
Open Source Software as Lead User’s Make or Buy Decision:
A Study of Open and Closed Source Quality

Jennifer Kuan
Stanford Institute for Economic Policy Research

Stanford University, 94305
650-724-4371

jwkuan@stanford.edu

Abstract:

Contributions to open source software are motivated by many different incentives, some
of which provide the basis of supporting institutions, and others of which help mitigate
free-riding. In this paper, I consider the idea that programmers are driven to write
software for their own use. Own use as a motivation helps explain patterns of open source
founding and participation at the industry level. The analysis also predicts that when
open source programs are founded, software quality will surpass that of comparable
closed source programs. This quality prediction is tested, and supported, using bug
resolution rates as a proxy for quality, or quality improvement.

2

Introduction

Open source programmers make their software available, free-of-charge, on the Internet.

Some firms, like Microsoft, have reacted by dismissing open source as irrelevant; others

firms have been surprised, sometimes unpleasantly, by open source quality. For example,

open source Apache has, by some accounts, exceeded Netscape among installed web

server programs (Netcraft, 2001), and Apple Computer now uses an open source “kernel”

in its famously proprietary operating system. The wide variety of reactions that open

source software has drawn from established technology firms reveal not just confusion,

but also the growing importance of open source as a source of competition. What drives

this important, yet puzzling, phenomenon?

A number of reasons have been given for open source “volunteerism”, by

economists and by open source developers themselves. As helpful as these various

insights are to explaining the stability of open source institutions, I will argue that

analyzing the open source phenomenon using a user-innovation framework, as developed

by von Hippel (1988), yields useful predictions about open source competition and

quality. Because open source institutions help non-competing software users collaborate,

user-led innovation takes place on an unprecedented scale, making possible a statistical

study of theoretical predictions.

In particular, comparing user-led innovation with the closed source business

model reveals that open source has an advantage under some, but not all, market

conditions. That is, open source will likely appear in certain markets but not in others.

Indeed, I argue that it was a change in market conditions, brought on by the widespread

3

use of the Internet, which has caused the recent explosion of interest in a 20-year-old

open source model.

Also, where open source programs do arise, they will be of higher “quality” than

closed source programs would be. Acknowledging the difficulty of defining, measuring,

and comparing quality, I nevertheless propose the rate of improvement as a proxy for

quality, and provide a statistical comparison between open source and closed source rates

of “bug fix” times (or, more precisely, the rate of resolution of service requests). Using

three matched pairs of programs, I find support for the hypothesis that open source

programs produce higher “quality” than closed source programs.

I. A brief background on open source

Open source software has also been called “freeware” because it can be downloaded from

the Internet free of charge, and also because the users who download the software are free

to use the software however they like, which includes being able to modify the software

to fit a particular need. However, to change software requires changing its source code,

the human-readable version of software that gets compiled into machine-readable object

code. The term “open source” thus refers to the source code and distinguishes the open

source development of code from proprietary, closed source development, where

consumers must purchase a license to execute the object code.

Note, also, that open source software is different from “share-ware,” software

whose object code is downloadable free of charge. In some cases, individuals write

programs and then post them on the Internet for others to use. Along with the program is

4

often a request for $5 or an amount equal to the consumer’s willingness to pay (e.g.,

McAfee Associates, see Shapiro and Varian, 1999, p. 90). Another common use of share-

ware is as a marketing tactic. Software producers often put demonstration versions of

their software on the Internet for free download, but these “demo” versions are limited in

functionality. Allowing users to download this software gives prospective customers a

chance to evaluate the software before buying (licensing) it (Shapiro and Varian, 1999).

An early, well-documented example of an open source program is GNU, started

in 1984 by Richard Stallman. Stallman began his experiment in open source software by

writing a printer driver for the MIT computer lab where he was working. He felt that if

the printer’s manufacturer had made the driver source code available, he could have

modified it to work with his computer, rather than write a new driver. More generally, he

reasoned that copyrights, which protect source code (but not its functionality1), restrict

users’ freedom to use and modify software. As an alternative to copyrighting, Stallman

created the General Public License (GPL), in which he defines “copyleft.” Copylefted

software may not restrict users’ ability to use, distribute, or modify software. The one

restriction on users is that modifications to software be made publicly available.2

In the modern practice of open source software, programs are available for

download from the Internet. Users download, use, and modify programs if they wish, and

report bugs to an on-line bulletin board. Modified software gets re-posted to the Internet

1 A copyright is not infringed if a program accomplishes a task, using original, independently created
source code. From the Gates Rubber Co. v. Bando Chemical Industries, Ltd. case (1993), “The main
purpose or function of a program will always be an unprotectible idea,” (Goldstein, 1997). Thus, a
programmer can legally “copy” a copyrighted piece of software by independently recreating its
functionality.

2 Heffan (1997) discusses the enforceability of this contract.

5

for others to download and improve further. In this way, improvements and innovations

are accumulated in the latest version of the software for everyone to use.

