
Partial Communication and Collusion
with Demand Uncertainty

Heiko Gerlach∗

May 2005

Abstract

This paper analyzes the role of communication between firms in an infinitely re-
peated Bertrand game in which firms receive an imperfect private signal of a
common value i.i.d. demand shock. Communication allows firms to coordinate
on the most collusive price and it eliminates the possibility of undetectable price
cuts. It is shown that firms can use stochastic intertemporal market sharing as
a perfect substitute for communication in low demand states. Therefore, partial
communication in high demand states is sufficient to achieve the first-best, full
communication outcome. And partial communication in low demand state does
not improve on the equilibrium without communication. Communication is most
valuable to firms if signal frequency is intermediate, demand is characterized by
upward shocks and the number of firms is neither too small nor too large.
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1 Introduction

The detection and prosecution of collusive agreements is the most daunting task of com-
petition policy. Taking collusion at face value, i.e. as market outcomes worse than some
competitive benchmark, competition authorities could in principle try to infer collusion
from price, quantity and cost data in a given industry. However, as several authors
recently argued, inferring collusion from market data is virtually impossible.1 In prac-
tice, the relevant market information is - for strategic or technical reasons - never fully
available to competition authorities. Moreover, quantitative studies of allegedly collu-
sive behaviour have proven to be highly sensitive to the specification of the functional
forms of the empirical model and therefore not very useful in court.2 In some cases it
was pointed out that rather than looking at price levels an analysis of the evolution of
prices in an industry would reduce the data requirements. However, as evidenced in
the famous Wood Pulp case3, price parallelism is at most a necessary - not a sufficient -
condition for the existence of collusion.

Consequently, most competition authorities around the world have adopted the so-
called parallelism plus rule. This policy allows prosecution of collusive behavior only
in cases where well-founded suspicion can be supported by hard evidence of facilitating
practices like communication between firms, resale price maintenance or other institu-
tionalized market design features. The advantage of this approach is that it is based on
court-proof, hard evidence. The downside is that its effectiveness crucially hinges on two
factors. First, the parallelism plus rule is unable to prosecute collusive outcomes that do
not require facilitating practices. And therefore, the less important facilitating practices
are to sustain collusion, the less effective is this policy. Second, competition authorities
need to be able to observe the use of facilitating practices. While it seems less obvious
to detect information sharing or communication between firms, recent high-profile car-
tel cases such as Citric Acids or Vitamins suggest that communication typically leaves
hard evidence in the form of memos, email etc. and that this evidence can potentially
be seized.

In this paper I focus on the first condition and analyze the importance of communi-
cation between firms for the sustainability of collusion. While there is some consensus
about the fact that communication facilitates collusion, the question here is rather how
much communication is actually needed and in which circumstances firms have stronger
incentives to communicate. To this end, I consider an infinitely repeated Bertrand game
with independent, common value demand fluctuations. At the beginning of each period,
each firm receives a private, independent (over time and firms) though imperfect signal

1These authors include Kühn (2001), Motta (2004) and Rey (2001).
2An often cited example are the diametrically opposed conclusions based on the same data set of

the US railroad cartel in the 1880’s in Porter (1983) and Ellison (1994).
3Preparation of Wood Pulp, Case IV/29.725, L85/1, 26.3.85 ECJ Cases C-89, 104, 114, 116, 117

and 125 to 129/85, see Motta (2004) for a comprehensive summary
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about the current demand level. The resulting asymmetric information between firms
implies that firms do no longer agree on the most collusive industry price and have an
incentive to engage in communication. At the following communication stage, firms are
allowed to send simultaneously messages to all other firms in the industry. Then firms
set prices and profits are realized.

In the absence of an informative message, it is impossible for a firm to infer the signal
that its rival has received at the beginning of the stage game. As a consequence, the
private history of a firm does not coincide with the public history. Following Fudenberg,
Levine & Maskin (1994) I restrict my analysis to symmetric perfect public equilibria
(PPE). A PPE is a Nash equilibrium in public strategies, i.e. strategies in which firms
condition on the public history of the game and not on their own private history. In par-
ticular, I analyze and compare the optimal organization of collusion with three different
modes of communication: no communication, full communication (i.e. communication
in all states of demand) and partial communication (i.e. communication in one demand
state only).

The unobservability of private signals introduces the possibility of opportunistic price
cuts. Consider for example a high demand period in which all firms receive an informa-
tive signal but do not communicate. In such a situation a firm might have an incentive to
choose the lower equilibrium price of a firm with an uninformative signal and undercut
its rivals. Such on-schedule price deviations are not detectable and therefore not punish-
able. Consequently, they impose static incentive compatibility constraints on the firms’
collusive scheme, i.e. incentive constraints that do not depend on the patience (discount
factor) of firms. Additionally, the optimal organization of collusion has to take into
account partially on-schedule price deviations, i.e. deviations that are detectable with a
certain probability. For example, if a firm with an uninformative signal deviates to the
equilibrium price of a firm with a low demand signal, this deviation is only detected if
demand is actually high. However, contrary to completely on-schedule deviations, these
deviations are punishable but they might impose strong conditions on the patience of
firms.

The analysis shows that the optimal organization of collusion in the absence of com-
munication is characterized by a semi-pooling price strategy. In order to avoid oppor-
tunistic price cuts by firms with a high demand signal, the industry has to incur an
informational cost by distorting the equilibrium price downwards and setting it equal to
the price of firms with an uninformative signal. By contrast, with full communication,
firms always achieve common knowledge about demand and the on-schedule constraints
to prevent opportunistic price cuts are replaced by incentive constraints for communi-
cation. Consequently, the optimal collusive price scheme with full communication is a
fully separating strategy. The role of communication is therefore twofold: it helps firms
to coordinate on the most collusive price and it eliminates undetectable, opportunistic
price cuts.

It is then shown that the most collusive equilibrium with partial communication in
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low demand states cannot achieve higher industry profits than collusion without commu-
nication. The reason for this equivalence is that firms can use stochastic market sharing
as a substitute for communication in low demand states. With communication in low
demand states, firms share the market evenly in every low demand period. Without
communication, firms with an informative signal undercut their rivals with an uninfor-
mative signal and win the whole market, i.e. firms share the market stochastically over
time. Nevertheless, since communication in low demand states eliminates the possibility
of partially on-schedule deviation, firms need to be more patient without communication
to realize the same industry profits.

For a similar reason it turns out that partial communication in high demand states
can perfectly replicate the full communication outcome. In fact, communication in
high demand states solves the coordination and the opportunistic pricing problem while
stochastic market sharing allows full collusion profits in low demand states. Again,
for this equivalence to hold, firms need to be more patient in the equilibrium with less
communication because an additional partially on-schedule constraint has to be satisfied.

When further comparing the different communication equilibria I find that the ex
ante expected price in any period is the same independent of how often firms commu-
nicate. However, since consumer surplus is decreasing and convex in prices, consumers
actually prefer collusive equilibria without communication. Finally, towards identifying
industries with a stronger need for communication to sustain maximum collusion, I cal-
culate the value of communication as a function of the parameters of the model. It is
demonstrated that communication is more likely to occur in industries with a higher
demand variance, an intermediate signal frequency, a demand with upward shocks and
an intermediate number of firms.

The basic set-up of this paper is based on the seminal work of Rotemberg & Saloner
(1986). They consider an industry with observable i.i.d. demand fluctuations and show
that the optimal collusive arrangement might involve countercyclical price movements.
Firms reduce the collusive price in high demand states to counterbalance the stronger
incentive to deviate for cartel member. In this paper, I replace the perfect public demand
signal with imperfect, independent, private signals and add a communication stage before
the pricing decisions. Therefore, my analysis is close to the work of Athey & Bagwell
(2001). Their paper considers a repeated game duopoly with inelastic demand in which
firms’ costs can either be high or low, with independent draws in each period. Each firm
knows its own cost realization but not the cost level of its rival. They find an asymmetric
perfect public equilibrium that implements first-best profits in which firms communicate
their cost level. Productive (firm) efficiency is achieved by allocating high cost firms a
higher future market share. In a similar set-up, Athey, Bagwell & Sanchirico (2004)
consider a continuum of cost types and show that the optimal symmetric PPE sacrifices
productive efficiency by using a rigid, non-sorting price scheme in order to deter high-cost
firms from mimicking low-cost types. The present paper differs from these two seminal
contributions in two important ways. First, firms have private information about a
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common demand shift and the same cost structure. Thus, the firms’ main concern is to
coordinate on allocative (firm) efficiency rather than productive efficiency. And secondly,
the main focus here is how much communication is necessary to achieve first-best, rather
than whether communication can achieve maximum collusive profits.

This paper is also related to the ”moral hazard” literature of collusion following the
work of Stigler (1964) and Green & Porter (1984). As opposed to the ”adverse selec-
tion” assumption in this paper, these authors consider situations in which symmetrically
informed firms are unable to perfectly observe the behavior of their rivals. If firms re-
ceive public signals generated by their price or output choices, the continuation play is
always an equilibrium of the repeated game and the dynamic programming technique
of Abreu, Pearce & Stacchetti (1986, 1990) and Fudenberg, Levine & Maskin (1994)
can be applied to establish folk theorems. If, by contrast, firms receive private signals,
this recursive structure is destroyed. In this context Kandori & Matsushima (1998)
and Compte (1998) stress the role of communication by generating publicly observable
history on which the continuation play can be conditioned. This recovers the recursive
structure and allows the proof of folk theorems.

The paper is organized as follows. The next section introduces the model. The
following sections analyze collusion with no, full and partial communication. Section 6
presents the main results and the last section concludes.

2 The Model

Consider an infinitely repeated game with n firms, labelled i ∈ N = {1, 2, ..n}. Firms
compete in prices in a market for a homogenous good with stochastic demand. Market
demand D in any period is a linear function of the market price p and an i.i.d. random
variable θ̃ such that4

D(θ̃, p) = θ̃ − p.

The random variable θ̃ has two possible realizations. In demand state j = H it takes
the value θH = a + ∆; in state j = L it is θL = a − ∆, with a > 0 and 0 ≤ ∆ ≤ a/3.
The upper bound on ∆ ensures positive sales in all demand states. The probability
of demand being in state j = H in any period is given by Pr(θ̃ = θH) = ρ and the

probability of a low demand state is Pr(θ̃ = θL) = 1 − ρ. The variance of demand
is increasing in ∆2 which makes the parameter ∆ a measure for the degree of demand
uncertainty. I shall refer to situations with ρ < 1/2 as demand with upward shocks
and to constellations with ρ > 1/2 as demand with downward shocks. At the beginning
of each period, firm i receives a private signal si ∈ S ≡ {L, H, ø} about the state of
demand. A firm’s signal can either be perfectly informative or not informative at all.

4The linearity assumption is necessary to derive closed-form solutions in the equilibrium without
communication.
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The probability for firm i to learn the true state of demand j ∈ {L, H} is given by

Pr{si = j|θ̃ = θj} = σ,

and the probability of getting an uninformative signal in demand state j is

Pr{si = ø|θ̃ = θj} = 1− σ.

Firms’ signals are uncorrelated across firms and independent over time. The parameter
σ, 0 ≤ σ ≤ 1, measures the availability of private demand information for firms.

