Philippe Bontems (Gremaq-TSE) and Philippe Mahenc (Lameta-UM1)

December 2012

 Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)
 - Problem: multiplicity of perfect Bayesian equilibria

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)
 - Problem: multiplicity of perfect Bayesian equilibria
 - Selection of a unique separating equilibrium with the intuitive criterion (Cho and Kreps, 1987)

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)
 - Problem: multiplicity of perfect Bayesian equilibria
 - Selection of a unique separating equilibrium with the intuitive criterion (Cho and Kreps, 1987)
- Still problems

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)
 - Problem: multiplicity of perfect Bayesian equilibria
 - Selection of a unique separating equilibrium with the intuitive criterion (Cho and Kreps, 1987)
- Still problems
 - The logic of undefeated equilibria proposed by Mailath, Okuno-Fujiwara and Postlewaite (1993)
 - \Rightarrow eliminates the "intuitive" separating equilibrium
 - ⇒ predicts that equilibrium prices are uninformative

- Under imperfect competition, firms use prices as a signal of unobserved quality (experience good)
 - High prices signal high product quality: Bagwell and Riordan (AER, 1991), Milgrom and Roberts (JPolE, 1986), Mahenc (IJIO, 2008)
 - Signaling is costly: Spence (QJE, 1976)
 - Problem: multiplicity of perfect Bayesian equilibria
 - Selection of a unique separating equilibrium with the intuitive criterion (Cho and Kreps, 1987)
- Still problems
 - The logic of undefeated equilibria proposed by Mailath, Okuno-Fujiwara and Postlewaite (1993)
 - ⇒ eliminates the "intuitive" separating equilibrium
 - ⇒ predicts that equilibrium prices are uninformative
 - Refinements assume quite sophisticated behaviors

 Open the black box of the vertical relationship between manufacturer and retailer

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract
- Results

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract
- Results
 - The contract ties the retailer's hands ⇒ he commits on a unique final price

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract
- Results
 - The contract ties the retailer's hands ⇒ he commits on a unique final price
 - The most efficient way to signal quality when consumers are not too optimistic

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract
- Results
 - The contract ties the retailer's hands ⇒ he commits on a unique final price
 - The most efficient way to signal quality when consumers are not too optimistic
 - When consumers are highly optimistic, no information disclosure

- Open the black box of the vertical relationship between manufacturer and retailer
 - Both are perfectly informed about the product quality
 - Contract is a two-part tariff: wholesale price + franchise
 - Consumers observe the final price, not the contract
- Results
 - The contract ties the retailer's hands ⇒ he commits on a unique final price
 - The most efficient way to signal quality when consumers are not too optimistic
 - When consumers are highly optimistic, no information disclosure
 - No selection criterion

• Hotelling market with an experience good at the left extreme

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - ullet quality a is perfectly observable $(a=lpha\Delta+L$ and $\Delta=H-L)$

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable $(a = \alpha \Delta + L \text{ and } \Delta = H L)$
 - $\alpha = 0$: a is low

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable ($a = \alpha \Delta + L$ and $\Delta = H L$)
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable ($a = \alpha \Delta + L$ and $\Delta = H L$)
 - $\alpha = 0$: a is low
 - $\alpha = 1$: a is high
 - quality H is more costly to produce: c

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable ($a = \alpha \Delta + L$ and $\Delta = H L$)
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high
 - quality H is more costly to produce: c
 - Product 0 has uncertain quality

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable $(a = \alpha \Delta + L \text{ and } \Delta = H L)$
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high
 - quality H is more costly to produce: c
 - Product 0 has uncertain quality
 - $u(x) = r + (\mu H + (1 \mu) L) tx p$, with μ degree of optimism

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable ($a = \alpha \Delta + L$ and $\Delta = H L$)
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high
 - quality H is more costly to produce: c
 - Product 0 has uncertain quality
 - $u(x) = r + (\mu H + (1 \mu) L) tx p$, with μ degree of optimism
 - ullet $\alpha=0$: uncertain quality no lower than that of the fringe

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable $(a = \alpha \Delta + L \text{ and } \Delta = H L)$
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high
 - quality H is more costly to produce: c
 - Product 0 has uncertain quality
 - $u(x) = r + (\mu H + (1 \mu) L) tx p$, with μ degree of optimism
 - $oldsymbol{lpha}$ lpha= 0: uncertain quality no lower than that of the fringe
 - ullet lpha=1: uncertain quality no higher than that of the fringe

- Hotelling market with an experience good at the left extreme
 - Product 1 is sold by a fringe at marginal cost
 - quality a is perfectly observable $(a = \alpha \Delta + L \text{ and } \Delta = H L)$
 - $\alpha = 0$: a is low
 - $\alpha = 1 : a$ is high
 - ullet quality H is more costly to produce: c
 - Product 0 has uncertain quality
 - $u(x) = r + (\mu H + (1 \mu) L) tx p$, with μ degree of optimism
 - $oldsymbol{lpha}$ lpha= 0: uncertain quality no lower than that of the fringe
 - ullet lpha=1: uncertain quality no higher than that of the fringe
- Market share for the unknown product

$$D(p, \mu) = \frac{2A + \mu\Delta - p}{2t}$$
, with $A = \frac{t + \alpha(c - \Delta)}{2}$