II. Example: The Apache Group

The history of The Apache Group illustrates the formation and functioning of a more

recent open source program, Apache.

In 1993, software programmers at the National Center for Supercomputing

Applications (NCSA) at the University of Illinois developed the Mosaic web browser as

public domain software. A complementary program, a web server, was also being written

for the public domain, but was abandoned in mid-1994 before completion. Users of the

incomplete web server nevertheless continued to use and fix up the program. In late 1994,

a group of eight users got together to assemble all available documentation and bug fixes

into a consolidated “patch” to the program. The group named the resulting patched up

software “A patchy Web server,” a name that evolved to “Apache”. Co-founder Brian

Behlendorf describes the situation this way:

Apache started with a group of webmasters sharing patches to the NCSA web
server, deciding that swapping patches like so many baseball cards was inefficient
and error-prone, and electing to do a separate distribution of the NCSA server
with their patches built in...Going back to Apache’s early days: those of us who
were sharing patches around were also sending them back to NCSA, hoping
they’d be incorporated, or at the very least acknowledged, so that we could be
somewhat assured that we could upgrade easily when the next release came out.
NCSA had been hit when the previous server programmers had been snatched
away by Netscape, and the flood of e-mail was too much for the remaining
developers. So building our own server was more an act of self-preservation than
an attempt to build the next great web server. (p. 158, Behlendorf, 1999)

6

The Apache Group has since grown in size, and more than ten for-profit

companies have sold Apache software bundled with support services. By some accounts,

the Apache program has a majority share of the web server market, beating out both

Microsoft and Netscape (see the Netcraft survey, http://www.netcraft.com/survey/).

While putting the software into the public domain would have kept the software

freely available, The Apache Group also wanted to continue incorporating patches, and

therefore applied the copyleft idea to Apache. The Group created a web site containing a

description of the software and the copyleft, as well as downloadable source and object

codes. They also created an electronic bulletin board where people could report bugs,

request changes, and post bug fixes. This infrastructure, combined with a well-defined

revision process, allows user feedback and improvements to get incorporated into stable

releases, starting with Apache 1.0, released on December 1, 1995. From the Group’s web

site:

Our primary method of communication is our mailing list... We discuss new
features to add, bug fixes, user problems, developments in the web server
community, release dates, etc. Anyone on the mailing list can vote on a particular
issue, but we only count those made by active members or people who are known
to be experts on that part of the server. Vetoes must be accompanied by a
convincing explanation.

New members of the Apache Group are added when a frequent contributor
is nominated by one member and unanimously approved by the voting members.

Furthermore, Apache is an organic entity; those who benefit from it by
using it often contribute back to it by providing feature enhancements, bug fixes,
and support for others in public newsgroups. The amount of effort expended by
any particular individual is usually fairly light, but the resulting product is made
very strong.

In June 1999, the Apache Group was formally incorporated as The Apache

Foundation, a not-for-profit corporation.

7

III. Reasons for volunteerism

The founders of GNU and Apache give some indication as to what drove them to found

open source programs. Creating software for one’s personal use, in Stallman’s case, and

“self-preservation” in Behlendorf’s words, are among perhaps several different reasons.

Some programmers work on open source projects for ideological reasons. For example,

Eric Raymond (2000) contributes to open source programs out of a conviction that

software should be free, while the founder of open source Gnome, Miguel de Icaza,

wants to help users by creating an open source Microsoft competitor (Weber, 2000).

Lerner and Tirole (2000) argue that programmers’ volunteer their code in the hopes of

getting a well-paying programming job.

While many motives for participating in open source projects may exist even

within a single individual, I wish to explore, in greater depth, own use. Stallman and the

Apache founders wrote or fixed software that they intended to use themselves. Similarly,

a survey of Linux developers (Hermann, Hertel and Niedner, 2000) finds that the top

reason for contributing to Linux is to “facilitate my daily work due to better software.”

Own use seems to motivate the founding of new open source projects and participation in

existing open source projects.

Examining own use as a motive for open source contribution also has theoretical

antecedents. First, von Hippel (1988) gives many examples of user-led innovation, where

customers develop innovations that they sometimes share with their suppliers. This idea

is later applied to open source software (von Hippel, 2001). The notion of customers

producing their own innovations is taken to an institutional level by Kuan (2001), who

8

argues that consumers at times have the information to organize themselves to produce

collectively. In particular, buyers sometimes have more information about demand than

sellers; information which von Hippel’s examples characterize as “sticky” (von Hippel,

1998).

It is at the institutional level where open source takes on competitive importance.

Because institutions facilitate the aggregation of open source development effort, open

source programs are able to compete directly with products from large firms. Open

source institutions such as hierarchy (Metiu and Kogut, 2001; Lee and Cole, 2000), and

rules (e.g., copyleft and voting rules) bring order to a seemingly anarchic process.

