source operating system such

as Linux which is free (in contrast to Microsoft’s Windows) gains a larger market share.23

However, these indirect benefits, that can be captured by commercial firms, are small as

compared to the direct benefits of new or improved open source software that fully accrue to

consumers. Therefore, the commercial companies do have a strong incentive to free ride on

the contributions to open source by others, and their subsidies to OSS development are likely

to remain limited.

Comparing the incentives to innovate for proprietary and open source software developers

it has to be acknowledged that the open source movement does provide some incentives for

innovations that proprietary software developers find it difficult to mimic. First of all, com-

mercial software developers cannot make the source code available to everybody if they want

to protect their intellectual property rights. Thus, with proprietary software it is impossible

for users to fix bugs that they encounter or to customize the software to their own needs.

Open source software lowers the cost of innovations by making the source code available and

encourages large-scale parallel bug fixing.24 Furthermore, as Lerner and Tirole (2002, p. 25)

point out, “commercial companies will never be able to duplicate the visibility of performance

reached in the open source world. . . . (They) do not like their key employees to become highly

visible, lest they be hired away by competitors. But, to a large extent, firms also realize

that this very visibility enables them to attract talented individuals and provides powerful

23There are several other more or less successful open source strategies employed by commercial firms. See
Lerner and Tirole (2002) for a discussion.

24Some commercial software companies try to partially mimic open source by promoting widespread code
sharing within the company and by making the source code available to some core customers (under restrictive
conditions).

11



incentives to existing employees.” However, comparing the private benefits accruing to open

source software developers to the increase in social benefits (i.e. consumer surplus) that can

be generated by innovative new software, it is apparent that the incentives for innovation are

far too small in the open source mode.

A major advantage of the proprietary mode is that it allows proprietary software devel-

opers to capture at least some of the fruits of their efforts, i.e. to turn at least some of the

consumer surplus that is generated by their innovations into profit. Like in all other industries,

the profit motive provides a very powerful incentive to innovate that is not present in the open

source world. As Schumpeter (1942, p. 110) pointed out:

“It is quite wrong . . . to say, as so many economists do, that capitalist enterprise

was one, and technological progress a second, distinct factor in the development

of output; they were essentially one and the same thing or, as we may also put it,

the former was the propelling force of the latter.”

Twenty years later, Schmookler (1966, p. 199) summarized his empirical findings on what

drives technological progress:

“Despite the popularity of the idea that scientific discoveries and major inventions

typically provide the stimulus for inventions, the historical record of important

inventions in petroleum refining, paper making, railroading, and farming revealed

not a single, unambiguous instance in which either discoveries or inventions played

the role hypothesized. Instead, in hundreds of cases, the stimulus was the recogni-

tion of a costly problem to be solved or a potentially profitable opportunity to be

seized; in short, a technical problem or opportunity evaluated in economic terms.”

There is no reason to believe that the software industry differs fundamentally from all

other industries when it comes to the incentives to innovate. If it had not been possible to

appropriate the profits of a risky project of software development, the rate of technological

progress would have been much lower in the software industry over the past decades.

But it is not just the amount of effort and investments in innovation that is important. It is

also the direction of technological change and how the innovations respond to what consumers

12



want. Again, the open source mode has some advantages in this respect. In particular, it

allows sophisticated users to develop and customize software to their individual needs.

However, there are also strong disadvantages of open source. A proprietary software

developer has a strong incentive to respond to the needs of all potential users of her software.

The more valuable the software is for her customers and the more consumers will benefit from

it, the higher is the price that she can charge and the more copies of the software she will

sell, so the higher is the profit that she is going to make. Therefore, a proprietary software

developer has strong incentives to engage in market research in order to identify the needs of

her customers and to adopt and develop the software as closely as possible to what consumers

want.

This incentive is absent in the open source mode. Open source software developers are

sophisticated users and IT professionals who respond to their own needs and the needs of other

sophisticated users and IT professionals. Furthermore, they want to get recognition from their

peers who are again sophisticated users and IT professionals. Writing software for unsophisti-

cated end-users involves many tasks that may be intellectually unsatisfying (such as providing

a user friendly interface or a detailed and easy-to-read documentation) and that are poorly

suited to get peer recognition. Furthermore, the more applied a software is, the more impor-

tant it is to have detailed knowledge about the background of the application. For example, in

order to write a good accounting software, it is not only necessary to have good programmers,

but detailed knowledge about the rules and requirements of accounting are at least equally

important. This requires the close collaboration of IT professionals with professional accoun-

tants and other experts in several different fields. Similarly, the development of a sophisticated

computer game requires the collaboration of programmers with graphic designers, marketing

experts, etc. Even the development of an office software, such as a word-processor or a spread

sheet, requires detailed research on the needs and preferences of the least sophisticated users.

The open source mode does not provide sufficient incentives to engage in these activities.

Thus, it is not surprising that the open source movement has been most successful in the

development of operating systems and server application software that respond directly to the

needs of technicians and IT professionals, while it has been much less successful in developing

end user applications. To be sure, there are some end user applications that are licensed as

13



open source. However, the most successful of these applications have been developed in the

proprietary mode and have been turned open source only after they failed commercially (e.g.

the Star Office Suite or the Netscape Internet browser).

