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1 Introduction

During the last two decades, the postal sectors in the EU member states have faced two

major trends. On the one hand, markets have been liberalized to an increasing degree,

and full liberalization is now just around the corner. On the other hand, traditional

postal products have been subject to an increasing degree of competition from electronic

substitutes. The first trend has been extensively studied in the literature and its impli-

cations are by now well understood. The electronic substitutes have also received a lot

of attention but the jury is still out when it comes to assessing their precise impact on

the demand for postal products in the coming years and decades.

A third major trend which is likely to have a significant effect on the future of the

postal sector has hitherto largely been ignored by the literature: the increasing im-

portance of sustainable growth considerations and of environmental policy. The postal

sector affects the environment through at least two channels: the consumption of paper

on the one hand, and CO2 emissions due to transportation and buildings’ energy con-

sumption on the other hand. Consequently the environmental debate will bring postal

operators to rethink their pricing strategies, their product design and their investment

decisions. A step in that direction has already been taken by 20 postal operators mem-

bers of the International Post Corporation (IPC), including La Poste, that represent

80% of global mail volumes. They have pledged to collectively reduce their carbon

emissions by 20% by 2020, based on 2008 levels.1

In addition, considerations of sustainable growth and environmental policies will

challenge the other postal stakeholders too, as they will also have a substantial impact

on regulatory policies, in particular Universal Service Obligations (USO). Indeed, postal

operators could reduce their emissions by transforming and modernizing their process

like for instance the use of electric vehicles or the thermal insulation of facilities. But,

regulatory policies may also be adapted to take into account environmental considera-

tions (constraints on daily letter box collection and mail delivery amongst others).

In this paper, we study the impact of environmental considerations on USO. The

1These operators are responsible for the emission of 8.36 million tonnes of CO2.
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cost and benefits of USOs have been extensively studied over the last decade.2 It is

by now well known that USO has social benefits but implies costs at various levels:

private costs for the operator and efficiency costs for customers. An optimally designed

USO ought to strike a balance between benefits and costs. The point we make is that

environmental considerations add yet another dimension to this trade-off.

It is rather difficult to determine which constraints and which processes have the

most important impact in terms of emissions. Moreover, it is not the absolute level

which is relevant to guide decisions, but marginal levels.3 Without any form of green

accounting, determining the least costly way (socially or financially) to reduce CO2

emissions is a non trivial question. Nevertheless, one can reach some intuitive insight by

focusing on sources of emissions and costs. In the case of La Poste, the two main sources

of emissions are the facilities and the transport. However, facilities are responsible for

less than 20% of total emissions, so that focusing on the reduction of transportation

emission may be seen as a relevant first step. This is the approach we adopt in this

paper.

Emissions due to transportation originate from different parts of the mail process:

delivery, collection, employee transport or transportation of mail between delivery cen-

ters. Recall that the classical way of analyzing the mail process distinguishes four activ-

ities: collection, sorting, transportation and delivery. In France most of the transport

process is operated by subcontractors. In 2007, subcontractors of the mail division were

emitting more than one third of the total emissions of La Poste (including the parcel

division). As far as the USO is concerned, the transportation process is mainly affected

by the requirement of a national D+1 service. Because of the French geography it is

necessary to resort to air transport to provide such a service. And air transportation

represents 15% of the total transportation cost. Furthermore, the national D+1 service

also increases (private and social) costs associated with other means of transportation.

For instance, it often implies that trucks are not fully loaded; this is costly and this

increases the carbon footprint of a D+1 letter.

2See Boldron et al. (2008) and the references given there.
3See Boldron et al. (2009).
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To illustrate this argument in the simplest possible way, we concentrate on a specific

aspect, namely the speed of processing and delivery. USO often requires that (domestic

first-class) mail be processed on a D+1 basis, irrespective of the distance between sender

and addressee (and typically at a uniform rate). Now, transportation costs incurred to

ensure next day delivery, both the private ones borne by the operator and the external

costs associated with emissions tend to increase quite significantly with distance. For

instance, with the D+1 constraint, long distance mail may have to be carried by plane,

while more environmentally friendly means of transportation could be used for less

urgent mail. We show that, when environmental considerations are ignored, regulators

may impose a larger than otherwise optimal USO. We also study how the USO should

be designed to properly account for the environmental cost in a variety of situations

ranging from a first-best world to a (Ramsey-type) second-best world with uniform

prices.

