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A: Mathematical Proofs
Proof of the �rst part of Lemma 3.1.
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Letting z = (y � �)=�; the above expression becomes
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Proof of the second part of Lemma 3.1.
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where A = (a�2 � �b2) =
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Setting ! = b�=
p
b2 + �2 and e� = � (a�2 � �b2) = (b2 + �2), we now have
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Proof of the third part of Lemma 3.1.
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Stating that z+y+a
b

= w, the expression above becomes
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Using the second part of Lemma 1,
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Proof of the uniqueness of ~ft (the non-linear cross section average estimator
of ft). Let
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and note that we have

f�pit = zit(ft) + zit(ft) [� (zit(ft)� es)� � (zit(ft) + es)] (1)

+�2 [� (zit(ft)� es)� � (zit(ft) + es)] + ~�it: (2)

The cross-sectional average estimate of ft is now given by the solution of the non-linear
equation

	( ~ft) =
NX
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h
�
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First it is clear that 	( ~ft) is a continuous and di¤erentiable function of ft, and it is
now easily seen that

lim
ft!+1

	( ~ft)! +1 and lim
ft!�1

	( ~ft)! �1:

Also the �rst derivative of 	(ft) is given by1

	0( ~ft) =
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�
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and it is easily seen that h(zit( ~ft)) is symmetric, namely h(zit( ~ft)) = h(�zit( ~ft)). Focusing
on the non-negative values of zit( ~ft) it is easily seen that

h(zit)) =
zitp
2�

h
e�0:5(zit�es)2 � e�0:5(zit+es)2i > 0 for es > 0,

and by symmetry h(zit)) � 0, for all es � 0. Hence, qit > 0 for all i and t, and es � 0:
Therefore, it also follows that 	0(ft) > 0, for all value of wit � 0 and s � 0. Thus, by the
�xed point theorem, 	(ft) must cut the horizontal axis but only once.

Proof of the consistency of ~ft as an estimator of ft as N !1.
Let

	(ft) =

NX
i=1

wit fzit(ft) + zit(ft) [� (zit(ft)� es)� � (zit(ft) + es)]
+�2 [� (zit(ft)� es)� � (zit(ft) + es)]	� aNt;

and note that
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Consider now the mean-value expansion of 	(ft) around ~ft

	(ft)�	( ~ft) = 	0( �ft)(ft � ~ft);

1Recall that the weights, wit; are non-zero pre-determined constants, and in particular do not depend
on ft.
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where �ft lies on the line segment between ft and ~ft. Since 	( ~ft) = 0 and 	0( �ft) > 0 for
all �ft (as established above) we have

~ft � ft =
�
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	0( �ft)

:

Recall that ~�it =
�
�2s + �

2
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[�pit � E (�pit jhit )], where hit = (ft;xit; pi;t�1), and

hence E (~�it) = 0.. Further, conditional on ft and xit; price changes, �pit, being func-
tions of independent shocks vi and "it over i, will be cross sectionally independent. There-
fore, �it will also be cross sectionally independent; although they need not be identically
distributed even if the underlying shocks, vi and "it, are identically distributed over i.
Given the above results we now have (for each t and as N !1) 
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must also be that �ft
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In the case where wit = 1=N , we have
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B: Monte Carlo Simulations

We generated the log price series according to the baseline model, (??), and simulating
the common factors as [a] �rst order autoregressive process. In our reference case, the
sample size is set at N = 50, T = 50. In Table B.1, we report the average (across
1000 replications) of the point estimates of s, �", �s and �v and their average standard
errors in di¤erent setups. Concerning the estimation of ft, we compute the RMSE with
respect to the true ft and compare the standard deviation of the true ft with that of the
estimated ft. Initial values for the estimation of ft are set to pt. The standard errors of the
parameter estimates are computed from the second derivatives of the full log-likelihood
function. This table also reports the value of c computed from the point estimates of s,
�" and �! = �f

p
1� �2 , where �f is the standard deviation of the estimated ft and �

is the true autoregressive coe¢ cient of the AR(1) process assumed for ft.
Results reported in Table B.1 allow a comparison of the following cases: (i) with and

without random e¤ects, (ii) panels with N small, N = 25 versus N = 50, (iii) cases
where the average frequency of price changes is 0.27 versus 0.12, (iv) the case of a small
idiosyncratic component and a large common factor versus the case of a large idiosyncratic
component and a relatively small common component, which corresponds to parameter
values close to the estimates based on observed data. In general, estimated parameters
are close to their true values. Our simulations show that the range of inaction is estimated
with high precision. The estimate of the variance of the idiosyncratic component is closer
to its theoretical value in the model with random e¤ects. This drives the c above its
true value, as it is related to the ratio of s to the size of the idiosyncratic and common
shocks. Not surprisingly, the estimation of the common factor improves as the cross-
section dimension increases. The results in Table B.1 also suggest that the estimation
of ft deteriorates as the frequency of price changes and the size of the common shock
diminishes.
Our second set of Monte Carlo simulations consider the case of serial correlation of