3.3 Network Effects and Switching Costs

It is often argued that there are market failures on the software market due to strong network

effects and switching costs, and that these characteristics of the software market restrict

competition. In this section we give a brief summary of the main effects that can arise if

network effects and/or switching costs are present. As we will see, the problems that arise

apply largely to both proprietary and open source software.

3.3.1 Network effects

Network effects arise if there is a complementarity between the adoption of a good by different

customers: Additional adoption makes existing adopters better off (i.e., increases their total

utility from adoption) and increases the incentive to adopt (i.e., increases their marginal utility

from adoption). The software market is characterized by both “direct” and “indirect” network

effects.25

• Direct network effects arise if my utility from using the good is directly increased if other

people use this good, too. For example, if I want to share files with other people, it is

important to me that my software and other people’s software are compatible with each

other.

• Indirect network effects arise if wider adoption benefits adopters by changing the behavior

of third actors, e.g. sellers of that good, or sellers or buyers of some related goods.

For example, if an operating system is widely adopted, then other software companies

who write application software have a stronger incentive to develop software that is

compatible with this operating system.

Network effects often give rise to external effects:26 If customer A decides whether or not
25There may also be pecuniary network effects, e.g. if the fact that more people adopt a certain good reduces

its price due to reduced production costs or improved terms of trade for consumers.
26Note that not all network effects are external effects. First of all, network effects may be pecuniary.

14



to adopt a certain software, he does not internalize the effect his adoption decision has on

other customers. This suggests that there will be under-adoption of the network good. Even

if priced at marginal cost, too few consumers will buy the network good because they do not

take into account the positive external effects of their adoption on other consumers.

We will say that network effects are strong if they outweigh preferences for product A

versus product B, i.e. each consumer wants to adopt A if all other consumers adopt A, even

if this consumer would have preferred that everybody adopts software B.27 In this case “all

adopt A” and “all adopt B” are both Nash equilibria of a coordination game and efficiency

requires that the entire market adopts the same product. We will say that network effects are

weak if for at least two products there exist group of customers who prefer this product no

matter what all other consumers adopt.

With strong network effects there may be coordination problems. If consumers have

different expectations about which software product will be the standard in the future, several

incompatible products may coexist on the market for an extended period of time which may

be very inefficient. For example, a potentially serious problem of open source software is

“forking”. If software developers disagree on how a certain software should be developed, it

sometimes happens that different groups of software developers develop different versions of

a software that are not compatible with each other. A proprietary software developer who

owns and controls his software can easily prevent this from happening by imposing which

development path has to be followed. In contrast, open source software is not controlled by

anybody, so it is much more difficult to prevent forking. The open source movement recognizes

this problem and tries to solve it by imposing a “social norm” against forking.28

Even if consumers manage to coordinate their expectations, they may still fail to coordi-

nate on the most efficient network good. For example, if there are two competing products,

then it is an equilibrium if all consumers buy software A, but it is also an equilibrium if all con-

sumers buy software B. Which one is going to be adopted depends on which good consumers

Secondly, it may be possible to internalize network effects through contractual provisions. See Farell and
Klemperer (2001, pp. 44-45).

27See Farell and Klemperer (2001, p. 48).
28Raymond (2000b) discusses at length why forking is a serious problem of the open source movement and

why there should be a “taboo” against it: “There is strong social pressure against forking projects. It does
not happen except under plea of dire necessity, with much public self-justification, and with a renaming.”

15



expect to be adopted. Even if everybody agrees that software A is strictly superior to software

B, if everybody expects software B to be adopted, this expectation will be self-fulfilling. Thus,

with network goods there may be a market failure if consumers coordinate on the “wrong”

software.

However, there are several arguments suggesting that consumers may be able to coordinate

efficiently. Let us first consider the case where the network goods can be Pareto-ranked, i.e.

all consumers agree which good offers the highest surplus.

• If consumers’ adoption decisions are sequential, a simple backward induction argument

suggests that they will coordinate on the Pareto-efficient network good. This is most

easily understood in the case of just two consumers. The second consumer will adopt

whatever the first consumer bought. Anticipating this, the first consumer will buy the

network good which offers the highest surplus. This argument is particularly convincing

if there is one large customer (or a large group of customers who can coordinate their

behavior) who moves first.

• If consumers can coordinate their behavior (by writing contracts on which good to adopt

or simply by cheap talk) they will coordinate on the good that offers the highest surplus.

• If expectations track surplus, i.e. if each consumer expects that all other consumers

will adopt the good that offers the highest social surplus, then everybody will adopt the

Pareto superior good.

But it is also possible that consumers coordinate on the wrong good, in particular if

there is inertia in adoption. For example, it could happen that after good A has been widely

adopted a new good B is developed that offers a higher surplus on a clean-slate comparison.

But if everybody expects everybody else to stick to good A, nobody is going to adopt the

superior good B. However, if there is a large installed base of A and if consumer’s did make

relationship specific investments that are lost if they switch to B (see the discussion of switching

costs below), it may be more efficient that everybody sticks to A rather than switches to B.