Meanwhile, reciprocity (Lakhani and von Hippel, 2000), and reputation or status (Lerner

and Tirole, 2000; Raymond, 2000) encourage participation and help to mitigate free-

riding. The resulting open source programs rivals closed source offerings from firms like

Sun Microsystems and Microsoft.

IV. Theoretical predictions based on own use as motive

In von Hippel’s (1988) studies of lead-user innovators and Kuan’s (2001) study of opera-

goers, consumers act on information that they have but that their suppliers lack. This

private information results from proximity to the problem, in von Hippel’s case, and from

powerful social institutions that provide wealthy consumers with knowledge about other

wealthy consumers, in Kuan’s example.

In open source software, formal agreements, like the copyleft, voting procedures, and

membership, combine with the technology of the Internet to provide a foundation for

9

programmer communication, interaction and, ultimately, collaboration. In addition,

powerful, un-codified, social institutions also contribute to encourage participation, and

to some extent, mitigate free-riding. Taken together, open source software institutions

give software users a means of producing their own software on a scale that competes

with proprietary software.

a. The institutional scale of open source

Indeed it is the scale of production, however, that is important. When Richard Stallman

first started his own open source programs 20 years ago, the costs of communicating

were higher than they are today, now that Internet access is widespread. “...I put [GNU

Emacs] on the anonymous ftp server on the MIT computer that I used. But at that time,

many of the interested people were not on the Internet and could not get a copy by

ftp...So I announced that I would mail a tape to whoever (sic) wanted one, for a fee of

$150,” (Stallman, 1999, p. 58). Increased Internet access has coincided with increased

open source activity, among existing programs such as Stallman’s and with new

programs like Linux and Apache, because the Internet has lowered communication and

collaboration costs.

The success of open source efforts is thus due to the enabling technology of the

Internet, though this was difficult to predict in the early years of the Internet’s rise. Thus

some earlier open source programs were developed by individuals for only their own use,

much in the spirit of von Hippel’s lead-users. Raymond (1999) describes the growth of

very successful programs as somewhat serendipitous, “[T]he best hacks start out as

10

personal solutions to the author’s everyday problems, and spread because the problem

turns out to be typical for a large class of users.”

With the means of collaboration now better established, the decision to create

software for one’s own use begins to depend also on other potential user-contributors; in

particular, how many and how interested in collaborating they are. Behlendorf (1999)

recommends a market assessment before launching an open source effort. “So an analysis

of the market demand for a particular open-source project also involves joining relevant

mailing lists and discussion forums, cruising discussion archives, and interviewing your

customers and their peers; only then can you realistically determine if there are people

out there willing to help make the project bear fruit.” Dalle and Jullien (2001) simulate

this very calculation to better understand what sorts of open source projects are likely to

be initiated.

b. The closed source alternative to open source

The fact that some open source programs rival closed source programs suggests another

factor in deciding whether to write one’s own software, a factor that open source

programmers take for granted: the ability of existing closed source programs to meet

one’s needs. Some open source programs start out as solutions to programmers’ problems

that have been entirely unanticipated by closed source firms. For example, the printer

driver for Stallman’s printer simply did not exist, so he wrote the driver himself.

Apache’s founders were using Apache before Netscape’s closed source web server was

available. Other open source programs attract users and contributors by better meeting

11

certain needs. Contributors made Linux more “portable” (i.e., able to run on a greater

variety of hardware platforms) than existing closed source operating systems, and, by

some accounts, more “robust” (i.e., less likely to crash).

Thus, before an open source program is even considered, a programmer must

encounter a problem to solve. Whether such a problem ever arises depends on closed

source software firms, and what they produce. As profit-maximizing firms, closed source

providers might well stop short of meeting the needs of all its customers. A profit-

maximizer might never write a particular, little-used printer driver, given the willingness

to pay of the handful of customers who need the program. A closed source producer of

Unix, like Solaris or HPUX, might be uninterested in portability because its software is

factory-installed on its computers.

On the other hand, some markets for software are large enough to provide closed

source firms the incentive to meet the needs of its customers. For example, “application

software” firms customize and install a combination of complex programs for their large,

corporate customers. Also, “office suite” software serves such an enormous market for

spreadsheet and word-processing programs that the profit-maximizing level of quality is

high, and at a price that satisfies even potential open source programmers.

c. The open source decision for programmers: where to expect open source programs

If open source software is in large part a phenomenon of users innovating for their own

use, then the decision to address a need left unmet by closed source firms is a decision for

programmers. This may seem obvious, but in fact, non-programmers do have free access

12

to the resulting open source products, and often contribute to program development by

reporting bugs or requesting enhancements. Non-programmers just have no say in the

decision to found an open source project. This is not to say that non-programmers never

make this “make-or-buy” decision. On the contrary, the large corporate buyer of

application software has a make-or-buy decision, just not the open source make-or-buy

decision.