2 Model

Consider a representative sender who sends mail to addressees located at a distance

δ ∈ [0, 1]. The variable δ is uniformly distributed and there is a total mass one of

addressees. There are two mail products: x1 which is processed and delivered at D+ 1

in area A1 ⊂ [0, 1], and x2 which is delivered at D+2 in area A2 ⊂ [0, 1]. Areas A1 and

A2 form a partition of [0, 1]. More specifically we assume that product 1 is available

when the addressee is located at a distance δ ≤ μ, while product 2 is available when

μ < δ ≤ 1 so that A1 = [0, μ] and A2 =]μ, 1]; see Figure 1.4

The utility of the representative sender is given by

U =

Z
A1

[u1(x1)− p1x1]dδ +

Z
A2

[u2(x2)− p2x2]dδ,

where p1 is the price of x1 and p2 is the price of x2 and where u1(x) > u2(x).

The operator’s cost of processing mail includes a constant (marginal) delivery cost

of k which is the same for the two types of mail. In addition there are transportations
4Alternatively we could assume that both products are available in A1, while only product 2 is

available in A2. This would lead to a more complicated model where the customer (sender) chooses
between the two products for addressees in A1.
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Figure 1: The partition of the market according to the location of the addressee.

costs given by T1(x1, δ) for D+1 mail of volume x1 at distance δ and T2(x2, δ) for D+2

mail at volume x2. We have of course

T1(x, δ) > T2(x, δ) (1)

for any x and δ: transportation costs are the higher the faster the speed of delivery.

Furthermore, both T1(x, δ) and T2(x, δ) increase with distance, and T1 increases faster

∂T1(x, δ)

∂δ
>

∂T2(x, δ)

∂δ
> 0. (2)

Both transportation costs are convex in distance

∂T 2i (x, δ)

∂δ2
> 0, i = 1, 2. (3)

We also assume

T2(x, δ) < 2T1

³x
2
, δ
´
. (4)

In words, total shipping costs are reduced if we “group” the mail. Rather than shipping

say 50 units everyday (D+1) it is cheaper (per unit) to ship 100 every two days (D+2).
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Transportation cost T1 and T2 are “private” costs, i.e., costs borne by the operator.

In addition, transportation also has an environmental impact, in particular in terms

of CO2 emissions. Environmental cost associated with transportation are given by

ϕ1(x1, δ) and ϕ2(x2, δ). These external costs have the same properties as the private

costs Ti; formally, ϕ1(x1, δ) and ϕ2(x2, δ) satisfy conditions (1)—(4).

Last but not least, the operators production technology involves a fixed cost F (μ)

which may or may not depend on μ. More precisely, we shall assume F 0(μ) ≥ 0 and

F 00(μ) ≥ 0

Social welfare (total surplus) is given by

W = μu1(x1) + (1− μ)u2(x2) + S(μ)− F (μ)− k[μx1 + (1− μ)x2]

−
Z μ

0
[T1(x1, δ) + ϕ1(x1, δ)]dδ −

Z 1

μ
[T2(x2, δ) + ϕ2(x2, δ)]dδ, (5)

where S(μ) are the social benefits of USO which depend on μ, the proportion of ad-

dressees that can be reached on D + 1. We have S0(μ) and S00(μ) < 0 so that social

benefits are an increasing and concave function of μ. Total delivery cost is given by

k[μx1 + (1− μ)x2]. Observe that this formulation assumes that xi is constant over Ai.

This is a necessary condition if the allocation is to be decentralized with two (linear)

prices p1 and p2.