If the network goods are differentiated and if some consumers prefer that everybody uses

software A while some other consumers prefer that everybody uses product B, the analysis

16



gets a little more complicated. Suppose again that network effects are strong in the sense

that it is efficient that everybody adopts network good A. If expectations track surplus in

the sense that everybody expects that eventually the most efficient network good will prevail,

or if a critical mass of consumers who prefer software A can coordinate their behavior, then

software A will again be adopted by everybody. However, if early adopters prefer good B,

later adopters may be induced to buy good B as well even if this is socially inefficient. But,

again, switching costs of early adopters have to be taken into account when the efficiency of

moving to good A is assessed.

Thus, strong network effects make markets “tippy”: one network will tend to acquire an

overwhelming market share. If consumers manage to coordinate on the right network, this

monopolistic outcome is socially efficient. However, which network is going to win may be

history dependent and may be influenced by large early movers, such as the government or a

group of customers who coordinate their behavior by setting standards.

If network effects are “weak” so that two or more networks can coexist in the market, for

example because the goods are strongly horizontally differentiated, then network externalities

are much smaller. If network A wins an additional customer from network B, this has a

positive external effect on all members of network A but a negative external effect on all users

of network B. The sign of the net effect depends on the relative sizes of the two networks. If

network A is small as compared to network B, then there are relatively few people who benefit

from the positive externality of the customer who switched to A, while there are many people

who suffer in network B, so the net effect is likely to be negative. Two networks can also

coexist in the market if they are compatible with each other. In this case the conventional

lesson applies that market power depends on the degree of product differentiation.

The discussion so far completely ignored pricing. There is a large literature on pricing

with network effects, but this literature does not offer a clear conclusion.29 Network effects

may weaken price competition, but they may also intensify price competition as compared

to a situation without network effects, because each firm wants to acquire a critical mass of

consumers that tips the balance in its favor.

29See Farell and Klemperer (2001) for a survey.

17



3.3.2 Switching Costs

A product has switching costs if a buyer will buy it repeatedly or if he will buy complementary

goods from the same seller in the future. The switching cost arises because the consumer has

made an investment specific to the seller that would have to be duplicated if he switches to a

different seller.30 This investment may be in equipment, in learning how to use the software,

in buying complementary software that is not compatible with the other product, in setting

up a relationship with the seller, etc.31 After consumers are locked in with one seller, this

seller may have an incentive to exploit his ex-post monopoly power. However, this does not

necessarily imply a market failure:

• If firms can commit to future prices and qualities, competition will be for a “lifecycle”

of purchases. Each consumer looks at which seller offers the highest net surplus from

the bundle of goods she wants to consume (now and in the future), and prices will be

driven down to the competitive level.

• Even if such complete contracts on future prices and qualities are not feasible, the

outcome may still be highly competitive. To see this suppose that there are two firms

each offering two complementary goods, e.g. an operating system and an application

software and that a consumer wants to buy the two goods in sequence. If she bought

the OS from firm A, she would have to incur a switching cost if using the application

software of firm B. Thus, firm A will charge a price for the application software that

exploits the switching cost of this consumer and earn a positive rent in the application

software market. However, the prospect of this rent will intensify competition for the

first good and drive down its price below cost. This price pattern of “bargains followed

by ripoffs” is familiar from many other goods with switching costs.32

Nevertheless, switching costs may give rise to inefficiencies. In particular, if sellers

cannot price discriminate perfectly, there may be socially excessive consumption of the

first good that is priced below cost and too little consumption of the second good that

30See Farrell and Klemperer (2001, p. 12).
31In the following we will assume that switching costs are real social costs. Switching costs could also be

contractual or purely pecuniary, e.g. in airlines’ “frequent-flyer” programs or in “loyalty contracts” that offer
rebates for repeated purchases.

32A well known example is the strategy to give away the razor for free in order to sell more razor blades.

18



is priced above cost. Furthermore, there may be inefficient switching. If a consumer is

a large fraction of the market, it may be profitable to use goods from both sellers and

to incur the switching cost in order to affect the terms of trade for future goods. While

this may be a profitable strategy in markets such as the defense industry where there

are few buyers with substantial market power, it does not seem to make much sense in

the market for packaged software. Even the software purchases of a big company or of

the government of a large country are small as compared to total market demand, and it

seems unlikely that they can affect prices this way. Furthermore, it is inefficient because

the relationship specific investments have to be duplicated.

The main concern about switching cost is their effect on market entry. It is often claimed,

that high switching costs make it too difficult for newcomers to enter the market. But, again,

the effect is ambiguous:

• If there is a constant flow of new customers, switching costs may make small scale entry

too easy. Because the incumbent firms have a stock of customers who are locked in

already, they are not willing to lower their prices in order to compete for new customers

(the “fat cat” effect). Therefore, a new entrant with no customer base can enter the mar-

ket and sell to new customers even if this entrant has higher costs than the incumbent.

In this case there would be too much entry from a social point of view.

• On the other hand, if entry has to be large scale (e.g. because of large economies of

scale or due to network effects) it may be very difficult to take over the entire market.

However, this does not imply a market failure. Even if the entrant can produce the

good at a lower total cost than the incumbent, switching is inefficient if the total cost

saving is smaller than the switching costs that would have to be incurred by all existing

customers. If switching costs are large and real social costs, it is actually efficient that

there is no market entry.

• Entry may also be too hard if switching costs are created artificially by the incumbent,

for example if the switching costs are contractual (as with “loyalty” programs) or if the

incompatibility between different products is not warranted for technological reasons but

imposed by the incumbent to deter potential entrants.