We therefore consider the programmer’s decision within the context of market

demand among other programmers and the quality of existing closed source software, i.e.

market demand for closed source software. Analyzing this decision yields predictions

about where open source software will arise and clarifies the relative strengths and

weaknesses of open and closed source software. While it sometimes seems as though

open source programs have sprung up in every possible software category, a closer look

reveals a pattern.3

First, a programmer writes code to serve his particular purpose, typically a highly

technical problem. Users who have the ability to program for their own use work in job

functions that require programming skill, whether designing microprocessors,

administering web sites, or programming hardware and software. Thus, if open source is

the product of lead users creating for their own use, we would expect open source

programs to serve technically sophisticated users who are able to program. Garzarelli

(2002) discusses the phenomenon of common professional skills among open source

participants.

3 Johnson (2001) offers a formal model of this open and closed source comparison, which yields similar
predictions.

13

Second, programmers will choose to solve their own problem with an open source

program only when closed source programs fall short. Closed source programs do fall

short for many reasons, one of which is weak market demand. The market for a particular

program might be small in number or in users’ willingness to pay. (Note that a user’s

willingness to pay for software can be lowered by his own ability to program; because he

knows he can write a program himself, he is willing to pay less for software than a non-

programmer). We can therefore also predict that open source programs will be founded to

serve fairly small markets that are under-served by closed source firms, at least at the

time the open source program is founded.

Table 1 lists open source programs which enjoy high demand (as measured by

downloads from http://freshmeat.net/, 2000). Clearly, the most popular open source

programs serve a technical market. The top four categories of open source programs are

scripting languages (that allow users to write high-level “scripts” or programs), software

development tools, web server and back-end mail programs, and operating systems. The

first two types of programs, scripting languages and software development tools, are used

by programmers. Web servers and mail tools are used by web site administrators, who,

especially in the early days of the world-wide Web, were highly sophisticated users.

Also, the number of users of these programs, while large today, was small when the

programs were first established. Finally, operating systems are much more general in

their use among software users, but the four programs listed in Table 1 are all Unix-type

operating systems, which require a higher level of programming ability from the user

than other operating systems, like Windows or MacOS.

14

The size of the market for these programs is much smaller in number than more

universally useful programs such as a word-processor, or mail front-end. Moreover, the

lack of incentive for profit-maximizers to supply this market is exacerbated by users’

ability to program and thereby serve their own needs. Thus, another set of commonly

used open source programs, not listed in Table 1, include tools and libraries for computer

hardware design. Users of this type of software number even fewer than users for the

programs in Table 1, but they are also usually well-financed.

In addition to interpreting patterns of open source success, the lead-user

innovation approach also yields another prediction: what types of software will not be

open source. Because the decision to found open source projects belongs to the

programmer, non-programmers are left with closed source offerings that sometimes fail

to meet users’ needs. For example, cost accountants want a spreadsheet program that

supports three-dimensional spreadsheets. But if the market for three-dimensional

spreadsheets is small, profit-maximizing closed source firms may choose not to supply

that functionality. Here again is a case of small markets for a product and the failure of

closed source firms to address a need. But since open source programmers have no use

for three-dimensional spreadsheets, they will not produce an open source solution.

Having just predicted that certain types of software will not be open source, either

because closed source firms have sufficient incentive to produce high quality or because

programmers have no interest, I must now address the fact that certain open source

programs defy my predictions. For example, a firm called Helix Code produces open

source office-suite software, including Gnome, a program to make Linux look like

15

Windows, Evolution, a Microsoft Outlook-like program, and Gnumeric, a spreadsheet

program.

Because the founder of Helix Code is motivated by ideology, the projects he has

undertaken fall outside my predictions based own use as driving motivation. According

to founder de Icaza, “We are going to level the playing field. This is about helping the

consumer. This is for everybody,” (Weber, 2000).

Certainly, programmers are motivated by many different incentives, including

ideology. However, own use not only explains the broad patterns of open source

development, it also suggests how open source development is financed. For example,

Helix Code plans to generate revenues through support services for its open source code,

while investors finance the code development. Ordinarily, a fine business plan, except

that Helix Code’s product competes with a high-quality program for technically

unsophisticated users, whereas Linux, for example, competed for sophisticated users.

Should Helix Code’s revenues become a problem, investors will depart, taking with them

their staff of programmers. Open source programs developed for own use do not face

these prospects because contributors get paid to design microprocessors, but write open

source code in the process.

d. “Quality”: A Prediction

Analyzing open source software in terms of innovation for own use allows for yet another

prediction. In Kuan’s analysis of performing arts firms, consumers who organized to

produce their own good achieved greater economic efficiency than a profit-maximizer

16

would because they had private information about demand. One interpretation of this

improved economic efficiency is higher quality.4 In the context of performing arts, where

consumer production results in a nonprofit organization, the prediction of efficiency and

quality are very surprising. But such predictions in an open source context are somewhat

less counter-intuitive, since the open source community has many vocal enthusiasts who

make claims of both efficiency and quality (e.g., Raymond, 1999).