3 First-best solution

To determine the first-best allocation, we maximize W defined by (5) with respect to

x1, x2 and μ. The FOCs are given by

∂W

∂x1
=μ

£
u01(x1)− k

¤
−
Z μ

0

∙
∂T1(x1, δ)

∂x1
+

∂ϕ1(x1, δ)

∂x1

¸
dδ = 0 (6)

∂W

∂x2
=(1− μ)

£
u02(x2)− k

¤
−
Z 1

μ

∙
∂T2(x2, δ)

∂x2
+

∂ϕ2(x2, δ)

∂x2

¸
dδ = 0 (7)

∂W

∂μ
= {u1(x1)− kx1 − T1(x1, μ)− ϕ1(x1, μ)}

− {u2(x2)− kx2 − T2(x2, μ)− ϕ2(x2, μ)}+ {S0(μ)− F 0(μ)} (8)
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Conditions (6) and (7) state that the marginal benefit for each of the products must

equal its marginal cost. Marginal costs consist of three elements: delivery cost (k),

private transportation cost (∂Ti/∂xi) and environmental cost (∂ϕ/∂xi). Recall that

xi concerns all addressees in Ai. Consequently, the relevant benefits and costs are

determined for the entire set of addressees.5 Since marginal transportation costs are

not constant within a given delivery area, it is convenient to define these costs on a per

addressee basis:

T
0
1 =

R μ
0

∂T1(x1,δ)
∂x1

dδ

μ
, ϕ01 =

R μ
0

∂ϕ1(x1,δ)
∂x1

dδ

μ
,

T
0
2 =

R 1
μ

∂T2(x2,δ)
∂x2

dδ

1− μ
, ϕ02 =

R 1
μ

∂ϕ2(x2,δ)
∂x2

dδ

1− μ
.

The first-best solution can be decentralized by the following prices

p1 = k + T
0
1 + ϕ01, (9)

p2 = k + T
0
2 + ϕ02. (10)

In words, prices reflect marginal cost which includes a “Pigouvian” tax (i.e., a tax which

is equal to the marginal social damage). To give the right signals to the consumer the

price of the goods have to reflect their social marginal costs. The social marginal cost

includes the marginal cost of the externality. We can expect prices to differe (p1 6= p2)

but we cannot presume on their ranking. On the one hand, the D + 1 good generates

larger transportation and environmental costs for any given distance δ, but, on the other

hand, good D+2 is sent to customers that are more distant from the sender than good

D + 1. We come back to this comparison in section 6.

The third condition may or may not yield interior solution. When social benefits

of universal service, S(μ), are sufficiently large we may have μ = 1. For the sake of

interpretation we can rewrite (8) as

∂W

∂μ
=[u1(x1)− kx1 − T1(x1, μ)]− [u2(x2)− kx2 − T2(x2, μ)]

− [ϕ1(x1, μ)− ϕ2(x2, μ)] + [S
0(μ)− F 0(μ)]. (11)

5This explains the integral in the transportation cost terms and the multiplication by μ or (1 − μ)
of benefits and delivery costs.
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This expression shows the impact on social welfare of an increase in the size of the D+1

area. The first and second terms represent the (private) surplus of sender per addressee

(net of delivery and transportation cost) in D + 1 and D + 2 area, respectively. As we

increase the size of the D + 1 zone, we gain the difference between D + 1 and D + 2

surplus for the marginal addressee that is shifted from zone D + 2 to zone D + 1. The

third term represents the marginal environmental cost of an increase in μ. The fourth

term [S0(μ)−F 0(μ)] corresponds to the marginal social benefit of USO net of any extra

fixed cost that may be incurred. An interior solution for μ (i.e., 0 < μFB < 1) requires

∂W/∂μ = 0 and thus strikes a balance between the benefits and costs of the increase in

μ.6 When ∂W/∂μ = 0 for μ = 1, we have a corner solution given by μFB = 1.

Observe that when the environmental cost is neglected and when the first-best solu-

tion is interior, the regulator will choose a level of μ that is too large. When μFB = 1,

the neglect of environmental cost has no (direct) impact on the optimal μ. However,

both prices will then be set a too low a level.

4 Uniform pricing

The solution described in the previous section requires (in general) different prices for

the delivery areas. Except by coincidence, (9) and (10) imply p1 6= p2. When the price

is restricted to be uniform (p1 = p2 = p) this solution can no longer be achieved. We

now study the best solution that is feasible under uniform pricing. At this point, no

break-even constraint is imposed.