19



Entry may also be too easy or too hard for other reasons. For example, it may be too

hard if entry reduces the market price so that some of the surplus from entry is captured by

consumers, or it may be too easy if its main effect is to shift profits from the incumbent to

the entrant. However, these arguments have nothing to do with switching cost and they are

not specific to the software market.

To summarize, if there are significant switching costs it is likely that locked-in consumers

are charged prices above costs by a proprietary software developer, that there is little actual

switching taking place, and that large-scale entry is difficult and rare. However, this does not

imply that markets with switching costs are uncompetitive or that there is a market failure.

As we have shown, competition on switching-cost markets can be very intense and need not

generate supra-normal profits.

The general conclusion is that the effect of network effects and switching costs on the

market for software is largely independent of whether the software is proprietary or open

source. Network effects tend to favor market concentration. However on most software markets

at least two products maintain significant and stable market shares over extended periods of

time, either because the two products are largely compatible with each other or because

consumer preferences are sufficiently differentiated, so for most software markets network

effects seem to be “weak”. There may be some software products with “strong” network

effects in the sense that it is socially efficient that a single product dominates the market.

These markets are “tippy”: which software product is going to be adopted may depend on

what large early movers are doing. Even if, at a later stage, a new software is developed that

is technologically superior on a clear-slate comparison, it may be socially inefficient to switch

to the new software if there is a large installed base and if switching costs are high.

One could argue that heightened anti-trust scrutiny is warranted if firms choose to make

their products incompatible or to have switching costs (by imposing appropriate contracts on

customers or through product design) even though this is not technologically required. But,

even in this case, it is not clear that the government should impose compatibility standards

or force the firm to lower switching costs, because this may expropriate the incumbent’s ex

ante investments and discourage future innovations.

20



4 Scope for Government Intervention and Possible Distortions

In recent years there have been many political initiatives trying to foster the open source

movement and to spread the use of OSS in public administration and at schools and univer-

sities. For example, in Germany an initiative called “Bundestux” of members of parliament

from all major political parties declared that the “introduction of a free operation system

in the Bundestag” to be a “necessary signal for Germany” for reasons of “basic regulation,

competition and location policy, as well as for democratic reasons.”33 In France, three French

senators presented a draft bill to the Senate, seeking a ban on the use of proprietary software in

government departments. The proposal was defeated, but in August 2001 French prime min-

ister Lionel Jospin handed down a decree creating the Agency for Technologies of Information

and Communication in Administration, one of whose mission is “to encourage administrations

to use free software and open standards.” Several Italian municipalities, including Florence

and Pavia, have passed motions mandating the use of “software libero”.34 The government of

Peru plans a bill that “makes it compulsory for all public bodies to use only free software”.35

The Taiwanese government has just passed a “National Open Source Plan” that requires all

schools and public agencies to switch to open source software within the next three years.36

In Norway, Statskonsult (the Norwegian directorate on public management) has prepared a

report on the usability of Linux in the Norwegian public sector. The main conclusion is that

the government should support the development of open-source software to promote alterna-

tives to current software and that it should encourage schools to take up Linux.37 Finally,

the European Commission has recently published an extensive study into the use open source

software in the public sector.38

While there is a lot of public support for these policies, they are not uncontroversial.

Free market advocates distrust any government intervention. They argue that the software

33See heise online, ”Tux Takes its Seat in Germany’s Federal Parliament”, published February 28,
2002,http://www.heise.de/english/newsticker/data/anw-28.02.02-006/ (accessed May 27, 2002).

34See Paul Festa (2001), Nations Uniting for Open Source, ZDNet, August 28, 2001,
http://news.zdnet.co.uk/story/0,,t269-s2094089,00.html (accessed May 27, 2002)

35See Networld, May 6, 2002, http://www.golem.de/0205/19653.html (accessed May 27, 2002).
36Süddeutsche Zeitung, June 5, 2002, p. 26.
37See http://www.statskonsult.no/publik/publikasjoner/2001-07/r2001-07eng.pdf for an English

translation of the report.
38See http://www.idaprog.com/?http&&& ag.idaprog.org/Indis35Prod/doc/333.

21



market, like any other market, should not be interfered with, except possibly by antitrust

policy. Some proponents of the open source movement, in particular those with a libertarian

background, come to the same conclusion: They also deeply distrust any public intervention

by bureaucrats and politicians and believe that the OSS “bazaar”39 will succeed on its own

merit. Public policy should be limited to promote compatibility standards that serve public

needs, and not specific groups or corporate interests, including OSS.

In this section we will discuss the economic merits of various policies of the government

that are being suggested to support open source software.

4.1 Direct Subsidies for Specific Open Source Projects

The government could directly support a particular open source project either by offering

direct subsidies to this project or by employing computer experts at universities or govern-

ment agencies to support it. To be sure, in all developed countries a large fraction of R&D

expenditures is paid for by the government. However, the government should restrict itself

to subsidizing basic research. Basic research is a public good with strong positive external

effects that will not be provided by the market. It is typically unclear what the results of

basic research are going to be, how long it will take to find them, and what they may eventu-

ally be used for. The potential positive spillover effects of basic research are widespread and

very difficult to internalize by commercial companies, so they have little financial incentive

to engage in it. This is why basic research has to be carried out at universities or publicly

financed research labs.