the idiosyncratic component. We model it as an AR(1) process where the variance of
"it is identical to that of the base case. The results indicate that serial correlation in
the idiosyncratic component introduces an upward bias in the estimated bs and b�s.and
a small downward bias in the estimates of b�". The results are summarized in table
B.2. The bias is negligible for low values of the serial correlation coe¢ cient. It remains
limited for small values of � (for � = 0:50, the estimate of s is only 0.03 higher than
the true value). The bias becomes important only as serial correlation approaches the
unit root case. However, because our measure of intrinsic price rigidity c is a function of
s=
p
�"2 + �!2, its computed value involves an upward bias that increases with the degree

of serial correlation of "it. For � = 0:50, the bias amounts to 0.08.
The third set of Monte Carlo simulations examines the case of cross-sectional de-

pendence. Cross-sectional dependence may be motivated on two grounds. First, local
competition may lead outlets to be in�uenced by their neighbor pricing policies. Evidence
on this can be found in Pinske et al. (2002) for US wholesale gasoline markets. Second,
outlets of the same chain may have a common pricing policy, when pricing decision are
centralized. In order to investigate this, two alternative speci�cations are chosen. The
�rst is a Spatial Moving Average Model. The second is factor error structure where the
cross-section dependence is generated according to a �nite number of unobserved com-
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mon factors. We include 10 factors for the 50 outlets considered in the experiments. The
results are summarized in Table B.3.
As is well known in the literature on the linear factor model (Stock and Watson,

1998, Pesaran and Tosetti, 2007, Pesaran, 2006), "weak" cross sectional dependence (in
the sense de�ned in Pesaran and Tosetti, 2007) does not a¤ect the consistency of the
estimates of the common factors using cross section averages or principle component
approaches. The Monte Carlo experiments suggest that this property also holds in the
case of our non linear factor model. Whether this result holds more generally clearly
require further investigation.

Table B.1 - Monte Carlo Simulations
Average frequency of price changes � 0.27 with random e¤ects

s �" �s �v c
True values 0:15 0:05 0:01 0:025 0:082bs b�" b�s b�� RMSE(bft) RMSE(bft)

RMSE(ft)
bc

N = 50, T = 50 0:151
(0:0014)

0:049
(0:0011)

0:011
(0:0013)

0:027
(0:0030)

0:00019 1:0018 0:096

Average frequency of price changes � 0.27 without random e¤ect
s �" �s �v c

True values 0:15 0:05 0:01 0 0:082bs b�" b�s RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 50, T = 50 0:150

(0:0013)
0:049
(0:0011)

0:007
(0:0013)

0:00014 1:0018 0:099

N = 25, T = 50 0:150
(0:0019)

0:048
(0:0015)

0:006
(0:0018)

0:00029 1:0052 0:099

Average frequency of price changes � 0.12 with random e¤ect - large common component
s �" �s �v c

True values 0:300 0:050 0:100 0:025 0:329bs b�" b�s b�� RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 50, T = 50 0:302

(0:0071)
0:047
(0:0017)

0:103
(0:0055)

0:029
(0:0036)

0:00049 1:0052 0:430

Average frequency of price changes � 0.12 with random e¤ect - large common component
s �" �s �v c

True values 0:300 0:100 0:125 0:250 0:260bs b�" b�s b�� RMSE(bft) RMSE(bft)
RMSE(ft)

bc
N = 100, T = 100 0:307

(0:0108)
0:099
(0:0027)

0:131
(0:0080)

0:247
(0:0246)

0:00593 1:1841 0:380

Notes: 1000 replications, estimation by full ML. The �gures in brackets are standard errors. ft is
simulated as a �rst order autoregressive process with intercept equal to 0.05 and slope equal to 0.90.

�f= 1; except in the last simulation exercise (large idiosyncratic component) where �f= 0:00625:
s is the size of the price inaction band, �2" is the variance of the idiosyncratic component, �

2
s is the

variance of sit the threshold parameter for price changes. bc is estimated as bs2=(b�p6), where bs is the
estimated size of the price inaction band, b� =qb�2" + b�2!, b�" is the estimated standard deviation of the
idiosyncratic component, and b�! is the estimated standard deviation of the common shock. RMSE(bft)

RMSE(ft)

is the ratio of the standard deviation of bft over the standard deviation of the true ft:
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Table B.2 - Monte Carlo Simulations with serially correlated
idiosyncratic component

s �2" �2s c
True values 0:35 0:005625 0:010 0:54bs b�2" b�2s RMSE(bft) RMSE(bft)

RMSE(ft)
bc

�=0 0:357
(0:020)

0:0038
(0:005)

0:0011
(0:002)

0:0021 1:343 0:55

�=0.10 0:359
(0:021)

0:007
(0:0004)

0:011
(0:002)

0:0021 1:356 0:56

�=0.50 0:379
(0:024)

0:0033
(0:0004)

0:013
(0:003)

0:0024 1:400 0:63

�=0.90 0:464
(0:042)

0:0022
(0:0004)

0:023
(0:006)

0:0030 1:425 1:00

�=0.95 0:510
(0:054)

0:0017
(0:0003)

0:029
(0:009)

0:0031 1:376 1:28

�=0.99 0:574
(0:087)

0:0012
(0:0003)

0:038
(0:015)

0:0029 1:162 2:00

Notes: 1000 replications, N = 50, T = 50, estimation by full ML. The �gures in bracket are
standard errors. ft is simulated as a �rst order autoregressive process with intercept equal to 0.05 and
slope equal to 0.75. "it is simulated as a �rst order autoregressive process with zero intercept and the
serial correlation coe¢ cient given by �. �f= 0:057 and �"= 0:075. See also the notes to Table B.1.

