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Abstract

The major part of the rail network is used for both passenger and
freight traffic. I exhibit the socially optimal access pricing structure
when the heterogeneity of users is taken into account. Users differ
in their willingness to pay but also in the maintenance cost they in-
duce for the authority in charge of the network. Tracks are an essential
and congestible facility. Different regimes are thus considered depend-
ing on the presence or not of congestion. When there is congestion,
the difference in speeds (that governs the magnitude of the negative
externality imposed on the others) appears to be an important de-
terminant of the access prices. Along the paper, the socially optimal
price structure is compared to the price structure that would prevail
if the authority in charge of the network is proÞt maximising. The
most striking result of the paper is that, in all cases, optimal pricing
formulae do not refer to average costs when heterogeneity is taken into
account.
J. E. L. ClassiÞcation Numbers: D42, L10, L92.
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1 Introduction

Tracks constitute an essential facility for the rail transportation operators

and access pricing is the crux of a good working of a liberalised industry.

Clearly, we are far from the best use of the infrastructure. In Europe, the

average speed of goods international transport is 18 km/h !1 There is thus

no surprise in the observed decline of rail�s share among the transportation

modes.

A sound pricing scheme should however take into account that the major

part of the rail network is used for both passenger and freight traffic. I thus

consider a model where users may differ in their willingness to pay but also in

the maintenance cost they induce for the authority in charge of the network.

The socially optimal access pricing structure, with and without subsidies

(First and Second-best), as well as the proÞt-maximising price structure are

exhibited. The central issue consists in knowing whether the infrastructure

manager is able to discriminate across users. We consider two polar cases:

perfect discrimination and no discrimination and compare both for each of

the scenarii considered.

Tracks is an essential but also a congestible facility. Congestion affects

indeed 20% of the 16000 km of the European rail network.2 I thus examine

how the price structure should be modiÞed to in order to take this aspect into

account. Again the pricing scheme depends on the information available. If

no congestion characteristics but the speed is known to the network admin-

istration, the tariffs should have a (standard) peak-load pricing component

as already proposed by Vickrey (1963). However, such a bold approach does

1Source: European Comission White Paper: �European Tranport Policy for 2010:
Time to decide� (2001).

2Source: European Comission, ibidem
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account for the fact that, in the rail sector, congestion depends on the ex-

act pattern of services. In a simpliÞed two-types model, a pricing formula is

proposed that reckon the fact that, an heterogeneous pattern of trains use a

greater slot capacity than a set of trains with identical characteristics.

2 The model

The users of the rail network are characterised by a (vector of) parameter(s)

θ that accounts for all their characteristics. They potentially differ in the

beneÞts they derive from the use of the infrastructure (hence in their will-

ingness to pay for it) and in the costs they impose both on the owner of the

infrastructure (the maintenance costs) and on the other users (the conges-

tion effects). A key issue of the problem is naturally the discrimination across

users that may be impossible for informational or legal reasons. Two polar

situations will be considered: perfect discrimination and no discrimination.

In order to identify the working of the different mechanism at hand, I assume

Þrst that there is no congestion.

Let πθ (x) denote the beneÞts derived from running x trains of character-

istics θ. If pθ denotes the access-price for type-θ trains, the ensuing demand

for network access from this type of trains is given by

xθ (pθ) = argmax
X
{πθ (x)− pθx} . (1)

In what follows, the total demand will be denoted

X (p) =

Z
θ∈Θ

xθ (p) dG (θ) .

For the infrastructure owner, a train of type θ induces a cost denoted cθ . Her

beneÞts thus write

Π =

Z
θ∈Θ

(pθ − cθ) xθ (pθ) dG (θ)− F, (2)
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where F denotes the Þxed costs of network maintenance and G (θ) denotes

the distribution function over the space of characteristics Θ.

2.1 Social Optimum

2.1.1 Perfect discrimination

In this section, we analyse the Þrst-best allocation, that is the allocation that

maximizes social welfare (the sum of consumer surplus and Þrms� proÞts).

At this stage the company is not required to break-even. We thus implicitly

assume that (i) perfect discrimination is possible, i.e. all the characteristics

θ are observable,.and that (ii) Þxed costs can be Þnanced without efficiency

costs through a subsidy Þnanced from the general budget. Such a solution is

theoretical and usually not considered to be realistic. Nevertheless it provides

us with an interesting benchmark.