Of course, the performing arts analysis cannot be applied to open source software

without modification, since all performing arts firms are nonprofits, while all software is

not open source. Nevertheless, it is still reasonable to predict higher quality by the

“nonprofit” over the for-profit when the “nonprofit” exists, since the higher quality

results from users’ ability to organize efficiently and exploit private information.

In the next section, I offer an empirical test of this quality prediction, recognizing

in advance the difficulty of defining, measuring, and comparing such a difficult

characteristic as “quality.” High quality has many definitions, depending on the user.

Some users want flexibility, others speed, ease-of-use, portability, robustness, and more.

Different types of users are willing to trade off quality in one dimension for quality in

others, and “quality” for one user might be entirely different from “quality” for another.

Even if every important dimension of quality could be identified and measured,

comparing programs could prove difficult. Is an easy-to-use but slow program “better”

than a hard-to-use but flexible one?

Because of the difficulties in comparing quality levels, I propose comparing rates

of change in quality. In some sense, the comparison of rates of change amounts to a

4 In Kuan (2001), greater economic efficiency results in a higher level of production. However, the good is
non-rival. One, though by no means the only, interpretation of this higher level of production is higher

17

comparison of quality levels over time, which is interesting even if static quality levels

could be compared. As a proxy for the rate of software improvement, I measure the rate

of service request resolution, i.e., speed with which “bugs” get resolved. The term “bug”

usually refers to a problem with a program’s functionality, but a large number of bugs are

requests for adding functionality. So the length of a bug list itself is not a good measure

of quality. Also, a long list of bugs might be a reflection of active bug discovery. By

contrast, bug resolution rates are useful for comparison because bug databases, which are

used to manage revisions, document the changes to a program from one revision to the

next.

Figure 1 illustrates the software improvement process, beginning with bug

discovery, continuing with bug resolution, and finishing with the integration of bug fixes

into the released version of software. The end-result of this process is the object of

interest, the software’s “quality”, difficult to define, measure, and compare.

Figure 1: Software Improvement Process

Interestingly, both open and closed source projects use the same revision

management techniques. This is perhaps not surprising since open source contributors are

quality.

Bug
Discovery

Bug
Resolution

Integration
Into

Software

Quality

18

often professional software or hardware developers and have carried over practices that

help manage large development projects. This is not to say that open and closed source

development is identical. Raymond (1999) describes closed source development as top

down, its construction like that of a cathedral, and open source development as more

horizontal, where participation is likened to a bazaar. However, revisions of both open

and closed programs are formally stabilized and controlled using the same techniques,

and involving bug databases. Mockus, et al (2000) documents the process for Apache,

and Lee and Cole (2000) discuss the Linux process.

Because open and closed source projects have important differences, a

comparison, even of analogous processes, can be difficult, though I will argue, not

necessarily invalid. One concern might be that closed source programs could be larger

and more complex than open source programs, so adding a feature might be more labor-

intensive. This difference in the ease of improving a program relates to the architectural

differences described by Raymond, between a cathedral and a bazaar, and is therefore

endogenous to the organizational form, open source or closed source. Indeed one of the

mechanisms by which open source software achieves superior quality might be its

decentralized, modular structure.

A second concern is that the bug discovery process is not measured, but the rate

and quality of bug discovery might well affect the quality of the end-product. Actually,

open and closed source bug discovery processes differ as much as open and closed source

architectures. The closed source bug discovery process involves software developers

testing the software, attempting to anticipate users’ needs. Open source bug databases

include only problems (or requests) that users actually encounter. Thus, even though the

19

bug databases allow us to measure the bug discovery process (e.g., see Figures 2 and 3),

the more relevant issue is how well the bug discovery processes address quality problems

of users. In this regard, the open source process is at least as good as the closed source

process, since the open source process uncovers bugs (or requests) that actual users care

about, while the closed source process is only an approximation of actual user need.

V. Empirical test

To compare open and closed source response rates, I assemble six separate bug databases

from three pairs of software programs, including an open and closed source Unix

operating system, an open and closed source web server, and an open and closed source

user-interface program. In order to minimize the problems of comparability, I compare

only similar programs, using a hazard rate model to estimate response rates.

a. Data

The six programs in my study were selected on the basis of data availability, limited

mostly by what was available for open source programs on the Internet (web sites are

listed in References). These include FreeBSD, an open source Unix operating system,

Apache, a web server program, and Gnome, a graphical user-interface for Unix operating

systems. The data from FreeBSD and Apache are a census of bugs found over the life-

time of the program, while the data from Gnome include only the bugs that were fixed

over a (rolling) 12-month period. The closed source bug data come from proprietary

20

sources that produce software with the same functionality as the open source programs in

the study: a Unix operating system, a web server program, and a graphical user-interface

for Unix operating systems.

Table 2 lists the time periods for which data was available. As a class of

programs, web servers are relatively young. The data for web servers covers the life of

both open and closed source programs, and both of which are of similar vintage: work on

Apache started in early 1995 and on the closed source program six months later.