The development of most software products, however, is applied R&D for which these

problems are much less severe. Applied R&D is directed to the development of a specific

product with certain characteristics or the solution of a well defined technological problem.

Here, the outcome of the R&D process is more predictable and it is much easier to internalize

positive spillover effects by seeking patent or copyright protection and by licensing the newly

developed technology to third parties. Therefore, applied R&D can be provided by the market.

39This term is used by Eric Raymond (2000a), “The Cathedral and the Bazaar”, wo argues that the very
decentralized (bazaar-type), bottom-up governance structure of the open source movement is superior to the
centrally organized, top-down governance structure of large commercial software companies.

22



Furthermore, for applied R&D it is very important that the product is developed towards

the needs of potential customers. A profit maximizing firm has a strong incentive to do so.

The better its product is adapted to the needs of its customers, the more consumers are

interested in buying the product and the higher is the price that can be charged for it. Thus,

a commercial company will focus on what customers want, and it will try to do so in the most

cost effective way. Only if it develops a better product at lower cost than its competitors, will

it be able to survive on the market. In contrast, a government sponsored research lab does

not face the constraints of the market and has much less incentives to focus on customer needs

and cost efficiency.

Another problem with public subsidies to applied R&D is that it invites rent seeking

activities. A project that wants to get public funds does not have to beat competing projects

on the market, it has to beat them by lobbying for stronger political support. Researchers

typically do not like to do this. In order for their projects to survive, they sometimes accept

the support of large commercial companies who may have a somewhat different agenda. There

are many examples of well intended scientific projects that got captured by large companies

who then managed to acquire vast amounts of public subsidies (e.g. in the space, defense and

nuclear industries).

While the arguments given so far apply to all industries, there are some additional,

important argument that stem from the specific characteristics of the software market. We

have seen in Section 3 that there may be strong network externalities in software markets

that make markets “tippy”. Because of these network externalities, one product will capture

the lion share of the market. If consumers coordinate on the right product, this outcome

is also efficient. However, which product is going to make it depends on the expectations of

consumers that may in turn be affected by the behavior of large players such as the government.

Therefore, even modest subsidies to one particular project may have a strong impact on the

market outcome. In the extreme, government support for one project could make the market

tip to another equilibrium in which the government sponsored product drives other products

out of the market. But governments have a poor track record in picking winners through

“industrial policies”. The government has neither the ability nor the right incentives to decide

what the most efficient software product is. This should be left to the market, and the

23



government should restrict itself to providing a level playing field.

Finally, if the government decides to subsidize some basic research on software develop-

ment, it should make sure that this research is broadly disseminated and that it can be used by

everybody. Thus, publicly sponsored software should be put in the public domain or protected

by the BSD or other liberal licenses. Support for projects that are licensed under the GPL is

unsuitable in this respect. Because of the viral nature of the GPL, only other GPL software

can use it. This encourages the development of two incompatible networks with significant

welfare losses for consumers.

4.2 Adopting Open Source Software in the Public Sector

Several governments are currently considering to prohibit government agencies from using

proprietary software if an alternative open source software exists and to force schools and

universities to switch to open source.

The proponents of this policy argue that open source software is qualitatively better than

proprietary software and that the total cost of ownership (including the costs of maintenance

and technical support) is lower. If this is the case (which may well be possible for some software

applications) then government agencies as well as private firms and consumers should be happy

to switch to open source products and no coercive actions by the government are needed to

induce them to do so.

However, in some cases open source does not seem to be the best and most cost effective

solution. For example, the German Bundestag ordered a study from an independent con-

sulting firm, INFORA (based in Berlin), to compare five different software solutions (ranging

from pure open source to pure proprietary software) for the computer infrastructure used by

all members of the Bundestag. INFORA recommended a solution that is largely based on

proprietary software and uses Linux only as E-Mail-Server and Groupware solution. It argued

that “Open Source solutions are yet insufficient for the requirements of the parliamentarians”.

Nevertheless, after a heated debate accompanied by intense lobbying activities from both,

proprietary software developers and the open source movement, the Bundestag decided that

the solution for the 150 servers of the Bundestag will largely be one based on Linux (whereas

that for the 5000 desktop computers will initally feature Windows XP). This solution is con-

24



siderably more expensive than the one suggested by INFORA and cannot be justified on the

merits of open source software alone.40

Therefore, proponents of a move to open source sometimes rely on the additional argument

that Open Source Software should be adopted in order to strengthen a second source that puts

competitive pressure on the incumbent proprietary software developer. It is argued that this

is desirable in order to force the incumbent to lower her prices.

However, while it is clearly true that the existence and rapid development of the open

source movement puts competitive pressure on proprietary software developers and constrains

their pricing behavior, this does not imply that the government should intervene on the market

by favoring open source software.