Total surplus can be expressed as follows:

W =

Z
θ

[πθ (xθ)− cθxθ ] dG (θ)− F, (3)

where Þxed costs and maintenance costs are substracted from the sum of

the users� beneÞts. Differentiating (3) with respect to xθ yields the following

Þrst-order condition:

π0θ (xθ) = cθ . (4)

Equation (4) evidences that the optimal number of type-θ trains is such that

the marginal beneÞts of a train for the operator exactly equates the mar-

ginal costs for the infrastructure administrator. Given equation (1) deÞning

the demand for access, the optimal allocation leads to the optimal pricing

formula:

pθ = cθ. (5)
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Expression (5) show that price discrimination is necessary for the Þrst-best

allocation to be decentralized. Interestingly, this is also a sufficient condition

for an efficient setting of the characteristics of transportation services. If

the equation holds, the (only) users are those for whom the access-price is

smaller than the Þrms� marginal beneÞts .

A consequence of this (optimal) pricing policy is however that the com-

pany does not break-even. More precisely, sales will cover only variable costs

and the deÞcit will amount to the Þxed costs F. As a result, the Þrst-best

solution is not feasible if the infrastructure administrator faces a break-even

constraint. One should then consider a second-best solution where prices are

set above marginal cost in order to cover all costs. This issue is addressed

below.

2.1.2 No price discrimination

Before to turn to the study of the second-best allocation, we now analyse the

Þrst-best allocation when price discrimination is not possible. In this case,

the total surplus still writes as (3). However the number of type-θ users xθ

must now obey equation (1) with pθ = p and there is only one instrument left,

namely the price. Differentiating (3) with respect to p yields the following

Þrst-order condition:Z
θ∈Θ

[π0θ (xθ)− cθ]x0θ (p) dG (θ) = 0. (6)

By using equation (1), equation (6) can be rewritten asZ
θ∈Θ

[p− cθ]αθ.θdG (θ) = 0. (7)

where .θ denotes the (absolute value of) the price elasticity of type-θ demand

for access

.θ =
p

xθ (p)

µ−dxθ
dp

¶
,
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and αθ the share of type-θ users

αθ =
xθ (p)

X (p)
.

Interestingly enough, the �demand side� enters now into the deÞnition of

the optimal allocation. The reason for this derives from the fact that, as

evidenced by equation (5), productive efficiency is not possible without price

discrimination. Indeed, �low cost� users are priced above the cost they really

impose on the infrastructure and some users may not get access while they

would be able to derive beneÞts that exceed their cost. Similarly, �high cost�

users are priced below the cost they impose on the infrastructure and some

may get access while they impose a higher cost on the infrastructure than

the price they pay for it. In minimising the distortions, however, one should

not only take into account the difference between price and marginal cost. It

should also determines how much of the demand is diverted from over-pricing

and how much of the demand comes from under-pricing. How the demand

is affected by a change in price is precisely what is measured by the price

elasticity. When equation (7) holds true, the overall distortion (due to the

absence of price discrimination) is minimum.

Equation (7) gives rise to the optimal (�Þrst-best�) pricing rule:

p = ec = Z
θ∈Θ

µ
αθ
.θ
.X

¶
cθdG (θ) , (8)

where .X the (absolute value of) of the total demand price elasticity

.X =
p

X (p)

µ−dX (p)
dp

¶
.

It evidences that, when price discrimination is not possible, the usual �mar-

ginal cost pricing� rule writes with a cost ec that differs from the average

marginal cost

c =

Z
θ∈Θ

αθcθdG (θ) .
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More speciÞcally, if �high cost� users tend to be associated with relatively

low values of elasticity, the cost ec will tend to be lower than c leading the
infrastructure owner not to cover even the variable costs. The converse will

happen if �high cost� users tend to be associated with relatively high values

of elasticity. Given the heterogeneity of the marginal costs of infrastructure

usage reported in the literature (See e.g. Gaudry and Quinet 2003), a good

evaluation of the reference cost ec appears of crucial importance for the as-
sessment of the pricing policy.

Note that, as for prefect discrimination case, there are no reasons for

which the infrastructure owner would be able to cover the Þxed costs and

break-even.

2.2 Transportation services with a proÞt maximising
monopolist

The Þrst-best allocation has been computed by considering social welfare and

by fully ignoring the issue of proÞtability. We now turn to the reverse situ-

ation by considering the choices made by a proÞt-maximising infrastructure

manager. Again, two cases are to be considered, depending on whether there

is price discrimination or not.