After observing their private signal, firms communicate by simultaneously announc-
ing a message mi ∈ M = {L, H, ø} to all other firms.5,6 The extent to which communica-
tion is possible is determined by the degree to which information is verifiable. I assume
that firm i with a signal si ∈ {L, H} can verifiably report this information to its rivals.
In other words, firms can prove that they received a high demand or low demand signal
but they cannot prove that they didn’t receive any information at all.7

The communication of the message vector m = (m1..mn) allows firms to update their
belief bi defined as the probability that firm i assigns to the event that demand is high,

bi(si, m) = Pri{θ̃ = θH |{si, m}}.

It will be useful to refer to (si, m) as defining a private information state Ii of firm i. As
a function of their information state firms choose simultaneously prices (p1, ..pn). The
strategy space of firm i for the stage game is given by

Ωi = {µi|µi : S → M} × {pi|pi : M → <},

and a given strategy ωi is specified as

ωi = (µi(si), pi(si, µi)),

i.e. a function that maps each possible signal into a message and a function that maps
the firm’s private signal and the firms’ messages into a price.

For analytical convenience, firms’ marginal costs are assumed to be constant and
normalized to zero. Industry profits in demand state j ∈ {L, H} are defined as

Πj(p) ≡ pD(θj, p),

5I prefer to interpret a ø-message as no communication between firms as the main focus of this
paper is to investigate the extent of communication which is both necessary to sustain collusion and
potentially detectable by competition authorities.

6Public communication between all industry members precludes the formation of information coali-
tions within the industry. Throughout the paper I restrict attention to the optimal organization of
collusion amongst all firms in the industry.

7The main results of the paper do not depend on this assumption. Cheap talk communication
imposes additional restrictions on the discount factor, i.e. the patience of firms, but does not affect the
optimal organization of collusion.
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where the market price p is the lowest price any firm charges in a given period, i.e.

p = min{p1, p2..pn}.

This stage game is repeated in each period t=1,2... Firms discount future profits with a
common discount factor δ and maximize the discounted sum of the stage profits. At the
end of each period firms can observe the price charged by their rivals and the demand
level. However, in the absence of a (verifiable) informative message, it is impossible for
a firm to infer the signal that a rival has received at the beginning of the stage game.
As a consequence, the private history of a firm does not coincide with the public history.
Following Fudenberg, Levine & Maskin (1994) I restrict my attention to symmetric
perfect public equilibria (PPE). A PPE is a Nash equilibrium in public strategies, i.e.
strategies in which firms condition on the public history of the game but not on their
own private history (here their past private signals).
In the next three sections, I analyze the optimal organization of collusion with three
different modes of communication: (i) equilibria without communication, (ii) equilibria
with full communication, and (iii) equilibria with partial communication.

3 Collusion without Communication

As a benchmark this section analyzes equilibria without communication between firms,
i.e.

µi(si) = ø,∀si ∈ S, i ∈ N.

This implies that an individual firm i’s information state Ii at the price setting stage
is uniquely determined by its private signal. Denote the state in which firm i received
signal si by Ii = si and firm i’s price vector as

pi(I) ≡ (pi(Ii = L), pi(Ii = H), pi(Ii = ø)).

Without communication firms collude on prices that maximize ex ante expected industry
profits. For symmetric price vectors pi(I) = pj(I) = p(I), i 6= j; i, j ∈ N the expected
industry profits in a high demand state without communication can be written as

EΠH
ø (p(I)) ≡

{
Pr{NH = n}ΠH(p(H)) + Pr{Nø ≥ 1}ΠH(p(ø)) if p(ø) ≤ p(H),

P r{Nø = n}ΠH(p(ø)) + Pr{NH ≥ 1}ΠH(p(H)) if p(ø) > p(H)

=

{
σnΠH(p(H)) + (1− σn)ΠH(p(ø)) if p(ø) ≤ p(H),

(1− σ)nΠH(p(ø)) + (1− (1− σ)n)ΠH(p(H)) if p(ø) > p(H)
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where Pr{Nx = n} denotes the probability that Nx firms are in information state x ∈ S.
Expected industry profits in the low demand state are similarly

EΠL
ø (p(I)) ≡

{
Pr{Nø = n}ΠL(p(ø)) + Pr{NL ≥ 1}ΠL(p(L)) if p(L) ≤ p(ø),

P r{NL = n}ΠL(p(L)) + Pr{Nø ≥ 1}ΠL(p(ø)) if p(L) > p(ø),

=

{
(1− σ)nΠL(p(ø)) + (1− (1− σ)n)ΠL(p(L)) if p(L) ≤ p(ø),

σnΠL(p(L)) + (1− σn)ΠL(p(ø)) if p(L) > p(ø).

The overall ex ante expected industry profit is then given by

EΠø(p(I)) ≡ ρEΠH
ø (p(I)) + (1− ρ)EΠL

ø (p(I)).

To be implementable, a price vector has to resist three types of deviations. Firms
can deviate to out-of-equilibrium prices; these deviations are always detectable by rivals.
Second, firms can choose prices that are out-of-equilibrium with a positive probability,
e.g. a firm with a ø-signal could charge p(L). This semi-detectable deviation would
be uncovered if demand is actually high. And thirdly, firms can choose on-schedule
deviations, i.e. deviations to the equilibrium price of a firm in a different information
state. To sustain an equilibrium, the first two types of deviation induce with strictly
positive probability the worst possible punishment, i.e. eternal reversion to marginal cost
pricing, and firms have to trade off short-term gains with long-run reduced profits from
the break-down of collusion. Sufficiently patient firms would never deviate off-schedule
or partially off-schedule. By contrast, on-schedule deviations do not entail punishment
and are independent of the firms’ patience. Consequently, firms have to devise collusive
price vectors that are robust to on-schedule deviation incentives.

In an equilibrium without communication, there exist two feasible on-schedule devi-
ations: a firm with a H-signal could deviate to p(ø) and a firm with a L-signal could
deviate to p(ø). First, consider the deviation incentives of a firm with a H-signal if
p(H) 6= p(ø). If firm i with Ii = H plays its equilibrium price p(H), it can expect a
stage profit of

Πi(p(H)|Ii = H) =

{
Pr{NH = n− 1|n− 1}ΠH(p(H))/n if p(ø) < p(H),∑n−1

j=0 Pr{NH = j}ΠH(p(H))/(j + 1) if p(ø) > p(H).

For p(H) > p(ø), a firm with a high demand signal can only get its share of the industry
profit if all the other n − 1 firms also get a H-signal. With the opposite price ranking,
the firm’s profit depends on how many other firms also get a H-signal. Deviating to the
equilibrium strategy of a firm with a ø-signal yields an expected stage profit of

Πi(p(ø)|Ii = H) =

{∑n−1
j=0 Pr{Nø = j}ΠH(p(ø))/(j + 1) if p(ø) < p(H),

P r{Nø = n− 1|n− 1}ΠH(p(ø))/n if p(ø) > p(H).
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Deviation to a lower p(ø) allows firm i to undercut all firms with a high demand signal
and to share total industry profits with all firms that received an uninformative signal.
A firm with a high demand signal does not deviate if

Πi(p(H)|Ii = H) ≥ Πi(p(ø)|Ii = H). (OSH)

This condition is satisfied if either8

p(H) = p(ø), (OSH-0)

or, for p(ø) < p(H),
σn−1

n
ΠH(p(H)) ≥ 1− σn

n(1− σ)
ΠH(p(ø)), (OSH-1)

or, for p(ø) > p(H),

1− (1− σ)n

σn
ΠH(p(H)) ≥ (1− σ)n−1

n
ΠH(p(ø)). (OSH-2)

A firm with a low demand signal playing its equilibrium price p(L) expects a stage
profit of

Πi(p(L)|Ii = L) =

{∑n−1
j=0 Pr{NL = j}ΠL(p(L))/(j + 1) if p(L) < p(ø),

P r{NL = n− 1|n− 1}ΠL(p(L))/n if p(L) > p(ø).

Again, a firm only makes profits with the higher price if no firm receives a signal that
implies a lower equilibrium price. When charging the lower of the two prices, a firm’s
profit depends on the number of competitors that receive the same signal. A firm with a
low demand signal could deviate without detection to the equilibrium price a firm with
an uninformative signal would have charged and get profits of

Πi(p(ø)|Ii = L) =

{
Pr{Nø = n− 1|n− 1}ΠL(p(ø))/n if p(L) < p(ø),∑n−1

j=0 Pr{Nø = j}ΠL(p(ø))/(j + 1) if p(L) > p(ø).

And therefore the on-schedule constraint for a firm with a L-signal is given by

Πi(p(L)|Ii = L) ≥ Πi(p(ø)|Ii = L), (OSL)

which holds either if
p(L) = p(ø), (OSL-0)

or, for p(L) < p(ø),

1− (1− σ)n

σn
ΠL(p(L)) ≥ (1− σ)n−1

n
ΠL(p(ø)). (OSL-1)

8See the appendix of Lemma 1 for the derivation of these expressions.
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or, for p(L) > p(ø),
σn−1

n
ΠL(p(L)) ≥ 1− σn

(1− σ)n
ΠL(p(ø)). (OSL-2)

The possibility of undetectable price deviations requires that firms devise pricing strate-
gies that satisfy the two on-schedule deviation constraints, i.e. firms maximize expected
industry profits subject to (OSL) and (OSH),

max
p(I)

EΠø(p(I)) s.t. (OSH) and (OSL) (1)

The solution to this problem is summarized in the following lemma. Denote p∗(L)
and p∗(H) the monopoly price under complete information with low and high demand
respectively.

Lemma 1 The solution pø(I) to maximization problem (1) is characterized by:

pø(L) = p∗(L) < pø(ø) = pø(H) = πp∗(H) + (1− π)p∗(L) ≤ p∗(H)

with
π =

ρ

ρ + (1− ρ)(1− σ)n
.

The only strictly binding constraint in the optimum is (OSH-0).

Figure 1 illustrates maximization problem (1) in two diagrams with p(ø) on the vertical
axis and p(H) and p(L) on the horizontal axis. The shaded areas represent the admissible
sets of prices as defined by (OSH) and (OSL). The unconstrained solution (points A1

and A2) is not feasible since the optimal price p(H) = p∗(H) would require a lower p(ø)
to avoid opportunistic price cuts from H-signal firms. The iso-profit curves around A1

and A2 indicate that there are two likely candidates as the second-best solution. Either
firms impose (OSH-0) and set p(ø) = p(H) or they create a sufficiently large wedge
between the two prices in order to satisfy (OSH-1). Lemma 1 states that the former
option always dominates for demand variances ∆ < a/3. Intuitively, the lower the
variance, the less costly are deviations for H-signal firms to p(ø). Therefore, condition
(OSH-1) becomes harder to satisfy and the second option less attractive.

