
Potential Competition in Preemption Games

Catherine Bobtcheff
Thomas Mariotti

Toulouse School of Economics

November 18th, 2011

1



Introduction

Innovation and R&D activities are often modeled as a race to be
first in discovering or adopting a new product/technology:

- usually assumed that at time 0, all the players are present and
they know each other (see Reinganum (1981) and Fudenberg
and Tirole (1985) for instance),

- however, these two assumptions are not very realistic and it is
likely that, at time 0, all the competitors are not known.

Aim of this work: solve such a timing game when these
assumptions are relaxed.
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Introduction

We model a timing game of entry where the competitors are not
identified:

- either there are no other competitors,

- or they did not invest yet.

We show that uncertainty on the presence of competitors reduces
the effect of rent dissipation.

Hendricks (1992): competition between two firms, a firm can be an
innovator or an imitator. The latter cannot be the first to adopt.

In our setting, the more a player waits, the more likely she faces an
opponent. Therefore the risk of being preempted increases.
⇒ Reintroduction of a temporal dimension into preemption games,
⇒ link between the models of Reinganum (1981) and Fudenberg
and Tirole (1985).
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Introduction: Timing Games

Hoppe and Lehmann-Grubbe (2005): extension of the initial model
of Fudenberg and Tirole (1985) by introducing the possibility to
have access to a better technology in case investment occurs late.
A second-mover advantage may exist.

Hopenhayn and Squintani (2008): preemption games when players’
private information states stochastically increase over time. At
equilibrium, agents end the game when their state is above a
time-decreasing threshold. Over time, each player is afraid of being
preempted and end the game for lower payoffs.

Brunnermeier and Morgan (2009): timing game in which each
player must decide how long to delay his move after having
received a signal. They derive a pure strategy equilibrium.
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Introduction: Timing Games
Fudenberg and Tirole (1985) underline the difficulty to solve
continuous-time timing games as a limit of discrete time versions of the
game:

- the set of equilibrium outcomes in the two representations may
differ (for instance in the “grab-the-dollar” game),

- moreover, coordination failure may exist.

⇒ They thus enlarge the strategy spaces by introducing the “intensity”
of an interval of “consecutive atoms”.

Other authors choose different solutions:

- use of a randomization device to avoid coordination failure (Simon
and Stinchcombe (1989), Dutta et al. (1995), Hoppe and
Lehmann-Grube (2005)...),

- alternate moves (Harris and Vickers (1985), Riordan (1992)...).

We use a standard definition of strategy (Laraki, Solan and Vieille (2005))
and coordination failure play little role in the derivation of equilibrium.

5



Outline of the talk

The Model

Equilibrium Analysis

Discussion

6



The Model: Actions and Payoffs

Two players, each of them coming into play at some random date
τ i ≥ 0.
τ i : discovery of a new idea or a new market, existence of a new
investment opportunity for player i , possibility to adopt a new
technology...

Each player i has a single opportunity to make a move at some
time t ≥ τ i :

- if player i moves first at time t, she obtains a payoff L(t)
evaluated in terms of time 0 utilities, while player j obtains a
payoff 0,

- if players i and j move simultaneously, they both obtain a
strictly negative payoff,

- note that the payoff structure does not depend on τi .
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The Model: Payoffs

Assumption. L is twice continuously differentiable, and there are times
T2 > T1 > 0 such that the following holds:

L(t) < 0 if t ∈ [0,T1),

L(t) > 0 if t ∈ (T1,∞),

L̇(t) > 0 if t ∈ [0,T2),

L̇(t) < 0 if t ∈ (T2,∞),

L̈(t) ≤ 0 if t ∈ [T1,T2].

Thus L vanishes at T1 only, L(T1) = 0, reaches its unique maximum at
T2, L̇(T2) = 0, and is concave over [T1,T2].
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The Model: Payoffs

With P (t) the date t monopoly profit flow and C (t) the date t
investment cost

L (t) =

∫ +∞

t

e−rsP (s) ds − e−rtC (t) .

For instance:

- monopoly profit flow P(t) = eµt for all t ≥ 0,

- investment cost C > 1/(r − µ).
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The Model: Information

τi ↪→ F , τi and τj are independent:

- τi is the private information or type of each player,

- we suppose that F has a non-decreasing hazard rate.

