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Abstract

We analyze the competitive effects of backward vertical integration in a model with

oligopolistic firms that exert market power upstream and downstream. In contrast to pre-

vious literature, we show that a small degree of vertical integration is always procompetitive

because efficiency effects dominate foreclosure effects. Moreover, vertical integration even

to monopoly can be procompetitive. With regard to market structure, we find, somewhat

surprisingly, that vertical integration is more likely to be procompetitive if the industry is

comprised of only few firms. Our model thus suggests that antitrust authorities should be

particularly wary of vertical integration in relatively competitive industries. We demon-

strate that the quantitative welfare effects can be substantial there.

Keywords: Vertical Integration, Market Structure, Downstream Oligopsony, Competition Pol-

icy.

JEL-Classification: D43, L41, L42

∗We want to thank Catherine de Fontenay, Georg Gebhardt, Rosemary Humberstone, Bruno Jullien, Martin
Peitz, Patrick Rey, Michael Riordan and Klaus Schmidt as well as seminar participants at Columbia University,
University of Mannheim, University of Queensland, University of Toulouse, IIOC 2008 (Arlington), EARIE 2008
(Toulouse), the SFB/TR-15 conference 2008 (Munich), ESEM 2009 (Barçelona) and the CESifo Conference on
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1 Introduction

The effects of vertical integration on consumer and overall welfare are subject of ongoing

debates amongst economists, antitrust lawyers, and policy makers. Over the last two decades

substantial progress has been made in identifying pro- and anticompetitive effects of vertical

integration. Productivity increases due to cost synergies have been advanced as a major source

of efficiency gains from vertical integration while the ability of integrating parties to raise their

rivals’ costs has been recognized as a factor fostering foreclosure.1 Yet an open theoretical

question of substantial practical relevance is how these effects depend on the underlying market

structure. In particular, is vertical integration more likely to harm consumers when the industry

is otherwise highly competitive, or should antitrust authorities be more vigilant when the

integrating firm’s competitors exert substantial market power?

To shed light on these questions we present a model that permits us to study the competitive

effects of vertical integration as a function of the underlying market structure and of the

historically given degree of vertical integration, taking into account both productivity gains

and incentives to raise rivals’ costs. The following is a sketch of our model, which builds

on Riordan (1998). There are a number of non-integrated firms and one partly vertically

integrated firm. All firms exert oligopolistic market power downstream, where they compete à

la Cournot, and oligopsonistic market power upstream. To produce the final good, firms need a

fixed input, termed capacity, that is competitively offered on an upward sloping supply curve.

The more capacity a firm buys on the market, the lower is its marginal cost of producing the

final good. The vertically integrated firm owns some capacity at the outset. This is referred to

as its ex ante degree of vertical integration and can be as low as zero or so large that the firm

effectively monopolizes the market (or anything in between). As the ex ante degree of vertical

integration increases, the marginal cost of the integrated firm decreases, and so it produces

more output. Thus, our model explicitly allows for productivity gains from vertical integration

due to economies of scale.2 However, because the cost of acquiring the inframarginal units of

capacity is sunk by the time the integrated firm interacts with the other firms on the input

1For recent surveys on the effects of vertical integration, see Church (2008), Rey and Tirole (2007) and
Riordan (2008).

2Such productivity gains are not only commonly advanced by merging parties as motivation for their desire
to vertically integrate but they are also well documented empirically (see e.g., Hortaçsu and Syverson, 2007).
Church (2008) argues that one of the reasons why vertical mergers are complicated to evaluate is that the
incentives to integrate often arise because of non-price efficiencies and are usually not attributable to market
power effects.
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market, it bids more aggressively for capacity. Therefore, increases in its ex ante degree of

vertical integration lead to increases in the market price of capacity, which raises its rivals’

costs and thus leads to (partial) foreclosure.

Within this setup, we obtain the following results. First, vertical integration is more likely to

be procompetitive (i) the less competitive is the industry, i.e., the fewer are the non-integrated

competitors, and (ii) the smaller is the ex ante degree of integration.3 While result (ii) is

arguably as one would expect, result (i) is somewhat surprising.4 However, a clear intuition

for this result based on our model exists and will be provided below. The result implies

that antitrust authorities should be more suspicious about vertical mergers when there are

more firms in the industry. We also demonstrate that the effects from vertical integration on

consumer surplus can be substantial even if the number of firms is large. Second, vertical

integration is procompetitive under a fairly wide array of circumstances. In the extreme, even

monopolizing the downstream market can enhance consumer welfare because the integrated

firm expands its quantity by a very large extent after integrating.5 Third, we show that as

the number of competitors becomes large, vertical integration is anticompetitive irrespective

of the ex ante degree of vertical integration. In the limit, our model thus yields Riordan’s

(1998) powerful result that vertical integration by a dominant firm who faces a competitive

fringe is always anticompetitive.6 Fourth, even if it is procompetitive, vertical integration is

not necessarily welfare increasing. Procompetitive but welfare reducing mergers are possible

because vertical integration changes the cost structure in the industry. Last, there exist critical

thresholds for input and output market shares for an integrating firm above which further

vertical integration is anticompetitive. These are useful measures for practical antitrust policy

purposes.

Let us now develop the basic intuition for these results, starting with a few preliminaries.

Since the downstream market is Cournot, firms with lower marginal costs produce larger quan-

tities. This implies that firms with lower marginal costs incur larger inframarginal losses from

3Two remarks on terminology are in order. First, “procompetitive” (“anticompetitive”) effects are a short-
hand expression for saying that that consumer prices fall (increase) due to increases in the ex ante degree of
vertical integration. Second, when we say that something is more (less) likely we mean that it occurs for a larger
(smaller) set in the parameter space.

4For example, Lafontaine and Slade (2007) note that most empirical studies on vertical integration are
conducted for highly concentrated markets because evidence for foreclosure is thought most likely to be found
there.

5This point is related to but distinct from Quirmbach (1986)’s observation that consumer prices fall after

vertical integration to monopoly is complete. Our result is that consumer prices can fall along all the way
towards complete foreclosure.

6This means also that the dominant firm model provides a good approximation to nearby market structures.
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a price decrease. Therefore, a firm with a larger capacity produces at lower marginal cost but

utilizes its capacity less intensively. Conversely, firms with little market power have marginal

costs that are approximately equal to price—like fringe firms in the model with a dominant firm

facing a competitive fringe— and utilize their capacity very intensively. By increasing its degree

of vertical integration, the integrated firm reduces the capacity available to rival firms because

the market clearing input price increases. Vertical integration has the strongest negative effect

on consumer welfare if rival firms have little to no market power. Operating already close to

the point where marginal costs equal price, their only way to adapt is to decrease their output.

On the other hand, if rival firms exert market power themselves, the anticompetitive effect of

reducing the capacity available to them will be partly offset because smaller capacities induce

them to use capacity more intensively. In other words, market power of rival firms mitigates

the anticompetitive foreclosure effect of vertical integration.

Based on these preliminary observations, rather intuitive explanations for our main results

are now at hand. As the number of competitors increases, the market power of each of them

decreases, which makes vertical integration more likely to be anticompetitive. This is also the

reason why in the limit as the number of firms grows very large, our model encompasses the

case with a dominant firm who faces a competitive fringe, in which vertical integration is always

anticompetitive.

When the ex ante degree of vertical integration increases, the integrated firm bids more

aggressively on the capacity market, as noted above. Thereby it increases its total capacity and

decreases the capacity of the non-integrated firms. This has opposite effects on their capacity

utilization, implying that output expansion of the integrated firm becomes smaller relative to

output reduction of non-integrated firms. Therefore, vertical integration is more likely to be

anticompetitive the larger is the integrated firm’s ex ante degree of vertical integration.

There is, however, an at least partially off-setting effect. The aggregate capacity employed

in the industry becomes larger as integration increases. Depending on the given competitiveness

of the industry, this effect can dominate the anticompetitive effects just mentioned, so that even

vertical integration up to monopoly can be procompetitive.

Vertical integration shifts capacity to the integrated firm that utilizes it less intensively.

This results in higher aggregate costs of production, which may render vertical integration

welfare reducing even if it is consumer welfare enhancing.

Our paper is most closely related to Riordan (1998), whose setup includes a dominant,
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partly integrated firm facing a competitive fringe. We extend this by allowing the integrated

firm’s competitors to exert market power as well. Riordan’s model is a notable exception

within the theoretical literature on vertical integration because it incorporates exertion of

market power in both markets whereas most of this literature is concerned with the trade-off

between avoidance of double marginalization and foreclosure. For example, Hart and Tirole

(1990), Ordover, Saloner, and Salop (1990) and Chen and Riordan (2007) are only concerned

with foreclosure motives. In Salinger (1988), Choi and Yi (2000), Chen (2001) and Inderst

and Valletti (2011a), the downstream market is comprised of an oligopoly and both effects are

present but downstream firms have no market power in the intermediate goods market.7

A different approach to vertical integration is developed by De Fontenay and Gans (2005),8

in which there is efficient bilateral bargaining between pairs of upstream and downstream

firms.9 As Gans (2007) notes, the bargaining approach fits relatively well to an industry with

few upstream and downstream firms while in our model the input is supplied competitively,

which corresponds to general mass markets for inputs.

A paper that, like ours, considers a competitive upstream industry is Esö, Nocke, and White

(2010). They study a model in which competing downstream firms bid for scarce upstream

capacity and show that if this capacity is sufficiently large, the asymmetric downstream market

structure analyzed here and in Riordan (1998) emerges endogenously.10

As in most of the literature, we consider the case of one-shot interaction between firms.

An important exception is the paper by Nocke and White (2007),11 who consider a dynamic

model and show that vertical integration facilitates upstream collusion because it reduces the

number of buyers for rival firms, which decreases their incentives to deviate from a collusive

agreement.12

7Hendricks and McAfee (2010) present a model with both effects, where upstream and downstream firms
exert market power in the intermediate goods market. However, when analyzing vertical mergers, they keep the
downstream price fixed and suppose that the market structure consists of no vertical integration at the outset
in order to keep the model tractable. Under these assumptions they show that output increases with vertical
mergers. In contrast, in our model the downstream price is flexible and, as argued above, we show that a crucial
variable to determine the competitive effects of vertical integration is the degree to which the industry is already
integrated.

8This approach is used by Gans (2007) to derive concentration measures for vertical and horizontal mergers
in an oligopolistic vertical market structure.

9For a related analysis of vertical integration with multilateral bargaining, see Bolton and Whinston (1993).
10Inderst and Valletti (2011b) consider a model with take-it-or-leave-it offers of an upstream firm but without

vertical integration. They allow for one buyer to be larger than the others and show that this buyer obtains a
favorable deal because its outside option is higher. However, this leads to higher wholesale prices for rival buyers
to the detriment of consumers.

11For a similar, analysis but with a different upstream pricing regime, see Normann (2009).
12We also concentrate on the case of a single (or marginal) vertical merger. Recently, Nocke and Whinston
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Our model is also broadly consistent with recent evidence. In a comprehensive review of

empirical studies on the effects of vertical integration for several highly concentrated industries,

Lafontaine and Slade (2007) find that the efficiency effect dominates the foreclosure effect in

almost all studies, and that, therefore, vertical integration has led to a fall in the final good

price in almost all cases. In a similar vein, Hortaçsu and Syverson (2007) find that vertical

integration in the cement and ready-mixed concrete industries has led to output increases and

price decreases and show that these effects can be attributed to productivity increases that

arise from firm size.

The remainder of the paper is organized as follows. Section 2 lays out the model and Section

3 presents the equilibrium. In Section 4 we derive the competitive effects of vertical integration

and show how these effects change with the competitiveness of the industry. Section 5 analyzes

the effects of vertical integration on social welfare and Section 6 concludes. All proofs are in

the appendix.