Let us first consider the case where network effects are “strong” in the sense that only one

product will capture the lion share of the market. In this case, the government could make the

market tip. In particular, if it forces schools and universities to adopt open source software,

it will significantly lower the costs of students to learn how to work with OSS. If there are

high switching costs to move to proprietary software afterwards, OSS may capture the entire

market even if it is not qualitatively superior to proprietary software. Thus, it may be the

government that picks the winner on this market. Second, if a significant part of the market

is directed to open source, the current and future profits of proprietary software companies

are significantly reduced. Therefore, they have lower incentives to innovate. Third, this policy

may discourage the entry of other proprietary software developers if they feel that they cannot

compete with the open source software that is favored by the government. Finally, if the OSS

favored by the government is licensed by the GPL or other viral licenses, which make it legally

difficult for proprietary software developers to make their software compatible with OSS, then

the government fosters a development in which there are two incompatible networks on the

market. This is inefficient, because significant positive network effects are lost, and it may

reduce competition on the market.

The less extreme and probably more realistic case is where network effects are “weak”

40It is estimated to cost an additional Euro 80 000 per year. See heise online, February 27,
2002, “Open Source im Bundestag als ‘strategischer Vorteil”’, http://www.heise.de/newsticker/data/
odi-27.02.02-000/ (accessed June 2, 2002) and heise online, February 28, 2002, “Tux takes its Seat in
Germany’s Federal Parliament”, http://www.heise.de/english/newsticker/data/anw-28.02.02-006/.

25



and /or software products are largely compatible with each other so that two or more products

can survive on the market in the long run. Even in this case, it is not clear that a move to

open source by the government is going to increase competition and to lower prices. In fact,

in the next subsection we present a very simple and natural model that shows that the exact

opposite may happen.

4.3 A Simple Model of Government Adoption of OSS in a Software Market with

Horizontal Product Differentiation

Consider a software market on which two software products are offered, proprietary software

(PS) and open source software (OSS). The proprietary software producer maximizes profits,

while the open source software developer sells at marginal cost which is normalized to 0.

We will assume that the size of the market is fixed and that the two software products are

compatible with each other, so that we can ignore network externalities. There are three

groups of customers. Some customers (of mass Np) will always buy the proprietary software,

some (of mass No) will always buy the open source software, and some customers (of mass Nu)

may buy either of the two products. We model the preferences of these last customers with a

simple Hotelling model of horizontal product differentiation. They are uniformly distributed

on the unit interval. A consumer at location x ∈ [0, 1] gets a net utility from buying the

proprietary software of

Uu(PS) = vp − tx− p (1)

where vp reflects her gross utility from using the software, t · x > 0 is her “transportation

cost” (e.g. her cost of learning how to use this software or the cost of adapting other software

applications), and p is the price that she has to pay for the proprietary software. If this

consumer buys the OSS, her net utility is given by

Uu(OSS) = vo − t(1− x) (2)

where v0 is her gross utility from the open source software which may be larger or smaller

than vp. Note that OSS is priced at 0.

Consumers differ only in their location, x. In the following we will assume that both

26



software developers serve some part of the undecided customers in equilibrium.41 Thus, the

marginal consumer, x, who is just indifferent between buying PS or OSS is characterized by

vp − tx− p = vo − t(1− x) (3)

which yields

x =
vp − vo + t− p

2t
. (4)

Thus, the proprietary software developer maximizes

Πp = p[Np + xNu] (5)

Substituting (4), the first order condition for the profit maximizing p∗ yields

p∗ =
vp − vo + t

2
+

tNp

Nu

. (6)

Substituting (6) in (4) and in (5) we get

x =
Nu(vp − vo + t)− 2tNp

4Nut
(7)

and

Π∗ =
[Nu(vp − v0 + t) + 2tNp]

2

8tNu

. (8)

Suppose now that the government decides to force some agencies or schools and universities to

adopt the open source software, even though they may have preferred to buy the proprietary

software. We can model this as an increase of No at the expense of Nu, i.e. ∆No = −∆Nu > 0.

The effects of this policy are described in the following proposition:

Proposition 1 If ∆No = −∆Nu > 0, then the market share of proprietary soft-

ware is reduced and the price for proprietary software goes up. The welfare effect

of this policy is unambiguously negative, i.e. all players (consumers, producers,

and the government) are worse off.
41This is the case if it is neither optimal for the proprietary software developer to focus just on customer

group Np, which requires that

vpNp <
[Nu(vp − v0 + t) + 2tNp]2

8tNu
,

and that it is not optimal for the proprietary software developer to capture all of the undecided customers,
which requires that

(vp − vo − t)(Np + Nu) <
[Nu(vp − v0 + t) + 2tNp]2

8tNu
.

Both conditions are satisfied if, e.g., Np is not too large as compared to Nu and vp − vo is not too large as
compared to t.

27



The proof of the proposition and its intuition are straightforward. Differentiating (6) and

(7) with respect to Nu yields
dp∗

dNu

=
−tNp

N2
u

< 0. (9)

and
dx

dNu

=
(vp − vo + t)4Nut− 4t[Nu(vp − vo + t)− 2tNp)

8N2
ut2

> 0 . (10)

Thus, if the market of undecided consumers shrinks, the proprietary software developer will

focus more on the customer group Np and the competition for the undecided consumers is

reduced. Therefore, she will raise prices and lose market share.