Similarly, both open and closed source operating systems were spun off from the original

Berkeley Unix, though at different times. All data for FreeBSD going back to 1994 was

available, but for the closed source program, only data from the latest major revision was

available. The data from the user-interface programs is somewhat less complete, and

perhaps less comparable. First, only data on fixed bugs are available from the open

source program, and less information is available about the history of the closed source

program. The open and closed source programs were almost certainly initiated at very

different times, with the closed source program enjoying a big head start.

 While differences exist in the bug resolution process, both across firms and

between open and closed source, certain similarities remain that make that data

comparisons meaningful. First, in all six databases, each bug is assigned a priority rating

and a severity rating by the bug’s initiator. Ratings are on a scale of one to three (or one

to four), with guidance given by each program regarding the value of the rating. For

example, priority ratings include “high”, “medium”, and “low”; severity ratings are

described as “critical”, “serious”, “non-critical”, and “wish-list”. Often, definitions

further clarify ratings; for example, “critical” might be further defined as “important and

21

no work-around”. In addition to the specific guidance given by each program, open

source contributors are usually well acquainted with closed source practices and so apply

ratings consistently across projects.

Figures 2 and 3 summarize bug counts for web servers and operating systems,

showing the number of bugs found in each quarter for open and closed source programs

and distinguishing among severity ratings.

Thus far, I have argued that bug fix rates are a reasonable proxy for quality, and

especially quality improvement, and that the data for open source and closed source bugs

can be compared because they capture very similar processes for very similar products.

These processes are documented for open and closed source and are similar for both.

Also, contributors of bugs and their fixes often straddle open and closed source worlds

and apply the same standards for ratings and systematic bug tracking for both types of

projects. Therefore, what the data captures, the life of a bug from the moment it enters the

database, is the same for open and closed source projects. Differences in bug response

rates therefore arise from differences between differences between open and closed

source systems, the former a response to users’ own needs, the latter an outcome of

profit-maximization.

Nevertheless, the bug counts in Figures 2 and 3 show how very different the open

and closed source bug discovery processes are. First, notice that closed source bugs are

more numerous than open source bugs. This difference cannot be interpreted

unambiguously, because many bugs might indicate many problems with a program but

they might instead suggest more thorough debugging. Also, as mentioned above, open

source bugs are encountered only by use, while closed source bugs are found by

22

debuggers. Second, closed source bug discovery appears to be much more volatile than

the low but steady open source rate. This volatility might have to do with the closed

source business model, in which software upgrades contain batches of bug fixes and are

released periodically.

b. Statistical Model

To compare bug life expectancies, I use a Cox proportional hazard model and do three

pair-wise comparisons; one for each program type. The hazard is assumed to be

h(t) = ho(t) exp (β1x1 +β2x2)

where ho is the baseline hazard, xi are dummies for priority and severity, and βi are

coefficients of xi. For each pair of programs, I graph the open and closed baseline hazards

and produce a table of coefficients for the covariates, priority and severity, for open and

closed programs. A high hazard rate indicates that bugs get fixed quickly, while a low

hazard rate indicates that bugs get fixed slowly. A coefficient of greater than unity

indicates that more severe bugs get fixed sooner than less severe bugs, and higher priority

bugs are resolved more quickly than lower priority bugs.

c. Results

Figure 4 shows the baseline hazard rates of open and closed source web server programs.

The baseline hazard of the open source program (darker line) is higher than the baseline

hazard of the closed source program, suggesting that open source bugs are resolved more

23

quickly than closed source bugs. From Table 3, the coefficients of the covariates, we see

that more severe bugs get fixed more quickly than less severe bugs. (There was no

variation in priority ratings in the data for this program, with priority ratings all set at the

default level).

Figure 5 graphs the open source and closed source baseline hazards for operating

systems. The baseline hazard curves for operating systems cross, with the open source

curve (darker line) starting out above the closed source curve. This indicates that open

source operating system bugs get fixed more quickly than closed source bugs to a point.

Open source bugs that have been left unresolved for a long time are slower to get fixed

than closed source bugs. (Note that data from the closed source program do not go back

as many years as the open source program, so only open source data appear in the tail of

the graph).

Table 4 shows the coefficients for the two covariates, priority and severity. As in

the case of web servers, the open source priority and severity, and closed source priority,

coefficients are less than unity, indicating that higher priority and more severe bugs get

fixed more quickly than lower priority and less severe bugs. However, for the closed

source operating system, the coefficient for severity is greater than one, so more severe

bugs take longer to fix than less severe bugs.

The data available for the open source user-interface program is, unfortunately,

much less comprehensive than that for the other two programs. My sample for the open

source user-interface program contains only bugs that were fixed within the past 12

months. While I have a census of bugs for the corresponding closed source program, I

select from that database only bugs that were fixed in the twelve-month period covered

24

by the open source data. Moreover, unlike the data for the web servers and operating

systems, these data do not include bugs that have not yet been fixed; i.e. these data are

not right-censored.