2 The Model

There are two types of firms, one (partially) vertically integrated firm, which we index by

I and N ≥ 1 non-integrated firms. A typical non-integrated firm is indexed by j. All firms

produce a homogenous good and compete à la Cournot on the downstream market. The inverse

demand function is P (Q), where P (Q) is the market clearing price for the aggregate quantity

Q ≡ qI +
∑N

j=1 qj satisfying P ′(Q) < 0. To produce the final good firms require a fixed input,

referred to as capacity. The cost function of firm j = 1, ..., N for production of qj units is given

by

c(qj , kj) = kjC

(

qj

kj

)

,

where kj is firm j’s capacity and C ′(qj/kj) ≥ 0 and C ′′(qj/kj) > 0.13 Capacity is combined

with variable inputs to produce the final good. This cost function is more general than most

cost functions used in models of vertical integration since it allows a firm to vary its quantity

for given capacity. In particular, it is more general than the widely used fixed proportions cost

function which allows a firm to produce only a maximal quantity of output for a given quantity

of input. The cost function is a good description of a firm’s production technology whenever

(2010) considered the case in which multiple horizontal mergers might arise over time and showed under which
conditions the optimal policy for an antitrust authority is myopic.

13This type of cost function was introduced by Perry (1978) and used e.g., by Perry and Porter (1985), Riordan
(1998) and Hendricks and McAfee (2010).
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the capacity input reduces marginal costs but does not prevent the firm from substituting

this input for other, more expensive inputs. This appears to be an appropriate description

of the production process in a variety of industries in which the availability of a scare input

factor has the effect of reducing the marginal cost of production. Examples include landline

telecommunication, the concrete industry and the steel industry, where the cost reducing input

is fibre-optic cable, cement and iron ore, respectively.14 The integrated firm I has a cost

advantage of γ ≥ 0 per unit of output.15 Therefore, its cost function can be written as

c(qI , kI) = kIC

(

qI

kI

)

− γqI .

As a consequence, marginal costs for all firms are increasing in the produced quantity for given

capacity but c(qi, ki) exhibits constant returns to scale in qi and ki, i = I, 1, ..., N .

Capacity is supplied competitively with an inverse supply function of R(K), with R′(K) > 0

and K ≡ kI +
∑N

j=1 kj. Firm I is partially vertically integrated, that is, it owns k ≥ 0 units of

capacity. We refer to k as its ex ante degree of vertical integration.

The timing of the game is as follows: In the first stage, the capacity stage, all firms i

simultaneously choose their level of capacity ki. The ex ante degree of vertical integration k is

exogenously given and common knowledge. Firm I buys kI − k units of capacity at the market

price R(K). Thus, the profit function of firm I at the capacity stage is given by

ΠI(qI , kI) = P (Q)qI − kIC

(

qI

kI

)

+ γqI − (kI − k)R (K) , (1)

and the one of a non-integrated firm j is Πj(qj, kj) = P (Q)qj − kjC (qj/kj) − kjR (K). In

the second stage, the quantity stage, all firms simultaneously choose their quantities after

having observed all capacity levels k = (kI , k1, .., kN ). The aggregate quantity Q determines

the market clearing price P (Q), and payoffs are realized.

Equation (1) implies that firm I has the opportunity to supply undesired capacity to an

outside market, which occurs if kI < k. Notice that the cost of acquiring k, which we do not

model, is sunk by the time firm I acquires kI on the input market. Therefore, an increase in

the degree of vertical integration reduces the number of inframarginal units of capacity kI − k

on which the integrated firm bears the market clearing price R(K) when buying additional

14For a detailed description of the concrete industry, see e.g., Syverson (2008), and for an analysis of vertical
mergers in the steel industry, see Mullin and Mullin (1997).

15One can also interpret γ as a quality advantage of the integrated firm’s product. Throughout the paper we
assume that γ is small.
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units of capacity.16 As we will see shortly, this reduction in the number of inframarginal units

induces the integrated firm to bid more aggressively on the input market.

We focus on symmetric subgame perfect equilibria, where symmetry means that the non-

integrated firms play the same strategies. To ensure interior solutions and a unique equilibrium,

we make some shape assumptions on the demand, supply and cost function. We suppose that

limQ→∞ P (Q) = 0, that P ′′(Q) is not too positive and that P ′′′(Q), C ′′′(qi/ki) and R′′(K)

are not too negative. These assumptions are relatively mild and guarantee a unique equilib-

rium. They are standard in two-stage games where firms have market power upstream and

downstream. A special case that satisfies these assumptions is the linear-quadratic model,

in which P (Q) = α − βQ for Q ∈ [0, α/β], R (K) = δK, CI(qI/kI) = c
2

(

qI

kI

)2
− γqI and

Cj(qj/kj) = c
2

(

qj

kj

)2
for all j ∈ {1, ..., N}, where α, β, c and δ are positive constants.

3 Equilibrium

We solve the game by backward induction.

3.1 The Quantity Stage (Stage 2)

At the quantity stage, k is already determined. Since k has a direct effect only on kI but not

on qI , the first-order condition for a profit maximum for each firm does not depend directly on

k. So, the first-order condition of a non-integrated firm j 6= I in the subgame of the quantity

stage is given by17

P + P ′qj = C ′
j, (2)

while the first-order condition of firm I is given by

P + P ′qI = C ′
I − γ. (3)

It is easy to see that the second-order conditions are satisfied given that P ′′ is not too positive,

which we assumed above. Our assumptions also imply that firm i’s reaction function has a

negative slope greater than −1. Therefore, every quantity-stage subgame has a unique equilib-

rium. We denote by q∗i (k) the equilibrium quantity of firm i, given any vector of capacities k.

From the first-order conditions we get the following intuitive lemma.

16Observe also that although the integrated firms’s cost of acquiring k is sunk, the social cost of producing k
is taken into account in this formulation because R(.) depends on K rather than only K − k.

17To simplify notation, in the following we abbreviate P (Q) by P , C (qi/ki) by Ci and R(K) by R. We do so
also for all derivatives.
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Lemma 1

dq∗i (k)

dki

> 0 and
dq∗i (k)

dkj

< 0 for all i 6= j, i, j = I, 1, ..., N. (4)

Therefore, all own effects are positive and all cross effects are negative. That is, a firm’s optimal

quantity increases in its own capacity and falls in the capacity of its rivals, independently of

the type of the firm. We then obtain the following result:

Lemma 2
q∗i (k)

ki
decreases in ki ∀i ∈ {I, 1, ..., N}.

The same result is obtained by Riordan (1998). As observed above, a firm with a larger capacity

produces a larger quantity, but because it produces more inframarginal units, it suffers more

from a fall in the final output price. As a consequence, it utilizes its capacity less intensively

than firms with lower capacity. This means that q∗i /ki is smaller.

3.2 The Capacity Stage (Stage 1)

We now move on to the first stage of the game, the capacity choice game. Using the envelope

theorem and dropping all arguments, the first-order condition of a non-integrated firm j in the

capacity stage is given by

∂Πj

∂kj
= P ′

dQ∗
−j

dkj
q∗j − Cj + C ′

j

q∗j
kj

− R − kjR
′ = 0, (5)

where Q∗
−j is the equilibrium quantity of all firms but firm j. The first-order condition of the

integrated firm I is given by

∂ΠI

∂kI
= P ′

dQ∗
−I

dkI
q∗I − CI + C ′

I

q∗I
kI

− R − (kI − k)R′ = 0. (6)

Showing that an equilibrium exists and, if it does, is unique is more involved in the capacity

stage than in the quantity stage. The reason is that now a change in firm i’s capacity has an

effect on the equilibrium quantity of each firm in the second stage. Thus, the expression for the

reaction function is more complicated than in a standard single stage game.18 Nevertheless,

the next lemma establishes that an equilibrium exists and is indeed unique.

Lemma 3 There exists a unique symmetric equilibrium in the capacity stage. In this equilib-

rium, k∗
I and k∗

j , j = 1, ..., N , are determined by (5) and (6).

18Moreover, the game is not an aggregative game. The reaction of a non-integrated firm is different if firm I
changes its capacity than if a non-integrated firm changes its capacity because this has different effects on the
overall quantity produced in the second stage.
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From the two first-order conditions we can now derive the following lemma:

Lemma 4

dk∗
I

dk
> 0 and

dk∗
j

dk
< 0, j = 1, ..., N.

This result, that k∗
I increases and k∗

j decreases in k, is intuitive. If k increases, firm I owns

more capacity units. Thus, the number of inframarginal units for which it has to pay the ca-

pacity price R on the upstream market decreases. As a consequence, firm I finds it optimal to

increase its overall amount of capacity.19 While k does not directly influence the optimal capac-

ity of the non-integrated firms, the price of capacity increases because k∗
I increases. Therefore,

each non-integrated firm optimally acquires less capacity as k rises. Hence, non-integrated

firms become (partially) foreclosed as k increases.

It follows immediately from Lemma 4 that k∗
I > k∗

j for k > 0, even if γ = 0. Thus, if firm

I is vertically integrated to some extent, its equilibrium capacity is larger than the one of the

non-integrated firms. From Lemma 2 we know that this implies that its capacity utilization

q∗I/k
∗
I is lower than for the non-integrated firms.

4 Competitive Effects of Vertical Integration

We now turn to the analysis of the effects of vertical integration on consumer surplus.

4.1 Competitive Threshold

We first analyze under which conditions vertical integration is pro - or anticompetitive, i.e.,

whether a marginal change in k increases or decreases the aggregate equilibrium quantity

supplied in the downstream market. From above it follows that an increase in k has a direct

positive effect on kI and via that an indirect negative effect on all kj.
20 This in turn leads to

an increase in qI and to a decrease in all qj. Thus, vertical integration is procompetitive at the

margin if and only if

dQ

dk
=

(

dqI

dkI

+ N
dqj

dkI

)

dkI

dk
+ N

(

dqI

dkj

+
dqj

dkj

+ (N − 1)
dqi

dkj

)

dkj

dk
> 0, i 6= j,

or equivalently
(

dkj

dk

)

(

dkI

dk

) > −

dqI

dkI
+ N

dqj

dkI

N
(

dqI

dkj
+

dqj

dkj
+ (N − 1) dqi

dkj

) , i 6= j. (7)

19The effect is similar to the one arising from price caps (or floors) that may induce firms to behave more
aggressively by shifting the balance from inframarginal losses to marginal gains.

20To simplify notation here and in what follows we omit the superscript ∗ on equilibrium quantities and
capacities.
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The left-hand side of (7) expresses the relative change of a non-integrated firm’s capacity with

k to the change in the integrated firm’s capacity at the equilibrium. We know from Lemma 4

that this relative change is negative. The right-hand side gives a benchmark against which to

compare this term. The inequality says that if the relative change is small enough in absolute

terms, then vertical integration is procompetitive. Intuitively, if kj does not fall by much after

firm I becomes more integrated, the positive effect resulting from the increase in qI dominates

the negative effect that stems from the decrease in qj of all non-integrated firms.

Inserting the respective derivatives (derived in the proof of Lemma 1) into the right-hand

side of (7) and simplifying yields

(

dkj

dk

)

/

(

dkI

dk

)

> −
C ′′

I
qI

kI
(C ′′

j − kjP
′)

NC ′′
j

qj

kj
(C ′′

I − kIP ′)
. (8)

To gain some intuition for this formula suppose that both k and γ are zero. In this case all N+1

firms are the same and we have qI = qj, kI = kj and thus C ′′
I = C ′′

j . As a consequence, the

right-hand side of (8) simplifies to −1/N , so that all firms have the same capacity utilization.

Thus, to keep overall output constant, the aggregate capacity reduction of the non-integrated

firms must be the same as the increase in the capacity of firm I. Since all N non-integrated firms

are symmetric, each of them must lower its capacity by 1/N of the increase in the integrated

firm’s capacity.

Suppose now that γ = 0 but k > 0. From the above lemmas we know that in this case

kI > kj , qI/kI < qj/kj and thus C ′′
I < C ′′

j . Then, the right-hand side of (8) is in absolute value

smaller than 1/N . The reason is that the integrated firm uses its capacity less efficiently than a

non-integrated firm. As a consequence, if all non-integrated firms reduced their capacity in sum

by the same amount as the capacity increase of the integrated firm, overall output would fall

since capacity is shifted to the less efficient firm. Thus, to keep output constant the reduction

in capacity by non-integrated firms has to be smaller and overall capacity must rise.

To characterize how vertical integration changes overall output, we begin with the case

where k is small.