The most collusive pricing strategy without communication is a semi-pooling strat-
egy. If no firm receives a L-signal the effective industry price is pø(ø) = pø(H). Other-
wise, firms with a low demand signal set the complete information monopoly price and
undercut all firms who received an uninformative signal. This means that the optimal
organization of collusion without communication implies that in some periods some firms
make zero profits while the remaining firms share the market at the most collusive price.
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Figure 1: Optimal collusion without communication

The optimal price for firms with ø- and H-signals is a weighted average of the monopoly
price with low and high demand with the conditional probability of a high demand state
given no firm receives a L-signal as the weight for the high demand monopoly price.
Thus, the pooled price increases in the probability of a high demand (ρ), the signal
frequency (σ) and the number of firms (n). The effect of the demand variance on the
optimal price is ambiguous. For a low conditional probability that demand is high (i.e.
for ρ, σ, n low), a higher variance leads to a lower price, otherwise the price increases
in ∆.
With the solution of the static industry profit maximization problem in place, one can
state the incentive constraints for equilibrium communication and off-schedule price
deviations. Denote δø(H) the threshold value above which a firm with a H-signal would
not deviate from its equilibrium price. Denote δø(ø) the threshold above which a firm
with ø-signal would not deviate to pø(L).

Proposition 1 If δ ≥ max{δø(H), δø(ø)}, then the price vector pø(I) from Lemma 1 is
sustainable in a PPE of the repeated game without communication.

To ensure that firms have no incentive to send L or H messages, it suffices to make them
a trigger for eternal reversion to marginal cost pricing from the current period onwards.
In the price subgame, deviations are most profitable for either a H-signal firm or a ø-
signal firm. A firm with a high demand signal knows that all its rival are setting the
same price pø(H) = pø(ø) and the optimal deviation is to undercut this price slightly. If
a firm with a ø-signal deviates to pø(L) it can expect to be on-schedule with probability
1− ρ and undercut all firms with an uninformative signal. Consequently, δø(H) (δø(ø))
is the binding threshold for high (low) ρ and high (low) σ.
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4 Collusion with Full Communication

In this section I consider equilibria in which firms communicate all information they
receive, i.e.

µi(si) = si,∀si ∈ S.

Based on their own signal and the messages received from their competitors, firms update
their beliefs about the state of demand. In particular, after the communication stage,
firms are in one of three possible information states and for notational convenience I
denote the information state of firm i by Ii ∈ S = {L, H, ø}. With an ex ante probability
of 1 − (1 − σ)n, at least one firm receives an informative signal and sends a verifiable
message to the other firms.9 Thus, firms have perfect common knowledge about the
state of demand they are in, i.e. Ii = L, or Ii = H, ∀i with corresponding beliefs of
bi(Ii = L) = 0 and bi(Ii = H) = 1. With the remaining probability (1 − σ)n all firms
receive uninformative signals and send ø-messages to their competitors. In this case
firms know that no one knows the demand state, i.e. Ii = ø, ∀i and bi(Ii = ø) = ρ.10

Denote a firm’s price as function of its information state by

pi(I) ≡ (pi(Ii = L), pi(Ii = H), pi(Ii = ø)).

Then, for a given symmetric price vector pi(I) = pj(I) = p(I), i 6= j; i, j ∈ N , the
expected industry profits in a high demand period with communication can be written
as

EΠH
c (p(I)) = Pr{NH ≥ 1}ΠH(p(H)) + Pr{Nø = n}ΠH(p(ø))

= (1− (1− σ)n)ΠH(p(H)) + (1− σ)nΠH(p(ø)),

where Nx refers to the number of firms in information state x. The expected industry
profits in a low demand period are given by

EΠL
c (p(I)) = Pr{NL ≥ 1}ΠL(p(L)) + Pr{Nø = n}ΠL(p(ø))

= (1− (1− σ)n)ΠL(p(L)) + (1− σ)nΠL(p(ø)),

and ex ante expected industry profits with full communication are

EΠLH(p(I)) ≡ ρEΠH
c (p(I)) + (1− ρ)EΠL

c (p(I)).

Full communication creates common knowledge and the highest possible degree of co-
ordination among firms. More importantly, full equilibrium communication also implies

9To avoid uncertified L or H messages to be sent, assume that firms revert - upon reception of an
uncertified message - to marginal cost pricing from the current period onward.

10For simplicity, I shall use the same notation for information states in all four classes of equilibria,
although in each type of communication equilibrium an information state is defined in a different way.
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that the on-schedule price deviation constraints are being replaced by the incentive con-
straints for communication. In other words, if it is incentive-compatible to report a
H- or L-signal, deviations to the equilibrium price for an uninformative signal become
off-schedule and detectable. This means that firms do not need to take into account
static incentive constraints and the industry profit maximizing price vector p(I) simply
solves

max
p(I)

EΠLH(p(I)). (2)

The next lemma characterizes the solution of this maximization problem and compares
it to the solution of Lemma 1.

Lemma 2 The most collusive price strategy with full communication, pc(I), satisfies

pc(L) = p∗(L) < pc(ø) = (1− ρ)p∗(L) + ρp∗(H) < pc(H) = p∗(H) (i)

and
pc(ø) < pø(ø) = pø(H) < pc(H). (ii)

The optimal price strategy with full communication implies that the price an individual
firm sets increases with its private demand signal or the messages from other firms. If
at least one firms receives an informative signal, all firms set the complete information
monopoly price for the respective demand state and share the market. If no firm received
a signal, firms share the market at an intermediate price equal to the ex ante monopoly
price without demand signals.

The effective market price with and without communication is the same if at least
one firm receives a L-signal. In the first case all firms quote the same price, in the
second firms with a L-signal undercut uninformed firms. The market price without
communication is lower in high demand states in which at least one firm receives an
informative signal. Communication allows firms to coordinate on the most collusive
price while without communication firms have to pool the informed and uninformed
price to avoid opportunistic price cuts. On the other hand, the market price is higher
without communication if all firms receive an uninformative signal since the on-schedule
constraint for high demand signal firms distorts the industry price upwards.

The price vector in Lemma 2 is sustainable if firms have no incentive to deviate at
the communication stage and at the pricing stage. The following proposition discusses
the conditions for which this holds true. Denote δc(H) the threshold value above which
a firm with a H-signal would not deviate from its equilibrium price.

Proposition 2 If δ ≥ δc(H), then the price vector pc(I) from Lemma 2 can be supported
in a PPE with full communication.

Similar to the case with complete information in Rotemberg & Saloner (1986) firms
have the strongest incentive to deviate in price subgames in which it is common knowl-
edge that demand is high, i.e. after at least one H-message has been sent. Proposition
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2 implies that if firms are sufficiently patient no to deviate in these price subgames then
they also have no incentive to deviate at the communication stage. The reason for this is
that price deviations are most profitable if all rival firms hold at least as strong a belief
in high demand than the potential deviator does. Suppose a firm receives a high demand
signal but deviates to a ø-message and no other firms sends a H-message. Then all of the
deviating firm’s rivals are in information state ø and set the uninformed price. However,
undercutting this price is less profitable than undercutting the monopoly price with high
demand and the deviating firm would have been better off sending a H-message at the
communication stage. A similar argument applies to the communication incentives of
L-signal firms.

The role of communication in this model is twofold: it helps firms to coordinate on the
most-collusive price and it eliminates opportunistic price behavior due to unobservable
demand signals.

5 Collusion with Partial Communication

5.1 Collusion with Communication in Low Demand State

I refer to equilibria with partial communication as situation where firms communicate in
one state of demand but not in the other. First, I analyze equilibria where firms report
a low demand signal but not a high demand signal, i.e.

µi(L) = L ∧ µi(H) = µi(ø) = ø.

This implies that after the communication stage, there are two types of price subgames
and any firm i can be in one of three information states Ii ∈ {L, H, ø}. With an ex ante
probability of (1− ρ)(1− (1− σ)n) at least one firm receives a L-signal, communicates
it and firms have common knowledge that they are in a low-demand period, i.e. Ii = L
∀i and bi(Ii = L) = 0. With the remaining probability firms receive an H- or ø-signal
and send uninformative messages. A firm with a H-signal has private information that
demand is high, i.e. Ii = H and bi(Ii = H) = 1. A firm i receiving an uninformative
private signal and ø-messages from all other firms (Ii = ø) updates its belief according
to

bi(Ii = ø) =
ρ

ρ + (1− ρ)(1− σ)n−1
.

Note that pi(ø) and pi(H) occur in the price subgame following ø-messages while pi(L)
only occur in the price subgame following at least one L-message. Therefore, maximizing
ex ante and interim (i.e. after communication) expected industry profits is equivalent
and for expositional reasons I shall use the former. Without communication in the
high demand state expected industry profits are the same - modulo the definition of
information states - as in section 3, i.e. EΠH

ø . Meanwhile, expected industry profits in
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the low demand state with communication are identical to section 4, i.e. EΠL
c . Thus,

ex ante expected industry profits with partial communication in the L-state are

EΠL(p(I)) ≡ ρEΠH
ø (p(I)) + (1− ρ)EΠL

c (p(I)).

Moreover, if it is (in equilibrium) incentive-compatible for firms to communicate a pri-
vate L-signal, any price deviation afterwards becomes detectable. This means that the
industry profit maximizing price strategy does not have to take into account the on-
schedule constraint (OSL). However, on-schedule deviations for firms with a H-signal
are still possible. Thus, the most collusive price strategy with partial communication in
the L-state solves

max
p(I)

EΠL(p(I)) s.t. (OSH), (3)

and the next lemma follows directly.

Lemma 3 The price vector that maximizes ex ante expected industry profits with partial
communication in low demand states is given by pø(I).

Two observations explain this equivalence result. First, the expected industry profits in
the low demand state are the same with no communication and partial communication
as long as p(L) ≤ p(ø). To see this, note that p(L) becomes the effective industry price in
both situations if at least one firm receives a L-signal, otherwise the industry price is p(ø).
With communication, all firms share the market evenly in every low demand period;
without communication, all firms with a L-signal share the market by undercutting
their rivals with an uninformative signal. In other words, without communication firms
share the market stochastically over time and this stochastic market sharing is a perfect
substitute for communication in low demand states. Secondly, the global maximizer
of the maximization problem (1) without communication satisfies p(L) ≤ p(ø) and the
on-schedule constraint (OSL) was not strictly binding. Therefore, the solution to (1)
and to (3) have to be identical.

The next proposition gives the condition under which partial communication and
collusion on the price from Lemma 3 can be sustained in the repeated game.

Proposition 3 If δ ≥ δø(H), then the most collusive price strategy from Lemma 3 is
sustainable in a PPE with partial communication in the low demand state.

This proposition states that while the most collusive price is the same with partial
communication in L-states and with no communication at all, collusion is harder to
sustain in the absence of communication. The reason for this is that communication
destroys the possibility of semi-detectable price deviations. In particular, in situations
in which all firms send ø-messages, the deviation of a ø-signal to pø(L) becomes off the
equilibrium path since a L-signal firm should have announced the low demand state
at the communication stage. The condition in Proposition 3 ensures that a H-signal
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firm is not deviating from its equilibrium price in the price subgame in which all firms
sent uninformative messages at the communication stage. If this condition is in place it
follows that firms with a L-signal have an incentive to communicate their information
at the first stage and share the market with its rivals. Withholding a L-signal either
leads to inefficient pricing at the price stage or in case of price undercutting it triggers
reversion to marginal cost pricing.