Social welfare continues to be given by (5), except that x1 and x2 are now functions

of p, determined by the sender’s utility maximizing problem. It is convenient to rewrite

welfare as W = U +π+E, where U is (sender’s) utility, πi is profit, while E represents

6The second order condition is satisfied per our assumptions on the functions Ti , ϕ, and S.
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social costs and benefits:

W =μ[u1(x1)− px1] + (1− μ)[u2(x2)− px2]

+ p[μx1 + (1− μ)x2]− k[μx1 + (1− μ)x2]−
Z μ

0
T1(x1, δ)dδ −

Z 1

μ
T2(x2, δ)dδ

+ S(μ)− F (μ)−
Z μ

0
ϕ1(x1, δ)dδ −

Z 1

μ
ϕ2(x2, δ)dδ. (12)

Differentiating and using the envelope theorem yields

∂W

∂p
= μ

∂x1
∂p

h
p− k − T

0
1 − ϕ01

i
+ (1− μ)

∂x2
∂p

h
p− k − T

0
2 − ϕ02

i
= 0,

which implies

p =
μ∂x1

∂p

h
k + T

0
1 + ϕ01

i
+ (1− μ)∂x2∂p

h
k + T

0
2 + ϕ02

i
μ∂x1

∂p + (1− μ)∂x2∂p

,

so that the price is a weighted sum of marginal costs (including environmental costs).

The expression with respect to μ is the same as before, so that7

∂W

∂μ
=[u1(x1)− kx1 − T1(x1, μ)]− [u2(x2)− kx2 − T2(x2, μ)]

− [ϕ1(x1, μ)− ϕ2(x2, μ)] + [S
0(μ)− F 0(μ)].

However, the actual level of μ will differ from the first-best solution because quantities

(demand levels) differ. At this level of generality, it is not possible to assess analytically

the impact of uniform pricing on the optimal level of μ. This is one of the issues that

will be examined in more detail in the numerical examples in Section 6.

5 Second-best

So far, we have not required the operator to break even. In other words, we have

not required that revenues be sufficient to cover all the costs, including the fixed cost.

When F 0(μ) = 0 the fixed cost then had no impact at all on the solution, while it

did affect the optimal level of μ when F 0(μ) > 0. Observe that when no break even

constraint is imposed, the use that is made of environmental tax revenues does not

7The expression is the same because quantities do not (directly) depend on μ.
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matter. Specifically it does not matter, in our quasi-linear setting, whether the revenue

is refunded to consumers (on a lump-sum basis) or to the operator.8

We now turn to the cases where the operator faces a break-even constraint (requiring

π ≥ 0). In these circumstances the allocation of environmental tax proceeds does matter.

We shall first consider the case where tax revenues are refunded to the operator and

then assume that they are not refunded to the operator but to the representative sender.

5.1 No uniform pricing constraint

5.1.1 Environmental taxes are refunded to operator

Let λ denote the multiplier associated with the break-even constraints. The Lagrangian

expression associated with the second-best problem is given by L = U + (1 + λ)π + E

which yields

L =μ[u1(x1)− p1x1] + (1− μ)[u2(x2)− p2x2]

+ (1 + λ)

½
μp1x1 + (1− μ)p2x2 − k[μx1 + (1− μ)x2]−

Z μ

0
T1(x1, δ)dδ

−
Z 1

μ
T2(x2, δ)dδ − F (μ)

¾
+ S(μ)−

Z μ

0
ϕ1(x1, δ)dδ −

Z 1

μ
ϕ2(x2, δ)dδ. (13)

The decision variables are the same as in the first-best problem, namely p1, p2 and μ.

Observe that environmental taxes do not explicitly appear in this problem. They are

included in consumer prices p1 and p2.9

There are two possible types of solution, respectively with λ = 0 or λ > 0. The

case λ = 0 occurs if the first-best solution remains feasible, i.e., yields a revenue high

enough to cover fixed cost. When the first-best does not yield budget balance, we are

in a Ramsey type second-best with λ > 0, and optimal prices are given by

p1 − k − T
0
1

p1
=

λ

1 + λ

1

ε1
+

1

1 + λ

ϕ01
p1

,

p2 − k − T
0
2

p2
=

λ

1 + λ

1

ε2
+

1

1 + λ

ϕ02
p2

,

8As long of course as it is somehow refunded.
9Explicitly introducing taxes t1 and t2 would not change the analysis. Per unit revenue of the firm

is then equal to the producer price pi − ti plus the tax refund ti which adds up to pi.
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where εi is the absolute value of the price elasticity of good i. These expressions can be

rewritten as

p1 − k − T
0
1

p1
= α

1

ε1
+ (1− α)

ϕ01
p1

, (14)

p2 − k − T
0
2

p2
= α

1

ε2
+ (1− α)

ϕ02
p2

(15)

where α = λ/(1 + λ). These expressions are similar to those derived by Sandmo (1974)

who has studied Ramsey taxation in the presence of externalities; see also Cremer et al.

