Quality choice, competition and vertical relationship in a market of Protected Designation of Origin

Zohra Bouamra-Mechemache* and Jianyu Yu †

Toulouse School of Economics (Gremaq, INRA) Southwestern University of Economics and Finance, China

INRA-IDEI Seminar Quality Labels in Agrofood Industry Dec. 2011 Copyright by Z. Bouamra-Mechemache, J. Yu.

Motivation

- Development of an EU labeling policy (PDO, PGI, TSG): support agricultural activity/ valorization and protection of agricultural and food products
- Protected designation of origin : efficient way to capture price premium for agricultural suppliers.
- PDO applies to the final food commodity but the whole production chain (farmers and processors) is involved in PDO development
- Technical requirements (cahier des charges) inherent to specific input (upstream) and manufacturing process (downstream)
- Certification: voluntary collective decision (Collective application for certification and collective choice of cahier des charges)

Literature

Provision of PDO relies on

- benefit: Price premiums are directly linked to Gls. However,
 - Loureiro and McCluskey (2000), Hassan and Monier (2006): price premium is higher for medium-quality GIs than highest-quality ones
 - Hassan et al. (2011), Bonnet and Simioni (2001): French PDO cheeses do not necessarily represent high quality products.
- cost
 - link with certification cost (Marette and Crespi 2003, Moschini et al. 2008)
 - link with production practices: Bouamra and Chaaban (2010), Lence et al. (2007)

Research question:

- Will PDO farmers and processors have incentive to impose a stringent production specification?
- Do farmers and processors have the same incentive to control production through production practices?

Competition and choice of quality

- Possibility of quantity control through production requirement:
 - Hayes (2004), Lence et al. (2007)
- Depending on the industry structure and competition types
 - Quality choice of monopoly: Spence (1979), However vertical relationship not considered
 - Demand and supply shift under oligopoly and/or oligopsony competition: Hamilton and Sunding (1998), McCorriston and Sheldon (1991). However, choice of quality not considered
- This paper takes into account
 - Vertical relationship
 - Different degree of competition
 - Choice of production requirements

Structure of the PDO supply chain

• *n* identical farmers and *m* identical processors

Consumers

 Assumption: To focus on the supply-control role of production requirement β , it is assumed that increasing β above β does not have any effect on consumer preferences for the PDO product. (Lence et al.)

$$\frac{\partial U(X,\beta)}{\partial \beta} = 0 \text{ if } \beta \ge \underline{\beta}$$

So that if $\beta > \beta$

$$p(X,\beta) = \frac{\partial U(X,\beta)}{\partial X} = p(X,\underline{\beta})$$

Farmers and processors

- **Farmers**
 - The cost of production is $c(q, \beta)$,
 - $c_{\alpha}(q,\beta) > 0, c_{\alpha\alpha}(q,\beta) > 0, c_{\beta} > 0 \text{ and } c_{\alpha\beta} > 0$
 - $\beta \in [\beta, +\infty]$
 - Profit: $\pi^f = wq c(q, \beta)$
 - Price takers: $w = c_a(\frac{Q}{n}, \beta)$
- Processors
 - One unit of PDO products requires one unit of PDO input
 - The processing cost is assumed to be zero.
 - Profit: $\pi_i^p = (p(X) w) x_i$

Game

- 1- the farmer group and the processor group jointly decide the PDO quality β . Two cases may occur:
 - Farmers and processors have the same incentive when choosing production standards.
 - They have different interests.
- 2- processors simultaneously decide how much to sell on the downstream market and buy the quantity of input according to their downstream production decision.
 - The market of the raw material clears through the balance of supply and demand

Perfect competition

Market clearing condition

$$p(X) = w = c_q(\frac{X}{n}, \beta)$$

Impact on quantity and price

$$\frac{dX}{d\beta} = \frac{c_{q\beta}}{p' - c_{qq}/n} < 0, \qquad \frac{dp(X)}{d\beta} = p' \frac{dX}{d\beta} > 0$$

- Quality choice
 - Processors earn zero profit
 - Farmers: $\frac{dn\pi^f}{d\beta} > 0$ iff

$$\eta = rac{c_{qeta}}{c_{eta}/q} > 1 + rac{\epsilon_d}{\epsilon_s}$$

• Higher η : larger increase in marginal cost relative to the increase in the average cost. Depending on cahier des charges.