5.2 Collusion with Communication in High Demand State

Consider the class of equilibria in which firms only communicate if they receive a high
demand signal, i.e.

µi(H) = H ∧ µi(L) = µi(ø) = ø.

Following the communication stage, there are two types of price subgames and firms can
be in one of three information states. With an ex ante probability of ρ(1− (1− σ)n) at
least one firm receives a H-signal, communicates it and firms have common knowledge
that they are in a high-demand period, i.e. Ii = H ∀i and bi(Ii = H) = 1. With the
remaining probability firms receive an L- or ø-signal and send uninformative messages.
In this subgame a firm with a L-signal has private information that demand is low, i.e.
Ii = L and bi(Ii = L) = 0. Finally, firm i receiving an uninformative private signal and
ø-messages from all other firms (Ii = ø) updates its belief according to

bi(Ii = ø) =
ρ(1− σ)n−1

1− ρ + ρ(1− σ)n−1
.

It is again sufficient to maximize ex ante expected industry profits since pi(ø) and pi(L)
are only charged in the subgame with ø-messages while pi(H) is only set in the price
subgame following at least one H-message. Without communication in the low demand
state expected industry profits are the same - modulo the definition of information states
- as in section 3, i.e. EΠL

ø . Expected industry profits in the high demand state with
communication are given by EΠH

c . And ex ante expected industry profits with partial
communication in the H-state are

EΠH(p(I)) ≡ ρEΠH
c (p(I)) + (1− ρ)EΠL

ø (p(I)).

In this partial communication equilibrium, the on-schedule price constraint for a H-signal
firm is replaced with the information revelation constraint. In other words, communica-
tion in the high demand state makes opportunistic price cuts for firms with a H-signal
detectable and punishable. Therefore, to find the most collusive price strategy, firms
solve

max
p(I)

EΠH(p(I)) s.t. (OSL). (4)

The following lemma gives the solution to this problem.
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Lemma 4 The price vector that maximizes ex ante expected industry profits with partial
communication in the high demand state is given by pc(I).

Partial communication in the high demand state implies that the profits with high
demand are the same as with full communication. In low demand states firms can
substitute stochastic market sharing for communication. This yields the same profit
structure as with full communication. Moreover, we know from Lemma 2 that pc(ø) >
pc(L) = p∗(L), i.e. (OSL-1) is satisfied for the unconstrained maximization problem.
From this Lemma 4 follows. Denote δc(ø) the threshold above which a firm with si = ø
would not deviate to pc(L).

Proposition 4 If δ ≥ max{δc(H), δc(ø)}, then the most collusive price vector from
Lemma 4 is sustainable in a PPE with partial communication in high demand states.

Two conditions place lower bounds on the threshold discount factor. Like in the equilib-
rium with full communication, the discount factor has to be sufficiently high to prevent
undercutting after high demand communication (δ ≥ δc(H)). Additionally, firms have
to be sufficiently patient to resist the partially off-schedule deviation to pc(L) in case
they receive a ø-signal and only ø-messages. This deviation is even more tempting since
the absence of a high demand message means that firms believe stronger that demand
is actually low. It follows that δc(ø) is the binding threshold whenever bi(Ii = ø) is
sufficiently small and collusion with partial communication in the high demand state
is harder to sustain than with full communication. As long as the two conditions in
Proposition 4 hold, firms also have no incentives to deviate at the communication stage.
As noted in the equilibrium with full communication, the optimal price deviation for a
firm with a H-signal occurs if its rivals know about the high demand state. Therefore,
firms prefer to communicate high demand before undercutting at the price stage.

6 The Value of Communication

In this section I compare the four different modes of communication and collusion with
respect to expected prices, profits and consumer surplus. Denote ECSø, ECSLH , ECSL

and ECSH as the expected consumer surplus profits with no, full and partial communi-
cation in low demand and high demand state respectively.

Proposition 5 For δ ≥ max{δø(H), δø(ø), δc(H), δc(ø)} it holds that

(i) the ex ante expected industry price is the same in all four types of communication
equilibria and equal to pc(ø),

(ii) the profit ranking is

EΠø(pø(s)) = EΠL(pø(s)) < EΠH(pc(I)) = EΠLH(pc(I)),
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(iii) the consumer surplus ranking is given by

ECSø(pø(s)) = ECSL(pø(s)) > ECSH(pc(I)) = ECSLH(pc(I)).

The first part of this proposition states that the expected industry price in each period
is the same independent of whether and how much firms communicate and it is equal
to the most collusive price firms would set in the absence of informative signals. This
result is due to the fact that in all four equilibria ex ante and interim (i.e. after signals
and communication) maximization of industry profits are equivalent.

The second part of Proposition 5 summarizes the main result of the paper. Partial
communication in the low demand state cannot improve on the equilibrium without
communication and partial communication in high demand states achieves the same
profit as full communication. As discussed in the previous section, firms do not require
communication in low demand states if they rely on stochastic market sharing. However,
communication in high demand states helps firms to coordinate on the most collusive
industry and avoids undercutting due to asymmetric information among firms. There-
fore, full communication and partial communication in the high demand state dominate
the two other communication equilibria.
The above result also implies that whether communication facilitates collusion does not
necessarily depend on how much information is exchanged among firms but on the con-
tent of information. For examples, in industries with upward demand shocks (i.e. low
ρ), firms communicate more often if they partially communicate in low demand states
compared to partial communication in high demand states only. Nevertheless, partial
communication in high demand states is more collusive in the sense that it leads to
higher industry profits.

The third part of the proposition says that - given firms are colluding - consumers
are better off without communication (or partial communication in low demand states)
between firms. This result follows from the fact that while the expected industry price
is the same for all communication equilibria, the price variance is higher with full com-
munication. And since consumers’ utility is decreasing and convex in the market price
they are best off without communication among firms.

While competition policy is not explicitly modeled in this framework, some impli-
cations of the above analysis seem warranted. In application of the ”parallelism plus”
rule, competition authorities require evidence of communication to prosecute collusion.
If there is the possibility that communication might be detected, part (ii) of Proposition
5 suggests that firms would optimally react by either not communicating at all or by
communicating in high demand states only. The implications of this for competition
authorities are ambiguous. On the one hand, partial communication in high demand
states is sufficient to achieve first-best collusion, i.e. less evidence is produced which
reduces the scope of the ”parallelism plus” rule. On the other hand, the result indicates
that communication is most likely to occur in high demand states and this might provide
helpful guidance in the search for evidence.
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Finally, towards identifying industries with a stronger need for communication to
support collusion, the last proposition analyzes the comparative statics of the value of
communication for firms, i.e. EΠH(pc(s))− EΠø(pø(s)).

Proposition 6 The value of communication for firms is (i) increasing in the demand
variance ∆2, (ii) maximal for a σ̂ with 0 < σ̂ < 1 and a ρ̂ with 0 < ρ̂ < 1/3 and (iii),
for sufficiently small values of σ, it is first increasing then decreasing in the number of
firms.

Communication is more valuable the higher the demand variance since firms stand to
lose more when pooling the uninformed price and the H-signal price in equilibria without
communication in high demand states. Part (ii) of Proposition 6 states that the value of
communication is highest for intermediate signal frequencies. The need for coordination
among firms is low when firms hardly receive any informative signal or when informative
signals are very likely. Communication is more valuable when industry demand is char-
acterized by upward demand shocks. Demand uncertainty is maximized for ρ = 1/2.
However, low values of ρ imply that the price for H-signal firms without communication
is low and therefore the value of communication in high demand states is high. Finally,
part (iii) implies that communication is more likely to occur in industries with neither
too few nor too many firms. The more firms there are the higher the conditional proba-
bility that firms are in high demand state if none receives a L-signal. Thus, the optimal
price without communication pø(H) approaches pc(H) and communication becomes less
valuable. On the other hand, for a small number of firms, communication is less valuable
since there are less private demand signals, i.e. less information, to be shared.

7 Conclusions

This paper analyzes the role of communication for collusion in markets with demand
uncertainty and shows that extensive information exchange is not a prerequisite for firms
to implement the first-best collusion profits. In particular, in periods of low demand firms
do not need to communicate at all as long as they rely on stochastic, intertemporal
market sharing. In high demand periods, however, communication is necessary both
to coordinate on the most collusive and to prevent opportunistic, undetectable price
deviations. The implications of this result for competition policy are ambiguous. On
the one hand, less need for communication means that less evidence is produced and
it harder to prosecute firms. On the other hand, firms are more likely to communicate
in high demand states and this could potentially guide competition authorities in their
search for evidence.

Several interesting extensions and generalizations of this result are beyond the scope
of this paper and await future research. It seems clear that the results in this depend on
the mode of competition. Stochastic, intertemporal market sharing is not feasible with
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quantity setting oligopolists. Furthermore, quantity competition should reduce firms’
incentives to reveal information in high demand situation because a firm’s deviation
is more profitable the lower the demand expectations of its rivals. However, the main
results should - at least to some extent - carry over to collusive pricing with capacity con-
straints like in Staiger & Wolak (1992). A second interesting extension of this framework
could be to analyze whether firms have incentives to form informational coalitions and
to communicate only within a small group of firms. Firms would have to trade off less
information within their coalition with a higher market share in case their competitors
remain uninformed.

Appendix

Proof of Lemma 1

First I derive the formulas for the on-schedule deviation constraints. Then, I solve maximiza-
tion problem (1). For p(ø) < p(H), the right-hand side (’rhs’ hereafter) of OSH is equivalent
to

n−1∑
j=0

Pr{Nø = j}ΠH(p(ø))
j + 1

= ΠH(p(ø))
n−1∑
j=0

(
n− 1

j

)
(1− σ)jσn−1−j 1

j + 1

= ΠH(p(ø))
n−1∑
j=0

(n− 1)!
(n− 1− j)!(j + 1)!

(1− σ)jσn−1−j

=
ΠH(p(ø))
n(1− σ)

n−1∑
j=0

n!
(n− 1− j)!(j + 1)!

(1− σ)j+1σn−1−j

=
ΠH(p(ø))
n(1− σ)

n∑
i=1

(
n

i

)
(1− σ)iσn−i + σn − σn =

1− σn

n(1− σ)
ΠH(p(ø))

and constraint (OSH-1) follows. For p(ø) > p(H), the left-hand side (’lhs’) of (OSH) can be
simplified in the same way using the Binomial Theorem,

n−1∑
j=0

Pr{NH = j}ΠH(p(H))
j + 1

= ΠH(p(H))
n−1∑
j=0

(
n− 1

j

)
σj(1− σ)n−1−j 1

j + 1

=
1− (1− σn)

σn
ΠH(p(H)),

and condition (OSH-2) follows. The corresponding formulas for (OSL) can be derived likewise.
I now solve maximization problem (1) by looking for local maximizers in the four different

price spaces resulting from the definition of the objective function. In each case one also has to
take into account the non-negativity constraint in the low-demand state with an uninformative
price, i.e. p(ø) ≤ a−∆.
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A. p(L) ≤ p(ø) ∧ p(H) ≥ p(ø). Omitting (OSL-1) for the moment, the Lagrangian of maxi-
mization problem (1) can be written as

L(p(I), λ) =EΠø(p(I)) + λ1(p(H)− p(ø)) + λ2[σn−1ΠH(p(H))− 1− σn

1− σ
ΠH(p(ø))]

+ λ3(p(ø)− p(L)).