Table B.3 - Monte Carlo Simulations with cross sectionally dependent
idiosyncratic component

s �2" �2s c
True values 0:35 0:005625 0:010 0:54bs b�2" b�2s RMSE(bft) RMSE(bft)

RMSE(ft)
bc

no cross-sectional dependence 0:357
(0:020)

0:0038
(0:0005)

0:011
(0:011)

0:0021 1:343 0:55

SMA(1) 0:357
(0:020)

0:0035
(0:0004)

0:011
(0:002)

0:0024 1:369 0:55

10 factors(2) 0:357
(0:020)

0:0036
(0:0004)

0:011
(0:002)

0:0024 1:375 0:55

Notes: Simulations are based on 1000 replications with N = 50 and T = 50. Estimation is by full
ML. The �gures in bracket are standard errors. ft is simulated as ft= 0:05 + 0:75f t�1+!t, !t~iid
N(0; �2!), with �

2
!= 0:0002734. See also the notes to Table B.1

(1) stands for the Spatial Moving Average model "it= xit+xi�1;t+xi+1;t with xit~iid N(0; �
2
x)..

The value of �x is set so that �"= 0:075, the same value used in the experiments summarized in Table
B.2.

(2) stands for the multifactor error structure "it=
10P
j=1

ijzjt+xit , where zjt~iid N(0; �
2
j) and

xit~iid N(0; �
2
x) are drawn independently, with �

2
j= �

2
x= 0:0028125, i1= 1 for i = 1; ::::; 5, and

0 otherwise, i2= 1 for i = 6; :::; 10, and 0 otherwise, i3= 1; for i = 11; :::; 15; and so on.
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C: Data Sources
The Belgian CPI data set contains monthly individual price reports collected by the

Belgian National Statistical Institute (NSI) for the computation of the Belgian National
and Harmonized Index of Consumer Prices. In its complete version, it covers the 1989:01
- 2005:12 period and contains more than 20,000,000 price records. For this project, we
restricted the analysis to the product categories included in the Belgian CPI basket for
the base year 1996, and restricted our sample period to the 1994:07 - 2003:02 period. Our
data set covers only the product categories for which the prices are recorded throughout
the entire year in a decentralized way, i.e. 65.5%. of the Belgian CPI basket for the base
year 1996. The remaining 34.5% relate to product categories that are monitored centrally,
such as housing rents, electricity, gas, telecommunications, health care, newspapers and
insurance services and to seasonal product categories. Price reports take into account all
types of rebates and promotions, except those relating to the winter and summer sales
period, which typically take place in January and July. In addition to the price records,
the Belgian CPI data sets provides information on the location of the seller, a seller
identi�er, the packaging of the product and the brand of the product. The price concept
use in this article is the price per unit.
The French CPI data set contains more than 13,000,000 monthly individual price

records collected by the INSEE for the computation of the French National and Harmo-
nized Index of Consumer Prices. It covers the period July 1994:07 - February 2003. This
data set covers 65.5%. of the French CPI basket. Indeed, the prices of some categories of
goods and services are not available in our sample: centrally collected prices - of which
major items are car prices and administered or public utility prices (e.g. electricity)- as
well as other types of products such as fresh food and rents. At the COICOP 5-digit
level, we have access to 128 product categories out of 160 in the CPI. As a result, the
coverage rate is above 70% for food and non-energy industrial goods, but closer to 50% in
the services, since a large part of services prices are centrally collected, e.g. for transport
or administrative or �nancial services. Each individual price quote consists of the exact
price level of a precisely de�ned product. What is meant by �product� is a particular
product, of a particular brand and quality, sold in a particular outlet. The individual
product identi�cation number allows us to follow the price of a product through time,
and to recover information on the type of outlet (hypermarket, supermarket, department
store, specialized store, corner shop, service shop, etc.), the category of product and the
regional area where the outlet is located (for con�dentiality reasons, a more precise lo-
cation of outlets was not made available to us). The sequences of records corresponding
to such de�ned individual products are referred to as price trajectories. Importantly, if
in a given outlet a given product is de�nitively replaced by a similar product of another
brand or of a di¤erent quality, a new identi�cation number is created, and a new price
trajectory is started. On top of the above mentioned information, the following additional
information is recorded: the year and month of the record, a qualitative �type of record�
code and (when relevant) the quantity sold. When relevant, division by the indicator of
the quantity is used in order to recover a consistent price per unit.
Con�dentiality data restrictions : We are not allowed to provide anyone with the

micro price reports underlying this work. However, a data set containing simulated data
and the MatLab or SAS codes of the estimation procedures are available on request.
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