(1998). They state that the implicit tax on good i is a weighted average of the inverse

elasticity (Ramsey) term and the Pigouvian term (marginal social damage). Note that

when λ = 0 these equations reduce to the first-best expressions (9), (10).

Differentiating with respect to μ yields

∂L
∂μ

=[u1(x1)− kx1 − T1(x1, μ)]− [u2(x2)− kx2 − T2(x2, μ)]

− [ϕ1(x1, μ)− ϕ2(x2, μ)] + S0(μ)

+ λ[(p1x1 − kx1 − T1(x1, μ))− (p2x2 − kx2 − T2(x2, μ))]− (1 + λ)F 0(μ), (16)

which can be rearranged as

∂L
∂μ

=[u1(x1)− (1 + λ)kx1 − (1 + λ)T1(x1, μ)]− [u2(x2)− (1 + λ)kx2 − (1 + λ)T2(x2, μ)]

+ λ(p1x1 − p2x2)− [ϕ1(x1, μ)− ϕ2(x2, μ)] + S0(μ)

− (1 + λ)F 0(μ). (17)

When λ = 0, this equation reduces (not surprisingly) to the first-best expression (11).

For the case λ > 0 its interpretation is also quite straightforward. Equation (17) shows

that private costs now have to be multiplied by (1+λ) and that we have to account for

the extra revenue: λ(p1x1 − p2x2) which is positive or negative. Equation (16), on the

other hand, isolates the extra terms (compared to (8)); they can be positive or negative.

When the fixed cost does not depend on μ, the last term vanishes.

While expressions (16) and (17) are rather intuitive, they are too complex to yield

precise results. In particular, the impact of λ on μ does not appear to be unambiguous

and this is where the simulations presented in Section 6 provide additional insight.
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5.1.2 Environmental taxes are not refunded to the operator

So far, we have not introduced a specific notation for the environmental tax. We can

think of pi − k − T
0
i as the total (per unit) tax levied on product i. This includes

the contribution to fixed costs and the environmental component. We can introduce a

specific environmental tax ti in this problem. One can readily verify that when it is

refunded to the operator, its level does not matter. The important variable is pi. We

can set the tax ti at the Pigouvian level (or any other level). When ti is not refunded

to the operator (but to the representative sender) this variable is no longer redundant.

The Lagrangian expression is now given by

L =μ[u1(x1)− p1x1] + (1− μ)[u2(x2)− p2x2]

+ (1 + λ)

½
μ(p1 − t1)x1 + (1− μ)(p2 − t2)x2 − k[μx1 + (1− μ)x2]−

Z μ

0
T1(x1, δ)dδ

−
Z 1

μ
T2(x2, δ)dδ − F (μ)

¾
+ μt1x1 + (1− μ)t2x2

+ S(μ)−
Z μ

0
ϕ1(x1, δ)dδ −

Z 1

μ
ϕ2(x2, δ)dδ. (18)

This expression shows that environmental tax revenue is deducted in the break-even

constraint (and has a weight of (1 + λ)) and added as tax revenue (redistributed lump

sum to the representative sender, with a weight of 1). It is then plain that the optimal

policy implies t1 = t2 = 0. For the rest we have the same solution as if tax proceeds

were refunded (and as above we have the two cases, λ = 0 and λ > 0). This result

crucially depends on the fact that the regulator has independent control of pi; if the

consumer price is not controlled, the result would be different.

5.2 Uniform pricing

The issue of tax revenue refunds arises in the same way as under non-uniform pricing.

Consequently, we shall concentrate on the case where tax proceeds are refunded to the

operator.10 The Lagrangian expression associated with the maximization of welfare is

10Keeping in mind that the alternative assumption yields the same result with the statutory environ-
mental tax, ti set equal to zero.