For p(ø) ≤ a−∆ the resulting Kuhn-Tucker conditions are given by

∂L
∂p(ø)

= ρ(1− σn)
∂ΠH

∂p(ø)
+ (1− ρ)(1− σ)n ∂ΠL

∂p(ø)
− λ1 − λ2

1− σn

1− σ

∂ΠH

∂p(ø)
+ λ3 = 0, (A-1)

∂L
∂p(H)

= ρσn ∂ΠH

∂p(H)
+ λ1 + λ2σ

n−1 ∂ΠH

∂p(H)
= 0, (A-2)

∂L
∂p(L)

= (1− ρ)(1− (1− σ)n)
∂ΠL

∂p(L)
− λ3 = 0, (A-3)

λ1(p(H)− p(ø)) = 0, λ1 6= 0, (A-4)

λ2(σn−1ΠH(p(H))− 1− σn

1− σ
ΠH(p(ø))) = 0, λ2 ≥ 0, (A-5)

λ3(p(ø)− p(L)) = 0, λ3 ≥ 0. (A-6)

Only one of the two constraints (OSH-0) or (OSH-1) can be binding at a time, i.e. λ1λ2 = 0.
This means we have to distinguish six cases.
A.1. λ1 = λ2 = λ3 = 0, i.e. none of the three constraints are binding. This yields the
unconstrained solution p∗(s) that would result if firms would be able to observe their rivals’
signals. From (A-2) and (A-3) we get

∂ΠH

∂p(H)
= 0 ⇐⇒ p∗(H) =

a + ∆
2

,

∂ΠL

∂p(L)
= 0 ⇐⇒ p∗(L) =

a−∆
2

and from (A-1), ρ(1− σn) ∂ΠH

∂p(ø) + (1− ρ)(1− σ)n ∂ΠL

∂p(ø) = 0, follows

p∗(ø) =
a + ∆

2
− ∆(1− ρ)(1− σ)n

(1− ρ)(1− σ)n + ρ(1− σn)

To check whether this solution indeed satisfies (OSH-1), note that the maximum value p(ø)
for which (OSH-1) holds is at p(H) = p∗(H) and is given by

p(ø)OSH1 ≡ a + ∆
2

(1−Υ) with Υ ≡
√

1− σn−1

1− σn
.

For future reference, verify that ∂Υ/∂σ < 0, ∂Υ/∂n > 0 and Υ ∈ [1/
√

2, 1]. Constraint
(OSH-1) holds if p∗(ø) ≤ p(ø)OSH1 or

ρ ≤ (1− σn)[(2−Υ)∆− aΥ)]
(a + ∆)(1− σn − (1− σ)n)Υ + 2∆(1− σ)n

.
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For ∆ ≤ a/3 the numerator is always negative and the above solution is not feasible.
A.2. λ1 = λ2 = 0, λ3 > 0, i.e. (OSH) is slack and (OSL-0) is strictly binding. From (A-2)
follows p(H) = p∗(H). From (A-1),(A-3) and p(ø) = p(L) one gets

ρ(1− σn)
∂ΠH

∂p(ø)
+ (1− ρ)

∂ΠL

∂p(ø)
= 0,

which implies that p(ø) = p(L) > p∗(L). This means that ∂ΠL/∂p(ø) < 0 and from (A-3)
follows that λ3 < 0. The solution is thus not feasible.
A.3. λ1 6= 0, λ2 = λ3 = 0, i.e. (OSH-0) is binding and (OSL) is slack. From (A-3) follows
p(L) = p∗(L). From (A-1),(A-2) and p(ø) = p(L) I find

ρ
∂ΠH

∂p(ø)
+ (1− ρ)(1− σ)n ∂ΠL

∂p(ø)
= 0, (5)

or
p(H) = p(ø) =

a−∆
2

+
ρ∆

ρ + (1− ρ)(1− σ)n
.

Since p3(ø) ≥ p∗(L), this solution is viable for all parameter values. The industry profits in
this case are

E[ΠA3] =
1
4
(a−∆)(a−∆ + 4ρ∆) +

ρ2∆2

ρ + (1− ρ)(1− σ)n
.

A.4. λ1 6= 0, λ2 = 0, λ3 > 0, i.e. (OSL-0) and (OSH-0) are binding. Plugging (A-2) and (A-3)
in (A-1), one gets

ρ
∂ΠH

∂p(ø)
+ (1− ρ)

∂ΠL

∂p(ø)
= 0,

which implies p(ø) = p(L) = p(H) > p∗(L) and by (A-3) a λ3 < 0. The solution is therefore
dominated by an interior solution p(L) < p(ø).
A.5. λ1 = 0, λ2 > 0, λ3 = 0, i.e. (OSH-1) is binding and (OSL) is slack. From (A-3) follows
p(L) = p∗(L) and from (A-2)

(ρσn + λ2σ
n−1)

∂ΠH

∂p(H)
= 0 ⇐⇒ p(H) = p∗(H)

Plugging p(H) in (A-5) yields p(ø) = p(ø)OSH1 = (a+∆)(1−Υ)/2. In order to satisfy (OSL-1)
it has to hold that p(ø)OSH1 ≥ p∗(L) or

∆− (a + ∆)Υ
2

≥ 0.

The left-hand side of this inequality is increasing in ∆. At ∆ = a/3 it has a value of a(1 −
2Υ)/3 < 0. Thus, p(ø)OSH1 < p∗(L) and the solution is not feasible.
A.6. λ1 = 0, λ2 > 0, λ3 > 0, i.e. (OSH-1) and (OSL-0) are strictly binding. From (A-2)
follows p(H) = p∗(H) which implies with (A-5) and (A-6) that p(ø) = p(L) = p(ø)OSH1. We
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know from case A.5. that p(ø)OSH1 < p∗(L). Therefore, (A-3) implies that λ3 > 0 and from
rewriting (A-1) to

ρ(1− σn)
∂ΠH

∂p(ø)
+ (1− ρ)

∂ΠL

∂p(ø)
− λ2

1− σn

1− σ

∂ΠH

∂p(ø)
= 0

follows that λ2 > 0. Thus, this solution is a candidate maximizer of the problem. The expected
profits in this case are

E[ΠA6] =
a + ∆

4
(a− 3∆ + 4∆(ρ + (1− ρΥ)− (1− ρσn)(a + ∆)Υ2).

A.7. Suppose p(ø) ≥ a−∆, i.e. ΠL(p(ø)) = 0. This changes (A-1) into

∂L
∂p(H)

= ρσn ∂ΠH

∂p(H)
+ λ1 + λ2σ

n−1 ∂ΠH

∂p(H)
= 0.

It follows that the solution to the unconstrained maximization problem (i.e. λ1 = λ2 =
λ3 = 0) is given by p(H) = p(ø) = p∗(H) and p(L) = p∗(L). Since ∆ ≤ a/3, it holds that
p(ø) ≥ a−∆. Thus, the unconstrained solution is a candidate maximizer. The corresponding
expected industry profits are

E[ΠA7] = (1− (1− ρ)(1− σ)n)
(a−∆)2

4
+ ρa∆

Finally, we need to check that the omitted constraint (OSL-1) is satisfied in the three candidate
solutions. The minimum value p(L) for which (OSL-1) holds for any p(ø) is at p(ø) = p∗(L)
and is given by

p(L)OSL1 ≡ a−∆
2

(1−

√
1− σ − (1− σ)n

(1− (1− σ)n)(1− σ)
) ≤ p∗(L).

Thus, (OSL-1) is always satisfied.
B. p(L) ≤ p(ø)∧p(H) ≤ p(ø). Omitting (OSL-1) and (OSH-2) for the moment, the Lagrangian
can be written as

L(p(I), λ) = EΠø(p(I)) + λ1(p(ø)− p(H)) + λ2(p(ø)− p(L)).

For p(ø) ≤ a−∆ the resulting Kuhn-Tucker conditions are given by

∂L
∂p(ø)

= ρ(1− σ)n ∂ΠH

∂p(ø)
+ (1− ρ)(1− σ)n ∂ΠL

∂p(ø)
+ λ1 + λ2 = 0, (B-1)

∂L
∂p(H)

= ρ(1− (1− σ)n)
∂ΠH

∂p(H)
− λ1 = 0, (B-2)

∂L
∂p(L)

= (1− ρ)(1− (1− σ)n)
∂ΠL

∂p(L)
− λ2 = 0, (B-3)

λ1(p(ø)− p(H)) = 0, λ1 ≥ 0, (B-4)
λ2(p(ø)− p(L)) = 0, λ2 ≥ 0, (B-5)
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We have to distinguish four cases. The two cases with (OSH-0) binding are identical to A.3
and A.4 respectively. Moreover, it is straightforward to check that the case of p(ø) ≥ a−∆ is
identical to A.7. The two remaining cases are:
B.1. λ1 = λ2 = 0, i.e. none of the two constraints are binding. This means p(L) = p∗(L) and
p(H) = p∗(H). However, (B-1) requires p∗(L) < p(ø) < p∗(H), which is incompatible with
p(ø) > p(H). Thus, this solution is not feasible.
B.2. λ1 = 0, λ2 > 0, i.e. (OSL-0) is strictly binding. This implies p(H) = p∗(H). Plugging
(B-3) in (B-1) shows that p(ø) = p(L) > p∗(L) which implies from (B-3) that λ2 < 0. This
solution is not feasible.
C. p(L) ≥ p(ø) ∧ p(H) ≥ p(ø). The Lagrangian can be written as

L(p(I), λ) =EΠø(p(I)) + λ1(p(H)− p(ø)) + λ2(σn−1ΠH(p(H))− 1− σn

1− σ
ΠH(p(ø)))

+ λ3(p(L)− p(ø)) + λ4(σn−1ΠL(p(L))− 1− σn

1− σ
ΠL(p(ø))).