Cournot competition among processors

- Processors may have either oligopsony and/or oligopoly power
- Profit maximizing:

$$\max_{x_i} \pi_i^p = \left(p(x_i + X_{-i}) - c_q(\frac{x_i + X_{-i}}{n}, \beta) \right) x_i$$

First order condition:

$$p(X) - c_q(\frac{X}{n}, \beta) + \frac{X}{m} \left(\underbrace{p'(X)}_{oligopoly} \underbrace{-\frac{c_{qq}(\frac{X}{n}, \beta)}{n}}_{oligopsony} \right) = 0$$

• Mark-up:

$$L \equiv \frac{p - w}{p} = \frac{1}{m} \left(\underbrace{\frac{1}{\epsilon_d}}_{\text{oligopoly}} + \underbrace{\frac{w}{p} \frac{1}{\epsilon_s}}_{\text{oligopsony}} \right) = \frac{\epsilon_s / \epsilon_d + 1}{m \epsilon_s + 1}$$

INRA-IDEI Seminar Quality Labels in Agrofoo

Choice of quality

- Impact on quantity: $\frac{dX}{d\beta} = \frac{c_{q\beta} + \frac{q}{m}c_{qq\beta}}{SOC} < 0$
 - β depends on cahier des charges:
 - shifts the level of marginal cost $c_{q\beta} = \frac{\partial w}{\partial \beta}$
 - may also change the slope of the marginal cost $c_{aa\beta}$
 - SOC depends on the competition pattern
- Impact on profit of processors: $\frac{dm\pi^p}{d\beta} = Xc_{q\beta} \frac{m-1}{m}(p-w)\frac{dX}{d\beta}$
- Impact on profit of farmers: $\frac{dn\pi^f}{d\beta} = -nc_{\beta} + Xc_{q\beta} + \frac{dX}{d\beta}qc_{qq}$
- Divergent interest between farmers and processors, depending on
 - Competition: oligopoly and/or oligopsony
 - Form of $c(q, \beta)$

Oligopoly

- First order condition: $p(X) c_q + \frac{X}{m}p'(X) = 0$
- Impact on quantity: $\left| \frac{dX}{d\beta} \right|_{\text{oligopoly}} < \left| \frac{dX}{d\beta} \right|_{\text{Perfect competition}}$

$$\frac{dX}{d\beta} = \frac{c_{q\beta}}{p' - \frac{c_{qq}}{n} + \underbrace{\frac{1}{m}(p' + Xp'')}_{oligopoly}}$$

Impact on the margin: if demand is not too convex (p' + Xp'' < 0)

$$\frac{d(p-w)}{d\beta} = \underbrace{-c_{q\beta}}_{\text{direct impact on } w} + \underbrace{(p' - \frac{c_{qq}}{n})\frac{dX}{d\beta}}_{\text{indirect impact on the margin}} < 0$$

• Impact on profit of processors: $\frac{dm\pi^p}{d\beta} < 0$

INRA-IDEI Seminar Quality Labels in Agrofoo / 21

Oligopoly

- Impact on the profit of farmers: $\frac{dn\pi^f}{d\beta} = \underbrace{-nc_\beta}_{-} + \underbrace{Xc_{q\beta}}_{+} + \underbrace{\frac{dX}{d\beta}qc_{qq}}_{+}$
 - The first two effects depends only on cost function
 - the negative effect on quantity is smaller under oligopoly competition
 - $\frac{dn\pi^f}{d\beta} > 0$ iff $\eta > 1 + \frac{\frac{1}{\epsilon_s}(\epsilon_d \frac{1}{m})}{1 + \frac{1 V_d}{m}}$

 \Longrightarrow It is more likely for farmers to choose a higher β under oligopoly competition than under perfect competition

- Conflict of interest:
 - Processors prefers the minimum quality.
 - Farmers tend to choose a more stringent quality requirement.
 - The equilibrium quality is decided through negotiation, depending on their relative bargaining power.

INRA-IDEI Seminar Quality Labels in Agrofo

Oligopsony

- First order condition: $p(X) c_q \frac{X}{m} \frac{c_{qq}}{n} = 0$
- Impact on quantity:

$$\frac{dX}{d\beta} = \frac{c_{q\beta} + \frac{q}{m}c_{qq\beta}}{p' - \frac{c_{qq}}{n} - \frac{1}{mn}(c_{qq} + qc_{qqq})}$$

The impact is larger if $\mu = \frac{c_{qq\beta}}{c_{q\beta}/a}$ is larger.

- Impact on the margin: $\frac{dp-w}{d\beta}>0$ iff $\mu>\frac{1+V_s}{1+\frac{1}{\epsilon_r}(\epsilon_s+\frac{1}{m})}$
 - The larger μ and/or the larger ϵ_s compared to ϵ_d , the more likely that processors have a positive margin.

INRA-IDEI Seminar Quality Labels in Agrofoo / 21

Oligopsony

Impact on profit of processors:

$$\frac{dm\pi^{p}}{d\beta} = \underbrace{(p-w)\frac{dX}{d\beta}}_{\text{depending on }\mu, \epsilon_{s} \text{ and } \epsilon_{d}}$$

 $\frac{dm\pi^{\rho}}{d\beta}>0$ iff $\mu>\frac{2+V_s}{\frac{1}{\epsilon_{I}}(\epsilon_s+\frac{1}{m})+1-\frac{1}{m}}$ which holds for a large μ , small m,

large ϵ_s compared to ϵ_d and large V_s .