The proprietary software developer is worse off after the policy change. To see this

formally note that

dΠ

dNu

=
2[Nu(vp − vo + t) + 2tNp](vp − vo + t)8tNu − 8t[Nu(vp − vo + t) + 2tNp]

2

[8Nut]2
. (11)

This term is positive if and only if

Nu(vp − vo + t) > 2tNp (12)

which is implied by x > 0. Consumers also suffer, because they face higher prices. Finally,

the government is worse off, because some of its agencies have been forced to adopt OSS

even though they would have preferred to buy proprietary software. Furthermore, all other

government agencies suffer also from higher prices and less competition on the market for

undecided customers.42

Let us now consider how the incentives to innovate are affected by this policy. Suppose

that before the market game described above is played, there is a stage 0 at which the propri-

etary software developer can increase vp by y if he invests c(y) in R&D, where c(y) is strictly

increasing and convex in y. Thus his profit in the market game is given by

Π∗(y) =
[Nu(vp + y − v0 + t) + 2tNp]

2

8tNu

− c(y) . (13)

Differentiating with respect to y and simplifying terms yields the following first order condition

for the profit maximizing investment in R&D:

dΠ∗(y)

dy
=

Nu(vp + y − v0 + t) + 2Np

4t
− c′(y) = 0. (14)

42The open source software developers make zero profits before and after the policy change, so they are not
affected. However, they may derive some non-monetary benefits from the wider adoption of their software
product.

28



We are interested in the question of how the incentives to innovate are affected if the govern-

ment increases No at the expense of Nu. Using the implicit function theorem, we get

dy

dNu

= −
d(14)
dNu

d(14)
dy

(15)

The denominator is negative which is implied by the second order condition of the profit

maximization problem. The numerator is given by

d(14)

dNu

=
vp + y − vo + t

4t
> 0 . (16)

Thus, we get

Proposition 2 If the government reduces Nu by forcing some agencies to adopt

OSS, the incentives of the proprietary software developer to improve the quality of

her software are reduced which further reduces the welfare of all market participants.

Note that if the government decides to adopt OSS, this does not imply that open source

developers are going to innovate more or develop new open source software. Because OSS is

given away for free, there is no financial incentive for them to do so.

To conclude, this simple model demonstrates that forcing government agencies to adopt

open source software need not increase competition and foster the development of new and

better software, but it may have the exact opposite effects. Competition is reduced because

the decision by a significant part of the market about which software to adopt is politically

determined and thus independent of prices and qualities that are offered by the contestants.

4.4 Subsidies for Institutions that Coordinate Open Source Development

The government could subsidize institutions of the open source movement that try to coordi-

nate software development and standard setting. An example is BerliOS, a mediator for open

source developers and customers, that is co-funded by the German federal government and

private companies such as Hewlett-Packard and Linux Information Systems.43 This policy
43“The main goal of BerliOS is to support the different interest groups in the area of Open Source Software

(OSS) and thereby to offer a neutral mediator function. The target groups of BerliOS are on one hand the
developers and users of Open Source Software and on the other hand commercial manufacturers of OSS”, see
http://www.berlios.de/index.php.en, accessed May 31, 2002.

29



may have some merit, in particular if the role of such an institution is neutral towards any

particular open source project and restricted to encouraging open standards and compatibility

with open source and proprietary software. Thus, as argued above, the government should

not promote open source projects that are licensed by the GPL which makes this software

incompatible with proprietary and other open source software.

However, the basic problems of any government intervention remain. It is not the job of

the government to decide which software is going to be the standard of the future. Further-

more, any financial support to particular projects is going to invite rent seeking activities and

the decision on which projects to promote will be biased by political pressures.

5 Conclusions

In this paper we have shown that open source software and proprietary software do have

different impacts on the market outcome. Open source software is priced at marginal cost,

which is efficient from a static point of view. However, innovation and technological progress

have been extremely important for the software market since its very beginnings, and this is

likely to remain so. From a dynamic perspective, marginal cost pricing is inefficient, because

it gives insufficient incentives to software developers to engage in R&D. To be sure, there are

significant incentives for professional programmers to contribute to open source software, in

particular to fix bugs and to adopt software to their particular needs. However, the social

benefits of a new and innovative software product are far larger than the modest private

benefits that an open source contributor reaps. Furthermore, a proprietary software developer

has a strong financial incentive to write software that is as closely adapted to the needs of all

consumers, while open source software developers tend to be more responsive to the specific

needs of other sophisticated users and IT professionals.

Therefore, despite the impressive record of open source software development in recent

years, it cannot fully replace proprietary software. If we want that software development

to continue to flourish, and we want better and more sophisticated software solutions to be

developed for new socially useful applications, then the profit motive is crucially important to

spur this innovation. The profit motive aligns the interests of the software developer and the

30



interests of society. In order to be able to make high profits, the proprietary software company

has to make its software as useful as possible to as many consumers as possible. As Adam

Smith put it more than two centuries ago:44

“It is not from the benevolence of the butcher, the brewer, or the baker that

we expect our dinner, but from their regard to their own interest. We address

ourselves, not to their humanity but to their self-love, and never talk to them of

our own necessities but of their advantages.”

This powerful incentive is largely absent for open source software developers.