For p(ø) ≤ a−∆ the resulting Kuhn-Tucker conditions are given by

∂L
∂p(ø)

= ρ(1− σn)
∂ΠH

∂p(ø)
+ (1− ρ)(1− σn)

∂ΠL

∂p(ø)
− λ1 − λ2

1− σn

1− σ

∂ΠH

∂p(ø)

− λ3 − λ4
1− σn

1− σ

∂ΠL

∂p(ø)
= 0, (C-1)

∂L
∂p(H)

= ρσn ∂ΠH

∂p(H)
+ λ1 + λ2σ

n−1 ∂ΠH

∂p(H)
= 0, (C-2)

∂L
∂p(L)

= (1− ρ)σn ∂ΠL

∂p(L)
+ λ3 + λ4(σn−1)

∂ΠL

∂p(L)
= 0, (C-3)

λ1(p(H)− p(ø)) = 0, λ1 6= 0, (C-4)

λ2(σn−1ΠH(p(H))− 1− σn

1− σ
ΠH(p(ø))) = 0, λ2 ≥ 0, (C-5)

λ3(p(L)− p(ø)) = 0, λ3 6= 0, (C-6)

λ4(σn−1ΠL(p(L))− 1− σn

1− σ
ΠL(p(ø))) = 0, λ4 ≥ 0. (C-7)

Again it has to hold that λ1λ2 = 0 which leaves us with nine possible cases. The cases in which
(OSL-0) is strictly binding have been dealt with in A.2, A.4 and A.6 respectively. Thus, we
have to consider the remaining cases with λ3 = 0.
C.1. λ1 = λ2 = λ4 = 0, i.e. none of the three constraints are binding. This means
p(L) = p∗(L) and p(H) = p∗(H). However, (C-1) requires p∗(L) < p(ø) < p∗(H), which
is incompatible with p(L) > p(ø).
C.2. λ1 = λ2 = 0, λ4 > 0, i.e. (OSL-2) is strictly binding. From (C-2) and (C-3) follows
p(H) = p∗(H) and p(L) = p∗(L). For (C-7) to hold strictly

σn−1ΠL(p∗(L))− 1− σn

1− σ
ΠL(p(ø))) = 0 ⇐⇒ p(ø) =

a−∆
2

(1−Υ).
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Since p(ø) < p∗(L) it follows from (C-1) that λ4 > 0. Moreover, p(ø) < p(ø)OSH1 and therefore
(OSH-1) is satisfied. The corresponding expected industry profits for this solution are

E[ΠC2] =
a−∆

4
(a−∆ + 4ρ∆− 4ρ(1− σn)∆Υ− (1− σn)(a−∆)Υ2).

C.3. λ1 = 0, λ2 > 0, λ4 = 0, i.e. (OSH-1) is strictly binding. From (C-2) and (C-3) follows
p(H) = p∗(H) and p(L) = p∗(L). From (C-5) one gets p(ø) = (a + ∆)(1−Υ)/2, which implies
that (OSL-2) cannot be satisfied.
C.4. λ1 = 0, λ2 > 0, λ4 > 0, i.e. (OSL-2) is strictly binding. From (C-2) and (C-3) follows
p(H) = p∗(H) and p(L) = p∗(L). Then (C-5) and (C-7) cannot hold simultaneously.
C.5. λ1 6= 0, λ2 = 0, λ4 = 0, i.e. (OSH-0) is strictly binding. From (C-3) follows p(L) = p∗(L).
Conditions (C-1), (C-2) and (C-4) imply that p(ø) > p∗(L) which violates (OSL-2).
C.6. λ1 6= 0, λ2 = 0, λ4 > 0, i.e. (OSH-0) and (OSL-2) are strictly binding. From (C-3)
follows p(L) = p∗(L) and from (C-7) follows p(ø) = p(H) = (a + ∆)(1−Υ)/2. This solution,
however, is always weakly dominated by the solution in C.2 which has one binding constraint
less.
C.7. p(ø) > a − ∆, i.e. ΠL(p(ø)) = 0. For these prices, (OSH-1) and (OSL-2) cannot be
satisfied. This means it has to hold that p(L) = p(H) = p(ø) = a − ∆ which is always
dominated by the solution in A.7.
D. p(L) ≥ p(ø) ∧ p(H) ≤ p(ø). The Lagrangian can be written as

L(p(I), λ) =EΠø(p(I)) + λ1(p(ø)− p(H)) + λ2(p(ø)− p(L))

+ λ3(σn−1ΠL(p(L))− 1− σn

1− σ
ΠL(p(ø)))

For p(ø) ≤ a−∆ the resulting Kuhn-Tucker conditions are given by

∂L
∂p(ø)

= ρ(1− σ)n ∂ΠH

∂p(ø)
+ (1− ρ)(1− σn)

∂ΠL

∂p(ø)
+ λ1 + λ2 − λ3

1− σn

1− σ

∂ΠL

∂p(ø)
= 0, (D-1)

∂L
∂p(H)

= ρ(1− (1− σ)n)
∂ΠH

∂p(H)
− λ1 = 0, (D-2)

∂L
∂p(L)

= (1− ρ)σn ∂ΠL

∂p(L)
− λ2 + λ3(σn−1)

∂ΠL

∂p(L)
= 0, (D-3)

λ1(p(ø)− p(H)) = 0, λ1 ≥ 0, (D-4)
λ2(p(ø)− p(L)) = 0, λ2 6= 0, (D-5)

λ3(σn−1ΠL(p(L))− 1− σn

1− σ
ΠL(p(ø))) = 0, λ3 ≥ 0. (D-6)

Additionally it has to hold that λ2λ3 = 0. The cases in which (OSH-0) is strictly binding
have been dealt with in C.5, C.6 and A.4. Thus, we have to consider the remaining cases with
λ1 = 0.
D.1. λ1 = 0, λ2 = λ3 = 0, i.e. none of the three constraints are binding. This means
p(L) = p∗(L) and p(H) = p∗(H). However, (D-1) requires p∗(L) < p(ø) < p∗(H) which is
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incompatible with p(ø) > p(H).
D.2. λ1 = λ2 = 0, λ3 > 0, i.e. (OSL-2) is strictly binding. From (D-2) and (D-3) follows
p(H) = p∗(H) and p(L) = p∗(L). From (D-6) one gets p(ø) = (a − ∆)(1 − Υ)/2 which
contradicts p(ø) > p(H).
D.3. λ1 = 0, λ2 > 0, λ3 = 0, i.e. (OSL-0) is strictly binding. From (D-2) follows p(H) = p∗(H).
Combining (D-1) and (D-3) implies p∗(L) < p(ø) < p∗(H) which contradicts p(ø) > p(H).
D.4. p(ø) > a−∆, i.e. ΠL(p(ø)) = 0. For these prices (OSL-2) cannot be satisfied, i.e. λ2 6= 0.
Two cases exist. First, if λ1 = 0 then p(H) = p∗(H). But (D-1) and (D-3) imply p(ø) < p∗(H)
which contradicts p(ø) > p(H). Second, if λ1 > 0 then p(L) = p(ø) = p(H) = a−∆ which is
dominated by A.7.
The preceding analysis leaves us with four candidate solutions: A.3, A.6, A.7 and C.2. In what
follows I show that (i) A.7 dominates C.2, (ii) A.7 dominates A.6 and (iii) A.3 dominates A.7.
(i) A.7 dominates C.2 First consider the difference Ψ1 ≡ E[ΠA7] − E[ΠC2] and check
that (∂2Ψ1)/(∂ρ)2 = 0 which means that Ψ1 is either monotonically increasing or decreasing.
Further calculate the value of Ψ1 at ρ = 0,

Ψ1(ρ = 0) =
(a−∆)2

4
((1− σn)Υ2 − (1− σ)n) =

(a−∆)2

4
(1− σn−1 − (1− σ)n) ≥ 0,

and at ρ = 1, Ψ1(ρ = 1) = 1−σn

4 (∆(2−Υ) + aΥ)2 ≥ 0. It follows that E[ΠA7] ≥ E[ΠC2].
(ii) A.7 dominates A.6. Define the difference between the expected industry profits as
Ψ2 ≡ E[ΠA7]−E[ΠC2]. To show that Ψ2 ≥ 0 I proceed in three steps. First, verify that Ψ2 is
either increasing or decreasing in ρ since (∂2Ψ2)/(∂ρ)2 = 0. Second, the value of Ψ2 at ρ = 1
is Ψ2(ρ = 1) = (a + ∆)2(1− σn)Υ2/4 ≥ 0. The last step is to show that

Ψ2(ρ = 0) =
1
4
[(∆(2−Υ)− aΥ)2 − (1− σ)n(a−∆)2] ≥ 0.

To prove this, I show that the following three sufficient conditions hold: (a) Ψ2(ρ = 0) is
convex in ∆, (b) it has a positive value at is upper bound ∆ = a/3 and (c) it has a negative
slope at its upper bound ∆ = a/3. The second derivative with respect to ∆ is

Ψ′′
2 ≡

∂2Ψ2(ρ = 0)
(∂∆)2

=
1
2
((2−Υ)2 − (1− σ)n).

Taking the derivative of this expression with respect to σ gives

∂Ψ′′
2

∂σ
=

1
2
(n(1− σ)n−1 − 2(2−Υ)

∂Υ
∂σ

)

=
1
2
(n(1− σ)n−1 +

sn−2(2−Υ)(n− 1− nσ + σn)
(1− σn)2Υ

≥ 0.

Therefore Ψ′′
2 takes it lowest value at σ = 0 which is Ψ′′

2(σ = 0) = 0. Thus, Ψ2(ρ = 0) is convex
in ∆. The value of Ψ2(ρ = 0) at its upper bound ∆ = a/3 is

Ψ∆
2 ≡ a2

9
(1− (1− σ)n − 4(1−Υ)Υ).
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Taking the derivative of this expression with respect to n gives

∂Ψ∆
2

∂n
= −a2

9
[(1− σ)n ln(1− σ)− (8Υ− 4)

∂Υ
∂n

] ≥ 0,

which means that Ψ∆
2 takes its minimum value at n = 2. At n = 2 the non-negativity condition

for Ψ∆
2 becomes

1− (1− σ)2 − 4(1− 1√
1 + σ

)
1√

1 + σ
≥ 0,

which holds for all σ ∈ [0, 1]. Thus, Ψ2(ρ = 0) has a positive value at ∆ = a/3. Finally, the
slope of Ψ2(ρ = 0) at ∆ = a/3 is

∂Ψ2(ρ = 0)
∂∆

|∆=a/3 =
a

3
(2 + (1− σ)n −Υ(5− 2Υ)).

This expression is negative if Λ ≡ Υ(5− 2Υ)− 2− (1− σ)n ≥ 0. Check that Λ is increasing in
n since

∂Λ
∂n

= −(1− σ)n ln(1− σ) + (5− 4Υ)
∂Υ
∂n

≥ 0.

Therefore, Λ takes a minimum value at n = 2,

Λ(n = 2) = (2− σ)σ +
5√

1 + σ
− 3− 2

1 + σ
,

which is positive for any σ ∈ [0, 1] since Λ(n = 2) is concave in σ and takes a value of 0 at
σ = 0 and of 5/

√
2− 3 > 0 at σ = 1. Thus, the slope of Ψ2(ρ = 0) at ∆ = a/3 is negative.

(iii) A.3 dominates A.7. The difference between the expected industry profits is given by

E[ΠA3]− E[ΠA7] =
(1− ρ)(1− σn)[(1− ρ)(1− σ)n(a−∆)2 + ρ(a− 3∆)(a + ∆)]

4(ρ + (1− ρ)(1− σ)n)
,

which is positive for all ∆ < a/3.
The only effective constraint for the solution A.3 is (OSH-0). It is straightforward to check
that the bordered Hessian for this local maximum is negative definite. Thus, the second-order
condition for a global maximum is satisfied and the lemma follows. �

Proof of Proposition 1

Firms apply a strategy that punishes out-of equilibrium messages and prices with eternal
reversion to marginal cost pricing. This implies that at the communication stage sending
an uninformative message mi 6= ø is a (weakly) dominant strategy. Then consider the price
setting subgame following the communication of mi = ø ∀i. The best deviation for a firm with
a L-signal from its equilibrium price pø(L) is to undercut slightly at pø(L)− ε. Thus, it has to
hold that

1− (1− σ)n

σn
ΠL(pø(L)) +

δV

1− δ
≥ ΠL(pø(L))
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or
δV

1− δ
≥ (1− 1− (1− σ)n

σn
)ΠL(pø(L)), (6)

where V ≡ EΠø(pø(I))/n is the ex ante expected, per-period profit in equilibrium.
A firm with a H-signal does not deviate if

δV

1− δ
≥ ΠH(pø(H))− ΠH(pø(H))

n
⇐⇒ δ ≥ δø(H) ≡ (n− 1)ΠH(pø(H))

nV + (n− 1)ΠH(pø(H))
(7)

Condition (7) implies condition (6) if

(1− 1
n

)ΠH(pø(H)) ≥ (1− 1− (1− σ)n

σn
)ΠL(pø(L)).