Proposition 1 For any finite N there exists a competitive threshold k∗ > 0, such that for all

k < k∗, vertical integration is procompetitive at the margin.

Intuitively, if k is small, firm I uses its capacity more intensively than a non-integrated firm

if its cost advantage γ is large enough or only slightly less intensively if γ is small. However,
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the aggregate reaction of the non-integrated firms to an increase in k is always smaller than

the increase in k∗
I . Thus, the aggregate capacity that is used increases and overall output rises.

Next assume that k is so large that the equilibrium value of k∗
I is large enough to induce

k∗
j = 0 for all j 6= I and define k̄ as the ex ante degree of vertical integration at which k∗

j = 0.

Observe that this implies q∗j = 0. In words, at k = k̄, only the integrated firm is active and the

market is monopolized.21 Accordingly, we refer to the case where k approaches k̄ as vertical

integration to monopoly.

Proposition 2 For any finite N , vertical integration to monopoly can be procompetitive at the

margin.

Thus, even marginal vertical integration that leads to a complete foreclosure of rival firms

by the integrated firm is not necessarily detrimental to consumer welfare. In addition, as we

will show below, vertical integration to monopoly can not only be locally procompetitive but

also globally, that means for any k ∈ [0, k̄) vertical integration to k̄ may rises consumer welfare.

This is the case because our model explicitly takes into account efficiency gains in production

beyond pure avoidance of double marginalization. If a firm acquires such a large amount of

capacity that its competitors stop producing, its production costs become so low that it may

produce a quantity that is larger than the oligopoly quantity without the capacity increase.

Even though according to Proposition 2 vertical integration to monopoly can be procom-

petitive, it need not necessarily be so. The reason is that firm I utilizes its capacity less and

less intensively as k rises. Thus, for vertical integration to be procompetitive, the decrease in

kj (relative to the increase in kI) as a reaction to the rise in k must get smaller and smaller as

k rises.

We now turn to the analysis of intermediate values of k, that is, values of k ∈ (k∗, k̄). It is of

particular interest to explore if there is a unique threshold of k below which vertical integration

is procompetitive and above which vertical integration is anticompetitive. Moreover, if no such

threshold exists, is vertical integration procompetitive over the whole range from 0 to k̄? The

expressions that are involved in the calculations are too complicated to allow us to answer this

question in general. Nonetheless, we are able to show that the threshold, provided it exists, is

21Such a k̄ necessarily exists since from Lemma 4 we know that dkI/dk > 0 and dkj/dk < 0. In addition,
variable production costs c(qj , kj) are decreasing in kj since C′′(qj/kj) > 0. Thus, both production and capacity
costs are increasing in k for a non-integrated firm j, while revenue is decreasing because qj is decreasing and
qI is increasing. So if k and therewith kI is large enough, j’s costs are too high relative to P (Q), and so it is
optimal for firm j to stop producing.
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indeed unique for two important subclasses of the general specification. The first class consists

of models where the supply function R(K) is very inelastic.22 The second class is the widely

used linear-quadratic specification introduced above.

Proposition 3 Suppose either that (i) the supply function R(K) is very inelastic, i.e., R′(K)

is large, or that (ii) the model is linear-quadratic. Then, for any finite N vertical integration

is always procompetitive or there exists a unique k∗ ∈ (0, k̄), such that vertical integration is

procompetitive at the margin for all k < k∗ and anticompetitive at the margin for all k > k∗.

The intuition for case (i) of the proposition is that if R(K) is very inelastic, the capacity reaction

of a non-integrated firm to a change in kI , and therefore also to a change in k, is independent

of the value of k. Therefore, (dkj/dk)/(dkI/dk) stays constant as k varies. However, the right-

hand side of (8) is strictly increasing since firm I utilizes its capacity less and less intensively

with further integration. Thus, there is a unique intersection point between the left and the

right-hand-side of (8). Case (ii) of the proposition is important because it shows that the

threshold is unique (given that it exists) in the general linear-quadratic specification used in

many industrial organization models. In addition, this indicates that the threshold is unique

also for specifications that are close to the linear-quadratic one and suggests that the threshold

may be unique even more generally.23

Our result that the efficiency gains of vertical integration are often larger than the fore-

closure effects is in contrast to the results of the dominant firm model. In the dominant firm

model, vertical integration leads to foreclosure of fringe firms. However, since fringe firms have

no market power, their marginal cost is equal to the final consumer price, implying that some

of them exit the market as a consequence of foreclosure. This has highly detrimental effects

on the aggregate output because fringe firms utilize their capacity intensively. By contrast, in

the case of an oligopoly, the non-integrated firms also exert market power and restrict their

output to keep the final goods price high. As a consequence of the foreclosure through vertical

integration, a rival firm lowers its quantity to a smaller extent than the exit of a fringe firm

22A steeply increasing supply curve can be observed in many high technological industries. For example,
dedicated fiber-optic cables or several semiconductor devices like customized integrated circuits that are produced
in specialized plants exhibit large production costs that are steeply increasing once a plant produces close to
its capacity limit. Often, a firm, which also produces downstream products, already owns some of these plants
while other firms need to acquire the specialized inputs from scratch. In our terminology, the firm that owns
some plants would be considered vertically integrated.

23It may also be worth mentioning that, although we tried several different specifications, we have not found
any counterexamples, i.e., cases where the left-hand and right-hand side of (8) are the same for different values
of k.
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reduces final output in the dominant firm model. Moreover, as vertical integration increases,

each rival firm in the oligopoly case buys a smaller amount of capacity and produces at a

higher marginal costs, so that its capacity utilization increases. As a result, in the dominant

firm model the output contraction of fringe firms after foreclosure is larger than the reaction

of rival firms under oligopoly.

4.2 Anticompetitive Integration in Competitive Industries

We now consider the effect of a change in the number of firms on the competitive effects of

vertical integration. Understanding how these effects depend on the competitive structure of

the industry is particularly relevant for antitrust policy implications. We start by looking at the

case in which the number of downstream firms becomes large. This case is also of interest from

a theoretical perspective because this limit corresponds to the model Riordan (1998) analyzes.

Proposition 4 If N → ∞, then vertical integration is anticompetitive for all k ∈ [0, k̄].

Hence, if the downstream market becomes perfectly competitive, vertical integration is

always anticompetitive. Intuitively, the aggregate reaction of the non-integrated firms to an

increase in k is larger, the more firms are in the market. Therefore, the aggregate capacity

reduction and, hence, the quantity reduction of the non-integrated firms increases in their

number. As N goes to infinity this effect dominates any cost advantage of the integrated firm.

Thus in the limit, as the market power of the non-integrated firms vanishes, we obtain the

result of Riordan (1998). As the integrated firm has no first-mover advantage in our model,

but has one in Riordan’s, Proposition 4 also shows that his strong result stems genuinely from

the dominant firm’s market power rather than from the first-mover advantage.24

We now turn to the case of N being finite, and analyze how k∗ changes with N . From

the previous subsection we know that a unique threshold k∗ exists in the linear-quadratic

specification and if the supply function is steep. For tractability reasons we therefore restrict

ourselves to these cases. In the following, we denote the threshold as k∗(N) to explicitly account

for its dependence on N .

We start with the case of R′(K) being large. Here we obtain the following result:

Proposition 5 Suppose that R′(K) is large. If C(·)′′′ is relatively small and C ′′
j ≈ C ′′

I , then

k∗(N) is strictly decreasing in N .

24That Riordan’s result extends is not trivial and has been an open question hitherto.
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Figure 1: The competitive threshold k∗(N) in the linear-quadratic model.

Although Proposition 5 is restricted by the assumptions that C(·)′′′ is relatively small and

C ′′
j ≈ C ′′

I , our general insight does not seem to be restricted to this case. In fact, it is easy to

demonstrate numerically that the result also holds if the above assumptions are dropped.

Proposition 5 shows that the more competitive the industry gets, i.e., the larger is the

number of firms, the more likely it is that vertical integration reduces consumer welfare. While

the result may come as a surprise at first glance, the intuition behind it is relatively simple.

If the number of firms is larger, each non-integrated firm becomes smaller and utilizes its

capacity more intensively. Since the non-integrated firms are foreclosed through integration,

overall capacity utilization in the industry falls. This effect is more likely to dominate the fact

that integration leads to an increase in the overall capacity if the industry is more competitive.

Numerical computations also demonstrate that the threshold k∗(N) decreases in N for

the linear-quadratic specification. This is illustrated in Figure 1.25 The figure also shows that

k∗(N) is larger for larger values of γ, i.e., vertical integration is more likely to be procompetitive

the larger is the cost advantage of the integrated firm. This result is intuitive since vertical

integration shifts capacity to the firm that produces more efficiently. When this efficiency

difference is larger, the output increase of the integrated firm is also larger.

25Figure 6 in Appendix B[not for publication] also shows that qualitatively the results do not vary with γ.
The numerical computations are based on the parameterization α = β = c = δ = 1. For N = 1 and N = 2,
vertical integration is procompetitive for all k. So for these values of N the curves do not depict k∗ but rather
k̄.
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Figure 2: Changes in CS(k) when k increases marginally in % of CS(k) when I’s downstream
market share is kept at 50%.

4.3 Quantifying the Effects of Vertical Integration

So far we have been focusing on the direction or sign of output changes upon vertical integration.

This leaves open the question how important these effects are quantitatively, in particular,

because one might guess that the effects are relatively small in competitive industries. We now

demonstrate that this is not necessarily the case.

There is obviously a multitude of ways of presenting these quantitative effects. One way

that we find insightful is to consider, as a function of N , the percentage change in consumer

surplus when the integrated firm’s degree of vertical integration increases marginally, keeping

the integrated firm’s downstream market share fixed at some given level. Figure 2 displays

the change in consumer surplus for the linear-quadratic model when the degree of vertical

integration increases marginally. This is expressed as a percentage of consumer surplus before

the increase, with k chosen such that for any given N , the vertical integrated firm’s downstream

market share is 50%.26,27 The results displayed in Figure 2 show that the marginal effect of

vertical integration is positive and large when N is small and negative yet still sizeable in

absolute terms when N is large. Additionally, vertical integration is often not a continuous

process but involves acquiring a non-negligible fraction of the intermediate good market. Thus,

the computation shows that even in higly competitive industries, the absolute effect of a discrete

vertical merger is sizeable.

Another important feature of our model is that vertical integration up to complete mo-

26Put formally, Figure 2 displays 100(CS(k+0.01)−CS(k))/CS(k) at the point where k is such that q∗I /Q∗ =
1/2. Here, 0.01 is the smallest increment for changes in k that we used in our simulations.

27This exercise is also insightful as it captures the way in which many antitrust authorities may think about
evaluating the competitive effects of vertical integration.
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Figure 3: The difference in consumer surplus between vertical integration to monopoly and no
vertical integration, i.e., CS(k̄) − CS(0), in % of CS(0).

nopolization of the markets can enhance consumer surplus. Figure 3 illustrates the order of

magnitude of these effects in the linear quadratic model for γ = 0. It depicts the difference

in consumer surplus between vertical integration to monopoly and no vertical integration, i.e.,

CS(k̄)−CS(0), as percentage of CS(0) as a function of N . If the only objective were to max-

imize consumer surplus and if the ex ante degree of vertical integration were 0, then vertical

integration that would lead to monopoly should be permitted when the number of competitors

is small absent vertical integration to monopoly but not when it is large.

At first glance, it seems like a very intuitive proposition that vertical integration is most

harmful to consumers when competition is low but has little effect when the industry is oth-

erwise highly competitive. This leads to the policy recommendation of prohibiting vertical

integration when N is small but not when it is large. Our numerical results show that such

intuitive, but in our model ultimately misguided policy recommendations can lead to mistakes

with substantial costs to consumers at both ends of the spectrum of market structures.