A player never knows whether she has an opponent, except when it
is too late and she has been preempted. As time goes by, each
player finds it less and less likely that she has no opponent.
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The Model: Strategies (Laraki, Solan, Vieille (2005))

A mixed plan for player i of type τ i is given by a cumulative distribution
function with support in [τ i ,∞].

A strategy for player i of type τ i is a collection (G i
t (· ; τ i ))t≥τ i of mixed

plans such that:

- for each t ≥ τ i , the support of G i
t (· ; τ i ) is a subset of [t,∞]:

G i
t (· ; τ i ) is a mixed plan in the subgame that starts at date t

(properness condition), and

- for each t ′ > t ≥ τ i and every Borel set A ⊂ [t ′,∞],∫
A

dG i
t (s; τ i ) = [1− G i

t (t ′; τ i )]

∫
A

dG i
t′(s; τ i ).

As long as a plan does not require player i to act with probability 1,
the continuation plans can be computed by Bayes’ rule (consistency
condition).

Notation: G i
τ i (· ; τ i ) = G i (· ; τ i ).
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Necessary Conditions: Late Types

Consider first some type τ i ≥ T2 of player i , and suppose that
player j has not moved yet at time τ i ,
⇒ type τ i has no incentive to delay her move, if she believes that
there is a 0 probability that she will thereby tie with player j .

This is the case if the following properties hold:

P1 The types τ j < T2 move with probability 1 before time T2,
that is:

P[j moves over [0,T2) |τ j < T2] = 1,

P2 Each type τ j ≥ T2 moves immediately at time τ j .
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Necessary Conditions: Late Types

Lemma
In any equilibrium, properties P1 and P2 hold for each player.

With, for each t ≥ 0,

- Gi (t) the unconditional probability that player i moves by time t in
equilibrium, and,

- dGi the corresponding Lebesgue–Stieltjes measure that describes
the equilibrium distribution of player i ’s moving,

the lemma implies that

G1(t) = G2(t) = F (t) for all t ≥ T2.

Moreover:

Lemma
In any equilibrium, Supp dG1 = Supp dG2 = [T̃1,∞) for some
T̃1 ∈ [T1,T2].

13



Necessary Conditions: Intermediate Types

What happens when τi < T2?
Suppose player j also moves immediately at birth when τj < T2,
⇒ expected payoff of any type τ i ∈ [0,T2] who decides to invest
at some time t ∈ [τ i ,T2]

1− F (t)

1− F (τi )
L(t).

T ∗2 implicitly defined by

L̇(T ∗2 )

L(T ∗2 )
=

Ḟ (T ∗2 )

1− F (T ∗2 )

is uniquely defined, lies in (T1,T2) and achieves the maximum of
the expected payoff.
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Necessary Conditions: Intermediate Types

We have:

L̇(t)/L(t) T
Ḟ (t)

1− F (t)
if t S T ∗2 ,

⇒ at t = T ∗2 , the marginal benefit of delaying one’s move by an
infinitesimal amount of time dt, L̇(t)dt, exactly compensates the

corresponding expected marginal loss, Ḟ (t)dt
1−F (t)L(t).
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Necessary Conditions: Intermediate Types

Consider any type τ i ∈ [T ∗2 ,T2) of player i , and suppose that
player j has not moved yet at time τ i .

If the following properties hold:

P1∗ Each type τ j < T ∗2 moves with probability 1 before time T ∗2 ,
that is:

P[j moves over [0,T ∗2 ) |τ j < T ∗2 ] = 1,

P2∗ Each type τ j ≥ T ∗2 moves immediately at time τ j ,

then type τ i has no incentive to delay her move.

On [T ∗2 ,T2), the gains of delaying investment are offset by the
probability that the other invests.
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Necessary Conditions: Intermediate Types

An intermediary step is necessary to prove that this continuation
equilibrium is unique.

Lemma
In any equilibrium, the distributions dG1 and dG2 have no atom
over (T ∗2 ,T2].