Figure 6 shows the open source and closed source baseline hazard rates for user-

interface programs (open source is the darker line). Here the closed source program has a

higher baseline hazard rate than the open source program, suggesting that closed source

bugs get fixed more quickly than open source bugs. Table 5 shows that there is no

variation in the priority levels for the open source program, and that the priority level is

not significant for the closed source program. The severity level coefficient for the open

source program is less than one, indicating that more severe bugs get fixed more quickly

than less severe bugs. However, the closed source coefficient for severity level is greater

than one, as with the closed source operating system, suggesting that more severe bugs

are fixed more slowly than less severe bugs.

In summary, evidence from web servers and operating systems suggests that

service requests for open source programs tend to be resolved more quickly than for

similar closed source programs. The evidence from user-interface programs seems to

indicate the opposite, with the closed source project responding more quickly than its

open source counterpart. However, the data for user-interface programs are less complete

than for the other two programs, and so the results are slightly less reliable.

VI. Conclusion

25

The success of open source software has provided a number of intriguing questions for

business scholars and economists. The rich documentation of several open source

projects and the recent rapid development of new, supporting institutions allow us to

observe in real time the creation of a new business model. Yet novelty does not prevent

us from understanding and analyzing open source software. In fact, our understanding of

lead-user innovation at the individual and institutional level allows us to predict the

behavior of a seemingly anarchic and chaotic activity.

I argue that open source programmers are motivated by many different incentives,

but that writing software for one’s own use helps explain industry-level phenomena. In

particular, I suggest that open source software should arise in technically sophisticated

niches because people who write software for their own use most likely have jobs that

require programming ability. Non-programmers face a more traditional make-or-buy

decision; for example, large, non-technical firms hire application software firms to

produce customized software. At the same time, open source programmers will eschew

other software niches because they have no use for certain kinds of software or because

other software needs are met by closed source software.

I also predict open source programs to compete well against similar closed source

programs because open source projects, where they arise, produce high quality.

Practitioners often make this prediction of high quality, but here, quality stems from the

economic efficiency of users organizing around private information to produce a good for

themselves. I test this prediction using bug resolution data from three matched pairs of

programs and find some support for the hypothesis that open source service requests get

26

resolved more quickly than closed source service requests, after controlling for priority

and severity of each request.

The evidence of superior open source quality raises interesting questions about

the role of intellectual property rights in the innovation process. In the traditional view,

patent law encourages inventors to disclose their innovations and thus provide a public

good. Also, the monopoly rights conferred by a patent give inventors an incentive to

invent, possibly leading to patent races (e.g., Gilbert and Shapiro, 1990). And weak

property rights are blamed for the slow growth of the packaged software industry in

Japan (Baba, et al, 1996). Yet this study of open source software presents an example of

higher production without monopoly rights than with monopoly rights.

Finally, institutional similarities between open source software and academic

research have been documented (Tuomi, 2000). For example, both rely on peer review,

status, and reputation. If open source software can be understood in terms of individuals

creating for their own use, should also university-based research be? Such an analysis

would inevitably affect how we view the university’s relationship with industry and

government.

27

References

Baba, Yasunori, Shinji Takai, and Yuji Mizuta “The User-Driven Evolution of the
Japanese Software Industry: The Case of Customized Software for Mainframes.” In
David C. Mowery, ed., The International Computer Software Industry. Oxford University
Press, 1996.

Behlendorf, Brian “Open Source as a Business Strategy.” In Chris DiBona, Sam Ockman,
and Mark Stone, eds., Open Sources: Voices of the Open Source Revolution. Sebastapol:
O’Reilly and Assoc., 1999.

Dalle, Jean-Michel and Nicolas Jullien, “’Libre’ Software: Turning Fads into
Instiuttions?” mimeo, 2001.

Garzarelli, Giampaolo, “Open Source Software and the Economics of Organization,”
mimeo, January 13, 2002.

Gilbert, Richard and Carl Shapiro, “Optimal patent length and breadth.” RAND Journal
of Economics, Vol. 21, (1990).

Goldstein, Paul, Copyright, 2nd Edition. Little, Brown, 1997.

Heffan, Ira “Copyleft: licensing Collaborative Works in the Digital Age.” Stanford Law
Review, Vol. 49 (1997).

Hermann, Stephanie and Guido Hertel and Sven Niedner, 2000,
http://www.psychologie.uni-kiel.de/linux-study/writeup.html.

http://apache.org/

http://freshmeat.net/

http://www.bugs.apache.org/index

http://www.bugs.gnome.org/

http://www.freebsd.org/support.html\#gnats

http://www.netcraft.com/survey/

Johnson, Justin P. “Economics of Open Source Software.” Mimeo, Johnson School of
Business, Cornell University, May, 2001.