4.4 Partial Integration of all Firms

We now briefly consider the case in which all firms with whom firm I competes have, at the

outset, the same degree of ex ante vertical integration kn ≥ 0 whereas firm I’s ex ante degree of

vertical integration is as before denoted k. We assume k ≥ kn and analyze further integration

by firm I.28 It is not hard to show that none of our previous results is affected qualitatively by

this change in assumptions.29 In particular, marginal vertical integration starting at k = kn is

28So firms other than I are now more aptly called ‘non-integrating’ rather than ‘non-integrated’.
29A sketch of the proof can be found in Appendix B [not intended for publication].
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Figure 4: The competitive threshold k∗(N, kn) with partially integrated competitors at γ = 0
as a function of N for kn ∈ {0, 0.02, 0.04, 0.06}.

always procompetitive. Moreover, vertical integration to monopoly can still be procompetititve,

in which case firm I’s rivals now sell their capacities to firm I or to an outside market upstream.

It is also informative to analyze how the competitive threshold, now denoted k∗(N, kn) to

explicitly account for its dependence on kn, varies with N and kn. This threshold is such that

for any smaller ex ante degree of vertical integration for firm I, i.e., for any k < k∗(N, kn),

vertical integration is procompetitive at the the margin. We do this analysis numerically for

the linear-quadratic specification with γ = 0, for which the results can easily be computed.

Figure 4 depicts k∗(N, kn) for four values of kn. As one would expect based on the model with

kn = 0, k∗(N, kn) decreases in N . Interestingly, k∗(N, kn) increases in kn, which re-emphasizes

a theme that has emerged from this paper: Antitrust authorities should be less wary of vertical

integration the more market power the integrating firm’s competitors have. The intuition

behind this result is clear: When all firms are vertically integrated to some extent, the capacity

reduction of non-integrating firms following an increase in k is smaller than at kn = 0. These

firms do not bear the market price, R(K), on their kn inframarginal units, which makes them

less sensitive to increases in the input price. Thus, the foreclosure effect from integration is

smaller when all firms are integrated to a positive degree at the outset. So we obtain again the

result that in an industry with several large firms, the efficiency effect of vertical integration

dominates the foreclosure effects.
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5 Welfare Effects

So far we have only looked at the competitive effects of vertical integration, i.e., if vertical

integration leads to an increase in overall quantity and thereby to an increase in consumer

surplus. Since competition authorities both in the U.S. and in Europe base their decisions

mainly on the effects on consumer surplus, this analysis is most relevant for competition policy.

Yet, it is of equal importance to analyze the implications of vertical integration on social welfare,

which can be expressed as

W =

Q
∫

0

P (x)dx − kIC

(

qI

kI

)

+ γqI − NkjC

(

qj

kj

)

−

K
∫

0

R(y)dy.

The first term is gross consumer surplus, the second and third term are the variable cost of the

integrated firm while the fourth term represents the variable cost of all non-integrated firms.

The last term is the opportunity cost of capacity. Differentiating this expression with respect

to k (and dropping arguments) yields that welfare is increasing in k if and only if

P
dQ

dk
−NCj

dkj

dk
−NkjC

′

j

(

1

kj

dqj

dk
−

qj

k2

j

dkj

dk

)

−CI

dkI

dk
− kIC

′

I

(

1

kI

dqI

dk
−

qI

k2

I

dkI

dk

)

+ γ
dqI

dk
−R

dK

dk
> 0.

(9)

We can now solve the first-order conditions of the quantity stage, (2) and (3), for C ′
j and

C ′
I , and insert them into (9). Similarly, inserting C ′

j and C ′
I from (2) and (3) into the first-order

conditions from the capacity stage, (5) and (6), and solving them for Cj and CI , we can replace

Cj and CI in (9). After rearranging we obtain

dkj

dk

dkI

dk

> −
−P ′

(

qI
dQ
dkI

+ qj
dQ−I

dkI

)

+ R′(kI − k)

N
[

−P ′
(

qj
dQ
dkj

+ (N − 1)qj
dqi

dkj
+ qI

dqI

dkj

)

+ R′kj

] . (10)

This inequality has a similar structure as (7). The left-hand side is again the equilibrium ratio

of the response of kj to a change in k over the response of kI . The right-hand side is now

different because when considering social welfare we have to take into account that the cost

structure and therefore the absolute value of overall costs changes as k varies. Nevertheless,

one can show that for any finite N there exists a k∗
W > 0 such that for all k < k∗

W vertical

integration is welfare increasing at the margin. It is also possible that vertical integration to

monopoly increases overall welfare.30

30A formal statement and a sketch of the proof are in Appendix B [not intended for publication].
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The intuition is similar to the one for Propositions 1 and 2. If the ex ante degree of vertical

integration is low, further vertical integration increases final output and has the effect of shifting

production to the more efficient firm. Therefore, it is welfare increasing. On the other hand,

if k is already very large, the overall quantity may decrease and, in addition, the less efficient

firm produces more, which raises production costs even for a given quantity.

We can also show a result that is akin to Proposition 3: If R′(K) is large or if the model is

linear-quadratic, then for any finite N there either exists a unique k∗
W ∈ (0, k̄) so that vertical

integration is welfare enhancing at the margin for all k < k∗
W and welfare reducing at the

margin for all k > k∗
W , or vertical integration is always welfare enhancing.31

The analysis so far resembles the one of the previous section. However, the threshold value

of k obtained in the welfare analysis is different from the one obtained for consumer surplus

because, as mentioned, the variable costs of production and the opportunity costs of capacity

change with an increase in k. Since the rise in kI caused by an increase in k is larger than the

fall in aggregate capacity of non-integrated firms, K is increasing in k and so capacity costs

are increasing. If, in addition, firm I utilizes its capacity less intensively than a non-integrated

firm, we know that overall production costs must increase. In this case the set of k for which

vertical integration is welfare enhancing is smaller than the one for which it is procompetitive.

The next proposition confirms that for the linear-quadratic specification such a case can indeed

occur.

Proposition 6 In the linear-quadratic case, there either exists a unique γ̂ such that k∗
W < k∗

for all γ < γ̂ and k∗
W > k∗ for all γ > γ̂, or k∗

W < k∗ for all γ.

This result implies that if the cost advantage of the integrated firm is small, i.e., γ < γ̂, and

the ex ante degree of integration is between k∗
W and k∗, vertical integration benefits consumers

but lowers social welfare. The intuition is that for small γ, firm I utilizes its capacity less

intensively than a non-integrated firm at k∗. As a consequence, vertical integration increases

overall production costs at k∗ for constant aggregate quantity. Thus, even if aggregate quantity

increases slightly, the effect of increased production costs dominates and welfare falls. The result

is interesting since it seems natural to conjecture that procompetitive vertical integration also

improves welfare because firms’ profits should rise as the industry becomes more integrated.

However, what is missing in this reasoning is that vertical integration shifts production costs

31The sketch of the proof is in Appendix B [not intended for publication].
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Figure 5: The critical output market share of the integrated firm s∗(N, γ) for γ = 0, 0.05 and
γ = 0.1 in the linear-quadratic model.

between firms. Proposition 6 shows that this effect can be so large that procompetitive but

welfare reducing mergers are possible.

On the other hand, if the cost advantage of the integrated firm is sufficiently large, verti-

cal integration may shift production to the more efficient firm. In this case, anticompetitive

but welfare enhancing mergers occur for k ∈ (k∗, k∗
W ), provided that k∗ < k∗

W . Although

overall quantity decreases, this smaller quantity is now produced more efficiently. This result

is also consistent with Riordan’s (1998) finding that welfare increasing but anticompetitive

vertical integration is possible if the cost advantage of the dominant firm is large. However,

procompetitive but welfare reducing mergers cannot occur in the dominant firm model.

Another important issue for practical application is to derive conclusions about the welfare

effects of vertical integration that are based on observable market conditions.32 For the linear-

quadratic specification, one can numerically compute the critical input or output market shares

of the integrated firm, given the thresholds k∗ and k∗
W , beyond which further vertical integration

reduces consumer surplus or social welfare. Figure 5 plots the threshold market shares s∗(N, γ)

for the integrated firm’s downstream market share beyond which vertical integration becomes

anticompetitive on the margin as a function of N for different values of γ. In line with our

previous results we obtain that the critical input and output market shares fall in the number

of firms. In addition, these critical market shares are almost identical, which implies that it is

enough for competition authorities to look at only one of these shares.

32A particularly nice feature of Riordan’s (1998) dominant firm model is that it establishes an indicator about
the welfare effects of vertical integration that holds for general functions and is based on the ratio of input to
output market shares.
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6 Conclusion

We have analyzed a model in which the effects of vertical integration on consumer and overall

welfare depend on the underlying market structure. We have shown that, perhaps surprisingly,

vertical integration is more likely to be procompetitive exactly when the market structure is

less competitive. More generally, in our model vertical integration is procompetitive under

fairly wide circumstances since efficiency effects tend to dominate foreclosure effects. Because

of this, even vertical integration to monopoly can be procompetitive. However, vertical inte-

gration can also be consumer welfare increasing but total welfare reducing at the same time

because final output may be produced at higher costs after integration. Our numerical results

also indicate that—within the confines of our model—the effects of seemingly intuitive but

ultimately misguided policy recommendations can be sizeable.

Assuming that firms produce differentiated products in the downstream market is an inter-

esting avenue for future research. Downstream market interaction between firms is smaller in

this case, which suggests that the quantity reduction by non-integrated firms following vertical

integration will be smaller as well. However, this leaves open the question of how sensitive the

reaction of non-integrated firms is to increases in the price of capacity. In general, it seems

plausible that the theme that emerges from our analysis—that vertical integration tends to

be procompetitive if the market exhibits little competition and anticompetitive if the market

is otherwise highly competitive—will be echoed in this case. Another interesting avenue for

future work is to endogenize the market structure by additionally allowing non-integrated firms

to enter and exit.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Let j 6= h, j 6= I and h 6= I. Totally differentiating (2) with respect to kj yields33

P ′ dQ

dkj
+ P ′ dqj

dkj
+ P ′′qj

dQ

dkj
= −C ′′

j

qj

k2
j

+ C ′′
j

1

kj

dqj

dkj
. (11)

We can write dQ/dkj as dQ/dkj = dqI/dkj +
∑

h 6=j dqh/dkj + dqj/dkj , which under the sym-

metry assumption that kh = kj for all h, j ∈ {1, ..., N}, becomes

dQ

dkj
=

dqI

dkj
+ (N − 1)

dqh

dkj
+

dqj

dkj
.

Therefore, (11) can be written as an equation that depends on the three variables dqh/dkj ,

dqj/dkj and dqI/dkj , which we wish to determine.

Totally differentiating the first-order condition of firm h, which is analogous to (2), with

respect to kj yields

P ′ dQ

dkj
+ P ′dqh

dkj
+ P ′′qh

dQ

dkj
= C ′′

h

1

kh

dqh

dkj
, (12)

and differentiating the first-order condition for I, equation (3), with respect to kj yields

P ′ dQ

dkj
+ P ′ dqI

dkj
+ P ′′qI

dQ

dkj
= C ′′

I

1

kI

dqI

dkj
. (13)

The system of the three equations (11), (12) and (13) is linear in the three unknowns dqh/dkj ,

dqj/dkj and dqI/dkj . Its unique solution, after imposing symmetry, i.e. qh = qj, kh = kj and

C ′′
h = C ′′

j , is

dqI

dkj
=

C ′′
j qjkI(P

′ + P ′′qI)

ηkj
< 0 for j 6= I, (14)

dqh

dkj
=

C ′′
j qj(C

′′
I − P ′kI)(P

′ + P ′′qj)

η(C ′′
j − P ′kj)

< 0 for j 6= h (15)

and

dqj

dkj

=
C ′′

j qj[(P
′)2kjkI(N + 1) + P ′(P ′′kjkI(qI + (N − 1)qj) − 2C ′′

j kI − C ′′
I kjN)]

ηkj(C
′′
j − P ′kj)

(16)

+
C ′′

j qj[C
′′
j C ′′

I − P ′′(C ′′
j kIqI + (N − 1)C ′′

I kjqj)]

ηkj(C ′′
j − P ′kj)

> 0,

33To simplify notation, we omit the superscript ∗ on equilibrium quantities and equilibrium capacities through-
out this appendix.
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where η ≡ (P ′)2(N+2)kIkj+P ′[P ′′kjkI(qI +Nqj)−C ′
Ikj(N+1)−2kIC

′′
j ]+C ′′

I C ′′
j −P ′′(C ′′

j qIkI +

C ′′
I qjkjN) > 0. The inequality sign follows from P ′′ being negative or not too positive.