It follows that:

- for each player i and any time t ∈ [T ∗2 ,T2), the function
(1−Gi )L necessarily attains a maximum over [t,T2],

- the function (1−Gi )L is necessarily nonincreasing over the
interval (max{T̃1,T

∗
2 },T2].
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Necessary Conditions: Intermediate Types

Lemma
In any equilibrium, properties P1∗ and P2∗ hold for each player.

It follows that:

- G1(t) = G2(t) = F (t) for all t ≥ T ∗2 , and

- T̃1 is lower than T ∗2 .
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Necessary Conditions: Early Types

Immediately moving at birth cannot be part of an equilibrium
before T ∗2 .

Conjecture: in any equilibrium, all the types born before time T ∗2
are indifferent to move at any time between some time T ∗1 and
time T ∗2 . Their equilibrium payoff is thus

[1− F (T ∗2 )]L(T ∗2 ) = L(T ∗1 )

in terms of time 0 utilities.
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Necessary Conditions: Early Types

Lemma
In any equilibrium, the distributions dG1 and dG2 have no atom over
[T̃1,T

∗
2 ].

This implies that for each player i , the function (1−Gi )L is necessarily
non-increasing over the interval [T̃1,T

∗
2 ]. It is in fact constant:

Lemma
In any equilibrium, G1(t) = G2(t) = 1− L(T∗1 )

L(t) for all t ∈ [T ∗1 ,T
∗
2 ].

Hence:

G(t) =


0 if t < T ∗1 ,

1− L(T∗1 )
L(t) if T ∗1 ≤ t < T ∗2 ,

F (t) if t ≥ T ∗2 .
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Necessary Conditions: Early Types

Each player born before T ∗2 is indifferent between moving at any
time t ∈ [T ∗1 ,T

∗
2 ]:

[1−G(t)]L(t) = L(T ∗1 ) for all t ∈ [T ∗1 ,T
∗
2 ],

leading to

L̇(t)

L(t)
=

Ġ(t)

1−G(t)
for all t ∈ [T ∗1 ,T

∗
2 ].
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Equilibrium Existence

- a unique candidate for the equilibrium distribution of each
player’s moving time,

- construction of the equilibrium strategies that actually
generate this distribution:

- we have proved there exists a unique continuation equilibrium
from time T ∗2 on: at any time t ≥ T ∗2 at which no player has
moved yet, it is optimal for any player who was born before or
at time t to move immediately,

- therefore, since no player moves before time T ∗1 , constructing
an equilibrium requires only specifying the players’ behavior
over [T ∗1 ,T

∗
2 ].
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Equilibrium Existence

The only condition to be satisfied is that the unconditional
distribution of each player’s moving time be consistent with the
postulated equilibrium strategies:

∫ t

0
G i (t; τ i ) dF (τ i ) = G(t) for all t ∈ [T ∗1 ,T

∗
2 ].
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Equilibrium Existence: An Equilibrium in Pure Strategy

As F (t) > G(t) for all t < T ∗2 , one can thus define a strictly increasing
mapping σ : [0,T ∗2 ]→ [T ∗1 ,T

∗
2 ] by

F (σ−1(t)) = G(t) for all t ∈ [T ∗1 ,T
∗
2 ].

By construction, σ(0) = T ∗1 , σ(τ) > τ for all τ < T ∗2 and σ(T ∗2 ) = T ∗2 .
Let then each type τ i ≤ T ∗2 of player i move at time σ(τ i ), that is:

G i (t; τ i ) = 1{σ(τ i )≤t} for all t ≥ τ i .

It then follows that∫ t

0

G i (t; τ i ) dF (τ i ) =

∫ t

0

1{τ i≤σ−1(t)} dF (τ i ) = F (σ−1(t)) = G(t)

for all t ∈ [T ∗1 ,T
∗
2 ].
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Equilibrium Existence: An Equilibrium in Pure Strategy

Proposition

There exists a pure strategy equilibrium in which

- each player’s type τ ≤ T ∗2 moves at time σ(τ), and

- each player’s type τ > T ∗2 moves immediately at time τ .
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Equilibrium Existence: Simple Equilibrium

All players’ types have the same underlying payoff function once
they are born, so that the players’ preferences do not satisfy a
strict single-crossing condition.