If perfect discrimination is possible, the infrastructure owner maximizes

its proÞts for each type θ of train. By deriving (2) with respect to pθ and

re-arranging terms, we obtain the standard Lerner formula:

pθ − cθ
pθ

=
1

.θ
. (9)

Although simple, the pricing rule (9) conveys an interesting implication. If the

infrastructure manager aims at maximizing proÞts and is able to discriminate

across users, then the price ordering may not reßect the cost ordering. It

may well be the case that a �high cost� type with a very elastic demand
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is charged a lower access price than a �low cost� type with a less elastic

demand. Again, given the estimated range of price-elasticities for different

categories of travellers3 that has to be reßected in the elasticities by type

of train .θ, this is much more than a thought experiment. In particular it

would be no wonder if long-distance trains would be asked to pay a higher

(access) fee/km than short-distance (or inner-city) services, despite the later

are typically retained to induce higher maintenance costs.

If price discrimination is not possible, the pricing rule appears a priori

to be less straightforward. Imposing pθ = p and deriving the proÞts (2) with

respect to this unique price gives rise to the FOC:Z
θ∈Θ

[xθ (p) + (p− cθ)x0θ (p)] dG (θ) = 0.

This equation can nevertheless be rewritten under the familiar form

p− ec
p

=
1

.X
, (10)

where the �marginal cost � ec is the optimal (�Þrst-best� without discrimi-
nation) price deÞned by equation (8). Interestingly enough, this is not the

average marginal costs c that should be considered in order to compute the

proÞt-maximising prices. Again, given the observed heterogeneity in the rail

track wear-and-tear costs, the point appears to be empirically relevant.

Finally, note that the proÞts raised are lower without discrimination than the

one that will prevail if the pricing rule (9) can be implemented. Assessing

the magnitude of the loss is obviously a challenging problem. It goes however

beyond the scope of this paper and the issue is left for future research.

3See, e.g. �Progress in Rail Reform�, a report by the Australian Productivity Commis-
sion (1999). The price elasticities for CityRail in New South Wales are reported to vary
from -0.08 for a single ticket user to -0.53 for a customer buying a travel pass.
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2.3 Second-best

We now turn to the so-called second-best problem, where social welfare is

maximised under the constraint that the users pay for the cost they induce

so that there is no need for subsidies.

Denote by L = W + λΠ the Lagrangian expression associated with this

problem while λ is the multiplier of the break-even constraint. In the case of

perfect discrimination, deriving L with respect to pθ, we obtain the following

Þrst order conditions:

∂L

∂pθ
= {π0θ [xθ (pθ)]− cθ}x0θ (pθ) + λ {xθ (pθ) + (pθ − cθ)x0θ (pθ)} = 0

all θ ∈ Θ. By using equation (1), which deÞnes the access demand, together
with the various notations introduced above, it can be simpliÞed to obtain:

pθ − cθ
pθ

=
λ

1 + λ

1

.θ
. (11)

Equation (11) shows that, as long as perfect discrimination is possible, all

types of train can be considered in a separate manner. The rule that governs

the setting of prices at the second-best is the standard Ramsey formula. Since

the distortion that follows from a price set above the marginal cost increases

with the elasticity of demand, the mark-up should be inversely related to this

price elasticity. It is set in such a way that the overall distortion is minimised

and the Þrm can recover all its costs. The magnitude of the distortion is

measured by the shadow price λ which is the only parameters that does not

depend only on the type θ but on the overall distribution of characteristics

in the population.

As for the case where proÞt-maximisation is the objective of infrastructure

manager, equation (11) implies that a user inducing a higher cost should

not necessarily be charged a higher price.4 In other words, even when the
4although it is less likely since λ/ (1 + λ) < 1.
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maximisation of social welfare is the goal, the very fact of taking into account

the sustainability of the infrastructure breaks the direct relationship between

price and marginal costs.

If price discrimination is not possible, imposing pθ = p and deriving the

Lagrangian L with respect to this unique price gives rise to the FOC:Z
θ∈Θ

{[π0θ [xθ (p)]− cθ ]x0θ (p) + λ [xθ (p) + (p− cθ)x0θ (p)]} dG (θ) = 0.