Totally differentiating the first-order conditions of firm I and j with respect to kI yields

P ′ dQ

dkI
+ P ′ dqI

dkI
+ P ′′qI

dQ

dkI
= −C ′′

I

qI

k2
I

+ C ′′
I

1

kI

dqI

dkI
(17)

and

P ′ dQ

dkI

+ P ′ dqj

dkI

+ P ′′qj
dQ

dkI

= C ′′
j

1

kj

dqj

dkI

, (18)

respectively, where under symmetry dQ/dkI = dqI/dkI +Ndqj/dkI . Using the last equation to

replace dQ/dkI in (17) and (18) yields a system of two linear equations in the two unknowns

dqI/dkI and dqj/dkI . The solution is

dqj

dkI

=
C ′′

I qIkj(P
′′qj + P ′)

kIη
< 0 and

dqI

dkI

= −
C ′′

I qI [kj(P
′(N + 1) + P ′′Nqj) − C ′′

j ]

kIη
> 0.

(19)

Again, the inequality sign follows from P ′′ not being too positive. �

A.2 Proof of Lemma 2

From Lemma 1 we know that qi(k̂i,k−i) > qi(ki,k−i) ⇔ k̂i > ki. Now suppose to the contrary

of the claim in the lemma that qi(k̂i,k−i)/k̂i ≥ qi(ki,k−i)/ki. Since C ′′
i > 0, this is equivalent

to the right-hand sides of (2) and (3) being weakly greater for k̂i than for ki.

Now we can turn to the left-hand side of (2) and (3), respectively. From (1) we can calculate

dQ/dkj and dQ/dkI to get

dQ

dkj

=
qjC

′′
j (C ′′

I − kIP
′)

kjη
> 0 and

dQ

dkI

=
qIC

′′
I (C ′′

j − kjP
′)

kIη
> 0.

Since P ′ < 0, the first term of the left-hand side of (2) and (3) is smaller for k̂i than for ki.

Also, since qi(k̂i,k−i) > qi(ki,k−i), P ′ < 0 and P ′′ is negative or not too positive, the second

term on the left-hand side of (2) and (3) is either smaller for k̂i than for ki or only slightly

bigger. Therefore, the left-hand sides of (2), and (3), are strictly smaller for k̂i than ki, which

is the desired contradiction. �

A.3 Proof of Lemma 3

Differentiating (5) with respect to kj and (6) with respect to kI yields the second-order condi-

tions
∂2Πj

∂k2
j

= P ′ dqj

dkj

[

dqI

dkj

+ (N − 1)
dqh

dkj

]

+ P ′qj

[

d2qI

dk2
j

+ (N − 1)
d2qh

dk2
j

]

+ (20)
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+P ′′qj

[

dqI

dkj
+ (N − 1)

dqh

dkj

] [

dqj

dkj
+

dqI

dkj
+ (N − 1)

dqh

dkj

]

+ C ′′
j

qj

k2
j

(

dqj

dkj
−

qj

kj

)

− 2R′− kjR
′′ < 0

and
∂2ΠI

∂k2
I

= P ′ dqI

dkI
N

dqj

dkI
+ P ′qIN

d2qj

dk2
I

+ (21)

+P ′′qIN
dqj

dkI

[

dqI

dkI
+ N

dqj

dkI

]

+ C ′′
I

qI

k2
I

(

dqI

dkI
−

qI

kI

)

− 2R′ − (kI − k)R′′ < 0,

with h 6= j, h, j = 1, ..., N . In the following we show that (20) is indeed fulfilled when the

first-order conditions are satisfied. The second-order condition for the integrated firm can then

be shown to be fulfilled in exactly the same way.

In the proof of Lemma 1 we determined the equilibrium expressions for dqi/dkj , i =

I, 1, ..., N , that appear in (20). To determine the sign of ∂2Πj/∂k2
j we still have to determine

d2qI/dk2
j and d2qh/dk2

j . To that end we now state the expressions for dqI/dkj and dqh/dkj

without imposing symmetry, i.e. explicitly distinguishing between non-integrated firm h and

j, that is between qh and qj, kh and kj and C ′′
h and C ′′

j . This gives us

dqI

dkj

=
C ′′

j qjkI(P
′ + qIP

′′)(C ′′
h − P ′kh)

kjν
and

C ′′
I qjkh(P ′ + qhP ′′)(C ′′

I − P ′kI)

kjν
, (22)

with

ν = −kIkjkh(N+2)(P ′)3+(3C ′′
hkjkI+kIkj(N+1)C ′′

j +khkj(N+1)C ′′
I −P ′′kIkhkj((N−1)qh+qI+qj))(P

′)2+

((C ′′
j khkI(qI+(N−1)qh)+C ′′

hkhkj(qj+(N−1)qh)+C ′′
hkIkj(qj+qI))P

′′−NkhC ′′
I C ′′

j −2kIC
′′
j C ′′

h−2kjC
′′
I C ′′

h)P ′

−((N − 1)C ′′
I C ′′

j qhkh + C ′′
h(qjkjC

′′
j + qIkIC

′′
j ))P ′′ + C ′′

hC ′′
I C ′′

j .34

Differentiating both equations of (22) with respect to kj , using dqh/dkj , dqj/dkj and dqI/dkj

from the proof of Lemma 1, and inserting the resulting expressions into the second-order

condition yields

∂2Πj

∂k2
j

= −
q2
j

(

∑9
s=1(P

′)s(
∑3

h=1 κsh(P ′′)h + κs4P
′′′ + κs5C

′′′
j + κs6C

′′′
I + κs7)

)

k2
j (C

′′
j − kjP ′)3η3

− 2R′ − kjR
′′,

(23)

where we have used that in equilibrium qh = qj, kh = kj and C ′′
h = C ′′

j . In equation (23)

κsh = κsh(qj , kj , qI , kI , C
′′
j , C ′′

I , P ′, P ′′, N), s ∈ {1, ..., 9} and h ∈ {1, ..., 7}. We do not specify

the exact expressions for κsh here since they stand for rather complex expressions consisting

of several terms. Yet, in each case the sign of these expressions is easy to determine and this

34One can easily check that if qh = qj , kh = kj and, therefore, C′′
h = C′′

j (which is the case in equilibrium),
these formulas yield the expressions in (19).
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is the only point of relevance for our purpose. These signs are the following: For h = {1, 2, 3}

κsh ≥ 0, if both s and h are either even or odd and κsh ≤ 0 if one is even and the other

one is odd. κs4, κs5, κs6 ≥ 0 for s even and κs4, κs5, κs6 ≤ 0 for s odd. κs7 > 0 for s even

and κs7 < 0 for s odd. Thus, the numerator in the fraction is positive because P ′′ is not too

positive and P ′′′ and C ′′′ are not too negative. Since η > 0, the denominator is positive as well.

Therefore, the first term in (23) is negative. Since R′′ is not too negative as well, we get that

∂2Πj/∂k2
j < 0. In exactly the same way we can show that the second-order condition for firm

I is satisfied. Thus, the profit function of each firm is quasiconcave in its own capacity and we

have an interior equilibrium.

We now turn to the question of uniqueness. From Kolstad and Mathiesen (1987) and Vives

(1999) we know that the equilibrium is unique if and only if the Jacobian determinant of minus

the marginal profits is positive. In our case this determinant is given by

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
∂2Πj

∂k2

j

−
∂2Πj

∂kj∂kh
. . . −

∂2Πj

∂kj∂kI

− ∂2Πh

∂kh∂kj
−∂2Πh

∂k2

h

. . . − ∂2Πh

∂kh∂kI

...
...

. . .
...

− ∂2ΠI

∂kI∂kj
− ∂2ΠI

∂kI∂kh
. . . −∂2ΠI

∂k2

I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (24)

with h 6= j, h, j = 1, ..., N . The terms that determine this determinant are given by the second-

order conditions, (20) and (21), and the terms ∂2Πj/(∂kj∂kI), ∂2Πj/(∂kj∂kh), ∂2Πh/(∂kh∂kj),

∂2ΠI/(∂kI∂kj) and ∂2ΠI/(∂kI∂kh). Because of symmetry we know that in equilibrium ∂2Πh/(∂kh∂kj) =

∂2Πj/(∂kj∂kh) and ∂2ΠI/(∂kI∂kh) = ∂2ΠI/(∂kI∂kh). The remaining terms can be written as

∂2Πj

∂kj∂kI
= P ′ dqj

dkI

[

dqI

dkj
+ (N − 1)

dqh

dkj

]

+ P ′qj

[

d2qI

dkjdkI
+ (N − 1)

d2qh

dkjdkI

]

(25)

+ P ′′qj

[

dqI

dkj
+ (N − 1)

dqh

dkj

] [

dqI

dkI
+ N

dqj

dkI

]

+ C ′′
j

qj

k2
j

dqj

dkI
− R′ − kjR

′′,

∂2Πj

∂kj∂kh

= P ′ dqj

dkh

[

dqI

dkj
+ (N − 1)

dqh

dkj

]

+ P ′qj

[

d2qI

dkjdkh

+ (N − 2)
d2qk

dkjdkh

+
d2qh

dkjdkh

]

(26)

+ P ′′qj

[

dqI

dkj
+ (N − 1)

dqh

dkj

] [

dqh

dkh

+
dqI

dkh

+ (N − 1)
dqj

dkh

]

+ C ′′
j

qj

k2
j

dqj

dkh

− R′ − kjR
′′,

∂2ΠI

∂kI∂kj

= P ′ dqI

dkj

N
dqj

dkI

+ P ′qI

[

d2qj

dkjdkI

+ (N − 1)
d2qh

dkjdkI

]

(27)

+ P ′′qIN
dqI

dkj

[

dqI

dkI
+ N

dqj

dkI

]

+ C ′′
I

qI

k2
I

dqI

dkI
− R′ − (kI − k)R′′,

The second derivatives that appear in these expressions can be derived in the same way as

above where we checked that the second-order conditions are satisfied.
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Proceeding in a similar way as Kolstad and Mathiesen (1987), i.e. subtracting the first

column in (24) from the other columns, and then dividing the i-th row by ∂2Πi/∂ki∂kj −

∂2Πi/∂k2
i , with i = I, 1, ..., N , yields

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∂2
Πj

∂k2
j

∂2Πj
∂kj∂kh

−
∂2Πj

∂k2
j

−1 −1 . . . −
−

∂2
Πj

∂kj∂kI
+

∂2
Πj

∂k2
j

∂2Πj
∂kj∂kh

−
∂2Πj

∂k2
j

−

∂2
Πh

∂kh∂kj

∂2Πh
∂kh∂kj

−
∂2Πh

∂k2

h

1 0 0 . . . −
−

∂2
Πh

∂kh∂kI
+

∂2
Πh

∂kh∂kj

∂2Πh
∂kh∂kj

−
∂2Πh

∂k2

h

...
...

...
. . .

...

−

∂2
ΠI

∂kI∂kj

∂2ΠI
∂kI ∂kj

−
∂2ΠI

∂k2

I

0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We can then calculate the determinant in a relatively straightforward way. Cumbersome but

otherwise routine manipulations show that this determinant is unambiguously positive and,

therefore, that the equilibrium of the capacity stage is unique. �

A.4 Proof of Lemma 4

Differentiating (5) and (6) with respect to k yields

∂2Πj

∂k2
j

dkj

dk
+ (N − 1)

∂2Πj

∂kj∂kh

dkh

dk
+

∂2Πj

∂kj∂kI

dkI

dk
= 0

and
∂2ΠI

∂k2
I

dkI

dk
+ N

∂2ΠI

∂kI∂kj

dkj

dk
+

∂2ΠI

∂kI∂k
= 0.