11



given by

L =μ[u1(x1)− px1] + (1− μ)[u2(x2)− px2]

+ (1 + λ)

½
p[μx1 + (1− μ)x2]− k[μx1 + (1− μ)x2]−

Z μ

0
T1(x1, δ)dδ

−
Z 1

μ
T2(x2, δ)dδ − F (μ)

¾
+ S(μ)−

Z μ

0
ϕ1(x1, δ)dδ −

Z 1

μ
ϕ2(x2, δ)dδ. (19)

Once again, when the first-best solution satisfies the break-even constraint it prevails in

the second-best and we have λ = 0. When λ > 0, on the other hand, the optimal price

satisfies

μ∂x1
∂p

³
p− k − T

0
1 −

ϕ01
1+λ

´
+ (1− μ)∂x2∂p

³
p− k − T

0
2 −

ϕ02
1+λ

´
p∂X∂p

=
λ

1 + λ

1

ε
, (20)

where ε is the absolute value of the demand elasticity of total volumeX = μx1+(1−μ)x2.

Under a uniform pricing constraint, the traditional Ramsey problem is degenerate

and amounts to solving the budget constraint with respect to the sole decision variable

(the price). This is because there is no degree of freedom left once all the constraints

are satisfied. In the problem considered here, we do have two decision variables p and μ,

so the problem is not degenerate. Still, it is true that for a given level of μ the price will

be set at the lowest level which yields budget balancing. Consequently, equation (20)

will essentially determine λ (which is needed in the other FOC). This second expression

is obtained by differentiating L with respect to μ, which yields

∂L
∂μ

=[u1(x1)− (1 + λ)kx1 − (1 + λ)T1(x1, μ)]− [u2(x2)− (1 + λ)kx2 − (1 + λ)T2(x2, μ)]

+ λp(x1 − x2)− [ϕ1(x1, μ)− ϕ2(x2, μ)] + S0(μ)

− (1 + λ)F 0(μ). (21)

This is essentially the same condition as (17). However, while the rule remains the same

under uniform pricing, actual levels will differ. To study the impact of uniform pricing

on the levels of p and μ we have to resort to simulations to which we now turn.
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6 Numerical simulations

This section provides illustrative numerical simulations. The functional forms and the

values of the parameters have not been calibrated to reflect any specific situation. The

exercise is nevertheless very useful because it enhances the intuitive understanding of

the solution. In addition it allows us to compare the levels of the different variables

(prices and μ) accross scenarios.

We use the following functional forms: T1(x1, δ) = cx1δ
2 and T2(x2, δ) = αcx2δ

2,

with 0 < α < 1 and c > 0. Observe that the conditions (1) to (4) are all satisfied with

this formulation. Similarly, assume that ϕ1(x1, δ) = ex1δ
2 and ϕ2(x2, δ) = βex2δ

2, with

0 < β < 1 and e > 0. We consider quadratic utility functions u1(x1) = a1x1 − (b/2)x21
and u2(x2) = a2x2 − (b/2)x22 with a1, a2, b > 0 and a1 > a2 so that u1(x) > u2(x) for

all x. These functions give rise to linear demand functions x1(p1) and x2(p2) differing

in their intercept and such that x1(p) > x2(p) for all p.

We further assume that S(μ) − F (μ) = (Log(μ))/s with s > 0. In the first-best

analysis, there is no need to separate S(μ) from F (μ): the only thing that matters is

the net (of fixed costs) social benefit of the USO. It is only in the second-best analysis

(when the postal firm has to break even) that we need to distinguish the two.

Finally, the numerical results that we now report are based on the following values

of the parameters: c = 0.2, α = 3/4, e = 0.2, β = 1/4, a1 = 5, a2 = 4.9, b = 1, s = 5

and k = 0.2.

The first-best allocation is given by x1 = 4.702, x2 = 4.527 and μ = 0.858. Observe

that we obtain an interior value of μ at the first-best, so that the D+ 1 good is sent to

all recipients located at a distance at most equal to 0.858, while the recipients located

further away from the representative sender are sent D + 2 mail. Because of our as-

sumption of a uniform distribution of recipients, we also obtain that 85.8% of recipients

receive D+1 mail while the remaining 14.2% receive D+2 mail. The quantity of mail

sent per addressee is slightly larger for D + 1 than for D + 2 mail. As a consequence,

the share of D + 1 mail in the total mail market is, at 86.3%, larger than the share of

people who receive D + 1 mail in the population.
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We can contrast this allocation with the optimal allocation when the planner does

not take the environmental costs into account: x1 = 4.667, μ = 1 and thus x2 = 0.