Again, this condition gives rise to a familiar Ramsey formula :

p− ec
p

=
λ

1 + λ

1

.X
, (12)

where the �marginal cost � ec is deÞned by equation (8). Note that the

Lagrange multiplier obtained here is higher than the one that appears in

equation (11). The lack of price discrimination has thus a double negative

impact on welfare. First, the infrastructure owner cannot differentiate across

types (hence costs) with induces welfare losses that are already present in

the Þrst-best allocation. Second, it is more difficult to raise proÞts, thus

the necessary price distortion appears to be more important without price

discrimination.5

3 Effect of congestion

Peak-load pricing is a well-known recommendation of transportation econo-

mists.6 Its precise display when users are heterogeneous is less obvious,

especially if heterogeneity may also concerns the congestion characteristics.

5This does not mean however that the access price without discrimination will be nec-
essarily higher than the average price with prefect discrimination since there is no straight-
forward relationship neither between the �marginal cost� ec and the average marginal cost
c, nor between the elasticity of the aggregate demand 'X and the average elasticity.

6See, among others, Vickrey (1963) and Arnott and Small (1994)
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In what follows, we tackle the issue of congestion by considering again the

problems addressed above with the additional constraintZ
θ∈Θ

tθ (H)xθ (pθ) dG (θ) ≤ T, (13)

where tθ (H) is the minimum delay that should separate the access of a

type θ-train from the rest of the traffic and T a constant characterising the

�capacity� of the track where congestion actually occurs. Although the rail

infrastructure is a complex network of tracks, few of them are critical for an

efficient management. Part of the tracks constitute indeed true bottlenecks

that condition the correct working of the whole system. I thus ignore the

precise structure of the network to concentrate on pricing formula for a single

but congested track. The complexity of the problem Þnds its origin in the

multiple sources of heterogeneity. In addition to the differences already in-

troduced above, trains may differ in the duration of their use of the tracks (a

direct consequence of the speed differences). However, the delay tθ depends

more generally on the precise distribution of types along the day, namely H.

Indeed similar trains may follow with a reduced delay while different trains

has to be separated by a extended one. In order to isolate the various phe-

nomena at hand, I Þrst assume that tθ (H) is independent of both θ and H

to highlight the effects of the limited capacity of the track; The effect of the

differences in speeds and in congestion are studied afterwords.

In order to avoid a multiplication of cases, we shall study simultaneously,

Þrst-best, second-best and proÞt-maximisation7. It is indeed possible to in-

troduce a general problem which Lagrangian writes

L =

Z
θ

[πθ (xθ)− cθxθ ] dG (θ)− F + λ
½Z

θ∈Θ
(pθ − cθ)xθ (pθ) dG (θ)− F

¾
+(1 + λ)µ

½
T −

Z
θ∈Θ

tθ (H)xθ (pθ) dG (θ)

¾
,

7The same approach is adopted by Laffont and Tirole (1993).
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where λ is the shadow price of the break-even constraint and µ the shadow

price of congestion. When the Þrst-best allocation is considered, the multi-

plier λ should be set to zero. When proÞt-maximisation is under scrutiny,

one take the limit when λ goes to inÞnity. The factor (1 + λ) that multiplies

the shadow price µ is introduced as to insure that congestion is taken into

account also in this limit cases. After this technical preliminary, we now go

to the results, according to different assumptions regarding the congestion

characteristics tθ (H) ≡ t.

3.1 Identical congestion characteristics

In this section, I assume that all the services have the same congestion car-

acteristics: tθ (H) ≡ t.
If prefect discrimination is possible, the optimal pricing formula writes:

pθ = cθ +
λ

1 + λ

pθ
.θ
+ µt. (14)

In addition to the marginal cost and the Ramsey markup already present in

the previous formulae, equation (14) contains a third term, namely µt that

reßects the consequences of congestion for the optimal price. Interestingly

enough, as long as the congestion characteristics do no differ, the optimal

price is uniformly increased as to meet the capacity of the link. No difference

should be made across users. Even if some appears to be more proÞtable

than others the cost of congestion is distributed equally.

If there is no discrimination, the optimal pricing formula writes:

p = ec+ λ

1 + λ

p

.X
+ µt. (15)

Again, the treatment of congestion appears again as a completely separated

problem in (15). This does not come as a surprise since it was already the

case when prefect discrimination was assumed to be possible.
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3.2 Pricing of congestion when duration of usage may
differ

In this section I study how congestion should be priced if the trains have

different speeds. In this case, their impact on congestion also differ. However,

for the time being, the precise sequence of trains H is assumed not to be

relevant, so that tθ (H) ≡ tθ.
If prefect discrimination is possible, the optimal pricing formula writes

simply :

pθ = cθ +
λ

1 + λ

pθ
.θ
+ µtθ. (16)

Equation (16) states simply that congestion should be priced proportion-

ally to duration of usage as measured by the parameter tθ. Note however

that the shadow price of congestion µ depends on the whole distribution of

characteristics8.