This inequality always holds because ΠH(pø(H)) > ΠL(pø(L)) since ΠH(pø(L)) > ΠL(pø(L))
and pø(L) < pø(H) < p∗(H). Moreover, (1 − (1 − σ)n)/(σn) is decreasing in σ and always
greater or equal than 1/n. Therefore, the incentive-compatibility condition for a L-signal firm
is always satisfied for δ ≥ δø(H).
A firm with a ø-signal expects an equilibrium profit in the current period of

ρ
ΠH(pø(ø))

n
+ (1− ρ)(1− σ)n−1 ΠL(pø(ø))

n

There are three types of price deviations. First consider prices below pø(L). The most profitable
deviation is pø(L)− ε which yields expected deviation profits of

ρΠH(pø(L)) + (1− ρ)ΠL(pø(L)).

A deviation to exactly pø(L) is only semi-detectable because if the demand state is indeed low,
the firm behaved like it had gotten a low signal and no punishment is triggered. Deviation
profits are thus

ρΠH(pø(L)) + (1− ρ)[
1− (1− σ)n

σn
ΠL(pø(L)) +

δV

1− δ
]

and deviation is not profitable if

δV

1− δ
≥ ρ[ΠH(pø(L))− ΠH(pø(ø))

n
] (8)

+(1− ρ)[
1− (1− σ)n

σn
ΠL(pø(L)) +

δV

1− δ
− (1− σ)n−1 ΠL(pø(ø))

n
]

or
δ ≥ δø(ø) ≡ Θ

bi(Ii = ø)V + Θ
,

with

Θ ≡ ρ[ΠH(pø(L))− ΠH(pø(ø))
n

] + (1− ρ)[
1− (1− σ)n

σn
ΠL(pø(L))− (1− σ)n−1 ΠL(pø(ø))

n
].
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It is easily checked that the deviation to pø(L) is more profitable than the deviation to pø(L)−ε
if

1− (1− σ)n

σn
ΠL(pø(L)) +

δV

1− δ
≥ ΠL(pø(L)),

which is exactly the incentive compatibility condition for a firm with a low signal which holds
for δ ≥ δø(H). Finally, a firm with a ø-signal could deviate to a price pD with p(L) < pD < p(ø).
This gives expected profits of

ρΠH(pD) + (1− ρ)(1− σ)n−1ΠL(p(D)).

The resulting incentive compatibility constraint is implied by condition (7) if

n− 1
n

ΠH(pø(ø)) ≥ ρ[ΠH(pD)− ΠH(pø(ø))
n

] + (1− ρ)(1− σ)n−1[ΠL(pD)− ΠL(pø(ø))
n

]

or

ρ[ΠH(pø(ø))−ΠH(pD)]+ (1− ρ)(1−σn−1)[
n− 1

n(1− σn−1)
ΠH(pø(ø))−ΠL(pD)+

ΠL(pø(ø))
n

] ≥ 0

The expression in the first bracket is positive since pD < pø(ø) < p∗(H). The second bracket
is positive if

n− 1
n

ΠH(pø(ø)) +
ΠL(pø(ø))

n
−ΠL(pD) ≥ 0.

This inequality holds since the sum of the first two terms is increasing in the price pø(ø)
and at pø(ø) = pD the inequality holds strictly. This leaves us with at most two necessary
conditions, (7) and (8). Check that for ρ → 1, the right-hand side (’rhs’) of (8) reduces to
ΠH(pø(L))−ΠH(pø(ø))/n which is always smaller than the rhs of (7). On the other hand, for
δ → 1 the rhs of (8) goes to infinity. Therefore, there exist parameter values for which each of
the two conditions is more restrictive than the other one and the proposition follows. �

Proof of Lemma 2

The optimal prices follow from maximizing EΠLH(p(I)) w.r.t. p(I):

∂EΠLH

∂p(ø)
= ρ(1− σ)n ∂ΠH

∂p(ø)
+ (1− ρ)(1− σ)n ∂ΠL

∂p(ø)
= 0, (9)

∂EΠLH

∂p(H)
= ρ(1− σ)n ∂ΠH

∂p(H)
= 0,

∂EΠLH

∂p(L)
= (1− ρ)(1− σ)n ∂ΠL

∂p(L)
= 0. �

28



Proof of Proposition 2

After the communication stage there are three possible types of price subgames on the equi-
librium path. Consider the price subgame following a verified message mi = H of at least one
firm. This sets all firms in information state Ii = H and a firm charges its equilibrium price
pc(H) if

ΠH(pc(H))
n

+
δV

1− δ
≥ ΠH(pc(H)) (10)

where V ≡ EΠLH(pc(I))/n is the ex ante expected, per-period profit in equilibrium. With at
least one L-message, firms stick to their equilibrium price pc(L) if

ΠL(pc(L))
n

+
δV

1− δ
≥ ΠL(pc(L)). (11)

If all firms receive uninformative signals and messages, firms set pc(ø) if

ρΠL(pc(ø)) + (1− ρ)ΠH(pc(ø))
n

+
δV

1− δ
≥ ρΠL(pc(ø)) + (1− ρ)ΠH(pc(ø)). (12)

It is straightforward to see that (10) implies (11) and (12). Rewriting (10) yields

δ ≥ δc(H) ≡ (n− 1)ΠH(pc(H))
nV + (n− 1)ΠH(pc(H))

.

Additionally suppose for all out-of-equilibrium outcomes of the communication stage (i.e. com-
munication including unverified L- or H−messages) that firms revert to marginal cost pricing
from the current period onwards. Then at the communication stage, firms with ø-signals
cannot do better than truthfully report their signal. Suppose firm i receives a H-signal and
deviates to mi = ø. This is an on-schedule deviation. If no other firm received an informative
signal, all remaining firms j ∈ N, j 6= i are in information state Ij = ø and set price pc(ø). The
best deviation for firm i is pc(ø) − ε. However, this deviation is always dominated by setting
pc(ø) if

ΠH(pc(ø))
n

+
δV

1− δ
≥ ΠH(pc(ø)).

which always holds for δ ≥ δc(H). This means that at the communication stage a firm i with
a H−signal sending mi = ø expects profits of

(1− σ)n−1(
ΠH(pc(ø))

n
+

δV

1− δ
) + (1− (1− σ)n−1)(

ΠH(pc(H))
n

+
δV

1− δ
)

which is strictly dominated by sending mi = H and receiving

ΠH(pc(H))
n

+
δV

1− δ
.

Similarly if a firm i with a L−signal deviates to mi = ø and no other firm receives and
communicates a L−signal, firm i would never find it optimal to undercut its rivals at the
pricing stage since

ΠL(pc(ø))
n

+
δV

1− δ
≥ ΠL(pc(ø))
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is always satisfied for δ ≥ δc(H). Thus, sending mi = ø yields

(1− σ)n−1(
ΠL(pc(ø))

n
+

δV

1− δ
) + (1− (1− σ)n−1)(

ΠL(pc(L))
n

+
δV

1− δ
)

which is always dominated by sending mi = L and receiving

ΠL(pc(L))
n

+
δV

1− δ
. �

Proof of Proposition 3

Along the equilibrium path there are two types of subgames at the pricing stage as a function
of the communication between firms. First suppose all firms send uninformative messages
mi = ø ∀i. Then a firm with a H-signal knows that all firms either received a H-signal or a
ø-signal and it sets the equilibrium price pø(ø) = pø(H) if

δV

1− δ
≥ n− 1

n
ΠH(pø(ø)), (13)

where V ≡ EΠL(pø(I)). This condition is equivalent to (7) and holds if δ ≥ δø(H). A firm
with a ø-signal has an updated belief of bi(Ii = ø) and expects an equilibrium profit of

bi(Ii = ø)
ΠH(pø(ø))

n
+ (1− bi(Ii = ø))

ΠL(pø(ø))
n

+
δV

1− δ
.

The optimal deviation price pd < pø(ø) solves

max
pd

bi(Ii = ø)ΠH(pd) + (1− bi(Ii = ø))ΠL(pd)

which yields the necessary condition

ρ
∂ΠH(pd)

∂pd
+ (1− ρ)(1− σ)n−1 ∂ΠL(pd)

∂pd
= 0.

Comparing this condition with the first order condition (5) for pø(ø) implies p∗(L) ≤ pd ≤ pø(ø).
Incentive compatibility for a ø-signal firms requires

δV

1− δ
≥ bi(Ii = ø)[ΠH(pd)− ΠH(pø(ø))

n
] + (1− bi(Ii = ø))[ΠL(pd)− ΠL(pø(ø))

n
]. (14)

This condition is satisfied for δ ≥ δø(H) if the rhs of (13) is larger than the rhs of (14), i.e.

(1− bi(Ii = ø))[
n− 1

n
ΠH(pø(ø))−ΠL(pd) +

ΠL(pø(ø))
n

] + bi(Ii = ø)[ΠH(pø(ø))−ΠH(pd)] ≥ 0

The second term is always positive since pd ≤ pø(ø) ≤ p∗(H). The expression in the first
bracket increases in n and is positive for n = 2 if

1
2
ΠH(pø(ø)) +

1
2
ΠL(pø(ø)) ≥ ΠL(pd).
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The right-hand side of this inequality is maximized for pd = p∗(L). The left-hand side is
minimized at pø(ø) = p∗(L) and pø(ø) = p∗(H) with a minimum of

1
2
ΠH(p∗(L)) +

1
2
ΠL(p∗(L)) ≥ ΠL(p∗(L)).

It follows that the incentive compatibility constraint for a ø-signal firm holds for all δ ≥ δø(H).
In the second type of price subgames at least one firm sends a verifiable L-message at the
communication stage. Then, setting the equilibrium price dominates undercutting by a small
ε > 0 if

ΠL(pø(L))
n

+
δV

1− δ
≥ ΠL(pø(L)). (15)

Since ΠH(pø(ø)) ≥ ΠL(pø(L) this condition always holds if δ ≥ δø(H). Finally, assume that for
any off-the-equilibrium outcome of the communication stage, i.e. if any firm sends a H-signal
or an unverifiable L-signal, firms revert instantaneously to marginal cost pricing.
Now consider the communication stage. If firm i receives a L-signal and deviates by announcing
mi = ø, then with probability 1 − (1 − σ)n−1 at least one other firm receives a L-signal and
sends a L-message. This means that all firms are in information state Ii = L and - as shown
above - no firm deviates from pø(L) for δ ≥ δø(H). With probability (1− σ)n−1 no other firm
receives a L-signal, only uninformative messages are sent and firms set pø(ø). If the deviating
firm i sets pø(ø) it receives

ΠL(pø(ø))
n

+
δV

1− δ
.