In that case, we have a corner solution where the entire country is served with the

D+1 mail. Observe that the quantity of (D+1) mail sent is lower than in the first-best

allocation where the environmental concerns are taken into account.

The first-best allocation (x1 = 4.702, x2 = 4.527, μ = 0.858) can be decentralized

with the following prices (given by equations (9) and (10)):

p1 = k + T
0
1 + ϕ01 = 0.2 + 0.049 + 0.049 = 0.298,

p2 = k + T
0
2 + ϕ02 = 0.2 + 0.13 + 0.043 = 0.373.

Interestingly, we have that p2 > p1 because the transport costs are much larger for good

2, which is sent to the customers who reside far away from the representative sender.

The marginal environmental cost of good 1 is larger than for good 2, but the difference

is smaller than the difference in marginal transport costs.

We now impose a uniform pricing constraint, so that p1 = p2 = p. In that case,

the optimal allocation is μ = 0.859, x1 = 4.691, x2 = 4.591 which is obtained with

the uniform price p = 0.309. As explained above, the optimal uniform price is a linear

combination of the optimal differentiated prices identified above. As a consequence,

there is more D+ 2 mail sent per addressee than with the optimal differentiated prices

(since D + 2 mail was more expensive with these prices), and less D + 1 mail per

addressee. As in the optimal differentiated prices case, there is more D + 1 mail per

addressee in zone A1 than D+2 mail per addressee in zone A2. Interestingly, the D+1

area is very slightly larger at 0.859 than with optimal differentiated prices. The total

mail market volume increases slightly compared to the optimal differentiated prices case,

while the share of D + 1 mail decreases at 86.1%.

We now move to the second-best approach. The differentiated prices that decentral-

ize the first-best allocation (p1 = 0.298, p2 = 0.373) give a profit before fixed cost F (μ)

of 0.226. If the fixed cost at the optimal value of μ, F (0.858), is smaller than 0.226,

these prices are also the second-best (Ramsey) optimal prices. To determine whether

first-best prices are also second-best prices, we then need to disentangle S(μ) from F (μ).
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Figure 2: Second-best optimal value of μ as a function F with differentiated prices.

We now assume that S(μ) = (Log(μ))/s but that F (μ) = F –i.e., that it is a constant.

This constant F does not change the results reported above. As long as F < 0.226,

the first-best prices are also second-best optimal. We now study what happens when

F is increased above this threshold. Figure 2 reports the second-best optimal value of

μ as a function of F , while Figure 3 reports the second-best optimal value of p1 and

p2, and Figure 4 that of x1 and x2, as a function of F . As F increases, the operator

has to increase both its prices in order to recoup its fixed cost. We also have that the

welfare-maximizing operator increases the size of the D+ 1 market as F increases. We

obtain that p2 > p1 and that x1 > x2 as long as μ < 1. As F increases above 4.9, all

the market is devoted to D + 1 mail (μ = 1). The maximum level of F that can be

covered is equal to 5.601 and corresponds to the (profit-maximizing) price p1 = 2.63

and to μ = 1: profit is maximized when all the market is devoted to D + 1 mail.

We have done the same exercise for the second-best uniform optimal price. The

uniform price that decentralizes the first-best allocation (p = 0.309) gives a profit before

fixed cost of 0.227. If the fixed cost F is smaller than 0.227, these prices are also the

second-best (Ramsey) optimal prices. If F > 0.227, the break-even constraint is binding

and the second-best uniform price is larger than 0.309. The results we obtain with the

optimal uniform price are similar to those reported in Figures 2 to 4: as F increases,

the uniform price p increases together with the size of the D+1 market, μ. For a large

15



1 2 3 4 5
F

1.0

1.5

2.0

p1,p2

Figure 3: Second-best optimal value of p1 and p2 as a function F
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Figure 4: Second-best optimal value of x1 and x2 as a function F .
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enough value of F , μ = 1 and we are back to the results presented in Figures 2 to 4,

since the D + 1 mail is the only good available in the economy. The profit-maximizing

outcome is then the same whether or not a uniform pricing constraint is imposed.
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