Using the fact that in equilibrium dkh/dk = dkj/dk for h, j 6= I we get

dkj

dk
=

∂2Πj

∂kj∂kI

∂2ΠI

∂kI∂k

∂2Πj

∂k2

j

∂2ΠI

∂k2

I

+ (N − 1)
∂2Πj

∂kj∂kh

∂2ΠI

∂k2

I

− N
∂2Πj

∂kj∂kI

∂2ΠI

∂kI∂kj

(28)

and

dkI

dk
= −

∂2ΠI

∂kI∂k

(

∂2Πj

∂k2

j

+ (N − 1)
∂2Πj

∂kj∂kh

)

∂2Πj

∂k2

j

∂2ΠI

∂k2

I

+ (N − 1)
∂2Πj

∂kj∂kh

∂2ΠI

∂k2

I

− N
∂2Πj

∂kj∂kI

∂2ΠI

∂kI∂kj

. (29)

The terms that appear in these expressions are given by (20), (21), (25), (26), (27) and by

∂2ΠI

∂kI∂k
= R′ > 0.

Tedious but routine calculations then show that all terms in (25), (26) and (27) have a

negative sign. Thus, the numerators of the fractions on the right-hand side of (28) and (29)
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are both negative. The denominator in these fractions is the same in both equations. It is easy

to show that |∂2Πj/∂k2
j | > |∂2Πj/(∂kj∂kh)| which implies that

∂2Πj

∂k2
j

∂2ΠI

∂k2
I

>
∂2Πj

∂kj∂kh

∂2ΠI

∂k2
I

. (30)

In addition one can also easily show that |∂2ΠI/∂k2
I | > |∂2ΠI/(∂kI∂kj)|. Tedious calculations

then reveal that
∂2Πj

∂kj∂kh

∂2ΠI

∂k2
I

>
∂2Πj

∂kj∂kI

∂2ΠI

∂kI∂kj
. (31)

The inequalities in (30) and (31) then imply that the denominator is positive. As a consequence,

we get that dkj/dk < 0 and dkI/dk > 0. �

A.5 Proof of Proposition 1

We start with the right-hand side of (8). Suppose first that γ = 0. As mentioned in the main

text, if k = 0, the right-hand side of (8) simplifies to −1/N.

We now turn to the left-hand side of (8). From equations (28) and (29) we obtain that it

is given by
(

dk∗
j

dk

)

(

dk∗
I

dk

) = −

∂2Πj

∂kj∂kI

∂2Πj

∂k2

j

+ (N − 1)
∂2Πj

∂kj∂kh

< 0, h 6= j, h, j = 1, ..., N. (32)

At γ = 0 and k = 0, we know that there is no difference between firm I and any of the

non-integrated firms. This implies that ∂2Πj/(∂kj∂kh) = ∂2Πj/(∂kj∂kI). Now, since all the

second derivatives appearing in (32) are known to be negative (from the proof of Lemma 4),

(dkj/dk) / (dkI/dk) > −1/N is equivalent to ∂2Πj/∂k2
j − ∂2Πj/∂kj∂kI < 0. Since at k = 0

and γ = 0 all firms are symmetric, subtracting (25) from (20) yields

∂2Πj

∂k2
j

−
∂2Πj

∂kj∂kI
= P ′N

dqh

dkj

[

dqj

dkj
−

dqh

dkj

]

+P ′qj

[

N
d2qh

dk2
j

−
d2qI

dkjdkI
− (N − 1)

d2qh

dkjdkI

]

+ C ′′
j

qj

k2
j

(

dqj

dkj
−

qj

kj
−

dqh

dkj

)

− R′.

In the proof of Lemma 1 we determined dqj/dkj and dqh/dkj . Evaluating these expressions

at qI = qj and kI = kj we can determine dqj/dkj − dqh/dkj and dqj/dkj − qj/kj − dqh/dkj to

get
dqj

dkj
−

dqh

dkj
=

qjC
′′
j

kj(C ′′
j − P ′kj)

and

(

dqj

dkj
−

qj

kj
−

dqh

dkj

)

=
qjP

′

C ′′
j − P ′kj

. (33)
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Determining the second derivatives (d2qh)/(dk2
j ), (d2qI)/(dkjdkI) and (d2qh)/(dkjdkI) and us-

ing (33) we obtain, after simplifying,

∂2Πj

∂k2
j

−
∂2Πj

∂kj∂kI

= −
q2
j P

′ξ

k2
j (C

′′
j − (2 + N)kjP ′ − (1 + N)kjqjP ′′)(C ′′

j − P ′kj)3
− R′ < 0,

where

ξ = k2
j

(

qjC
′′′
j N + kjC

′′
j (3N + 2)

)

(P ′)3+

(

qjk
2
j (kj(1 + 3N)C ′′

j + qjC
′′′
j N)P ′′ − kjC

′′
j (3kj(N + 2)C ′′

j + qjC
′′′
j )
)

(P ′)2+

(

−qjkjC
′′
j (kjC

′′
j (3N + 4) + qjC

′′′
j )P ′′ + 5(C ′′

j )3kj

)

P ′ − (C ′′′
j )3(C ′′

j − 3qjP
′′kj) < 0.

That is, ∂2Πj/∂k2
j is larger in absolute terms than (∂2Πj)/(∂kj∂kI). As a consequence,

(dkj/dk) / (dkI/dk) > −1/N , which implies that the left-hand side of (8) is larger than the

right-hand side. Thus, at γ = 0 and k = 0 vertical integration is procompetitive at the margin.

We now turn to the case γ > 0. From (5) and (6) we know that if qI = qj, we have kI = kj

at k = 0. But since γ > 0, equations (2) and (3) imply qI > qj at kI = kj . Together with (5)

and (6) this in turn implies that kI > kj . But one can show that nevertheless qI/kI > qj/kj

because qI > qj is a first-order effect. Thus, at k = 0 and γ > 0, firm I utilizes capacity more

efficiently. This implies that a shift in capacity to firm I is also procompetitive for γ > 0. By

continuity it follows that vertical integration is procompetitive at the margin for all k below a

certain, positive threshold denoted by k∗. �

A.6 Proof of Proposition 2

We show that for any finite N there either exists a k∗∗ < k̄, such that vertical integration is

anticompetitive at the margin for all k > k∗∗, or it is procompetitive at the margin for all k

close to k̄.

Let k = k̄, so that kj = 0 for all j 6= I. We first have to determine qj/kj in this

case. Because Cj is strictly convex, C ′
j is invertible and equation (2) can be written as

qj = kjC
′−1
j (P (Q) + P ′(Q)qj). It follows directly that if kj = 0 we also have qj = 0.

Observe that the inverse C ′−1
j (.) is strictly increasing and that it is zero if and only if its

argument is zero. By using the rule of L’Hôpital we get qj/kj = C ′−1
j (P (qI)) > 0, if qj = 0

and kj = 0. To simplify notation in the following we denote ρ ≡ C ′−1
j (P (qI)).

We now turn to (8). The right-hand side of (8) in the case of k = k̄ can be written as

−
C ′′

I
qI

kI

ρ(C ′′
I − kIP ′)N

.
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The left-hand side of (8) in case of qj = kj = 0 can be calculated from (28) and (29). To

do so we first have to determine the second derivatives in (20), (21), (25), (26) and (27) at

qj = kj = 0. From the right-hand side of (20) we know that ∂2Πj/∂k2
j at qj = kj = 0 is given

by
∂2Πj

∂k2
j

= P ′ dqj

dkj

[

dqI

dkj
+ (N − 1)

dqh

dkj

]

+ C ′′
j

qj

k2
j

(

dqj

dkj
−

qj

kj

)

− 2R′. (34)

We can then calculate dqI/dkj , dqh/dkj and dqj/dkj at qj = kj = 0 from (15) and (16). Taking

into account that qj/kj = ρ we get, by using the rule of L’Hôpital, that

dqI

dkj
= −

kIρ(P ′ + qIP
′′)

2kIP ′ + qIkIP ′′ − C ′′
I

,
dqh

dkj
= 0 and

dqj

dkj
= ρ.

Calculating the second term of the right-hand side in (34) at qj = kj = 0 gives us, again by

using L’Hôpital’s rule, that

C ′′
j

qj

k2
j

(

dqj

dkj

−
qj

kj

)

=
ρ2P ′(3kIP

′ + qIkIP
′′ − 2C ′′

I )

2kIP ′ + qIkIP ′′ − C ′′
I

.

Inserting these terms into (34) and simplifying then yields

∂2Πj

∂k2
j

= 2
ρ2P ′(kIP

′ − 2C ′′
I )

2kIP ′ + qIkIP ′′ − C ′′
I

− 2R′. (35)

In the same way we can determine the expressions for ∂2ΠI/∂k2
I , ∂2Πj/(∂kj∂kI), ∂2Πj/(∂kj∂kh)

and ∂2ΠI/(∂kI∂kj) at qj = kj = 0. Inserting them in (28) and (29) and simplifying we obtain

that
dkj

dk

dkI

dk

= −
C ′′

I P ′ρ qI

kI
+ σ

(N + 1)
(

ρ2P ′(C ′′
I − kIP ′) + σ

) , (36)

with σ ≡ R′kI (2P ′kI + P ′′kIqI − C ′′
I ) < 0.

It follows that
dkj

dk

dkI

dk

< −
C ′′

I
qI

kI

ρ(C ′′
I − kIP ′)N

if and only if

−

(

N

1 + N

)

(

C ′′
I P ′ρ qI

kI
+ σ

ρ2P ′(C ′′
I − kIP ′) + σ

)

< −
C ′′

I
qI

kI

ρ(C ′′
I − kIP ′)

. (37)

But the left-hand side of (37) can either be larger or smaller than the right-hand side. To

see this suppose first that σ is small in absolute terms. In this case, the second term of the

left-hand side is approximately the same as the right-hand side. But since −N/(1 + N) > −1,

the left-hand side is larger. On the other hand, suppose that N is very large. In this case,
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N/(1+N) is close to 1. We then have that vertical integration is anticompetitive at the margin

if

−
C ′′

I P ′ρ qI

kI
+ σ

ρ2P ′(C ′′
I − kIP ′) + σ

< −
C ′′

I
qI

kI

ρ(C ′′
I − kIP ′)

. (38)

Obviously the left-hand side equals the right-hand side if σ = 0. But since σ < 0 and ρ2P ′(C ′′
I −

kIP
′) < P ′C ′′

I ρ qI

kI
< 0, the inequality in (38) is fulfilled. By continuity, vertical integration can

be procompetitive at the margin for all k close to k̄. �

A.7 Proof of Proposition 3

Case (i): We first look at the right-hand side of (8). Differentiating it with respect to k reveals

that this derivative has the same sign as

−C ′′
j C ′′

I (C ′′
I − kIP

′)(C ′′
j − kjP

′)

(

d (qI/kI)

dk

qj

kj
−

d (qj/kj)

dk

qI

kI

)

−P ′C ′′
j C ′′

I

qj

kj

qI

kI

(

(C ′′
j − kjP

′)
dkI

dk
− (C ′′

I − kIP
′)

dkj

dk

)

(39)

−P ′ qj

kj

qI

kI

(

dC ′′
j

dk
C ′′

I kj(C
′′
I − kIP

′) −
dC ′′

I

dk
C ′′

j kI(C
′′
j − kjP

′)

)

+ P ′′dQ

dk
C ′′

j C ′′
I

qj

kj

qI

kI
(kjC

′′
I − kIC

′′
j ).

From Lemma 4 we know that dkI/dk > 0 and dkj/dk < 0. Because of Lemma 2 this implies

that d (qI/kI) /dk < 0 and d (qj/kj) /dk > 0. Since qj/kj > qI/kI , the first term in (39) is

positive. Also, since dkI/dk > 0 and dkj/dk < 0, the second term is positive as well.

Now let us turn to the third term. Since C ′′′ is positive or not very negative, we get that

dC ′′
j /dk is also positive or not very negative while dC ′′

I /dk is negative or not very positive.

Therefore, the third term is either positive, or, if it is negative, then only slightly so. As a

consequence, the sum of the first three terms in (39) is positive.

Now let us look at the fourth term. Since kj < kI and C ′′
I < C ′′

j the last term in brackets is

negative. Since P ′′ is negative or not too positive we have that for dQ/dk ≥ 0 the fourth term

is positive or only slightly negative.

But in sum this implies that (39) is positive and thus the right-hand side of (8) is strictly

increasing in k if dQ/dk ≥ 0.