- Impact on profit of farmers: $\frac{dn\pi^f}{d\beta} = \underbrace{-nc_\beta}_{} + \underbrace{Xc_{q\beta}}_{} + \underbrace{\frac{u_A}{d\beta}}_{} qc_{qq}$
 - $\frac{dn\pi^r}{d\beta} > 0$ iff $\eta > 1 + \frac{\mu + m}{\frac{m\epsilon_s + 1}{d\beta} + 1 + V_s \mu}$.
 - If μ is large so that the impact on X is large, it is less likely to have $\frac{dn\pi^f}{dt^2} > 0$, however it depends also on η .
- Conflict of interest may be reversed when μ is large
 - Farmers may prefer a lower quality standard than processors.

INRA-IDEI Seminar Quality Labels in Agrofoo / 21

Conditions for a higher quality standard

	Perfect Competition	Oligopoly	Oligopsony
Processors	$\pi^p = 0$	$\beta^{p} = \underline{\beta}$	$ \beta^{p} > \underline{\beta} \text{ iff} $ $ \mu > \frac{2+V_{s}}{\frac{1}{\epsilon_{d}}(\epsilon_{s} + \frac{1}{m}) + 1 - \frac{1}{m}} $
Farmers $\beta^f > \underline{\beta}$ iff	$\left \; \eta > 1 + rac{\epsilon_d}{\epsilon_{s}} ight $	$\eta > 1 + rac{rac{1}{\epsilon_S}(\epsilon_d - rac{1}{m})}{1 + rac{1 - V_d}{m}}$	$\eta > 1 + rac{\mu + m}{rac{m \epsilon_s + 1}{\epsilon_d} + 1 + V_s - \mu}$

ullet For a given market structure, the choice of quality depends on how etaaffects the technology.

INRA-IDEI Seminar Quality Labels in Agro

Different technologies

- Parallel shift of supply function: $c(q, \beta) = G(q) + F(\beta)q + H(\beta)$
 - $c_q = G'(q) + F(\beta)$, $\eta = \frac{c_{q\beta}}{c_{\beta}/q} \le 1$, $\mu = \frac{c_{qq\beta}}{c_{q\beta}/q} = 0$.
 - In all cases of competition, $\beta^p = \beta^f = \underline{\beta}$
- ullet Rotation of supply : $c(q,eta)=F(eta)q^\lambda$ (with $\lambda\geq 2$)
 - $c_q = q^{\lambda-1}\lambda F(\beta)$, $\eta = \lambda$, $\mu = \lambda 1$, $V_s = \lambda 2$
 - Depending on demand structure: if $\epsilon_d < 1$
 - $\beta^f > \beta$ in all cases of competition
 - $\beta^p > \overline{\beta}$ in case of oligopsony.

INRA-IDEI Seminar Quality Labels in Agrofoo

An illustration: linear demand and supply function

• Demand function: p(X) = a - bX

• Cost function: $c(q, \beta) = \frac{1}{2}\beta q^2$

	Perfect Competition	Oligopoly	Oligopsony	both
Processors	$\pi^p = 0$	$\beta^p = \underline{\beta}$	$\beta^p = \frac{m}{1+m}bn$	$\beta^p = \underline{\beta}$
Farmers	$eta^{ extsf{f}} = extsf{bn}$	$eta^f = rac{1+m}{m}bn$	$eta^f = rac{m}{1+m} bn$	$\beta^f = bn$

A higher quality is preferred by farmers if

- the demand is less elastic (the larger b)
- the total supply is more elastic (the larger *n*)
- the degree of oligopoly competition is higher (the smaller m)
- the degree of oligopsony competition is lower (the larger m)

An illustration-with both oligopoly and oligopsony power

Concluding remarks

- PDO producers provide higher than minimum production requirements to control quantity, if
 - the quality requirement rotates the product supply upward, i.e. makes the production more diseconomy of scale.
 - the demand for PDO is inelastic
- Only in the case that processors have oligopsony power, can it be possible that they have incentive to choose a higher β .
- In other cases, farmers tend to choose a higher β than that would be chosen by processors.
- The requirements at the equilibrium depends on
 - relative bargaining power
 - political power of farmers/processors to influence public authority

Further work

- PDO cahier des charges: the supply-rotation effect.
- PDO processing technology.
- More specific vertical relationship between farmers and processing industry: contract, negotiation...
- The role of confining the geographical area.
- The role of certification costs.
- Competition between PDO and non PDO.
- Impact on demand.