When no discrimination is possible, the optimal pricing formula writes:

p = ec+ λ

1 + λ

p

.X
+ µet, (17)

where et = Z
θ∈Θ

µ
αθ
.θ
.X

¶
tθdG (θ) . (18)

Equation (17) and (18) make it clear that, in reality, the pricing of congestion

cannot be considered as a problem completely independent from the other

users� characteristics. In absence of discrimination, the only constraint is

that the (unique) price is sufficiently high for the traffic not to exceed the

capacity of the link so that equation (17) may appear a bit artiÞcial. It

nevertheless highlights interesting consequences of this form of congestion

pricing. First, the price increase needed to decrease congestion has an impact

8Just like it is the case for λ.
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on the demand for access that depends on the price elasticity of each user.

Thus, the (shadow) cost of congestion as measured by µ does not really

depends on the average time of usage t =
R
θ∈Θ tθdG (θ) but on the �virtual

value� et speciÞed by equation (18). As a result, if the slower services are those
with a relatively higher price elasticity, et > t and congestion can be �easily�
solved. Conversely, if the slower services display a smaller than average price

elasticity, et < t and congestion is expensive to be solved i.e. will require

an �higher than expected� increase in prices. Second, because the reduction

in access demand is directly related to the price sensitivity of the different

users, the Þrst to drop are the users with the highest price elasticity and

not necessarily the slower services or those that pay a higher fraction of the

congestion costs.

The interesting problem lies however in the intermediate case where the

(multidimensional) parameter θ is partially observable. Let θ =(α,β) where

α is observable, β unobservable. Assume furthermore that the observable

component is related to the sole congestion properties, while the unobserv-

able component is related to the other aspects like price-elasticities and cost

properties. The F.O.C. deÞning the optimal pricing formula writes:

pα =fcα + λ

1 + λ

pα
.Xα

+ µtα. (19)

where Xα (pα) =
R
β∈B xθ (pα) dGα (β) and, more generally, the index α in-

dicates the (partial) aggregation over the users of type θ =(α,β) that share

an identical observable component α. If the pair (α,β) is made of indepen-

dent parameters and no information indicates a systematic bias, fcα = ec and
.Xα = .X so that

pα − ec
pα

=
λ

1 + λ

1

.X
+ µ

tα
pα
. (20)

In words, the markup is the sum of two components: the standard Ramsey

markup, identical for all users and a congestion term that increases with the
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duration of network use as measure by tα. Again, one has to keep in mind

that µ depends on the whole distribution of types and that the Þrst users to

drop are not necessarily those with the higher ratio (tα/pα) .

3.3 �Perfect Congestion Pricing� : the two types case

In this section, I recognize explicitly that congestion depends on the exact

sequence of trains H. In order to give a simple and explicit solution to this

complex problem, attention is restricted to the two types case: Θ =
©
θ, θ
ª
.

Without any loss of generality, θ is assumed to be the slow type.

Denotes t0θ the minimum delay between to services of the (same) type θ. It

is well known that t0θ ≤ tθ (H) and given the restriction to the two type case,
I shall use the following notations:

tθ (θ→ θ) = t0θ and tθ
¡
θ→ θ

¢
= t0θ +∆,

tθ
¡
θ → θ

¢
= t0

θ
and tθ

¡
θ→ θ

¢
= t0

θ
+ δ.

In words, when shifting from one type of train to the other, there is a increase

in the delay between services. This increase is especially important when a

fast services follows a slow one ∆À δ.

Clearly, in order to maximize the number of trains that may use the

track in a given period, one shall attempt to minimize the extent of time

�T (H) =
R
θ∈Θ tθ (H)xθ (pθ) dG (θ)�. This minimum T (H) = T 0 is reached

when all the services of the same type are gathered in which case

T (H) = Xθ (pθ) t
0
θ +Xθ (pθ) t

0
θ
+∆+ δ.

Assuming such a grouping, the optimal pricing formulae do not differ from

those considered just above, namely equation (16) if perfect discrimination

is possible and equation (20) if no characteristics beyond those regarding
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congestion is observable. Note however that such a grouping is likely to

generate important time costs for the network users since it requires a report

or an anticipation with respect to their ideal time schedule.