Now we turn to the left-hand side of (8) which is given by (dkj/dk)/(dkI/dk). If R′ is

relatively large, we get, after inserting (20), (21) and (25) into (32), that (dkj/dk)/(dkI/dk) =

−1/(N + 1). Thus, the left-hand side of (8) does not vary with k. Since we know that the

right-hand side is smaller than the left-hand side at k = 0 and since the right-hand side is

strictly increasing at any point of intersection, there can at most be one such point.
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Case (ii): We first solve for the equilibrium in the linear-quadratic case. The profit function

of the integrated firm in this case can be written as

ΠI =



α − βqI − β

N
∑

j=1

qj



 qI −
cq2

I

2kI
+ γqI − δ(kI − k)(kI +

N
∑

j=1

kj), (40)

and the one of a non-integrated firm j as

Πj =



α − βqj − βqI − β
N
∑

h=1,h 6=j

qh



 qj −
cq2

j

2kj

− δkj(kj + kI +
N
∑

h=1,h 6=j

kh). (41)

Differentiating with respect to qI and qj and solving for the equilibrium quantities yields

qI =
(β (α + (N + 1)γ) kj + c (γ + α)) kI

β(βkj(N + 2) + 2c)kI + c2 + kjβc(N + 1)
and qj =

(βkI(α − γ) + cα) kj

β(βkj(N + 2) + 2c)kI + c2 + kjβc(N + 1)
.

After substituting these quantities into the respective profit functions, we can take derivatives

of ΠI with respect to kI and of Πj with respect to kj .
35 The equilibrium capacities kI is then

implicitly defined by

(

c2(c + kj(1 + N)β)
) (

c2(γ + α)2 + 2c((γ + α)β(α + γ(1 + N)) − Nδc2)kj (42)

+β((α + γ(1 + N))2β − 4N(1 + N)δc2)k2
j − 2Nδcβ2(1 + N)2k3

j

)

=
4
∑

t=1

kt
Iθt − θ0k,

with

θ0 = 2δ(β2(2 + N)kjkI + β(N + 1)kjc + 2βckI + c2)3,

θ1 = (6β4δNc(2 + N)(1 + N)2k4
j − β3((2 + 3N)(α + (N + 1)γ)2β − 4δc2(1 + N)(7N2 + 11N + 1))k3

j

−2β2c((α + (N + 1)γ)(3α(N + 1) + γ(3 + 4N))β − 3δc2(7N2 + 10N + 2))k2
j

−βc2((γ + α)((7N + 6)γ + 3α(N + 2))β − 12δc2(2N + 1))kj − 2c3(β(α + γ)2 − 2δc2)),

θ2 = (6β5δNc(1 + N)(2 + N)2k4
j + 6β4δc2(2 + N)(N2 + 10N + 2)k3

j

+24β3δc3(2N + 3)(2N + 1)k2
j + 12β2δc4(7N + 6)kj + 24βδc5),

θ3 = 2β2δ(k2
j β2N(2 + N) + 2βkjc(4N + 3) + 6c2)(kjβ(N + 2) + 2c)2,

θ4 = 4β3δ(kjβ(N + 2) + 2c)3.

while the equilibrium capacity qj is implicitly defined by

c3(2kIβ + c)(β(−8c2δ + β(α − γ)2)k2
I + 2c(βα(α − γ) − c2δ)k1 + c2α2 − 8β2cδk3

I )

35As before, we have to distinguish between kj and kh h 6= j, h, j = 1, ..., N . Of course, in equilibrium we will
have kh = kj .
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=
(

(8β4cδ(8 + 3N)k4
I − β3((α − γ)2(6 + N)β − 16c2δ(7 + 4N))k3

I− (43)

−β2c((α − γ)((14 + 3N)α − γ(N + 2))β − 18c2δ(3N + 4))k2
I +

+c2(kIα(−(3N+10)α−2(N+2)γ)β2+c(2(9N+10)ckI δ−α2(N+2))β+2c3δ(N+1)))+

4
∑

t=1

kt
jτt

)

kj ,

with

τ1 = cβ(12β4cδ(N + 4)(N + 2)k4
I + β3(−(α − γ)2(2 + 3N)β + 2c2δ(116N + 104 + 27N2))k3

I

+β2c((α − γ)((3N − 1)γ − 3(3 + N)α)β + 6c2δ(39N + 28 + 12N2))k2
I

+βc2(α(2(3N − 1)γ − 9Nα)β + 12c2δ(3N + 5)(N + 1))kI + c3(((1 − 3N)α2)β + 2c2δ(3N + 4)(N + 1)))

τ2 = 2β2δc((2 + N)kIβ + (N + 1)c)(β3(N + 8)(N + 2)k3
I + cβ2(8N2 + 45N + 40)k2

I

+2c2β(5N + 14)(N + 1)kI + 3c3(N + 2)(N + 1)),

τ3 = 2β3δ((2β2(1 + N))k2
I + cβ(N + 9)(N + 1)kI + c2(N + 4)(N + 1))((2 + N)kIβ + (1 + N)c)2k4

j ,

τ4 = 2β4δ(N + 1)((N + 2)kIβ + (N + 1)c)3.

We now turn to the competitive effects of a change in k. Since Q = qI + Nqj, we can insert

the above explicit solutions for the quantities and differentiate Q with respect to k. From this

we get that dQ/dk > 0 if and only if

dkj

dk

dkI

dk

> −
(kjβ + c)(β(γ(N + 1) + α)kj + c(γ + α))

N(kIβ + c)((β(α − γ))kI + cα)
. (44)

Via differentiating (42) and (43) with respect to kj , kI and k and solving for dkj/dk and dkI/dk,

we can calculate the left-hand side of (44). Subtracting the right-hand side from the left-hand

side yields an expression that has the following structure:

6
∑

u=0

5
∑

z=0

ku
j kz

Iυuz, (45)

where υuz = υuz(α, β, γ, δ, c,N). We do not spell out the exact expressions for υuz, u ∈

{1, ..., 6}, z ∈ {1, ..., 5} because they are rather complicated. As will become clear, we are

mainly interested in determining their signs and compare them, which can be done relatively

easily.

Differentiating (45) with respect to k we get

6
∑

u=1

5
∑

z=1

υuz

(

zku
j kz−1

I

dkI

dk
+ uku−1

j kz
I

dkj

dk

)

+
5
∑

z=1

υ0zzkz−1
I

dkI

dk
+

6
∑

u=1

υu0uku−1
j

dkj

dk
,
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where, from Lemma 4, dkj/dk < 0 and dkI/dk > 0.

First, one can show that all υuz > 0 if u > z. Thus, the expressions υuz(zku
j kz−1

I (dkI/dk)+

uku−1
j kz

I (dkj/dk)) for u > z are all negative. The expressions for υuz with u < z can have

different signs. So let us first take each term υuz(zku
j kz−1

I (dkI/dk) + uku−1
j kz

I (dkj/dk)), where

z = za > ua = u. Now we compare it with the corresponding expression where u = za and

z = ua. One can then show that the latter expression is larger than the former in absolute

values in any comparison. Therefore, the sum of each of the comparisons is negative. Finally,

we have to look at terms with u = z. Again, υuz can be positive or negative, i.e. υuz > 0

for u = z = 1, 2, 3, υuz < 0 for u = z = 4 and υuz = 0 for u = z = 5. Now for any of

these expressions υuz(zku
j kz−1

I (dkI/dk) + uku−1
j kz

I (dkj/dk)) with u = z we can find a previous

comparison, to which we can add the expression and the resulting sum still stays negative.

Thus, equation (45) is strictly decreasing in k. Since at k = 0, the left-hand side of (44) is

larger than the right-hand side, we know that there exists either a unique intersection or no

intersection between the terms on the two sides. �

A.8 Proof of Proposition 4

We first show that qj → 0 and kj → 0, j 6= I, as N → ∞. Suppose to the contrary that

qj > 0. But since Q = qI + Nqj and P (Q) ≤ 0, as N → ∞, the first-order condition for

firm j given by (2) cannot be satisfied if qj > 0, since the right-hand side is positive while the

left-hand side would be negative. Therefore, qj → 0, as N → ∞. Given this, suppose now

that kj > 0. But then in the first-order condition of the capacity stage, (5), the left-hand side

would be negative while the right-hand side is zero. In order to fulfill this condition we must

have kj → 0. Therefore, as N → ∞, qj → 0 and kj → 0.

In the proof of Proposition 2 we already calculated the case of qj → 0 and kj → 0. Taking

in addition that N → ∞ we get from (37) that vertical integration is anticompetitive if

−
C ′′

I P ′ρ qI

kI
+ σ

ρ2P ′(C ′′
I − kIP ′) + σ

< −
C ′′

I
qI

kI

ρ(C ′′
I − kIP ′)

,

where ρ and σ are defined in the proof of Proposition 2. But we already showed in this proof

that the inequality is fulfilled. Therefore, vertical integration is anticompetitive if N → ∞. �

A.9 Proof of Proposition 5

From the proof of Proposition 3 we know that the left-hand side of (8), (dkj/dk)/(dkI/dk),

equals −1/(N + 1) if R′ is relatively large. Multiplying (8) by N , the left-hand side is given
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−N/(N + 1). Taking the derivative with respect to N , we obtain −1/(N + 1)2 < 0, implying

that the left-hand side is decreasing with N .

We now turn to the right-hand side of (8), multiplied by N , which is given by

−
C ′′

I qIkj(C
′′
j − kjP

′)

C ′′
j qjkI(C ′′

I − kIP ′)
. (46)

To take the derivative of (46) we need to determine ∂kj/∂N from (5) and ∂kI/∂N from (6) and

use these derivatives to calculate ∂qj/∂N from (2) and ∂qI/∂N from (3), taking into account

that R′ is large. Doing so yields

∂kj

∂N
=

∂kI

∂N
= −

kj

N + 2
< 0,

∂qj

∂N
= −

NqjC
′′
j (C ′′

I − kIP
′)

Ω
< 0 and

∂qj

∂N
= −

NqIC
′′
I

(

C ′′
j − kjP

′
)

Ω
< 0,

with Ω = (N+2)((P ′)2kjkI(N+2)+P ′(kjkI(Nqj+qI)P
′′−kjC

′′
I (N+1)−2kIC

′′
j ) −P ′′(qIkIC

′′
j +

NqjkjC
′′
I ) + C ′′

I C ′′
j ).

Taking the derivative of (46) and using the above expressions, we obtain, under the addi-

tional assumptions (i) C ′′′ is relatively small and (ii) C ′′
j ≈ C ′′

I , that this derivative is given

by

−(kI − kj)(−2(P ′)4k2
j k

2
I (N + 2)

(

C ′′
j

)2
+
(

C ′′
j

)4
P ′′(kI − kj)(qI − qj)

−(P ′)2
(

C ′′
j

)3 (
C ′′

j (kj(kj + 2kIN) + kI(kI + 4kj)) − 2P ′′kjkI(qjN(3kj + kI) + qI(kj + 3kI))
)

+P ′
(

C ′′
j

)4
(C ′′

j (kjN + kI) − P ′′(qjN(kI − kj)
2 + qI(k

2
I + kj(2kI − kj)))

+(P ′)3kjkI

(

C ′′
j

)2 (
C ′′

j (3kj(N + 1) + kI(N + 5)) − 2P ′′kjkI(qI + Nqj)
)

.

But since P ′′ is negative or not too positive, the derivative is positive, implying that (46) is

falling in N .

From the previous analysis we know that k∗ is given by the intersection of the left-hand side

and the right-hand side of (8). As shown in the proof of Proposition 3, if R′ is very large, the

left-hand side is constant in k while the right-hand side is increasing at the point of intersection.

Now we just showed that the left-hand side is lower if N is larger while the right-hand side is

larger if N is larger. But this implies that the two sides cross each other at a lower value of k

if N is larger. Since k∗(N) is defined as the point of interestion, it follows that it is decreasing

in N . �
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A.10 Proof of Proposition 6

We know that welfare is increasing in k if and only if (9) holds. The first term on the left-hand

side of (9), PdQ/dk, has the same sign as the condition for pro- or anticompetitive vertical

integration. Therefore, we know that it is zero at k∗. As a consequence, if the rest of the

left-hand side is negative at k∗, this implies that k∗
WF < k∗.