If it undercuts at pø(L) it obtains ΠL(pø(L)). Sending a L-message at the communication
stage dominates sending mi = ø and pricing at pø(ø) since

ΠL(pø(L))
n

+
δV

1− δ
≥ (1− σ)n−1 ΠL(pø(ø))

n
+ (1− (1− σ)n−1)

ΠL(pø(L))
n

+
δV

1− δ

for pø(L) = p∗(L) < pø(ø). Sending a L-message dominates announcing mi = ø and undercut-
ting at pø(L) if

ΠL(pø(L))
n

+
δV

1− δ
≥ (1− σ)n−1ΠL(pø(L)) + (1− (1− σ)n−1)[

ΠL(pø(L))
n

+
δV

1− δ
].

If (15) holds, the rhs is always less or equal than ΠL(pø(L)) and then again by virtue of (15)
the inequality holds true. The proposition follows. �

Proof of Proposition 4

In equilibrium there are two types of subgames at the pricing stage as a function of the
communication between firms. First suppose there was at least one H-message. Then any firm
sticks to the equilibrium price pc(H) if

δV

1− δ
≥ n− 1

n
ΠH(pc(H)) (16)
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with V ≡ EΠH(pc(I)).This inequality holds if δ ≥ δc(H). Next suppose all firms sent uninfor-
mative messages, mi = ø ∀i. Then a firm with a L-signal knows that all firms either received
a L-signal or a ø-signal and it sets the equilibrium price pc(L) = p∗(L) if

1− (1− σ)n

σn
ΠL(pc(L)) +

δV

1− δ
≥ ΠL(pc(L)). (17)

This condition is always satisfied if condition (16) holds if

n− 1
n

ΠH(pc(H)) ≥ σn− 1 + (1− σ)n

σn
ΠL(pc(L)).

The rhs increases in σ and for σ = 1 it becomes (n− 1)ΠL(pc(L))/n which is strictly smaller
than the lhs. Thus, (17) holds for δ ≥ δc(H).
A firm with a ø-signal has an updated belief of bi(Ii = ø) and expects equilibrium profits of

bi(Ii = ø)
ΠH(pc(ø))

n
+ (1− bi(Ii = ø))(1− σ)n−1 ΠL(pc(ø))

n
+

δV

1− δ
.

Its rival firms either set pc(L) or pc(ø). Profitable deviations are therefore pd ∈ (0, pc(ø)].
Consider first the partially on-schedule deviation to pd = pc(L) which yields expected profits
of

bi(Ii = ø)ΠH(pc(L)) + (1− bi(Ii = ø))[
1− (1− σ)n

σn
ΠL(pc(L)) +

δV

1− δ
]. (18)

This deviation is not profitable if

δV

1− δ
≥ bi(Ii = ø)[ΠH(pc(L))− ΠH(pc(ø))

n
] (19)

+(1− bi(Ii = ø))[
1− (1− σ)n

σn
ΠL(pc(L))− (1− σ)n−1 ΠL(pc(ø))

n
+

δV

1− δ
]

or
δ ≥ δc(ø) ≡ Θ

bi(Ii = ø)V + Θ

with

Θ = (1− bi(Ii = ø))[
1− (1− σ)n

nσ
ΠL(pc(L))− (1− σ)n−1 ΠL(pc(ø))

n
]

+bi(Ii = ø)[ΠH(pc(L))− ΠH(pc(ø))
n

].

To show that (16) might be more restrictive than (19), compare their respective rhs for bi(Ii =
ø) → 1. The rhs of (16) is larger since

ΠH(pc(H))−ΠH(pc(L)) ≥ ΠH(pc(H))
n

− ΠH(pc(ø))
n

and pc(L) ≤ pc(ø) ≤ pc(H). To show that (19) might be more restrictive than (16), note that
for bi(Ii = ø) → 0, the rhs of (19) goes to infinity for δ → 1.
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Two more possible price deviation for a ø-signal need to be checked. First deviating to pd =
pc(L)− ε yields

bi(Ii = ø)ΠH(pc(L)) + (1− bi(Ii = ø))ΠL(pc(L)).

It follows from (17) and (18) that this deviation is always dominated by the deviation to
pd = pc(L). Secondly, deviating to a pd with pc(L) < pd < pc(ø) gives

bi(Ii = ø)ΠH(pd) + (1− bi(Ii = ø))(1− σ)n−1ΠL(pd)

Maximizing with respect to pd yields the same condition as (9) from Lemma 2, i.e. pd =
pc(ø)− ε. Setting the equilibrium price pc(ø) dominates this deviation if

δV

1− δ
≥ bi(Ii = ø)

n− 1
n

ΠH(pc(ø)) + (1− bi(Ii = ø))(1− σ)n−1 n− 1
n

ΠL(pc(ø))

which always holds if (16) and (17) hold.
Assume that if firms receive any out-of-equilibrium message (any L-message or unverifiable
H-signal) at the communication stage, they revert instantaneously to marginal cost pricing.
Thus, the only profitable deviation for a firm i with a H-signal is to announce mi = ø. In this
case, with probability 1 − (1 − σ)n−1 at least one other firm receives a H-signal and sends a
H-message. Then, for δ ≥ δc(H), the deviating firm cannot do better than setting pc(H), i.e.
it receives the same profits as if it had sent mi = H. With probability (1−σ)n−1 no other firm
receives a H-signal, only uninformative messages are sent and the deviating firm knows that
all of its rivals got a ø-signal and set pc(ø). If the deviating firm charges pc(ø) − ε it receives
ΠH(pc(ø)). Setting pc(ø) yields

ΠH(pc(ø))
n

+
δV

1− δ
,

which is always larger than ΠH(pc(ø)) for δ ≥ δc(H). However, since this maximum deviation
profit is less than the equilibrium profits the deviating firm could earn if it announces mi = H,
no deviation occurs and the proposition follows. �

Proof of Proposition 5

(i) The expected price with full communication and partial communication in high demand is
identical and equal to

(1− (1− σ)n)[ρpc(H) + (1− ρ)pc(L)] + (1− σ)npc(ø) = pc(ø).

The expected price without communication and partial communication in low demand states
is identical and equal to

[ρ + (1− ρ)(1− σ)n]pø(ø) + (1− ρ)(1− (1− σ)n)pø(L)

= [ρ + (1− ρ)(1− σ)n][(1− ρ

ρ + (1− ρ)(1− σ)n
)p∗(L) +

ρ

ρ + (1− ρ)(1− σ)n
p∗(H)] +

(1− ρ)(1− (1− σ)n)p∗(L) = (1− ρ)p∗(L) + ρp∗(H) = pc(ø).
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(ii) The difference between the expected industry profits with full communication (or partial
communication in H) and without communication (or partial communication in L) is given by

EΠH(pc(I))− EΠø(pø(I)) = ρ(1− (1− σ)n)ΠH(pc(H)) + ρ(1− σ)nΠH(pc(ø))

+ (1− ρ)(1− σ)nΠL(pc(ø))− [ρΠH(pø(ø)) + (1− ρ)(1− σ)nΠL(pø(ø))]

=
ρ(1− ρ)2(1− (1− σ)n)(1− σ)n∆2

ρ + (1− ρ)(1− σ)n
≡ Γ > 0.

(iii) Consumer surplus in a high demand state is CSH(p) ≡ (a + ∆− p)2 and in a low demand
state it is CSL(p) ≡ (a − ∆ − p)2. Thus, consumer surplus without communication (or
communication in low demand states) is

ECSø =ECSL = ρCSH(pø(ø)) + (1− ρ)(1− (1− σ)n)CSL(pø(L))

+ (1− ρ)(1− σ)nCSL(pø(ø)).

Consumer surplus without communication (or communication in high demand states) is

ECSLH =ECSH = (1− σ)n[ρCSH(pc(ø)) + (1− ρ)CSL(pc(ø))] + (1− ρ)CSL(pc(L))]

+ (1− (1− σ)n)[ρCSH(pc(H)).

Comparing yields

ECSLH − ECSø = ρ(1− σ)n[CSH(pc(ø))− CSH(pø(ø))] + ρ(1− (1− σ)n)[CSH(pc(H))

− CSH(pø(ø))] + (1− ρ)(1− σ)n[CSL(pc(ø))− CSL(pø(ø))]

= −3ρ(1− ρ)2(1− (1− σ)n)(1− σ)n∆2

2(ρ + (1− ρ)(1− σ)n)
= −3

2
Γ < 0. �

Proof of Proposition 6

(i) follows from inspection of Γ in part (ii) of the proof of Proposition 5. To show (ii) derive

∂Γ
∂ρ

=
(1− ρ)(1− (1− σ)n)(1− σ)n∆2[(1− ρ)(1− 2ρ)(1− σ)n − 2ρ2]

(ρ + (1− ρ)(1− σ)n)2
= 0.

The only feasible, real root ρ ∈ [0, 1] of the last bracket in the numerator is given by

ρ̂ = 2/(3 +

√
8 + (1− σ)2

(1− σ)2
),

which has to be the global maximizer since Γ ≥ 0, Γ(ρ = 0) = Γ(ρ = 1) = 0, ∂Γ/∂ρ(ρ = 0) > 0
and ∂Γ/∂ρ < 0 for ρ ≥ 1/2. Check that ρ̂ is decreasing in σ. Thus, the highest value it can
take is ρ̂(σ = 0) = 1/3. Next, derive

∂Γ
∂σ

=
ρ(1− ρ)2n(1− σ)n−1∆2[2ρ(1− σ)n + (1− ρ)(1− σ)2n − ρ]

(ρ + (1− ρ)(1− σ)n)2
= 0.
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The only feasible real root σ ∈ [0, 1] of the last bracket in the numerator is given by

σ̂ = 1− (
√

ρ

1 +
√

ρ
)

1
n ,

which has to be the global maximizer since Γ(σ = 0) = Γ(σ = 1) = 0, ∂Γ/∂σ(σ = 0) > 0 and
∂Γ/∂σ = 0 for σ = 1. Check that σ̂ → 1 for ρ → 0 and that σ̂(ρ = 1) ≥ 0.
To show part (iii) of the corollary derive

∂Γ
∂n

=
ρ(1− ρ)2(1− σ)n∆2ln(1− σ)[ρ− 2ρ(1− σ)n − (1− ρ)(1− σ)2n

(ρ + (1− ρ)(1− σ)n)2
] = 0.

The only feasible real root of the last bracket in the numerator is given by

n̂ = ln(1− 1
1 +

√
ρ
)/ln(1− σ)

which has to be the global maximizer since Γ(n = 0) = 0,Γ → 0 for n → ∞ and ∂Γ/∂n(n =
0) > 0. Check that n̂ ≥ 2 if and only if

σ ≤ 1−
√√

ρ/(1 +
√

ρ) > 0.

The proposition follows.�
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