If the costs of proceeding to a re-arrangement of the time schedule are

considered to be excessive, both train types are likely to be widespread along

the period T . Let the demand for access of the slow type trains Xθ (pθ) be

smaller than the demand of the fast type trainsXθ (pθ). In this case, there are

Xθ trains that insert themselves in groups type-θtrains of size Xθ/Xθ.The

necessary time for all the services to operate is now

T (H) = Xθ (pθ)
¡
t0θ +∆

¢
+Xθ (pθ)

µ
Xθ (pθ)

Xθ (pθ)
t0
θ
+ δ

¶
.

If prefect discrimination is possible, the optimal pricing formulae write now

:

pθ = cθ +
λ

1 + λ

pθ
.θ
+ µ

¡
t0θ +∆+ δ

¢
(21)

pθ = cθ +
λ

1 + λ

pθ
.θ
+ µt0

θ
(22)

If no discrimination is possible, the optimal pricing formula writes again as

equation (17) above, namely

p = ec+ λ

1 + λ

p

.X
+ µet,

where, in the two type case et is given by
et = 1

.X

£
αθ.θ

¡
t0θ +∆+ δ

¢
+ αθ.θt

0
θ

¤
. (23)

Finally if there is discrimination in the sole congestion dimension, the optimal

markups write

pθ − ec
pθ

=
λ

1 + λ

1

.X
+
µ

pθ

¡
t0θ +∆+ δ

¢
(24)

pθ − ec
pθ

=
λ

1 + λ

1

.X
+
µ

pθ
t0
θ
. (25)
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Equation (21)-(25) deserve a few comments. Whatever the context which is

considered (perfect price discrimination, no discrimination, partial discrimi-

nation), the slow type is attributed the �merits� of the delay resulting from

the non-homogeneity of the traffic. The delay associated to the type-θ trains

is indeed t0θ +∆+ δ. This does not comes from the characteristic of the type

however; but rather on the fact that I assumed that (i) the Xθ trains are uni-

formly distributed over the whole period T and (ii) the type-θ trains are in

a greater amount. As a result, the demand in type-θ services Xθ determines

the number of train type changes over the period. Would the Xθ trains be

uniformly distributed over the whole period T and the slower services repre-

sent a greater share of the traffic, the time penalty∆+δ should be attributed

to the type-θ services.

More generally, it appears that a sound congestion pricing would require

each service to pay for its exact impact on the comprehensive time of use of

all users. If it follows or precede a service of the same type, a train should be

charged µt0θ for congestion. If it induces a shift of type (and back), it should

also be charged for this, hence it will be asked to pay. µ (t0θ +∆+ δ) for

congestion. Of course, the cost of changing the time schedule are likely to

exceed µ (∆+ δ) in the short-run. However, such a menu of fares may induce

a train company to reconsider its time schedule in the long run, providing

the right incentive for a more efficient use of the (existing) network.
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4 Conclusion

In this paper, optimal fares are proposed for a sound access pricing of the

rail network. The issue, of crucial importance for the deregulation of the

European industry, is considered in different contexts. The administration

in charge of the infrastructure is successively assumed to be for-proÞt and

not-for-proÞt, beneÞtting from subsidies and submitted to a break-even con-

straint. The heterogeneity of the users is explicitly taken into account and

both perfect discrimination and no price discrimination are considered. One

of the most striking result is that, while the pricing formulae appear to be

�standard�, they should not refer to the average value of the marginal cost

c but to a weighted sum ec,with weights that depend on the price-elasticity
of the users. Given the heterogeneity in both the marginal costs and the

price-elasticties reported by the empirical literature, the implications are sig-

niÞcant. The second part of the paper is devoted to the pricing of congestion.

Of course, the impact of congestion pricing depends on the price-sensitivity

of the users. Again, by taking explicitly heterogeneity into account, it has

been possible to show that a correct congestion pricing should not be based

on average values. To conclude this second part on congestion, I focus on

the two-type case as to be able to take into account the speciÞcity of the

rail sector, namely the fact that the capacity usage depends on the speciÞc

pattern of trains.

This papers bears nevertheless a number of limits. As underlined by

Coulthard, Matthews and Nash (2003), socially optimal pricing would re-

quire to take into account other elements such as environmental costs and

reports to other modes. The issue of infrastructure enhancement has also

been put aside. Finally the demand for slots and the pattern of trains is

essentially taken as given. These issues are left for future research. I believe
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however that by tackling explicitly the issue of access-pricing and hetero-

geneity the paper provides signiÞcant insights into a problem that has been

often overlooked.
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