We start with the case of γ = 0. In this case γ(dqI/dk) = 0. The term −R(dK/dk) is

negative since overall capacity is increasing in k. Thus, if the terms

−NCj
dkj

dk
− NkjC

′
j

(

1

kj

dqj

dk
−

qj

k2
j

dkj

dk

)

− CI
dkI

dk
− kIC

′
I

(

1

kI

dqI

dk
−

qI

k2
I

dkI

dk

)

(47)

are negative at k∗, we have established that k∗
WF < k∗ at γ = 0. We can now use the respective

expressions for the cost functions and the equilibrium values of qj and qI in the linear-quadratic

case that we calculated in the proof of Proposition 3, case (ii). Inserting them into (47) and

simplifying reveals that the sign of this expression is the same as the sign of

−
[

Nα2(c+βkI)
(

k2
Iβ

2(2c − βkj(N + 2)) + kIcβ(c − βkj(2N + 5)) + c2(c − βkj(N + 1))
)

]

dkj

dk

dkI

dk

−

(48)

−α2 [c + kjβ]
[

k2
j

(

β2c(N + 1) − kIβ
3(N + 2)

)

+kjcβ (c(2 − N) − kIβ(3N + 4))−2kIc
2β +c3

]

.

From (44) we know that dQ/dk = 0 at γ = 0 if k implies equilibrium values of kI and kj such

that
dkj

dk

dkI

dk

= −
(kjβ + c)2

N(kIβ + c)2
.

Inserting the last equation into (48) and simplifying gives

−
2αcβ(kI − kj)(c + βkj) (kIβ(2c + kjβ(N + 2)) + c(c + kjβ(N + 1)))

(c + βkI)
,

which is negative because kI > kj at k∗. Thus, we have shown that k∗
WF < k∗ at γ = 0.

Now we turn to the case γ > 0. Writing (9) under the linear-quadratic specification for the

case of k = k∗, i.e. when dQ/dk = 0, we get

−
k2

j k
2
I̺

(kIβ(2c + kjβ(N + 2)) + c(c + kjβ(N + 1)))3

+cγ
(c + βkj(N + 1))(c(α + γ) + αβkj + βγkj(N + 1)) − kIβN(αc + βkI(α − γ))

(

dkj

dk

/

dkI

dk

)

(kIβ(2c + kjβ(N + 2)) + c(c + kjβ(N + 1)))2

(49)

36



−δ(kI + Nkj)(N

(

dkj

dk

/dkI

dk

)

+ 1),

with

̺ ≡
[

N(αc + βkI(α − γ))(k2
I β2(α − γ)(2c − βkj(N + 2))

+kIcβ(c(α − 3γ) − βkj(α(2N + 5) + γ(N + 1))) + c2α(c − βkj(N + 1))
]

(

dkj

dk

/dkI

dk

)

+ [c(α + γ) + kjαβ + βγkj(N + 1)]
[

k2
j (α + γ(N + 1))

(

β2c(N + 1) − kIβ
3(N + 2)

)

+kjcβ (c(2(α + γ) − N(α − 2γ)) − kIβ(α(3N + 4) + γ(N + 4))) − 2kIc
2β(α + γ) + c3(α + γ)

]

.

From (44) we have that (dkj/dk)/(dkI/dk) at k = k∗ is given by

dkj

dk

dkI

dk

= −
(kjβ + c)(β(γ(N + 1) + α)kj + c(γ + α))

N(kIβ + c)((β(α − γ))kI + cα)
.

Inserting this into (49), differentiating the resulting expression with respect to γ and using the

fact that dkI/dγ > 0 and dkj/dγ < 0 reveals that the expression is strictly increasing in γ.

But from the first part of the proof we know that (49) evaluated at k = k∗ is negative at γ = 0

which implies that k∗
WF < k∗. Therefore, we have shown there exists either a unique value of

γ denoted by γ̂ such that k∗
WF < k∗ for all γ < γ̂ and k∗

WF > k∗ for all γ > γ̂, or no such value

exists because (49) turns positive only at such high values of γ at which the non-integrated

firms are not active. In the latter case k∗
WF < k∗ for all γ. �

B Additional Material (not intended for publication)

In this appendix (which is not intended for publication) we provide additional results based on

numerical calculations for the linear-quadratic model.

B.1 k∗ as a function of N and γ

Figure 6 summarizes the results from the numerical computations. It plots the competitive

threshold, here denoted k∗(N, γ), as a function of N and γ for the linear quadratic model for

γ ∈ {0, 0.05, 0.1, 0.15, 0.2}.36 It complements Figure 1 by adding results for values of γ > 0.

Since k∗ decreases in N , these results also show that Riordan’s (1998) dominant firm model

becomes an increasingly better approximation as the downstream industry becomes more and

more competitive.

36All simulations were done in Python and are available upon request. In Figure 6 we set the parameters α,
β, c and δ equal to one.
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Figure 6: The competitive threshold k∗(N, γ) for γ ∈ {0, 0.05, 0.1, 0.15, 0.2}.

Figure 6 also reveals that vertical integration is procompetitive for a larger set of k the

larger is γ because increases in γ result in upward shifts of k∗.37 The intuition is that the

integrated firm utilizes its capacity to a larger degree if its cost advantage is bigger. Therefore,

capacity is shifted to the more efficient firm which makes vertical integration more likely to be

procompetitive.

B.2 Sketch of the proof of Subsection 4.4

The competitive effects of vertical integration can still be evaluated using (8). If all firms are

integrated, the right-hand side of (8) is the same but the left-hand side may differ.

As in the proof of Proposition 1, if all firms including firm I are vertically integrated to

the same extent, (8) can be evaluated by determining ∂2Πj/∂k2
j − ∂2Πj/∂kj∂kI . These two

expressions are given by (20) and (25) but with the difference that in both expressions the last

term is now given by (kj − kn)R′′ instead of kjR
′′. However, since this change is the same in

both expressions, the difference between the two is still the same as in our main analysis. Thus,

the proof of Proposition 1 goes through in exactly the same way.

It is easy to check that kn plays no role in the proof of Propostion 2 since kj = 0 there,

that is, all (partially) integrated firms 1, ..., n no sell their quantity to firm I or to an outside

37Each curve k∗(N, γ) also exhibits a flat segment initially. This flat part corresponds to the smallest value
of k such that the non-integrated competitors stop production (in our notation k̄), at which we stopped our
simulations. For any k > k̄, vertical integration is procompetitive simply because it reduces the cost of the only
active firm. The fact that the curves k∗(N, γ) intersect for small values of N does therefore not conflict with the
statement that vertical integration is procompetitive for a larger set of k the larger is γ.
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market. The ame holds for the proof of Proposition 4.

Tedious but standard calculations that closely follow those of the proof of Proposition 3

show that the arguments used there also hold if all firms are vertically integrated. This is the

case because the proofs of cases (i) and (ii) of Proposition 3 depend on the equilibrium capacities

and quantities and not on the degree of integration. Although the degree of integration affecs

the equilibrium, the calculations are very similar.

B.3 Omitted Propositions and Proofs of Section 5

The next proposition presents the result that similar statements as the ones given in Proposi-

tions 1 and 2 hold for the welfare analysis:

Proposition 7 For any finite N there exists a k∗
W > 0 such that for all k < k∗

W vertical

integration is welfare increasing at the margin. There also either exists a k∗∗
W < k̄ such that for

all k > k∗∗
W vertical integration is welfare decreasing at the margin, or it is welfare increasing

at the margin for any k close to k̄.

Sketch of the proof We start with the case where k = 0 and γ = 0. In the proof of

Proposition 1 we calculated the left-hand side of (10). To determine the right-hand side of

(10) we first insert dQ/dkI = dqI/dkI + Ndqj/dkI , dQ−I/dkI = Ndqj/dkI and dQ/dkj =

dqI/dkj + dqj/dkj + (N − 1)dqh/dkj into the right-hand side and then use equations (14),

(15), (16) and (19) from the proof of Lemma 1, i.e., the derivatives of qi with respect to kj ,

i, j = I, 1, ..., N . Knowing that at k = 0 and γ = 0 we have qI = qj, kI = kj and C ′′
I = C ′′

j ,

the right-hand side simplifies to −1/N . But from the proof of Proposition 1 we know that the

left-hand side is larger than −1/N at k = 0 and γ = 0. Therefore, marginal vertical integration

is welfare increasing at this point. In the same way as in the proof of Proposition 1 we can

show that it is also welfare increasing for γ > 0. By continuity there exists a threshold k∗
W

such that vertical integration is welfare enhancing at the margin for all k < k∗
W .

Now we turn to the case where k = k̄. From the proof of Proposition 2 we know that in

this case
dkj

dk

dkI

dk

= −
C ′′

I P ′ρ qI

kI
+ σ

(N + 1)
(

ρ2P ′(C ′′
I − kIP ′) + σ

) .

Proceeding in the same way as above to determine the right-hand side of (10) but now inserting
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k = k̄, qj = kj = 0 yields

−
P ′q2

IC
′′
I − kIR

′ (C ′′
I − kI(2P

′ + qIP
′′)) (kI − k̄)

P ′ρqIk2
IN(P ′ + qIP ′′)

= −
P ′q2

IC
′′
I + σ(kI − k̄)

NP ′ρqIk2
I (P

′ + qIP ′′)
, (50)

where the equality sign is due to σ ≡ R′kI(2P
′kI + P ′′kIqI − C ′′

I ) as defined in the proof of

Proposition 2. Subtracting (50) from (dkj/dk)/(dkI/dk) then reveals that this difference has

the same sign as

−kI(1 + N)σ2 − σP ′
[

C ′′
I (N + 1)(kIρ

2 + q2
I ) − k2

Iρ
(

P ′(ρ(N + 1) + qIN) + P ′′Nq2
I

)]

−C ′′
I q2

Iρ
2(P ′)2

[

C ′′
I (N + 1) − kIP

′(2N + 1) − kIqINP ′′
]

+ (1 + N)k̄σ
[

σ + ρ2P ′(C ′′
I − kIP

′)
]

.

The first three terms in this expression are negative while the last term is positive. There-

fore, if the ex ante capacity that is needed to induce the non-integrated firms to stop producing,

k̄, is small, the fourth term is small as well. In this case the expression is negative and welfare

is decreasing at k = k̄. By continuity there then exists a k∗∗
W such that for all k > k∗∗

W vertical

integration is welfare reducing at the margin. If instead k̄ is relatively large, the fourth term

dominates the first three terms. The expression is then positive and vertical integration is

welfare enhancing at the margin. �

The next result is akin to Proposition 3:

Proposition 8 Suppose either that (i) R(K) is very inelastic or that (ii) the model is linear-

quadratic. Then, for any finite N there either exists a unique k∗
W ∈ (0, k̄) such that vertical

integration is welfare enhancing at the margin for all k < k∗
W and welfare reducing at the

margin for all k > k∗
W , or vertical integration is always welfare enhancing.

Sketch of the proof Case (i): From (10) we know that vertical integration enhances welfare

if

N

[

−P ′

(

qj
dQ

dkj

+ (N − 1)qj
dqh

dkj

+ qI
dqI

dkj

)

+ R′kj

](

dkj

dk

)

+ (51)

+

(

−P ′

(

qI
dQ

dkI
+ qj

dQ−I

dkI

)

+ R′(kI − k)

)(

dkI

dk

)

> 0.

If R′ is dominating all other derivatives, we can calculate dkj/dk and dkI/dk from (28) and

(29) to get
dkj

dk
= −

1

N + 2
and

dkI

dk
=

N + 1

N + 2
. (52)
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Inserting this into the last expression and using the fact that R′ is dominating all other deriva-

tives yields R′(−Nkj +(N +1)(kI−k))/(N +2) > 0. Differentiating the left-hand side of the last

equation with respect to k and using (52) yields d (R′(−Nkj + (N + 1)(kI − k))/(N + 2)) /dk =

−R′/(N +2)2 < 0. Therefore, the term that determines the sign of (51) is strictly decreasing in

k. Since welfare is increasing in k at k = 0, there is either a unique intersection point or none.

The proof for case (ii) proceeds along the same lines as the proof of case (ii) in Proposition

3 and is therefore omitted. �
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