Nevertheless, OSS is an important complement to proprietary software. For some software

products the open source solution seems to be qualitatively better or at least more cost efficient

than the proprietary software solution, and on some software markets OSS has already a

dominant market share by some measures (e.g. the Apache web server or Sendmail). For some

other products it is still unclear what the superior solution is going to be. For these products,

open source is putting strong competitive pressure on proprietary software developers. This

is beneficial because it reduces prices and spurs competition in quality and innovation.45

However, the government should not interfere with the market and artificially favor any

specific product or open source software as a whole. If there are strong network effects,

the market equilibrium depends on consumers’ expectations about future adoption decisions

of other players. In this case a government intervention may make the market tip in one

direction. Like in any other market, it is not the job of the government to pick winners and

losers. Furthermore, if network effects are less strong and if two competing products are going

to stay in the market, artificially favoring one product by requiring government agencies to

buy this product may actually reduce competition, increase prices and lower innovation and

social welfare.

Thus the government should restrict itself to subsidize basic research on software tech-
44Adam Smith (1776), Book 1, Chapter 2.
45Many empirical economists claim that there is an inverted U-shaped relationship between the degree of

competition (as e.g. measured by the number of competitors) and the incentives to innovate (see Scherer and
Ross, 1990, for a survey). Thus, incentives are strongest if there are just a few firms who fiercely compete
for the market. See Schmidt (1997) for a model of managerial incentives to innovate and to reduce costs that
captures this effect.

31



nology at universities and other academic institutions in order to promote new scientific de-

velopments that could be the basis for new products, no matter whether proprietary or open

source, and to facilitate standard setting and encourage compatibility.

32



References

Aghion, Phillipe, and Peter Howitt, 1992, A Model of Growth through Creative Distruction,

Econometrica, Vol. 60, 323-351.

Baumol, William J., Panzar, John C., and Willig, Robert D., 1982, Contestable Markets and

the Theory of Industry Structure, New York: Harcourt Brace Jovanovitch.

Bessen, James, 2001, Open Source Software: Free Provision of Complex Public Goods, mimeo,

Research on Innovation.

Coase, Ronald H., 1972, Durability and Monopoly, Journal of Law and Economics, Vol. 15,

143-149.

Demsetz, Harold, 1968, Why Regulate Utilities?, Journal of Law and Economics, Vol. 11,

55-65.

Evans, David S., 2001, Is Free Software the Wave of the Future?, The Milken Institute Review.

Farrell, Joseph and Klemperer, Paul, 2001, Coordination and Lock-in: Competition with

Switching Costs and Network Effects, mimeo, Oxford University, http://www.paulklem-

perer.org/index.htm.

Fehr, Ernst, and Klaus M. Schmidt, 2002, Theories of Fairness and Reciprocity - Evidence

and Economic Applications, in: Dewatripont, M. et.al., Advances in Economic Theory,

Eigth World Congress of the Econometric Society, Cambridge: Cambridge University

Press.

Grossman, Gene, and Elahan Helpman, 1991, Innovation and Growth in the Global Economy,

Cambridge: MIT Press.

Gul, Faruk, Sonnenschein, Hugo, and Wilson, Robert, 1986, Foundations of Dynamic Monopoly

and the Coase Conjecture, Journal of Economic Theory, Vol. 39, 155-90.

Harhoff, Dietmar, Henkel, Joachim, and Eric von Hippel, 2000, Profiting from Voluntary

Information Spillovers: How Users Benefit by Freely Revealing their Innovations, mimeo,

University of Munich.

Holmström, Bengt, 1999, Managerial Incentive Problems: A Dynamic Perspective, Review of

Economic Studies, Vol. 66, 169-182.

Johnson, Justin P., 2001, Economics of Open Source, mimeo, Cornell University.

Lerner, Josh, and Jean Tirole, 2002, Some Simple Economics of Open Source, Journal of

Industrial Economics, Vol. 50, 197-234.

33



Mockus, Audris, Fielding, Roy T., and James Herbsleb, 2000, A Case Study of Open Source

Software Developement: The Apache Server, http://www.research.avayalabs.com/

user/audris/papers/apache.pdf, accessed May 31, 2002.

Raymond, Eric, 2000a, The Cathedral and the Bazaar, http://www.tuxedo.org/∼esr/wri-
tings/homesteading/cathedral-bazaar/ accessed May 31, 2002 .

Raymond, Eric, 2000b, Homesteading the Noosphere: An Introductory Contradiction, http://

www.tuxedo.org/∼esr/writings/homesteading/homesteading/, accessed May 31,

2002.

Romer, Paul M., 1990, Endogenous Technological Change, Journal of Political Economy, Vol.

98, 71-102.

Scherer, Frederic M. and David Ross, 1990, Industrial Market Structure and Economic Per-

formance, 3rd edition, Boston: Houghton Mifflin Company.

Schmidt, Klaus M., 1997, Managerial Incentives and Product Market Competition, Review of

Economic Studies, Vol. 64, 191-214.

Schmookler, Jacob, 1966, Invention and Economic Growth, Cambridge: Harvard University

Press.

Schumpeter, Joseph, 1942, Capitalism, Socialism and Democracy, New York: Harper.

Smith, Adam, 1776, An Inquiry into the Nature and Causes of the Wealth of Nations, London:

Strahan and Cadell, reprinted Newy York: Penguin Putnam, 1982.

Sobel, Joel, 1991, Durable Goods Monopoly with Entry of New Consumers, Econometrica

Vol. 59, 1455-85.

von Hippel, Eric, 1988, The Sources of Innovation, New York: Oxford University Press.

Willig, Robert D., 1976, Consumer’s Surplus without Apology, American Economic Review,

Vol. 66, 589-597.

34