Full information

$$\widehat{p}_{L}^{I}=A$$
 and $\widehat{p}_{H}^{I}=A+rac{c+\Delta}{2}$, with $A=rac{t+lpha(c-\Delta)}{2}$

- Full information $\widehat{p}_L^I=A$ and $\widehat{p}_H^I=A+\frac{c+\Delta}{2}$, with $A=\frac{t+lpha(c-\Delta)}{2}$
- Asymmetric information

- Full information $\widehat{p}_I^I = A$ and $\widehat{p}_H^I = A + \frac{c+\Delta}{2}$, with $A = \frac{t+\alpha(c-\Delta)}{2}$
- Asymmetric information
 - Assumption of social optimality (SO): $c t < \Delta < c + t$

- Full information $\widehat{p}_I^I = A$ and $\widehat{p}_H^I = A + \frac{c+\Delta}{2}$, with $A = \frac{t+\alpha(c-\Delta)}{2}$
- Asymmetric information
 - Assumption of social optimality (SO): $c t < \Delta < c + t$
 - Under (SO), there always exists a unique separating equilibrium

- Full information $\widehat{p}_{I}^{I} = A$ and $\widehat{p}_{H}^{I} = A + \frac{c + \Delta}{2}$, with $A = \frac{t + \alpha(c \Delta)}{2}$
- Asymmetric information
 - Assumption of social optimality (SO): $c t < \Delta < c + t$
 - Under (SO), there always exists a unique separating equilibrium
 - Riley (*Ecotrica*, 1979) equilibrium

• Full information

$$\widehat{p}_L^I=A$$
 and $\widehat{p}_H^I=A+rac{c+\Delta}{2}$, with $A=rac{t+lpha(c-\Delta)}{2}$

- Asymmetric information
 - Assumption of social optimality (SO): $c t < \Delta < c + t$
 - Under (SO), there always exists a unique separating equilibrium
 - Riley (*Ecotrica*, 1979) equilibrium
 - No distorsion for L

Full information

$$\widehat{p}_L^I=A$$
 and $\widehat{p}_H^I=A+rac{c+\Delta}{2}$, with $A=rac{t+lpha(c-\Delta)}{2}$

- Asymmetric information
 - Assumption of social optimality (SO): $c t < \Delta < c + t$
 - Under (SO), there always exists a unique separating equilibrium
 - Riley (Ecotrica, 1979) equilibrium
 - No distorsion for L
 - ullet Upward distorsion for H when $c<\min\left\{2A,\sqrt{\Delta\left(4A+\Delta
 ight)}
 ight\}$

• Standard signaling game à la Spence (QJE, 1974)

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)
- However

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)
- However
 - The logic of *Undefeated Equilibrium* (Mailath, Okuno-Fujiwara and Postlewaite (*JET*, 1993)) yields pooling outcomes

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)
- However
 - The logic of *Undefeated Equilibrium* (Mailath, Okuno-Fujiwara and Postlewaite (*JET*, 1993)) yields pooling outcomes
 - \bullet For all μ_0 higher than $\overline{\mu}$, pooling equilibria Pareto dominate the Riley separating equilibrium

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)
- However
 - The logic of *Undefeated Equilibrium* (Mailath, Okuno-Fujiwara and Postlewaite (*JET*, 1993)) yields pooling outcomes
 - For all μ_0 higher than $\overline{\mu}$, pooling equilibria Pareto dominate the Riley separating equilibrium
 - $\overline{\mu} = \left(c 2A + 2\sqrt{A^2 Ac + \frac{c}{2}\left(\sqrt{\Delta(4A + \Delta)} \Delta\right)}\right)/\Delta$

- Standard signaling game à la Spence (QJE, 1974)
 - "Intuitive" equilibrium, Cho-Kreps (QJE, 1987)
 - Least-cost separating equilibrium, Bagwell-Riordan (AER, 1991)
- However
 - The logic of *Undefeated Equilibrium* (Mailath, Okuno-Fujiwara and Postlewaite (*JET*, 1993)) yields pooling outcomes
 - For all μ_0 higher than $\overline{\mu}$, pooling equilibria Pareto dominate the Riley separating equilibrium

•
$$\overline{\mu} = \left(c - 2A + 2\sqrt{A^2 - Ac + \frac{c}{2}\left(\sqrt{\Delta(4A + \Delta)} - \Delta\right)}\right)/\Delta$$

• High optimism prevents information disclosure

ullet Manufacturer M delegates to retailer R the task of pricing

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from $\{H, L\}$

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$
 - R charges $p_i, i \in \{H, L\}$

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$
 - R charges p_i , $i \in \{H, L\}$
 - consumers observe p_i , not (\mathbf{w}, \mathbf{F})

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$
 - R charges p_i , $i \in \{H, L\}$
 - consumers observe p_i , not (\mathbf{w}, \mathbf{F})
- Full information

