Aggregators, Search, and the Economics of New Media Institutions

Lisa George, Hunter College and the Graduate Center, CUNY

Christiaan Hogendorn, Wesleyan University

IDEI Toulouse, March 2012

Motivation

The term "parasite" comes from the Greek word parasitos, used to refer to someone who ate at someone else's table without providing anything in return. It's a useful way to think of new aggregators like the Huffington Post..." – Robert Levine, Free Ride, 2011.

"Promiscuity is not a good thing in relationships, but it's a great thing in news." – Arianna Huffington, Huffington Post

Literature: Two Sided Markets

- Anderson & Coate (2005)
- Gabszewitz et al. (2006)
- Ambrus & Reisinger (2006)
- Anderson, Foros & Kind (2010)

Viewer Behavior

Advertiser Behavior

Literature: Intermediaries Affect Advertisers

Viewer Behavior

Advertiser Behavior

- Athey, Calvano & Gans (2010)
- Goldfarb & Tucker (2010)

Intermediaries:
Targeted Ad Networks

Literature: Intermediaries Affect Viewers

Our Contribution

Search Engines, Aggregators

Aggregators affect viewers differently

Viewer Model: Motivating Data 1

- ComScore Media Metrics, 2002-2010
- About 50,000 Household/Year, 360,000 Total
- 8,500 News Sites (Newspapers, Radio, Television, Internet)
- Referring Domains Search, Aggregators,
 Social Media

Viewer Model: Motivating Data 2

Viewer Model: Motivating Data 3

- Visit more unique media sites
- Read fewer pages per site
- Spend less time per site

Viewer Model: Details

- Stylized model to capture switching vs. exclusive viewing behavior
- 2 Content outlets
- Fixed reading time T
- Search cost t
- Diminishing marginal utility of reading time generates "switching" behavior
- Tie breaker: fraction β view outlet $I, (I-\beta)$ on outlet 2

$$U(T_{ik}, \alpha_i) = a_i T_{ik}^a$$

$$\alpha = 1$$

Advertiser Model

- Stylized model to capture single-homing versus multi-homing advertisers
- Horizontally differentiated context: "niche" versus "mass market" advertisers (lipstick versus Taco Bell)
- "First impressions"
 worth σ
- "Second impressions"
 worth γ × σ

$$R_{12}(\theta_j, \mathbf{v})$$

$$= (\sigma - \theta_j)v_1^e$$

$$+ (\sigma - (1 - \theta_j))v_2^e$$

$$+ (\sigma + \gamma\sigma - \theta_j - (1 - \theta_j))v^s$$

$$-p_1(\mathbf{v}) - p_2(\mathbf{v})$$

Outlets

Each outlet sets advertising price to maximize profit

$$\Pi_1 = A\overline{\theta}p_1(\mathbf{v}) \qquad \Pi_2 = A(1-\underline{\theta})p_2(\mathbf{v})$$

 Equilibrium prices are monopoly prices that depend on exclusive and switching viewers

$$p_1^*(\mathbf{v}) = \frac{\sigma v_1^e + \gamma \sigma v^s}{2} \qquad p_2^*(\mathbf{v}) = \frac{\sigma v_2^e + \gamma \sigma v^s}{2}$$

- If second impressions are worthless, then only exclusive viewers matter (Anderson, Foros, Kind 2010)
- ...and exclusive viewers raise prices and profits more

Search and Viewers

- Search improvements lower t
 - Switching increases
 - Participation also increases
- Total exclusives still fall
- ...but by η percent as much as without the participation effect
- participation effect has more benefit for high β outlet

Aggregators and Viewers

- Aggregator lets viewers see both outlets for one transaction cost t
- "Non-parasitic" setup:
 - Aggregator does not sell its own advertising
 - All viewers "click through" from aggregator to content outlets
- Price or use cost p_A
- Aggregator may increase switching viewers without increasing participation

Effect on Advertising Prices

- δ more switchers increase advertising price.
- Fewer exclusives decrease advertising price.
- Search lowers price on high-β outlets

$$dp_1^{*s} = \frac{1}{2}\sigma\left(-\eta\beta + \gamma\right)\delta$$

Aggregator effect is similar but more negative

$$dp_1^{*a} = \frac{1}{2}\sigma\left(-\beta + \gamma\right)\delta$$

Effect on Advertiser Multi-Homing

- More viewer switching leads to less advertiser multihoming
- Decrease in advertiser multi-homing larger for aggregator

Effect on Content Outlet Profits

- δ more switchers increase content outlet profits.
- Fewer exclusives decrease content outlet profits.
- Search lowers profits on high-β outlets

$$d\Pi_1^{*s} = \frac{\partial \Pi_1^*}{\partial v^s} \delta + \frac{\partial \Pi_1^*}{\partial v_1^e} (-\eta \beta \delta)$$

Aggregator effect is similar but more negative

$$d\Pi_1^{*a} = \frac{\partial \Pi_1^*}{\partial v^s} \delta + \frac{\partial \Pi_1^*}{\partial v_1^e} (-\beta \delta)$$

Where Next?

Intermediation Decreases Long Tail?

But Intermediation Facilitates Long Tail?

Conclusion

Viewers

- Aggregators and improved search increase switching.
- Aggregators may increase switching but not participation.
- Those that prefer variety benefit most from aggregation.

Advertisers

- Increase in viewer switching reduces multi-homing.
- Niche firms benefit more than mass market firms.

Outlets

- Increased participation increases outlet profits.
- Increased viewer switching decreases "popular" outlet profits;
 might increase "unpopular" outlet profits.