Kiefer, Nicholas M. “Economic Duration Data and Hazard Functions.” Journal of
Economic Literature, Vol. 26 (1988), pp. 646-679.

28

Kuan, Jennifer, (2001a) “The Phantom Profits of the Opera: Nonprofit Ownership in the
Arts as a Make-Buy Decision,” Journal of Law, Economics, and Organization, 17(2).

Lakhani, Karim and Eric von Hippel “How Open Source software works: “Free” user-to-
user assistance.” MIT Sloan School of Management Working Paper \#4117, May, 2000.

Lee, Gwendolyn K. and Robert E. Cole “The Linux Kernel Development As A Model of
Knowledge Creation.” Mimeo, University of California at Berkeley, October, 2000.

Lerner, Josh and Jean Tirole “The Simple Economics of Open Source.” NBER Working
Paper 7600, March, 2000.

Metiu, Anca and Bruce Kogut, Distributed Knowledge and the Global Organization of
Software Development, mimeo, February, 2001.

Mockus, Audris, Roy T. Fielding, and James Herbsleb “A Case Study of Open Source
Software Development: The Apache Server,” Proceedings of the 22nd International
Conference on Software Engineering, ACM (2000), pp. 263-272.

Netcraft, http://www.netcraft.com/survey/, 2001.

Raymond, Eric “The Cathedral and the Bazaar.”
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/, 1999.

---, 2000 “Homesteading the Noosphere.” http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/, 2000.

Shapiro, Carl and Hal R. Varian, Information Rules. Harvard University Press, 1999.

Stallman, Richard “The GNU Operating System and the Free Software Movement,” in
Chris DiBona, Sam Ockman, and Mark Stone, eds. Open Sources: Voices of the Open
Source Revolution. Sebastapol: O'Reilly and Assoc., 1999.

Summerville, Ian, Software Engineering, Fourth Edition. Addison-Wesley, 1992.

Tuomi, Ilkka “Learning from Linux: Internet, innovation and the new economy.” Mimeo,
University of California at Berkeley, February, 2000.

Valloppillil, V. “Open Source Software: A (New?) Development Methodology.”
http://www.opensource.org/halloween/halloween1.html, 1998.

Varian, Hal R. “Sequential contributions to public goods.” Journal of Public Economics,
Vol. 53 (1994), pp. 165-186.

von Hippel, Eric, The Sources of Innovation. Oxford University Press, 1988.

29

---, “’Sticky Information’ and the Locus of Problem Solving: Implications for
Innovation,” Management Science, 40:4 (April), 429-439.

---, “Open Source Shows the Way: Innovation By and For Users—No Manufacturer
Required!” Sloan Management Review, Summer, 2001.

Weber, Thomas E “Here’s a Plan to End Microsoft’s Dominance (No Lawyers Needed).”
Wall Street Journal, May 15, 2000.

30

Table 1: List of Successful Open Source Programs

Scripting Languages Software Development Tools

• Perl • GNATS

• PHP • LessTif

• Python • GCC

• Emacs

Web server and Non-Front End Mail-Related Programs • RPM

• Apache • GDB

• Sendmail • CVS

• BIND Operating Systems

• Fetchmail • Linux

• SMTP • FreeBSD

• POP • OpenBSD

• IMAP • NetBSD

31

Table 2: List of Software Bug Data Availability

Program Type Open Source Data Closed Source Data

Web Servers All bugs found 3/96 – 12/99 All bugs found 1/97 – 10/99

Operating Systems All bugs found 9/94 – 2/00 All bugs found for a single

version 1/97-6/99

User-Interfaces All bugs fixed 2/99-1/00 All bugs found for a single

version 1/97 – 6/99

32

Table 3: Hazard Covariate Coefficients for Web Servers

Severity Priority # of obs.

Open .926*** 4853

(0.019)

Closed .863*** .922*** 14538

(0.014) (0.025)

33

Table 4: Hazard Covariate Coefficients for Operating Systems

Severity Priority # of obs.

Open .911* .875*** 861

(0.050) (0.045)

Closed 1.186*** .750*** 1834

(0.033) (0.023)

34

Table 5: Hazard Covariate Coefficients for GUIs

Severity Priority # of obs.

Open 0.883** 1812

(0.052)

Closed 1.121*** 0.948 236

(0.030) (0.033)

35

Figure 2: Web Server Bug Counts by Severity Rating

Web Server Bug Counts by Severity Rating
(First series closed source, second series open source)

0

500

1000

1500

2000

2500

3000

Quarter

Severity 3

Severity 2

Severity 1

36

Figure 3: Operating System Bug Counts by Severity Rating

Operating System Bug Counts by Severity Rating
(First series closed source, second series open source)

0

50

100

150

200

250

300

350

Quarter

Severity 3
Severity 2
Severity 1

37

Figure 4: Baseline Hazard Rates for Web Servers

38

Figure 5: Baseline Hazard Rates for Operating Systems

39

Figure 6: Baseline Hazard Rates for GUIs