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$
 - R charges p_i , $i \in \{H, L\}$
 - consumers observe p_i , not (\mathbf{w}, \mathbf{F})
- Full information
 - $\widehat{p}_L = \widehat{p}_L^I = A$ and $\widehat{p}_H = \widehat{p}_H^I = A + \frac{c + \Delta}{2}$

- Manufacturer M delegates to retailer R the task of pricing
 - two-part tariff: wholesale price w + franchise F
 - take-it-or-leave-it offer, M and R perfectly observe quality
- 4-stage game:
 - Nature selects quality from {H, L}
 - M proposes $(\mathbf{w}, \mathbf{F}) = (w_H, F_H, w_L, F_L)$
 - R charges $p_i, i \in \{H, L\}$
 - consumers observe p_i , not (\mathbf{w}, \mathbf{F})
- Full information
 - $\widehat{p}_L = \widehat{p}_L^I = A$ and $\widehat{p}_H = \widehat{p}_H^I = A + \frac{c + \Delta}{2}$
 - $\widehat{w}_L = 0$ and $\widehat{F}_L = \widehat{\pi}_L^M$ $\widehat{w}_H = c$ and $\widehat{F}_H = \widehat{\pi}_H^M$

• The subgame G(w, F)

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:
 - 1 If $w_H \leq w_L$, the price $p_H^*(w, F)$ may be distorted downward
 - **2** If $w_L \leq w_H$, the price $p_H^*(w, F)$ may be distorted upward

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:
 - **1** If $w_H \leq w_L$, the price $p_H^*(w, F)$ may be distorted downward
 - 2 If $w_L \leq w_H$, the price $p_H^*(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:
 - **1** If $w_H \leq w_L$, the price $p_H^*(w, F)$ may be distorted downward
 - ② If $w_L \leq w_H$, the price $p_H^*(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality
- The optimal contract

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_L^*(w,F)$ and:
 - **1** If $w_H \leq w_L$, the price $p_H^*(w, F)$ may be distorted downward
 - ② If $w_L \leq w_H$, the price $p_H^{*}(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality
- The optimal contract
 - If $\mu_0 \leq \overline{\mu}$, there is a unique optimal contract that achieves separation with the pair of final prices robust to the intuitive criterion

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:
 - If $w_H \le w_L$, the price $p_H^*(w, F)$ may be distorted downward If $w_L \le w_H$, the price $p_H^*(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality
- The optimal contract
 - ① If $\mu_0 \leq \overline{\mu}$, there is a unique optimal contract that achieves separation with the pair of final prices robust to the intuitive criterion
 - ② If $\overline{\mu} < \mu_0$, there is a multiplicity of optimal contracts that conceal information with the following wholesale prices and franchises:

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_L^*(w,F)$ and:
 - 1 If $w_H \le w_L$, the price $p_H^*(w, F)$ may be distorted downward
 2 If $w_L \le w_H$, the price $p_H^*(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality
- The optimal contract
 - ① If $\mu_0 \leq \overline{\mu}$, there is a unique optimal contract that achieves separation with the pair of final prices robust to the intuitive criterion
 - ② If $\overline{\mu} < \mu_0$, there is a multiplicity of optimal contracts that conceal information with the following wholesale prices and franchises:
 - $\begin{aligned} \bullet \ \, w_L^* &= 0, w_H^* = c, F_L^* \in \left[\pi_L^I(p_H^I(\mu_0), \mu_0), \pi_L^I(\mu_0) \right] \text{ and } \\ F_H^* &\in \left[\pi_H^I(p_L^I(\mu_0), \mu_0), \pi_H^I(\mu_0) \right]. \end{aligned}$

- The subgame G(w, F)
 - There exists a pair of separating equilibrium prices $(p_H^*(w,F),p_L^*(w,F))$ that signal the true environmental quality, with no distortion for $p_I^*(w,F)$ and:
 - If $w_H \le w_L$, the price $p_H^*(w, F)$ may be distorted downward

 If $w_L \le w_H$, the price $p_H^*(w, F)$ may be distorted upward
 - There exists a continuum of pooling equilibrium prices $p^*(w, F)$ that conceal information about environmental quality
- The optimal contract
 - If $\mu_0 \leq \overline{\mu}$, there is a unique optimal contract that achieves separation with the pair of final prices robust to the intuitive criterion
 - ② If $\overline{\mu} < \mu_0$, there is a multiplicity of optimal contracts that conceal information with the following wholesale prices and franchises:
 - $w_L^* = 0$, $w_H^* = c$, $F_L^* \in \left[\pi_L^I(p_H^I(\mu_0), \mu_0), \pi_L^I(\mu_0)\right]$ and $F_H^* \in \left[\pi_H^I(p_L^I(\mu_0), \mu_0), \pi_H^I(\mu_0)\right]$.
 - Optimal contracts induce the retailer to set the pooling price $p^* = \underline{p}_2(c, F_H^*, \mu_0) = \overline{p}_2(0, F_L^*, \mu_0)$