In the equilibrium in pure strategy we derived, each type τ < T ∗1
moves at time σ(τ), where σ is a strictly increasing function.

Moreover, this equilibrium is not Markov perfect, since players
condition their behavior on a payoff irrelevant variable, namely
their date of birth.

We therefore introduce a Simple perfect Bayesian equilibrium.
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Equilibrium Existence: Simple Equilibrium

For each player i , the strategies (G i
t (· ; τ i ))t≥τ i of types τ i > 0 are

themselves derived using Bayes’ rule from the strategy
(G i

t (· ; 0))t≥0 that player i adopts when born at date 0, and
therefore ultimately from the mixed plan G i (· ; 0).

That is, for each t ≥ τ i > 0 such that G i (τ i ; 0) < 1,

G i (t; τ i ) =
G i (t; 0)− G i (τ i ; 0)

1− G i (τ i ; 0)
.
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Equilibrium Existence: Simple Equilibrium

It follows

G i
τ i (t; 0) =

G i (t; 0)− G i (τ i ; 0)

1− G i (τ i ; 0)
=

G i (t; τ̃ i )− G i (τ i ; τ̃ i )

1− G i (τ i ; τ̃ i )
= G i

τ i (t; τ̃ i )

for all t ≥ τ i ≥ τ̃ i > 0 such that G i (τ i ; 0) < 1.

Therefore, G i (t; τ i ) represents both

- the probability that type τ i of player i moves by time t ≥ τ i ,
and

- the probability that a type τ̃ i ≤ τ i of player i moves between
times τ i and t conditional on not having moved before time
τ i .

⇒ If type τ̃ i of player i has not yet moved by time τ i ≥ τ̃ i , she
need not behave differently from type τ i after time τ i .
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Equilibrium Existence: The Simple Equilibrium

The simple equilibrium is symmetric and completely characterized by the
mixed plan G (· ; 0) of type 0 of each player:

- dG has no atoms, and each type τ < T ∗2 moves with probability 1
before time T ∗2 ,

- therefore, the function G (· ; 0) must be continuous over [0,T ∗2 ], with
G (T ∗1 ; 0) = 0 and G (T ∗2 ; 0) = 1 and satisfies the following lemma.

Lemma
Supp dG (· ; 0) = [T ∗1 ,T

∗
2 ].

By Bayes’rule, the consistency condition reads:∫ t

0

[
G (t; 0)− G (τ ; 0)

1− G (τ ; 0)

]
dF (τ) = G(t) for all t ∈ [T ∗1 ,T

∗
2 ].

29



Equilibrium Existence: The Simple Equilibrium

Proposition

There exists a unique simple equilibrium, in which

- each player’s type τ < T ∗2 moves according to the mixed plan

G (· ; τ) = G(· ;0)−G(τ ;0)
1−G(τ ;0) , where G (· ; 0) = 0 over [0,T ∗1 ] and

G (t; 0) = 1−
[
F (t)−G(t)

F (T ∗1 )

]
exp

(
−
∫ t

T∗
1

dF (τ)

F (τ)−G(τ)

)

for all t ∈ [T ∗1 ,T
∗
2 ].

- each player’s type τ ≥ T ∗2 moves immediately at time τ .
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The Simple Equilibrium Strategy

Function G (· ; 0).

t

G

T1
* T2

*

31



Discussion: Strength of Competition

Analysis of the hazard rate of the first moving time:

- the distribution function of the first moving time is
1− (1−G)2,

- over [T ∗1 ,T
∗
2 ], the corresponding hazard rate is 2 L̇

L , which is
strictly decreasing,

- over [T ∗2 ,∞), the hazard rate of the first moving time is

2 Ḟ
1−F , which is non-decreasing.

Empirical prediction: the hazard rate of the first moving time,

2 max
{

L̇
L ,

Ḟ
1−F

}
, is non-monotonic over [T ∗1 ,∞), and tends to

increase after having reached a minimum at T ∗2 .
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Discussion: Strength of Competition

Two results in the case of the simple equilibrium:

- G (· ; 0) is strictly concave over [T ∗1 ,T
∗
2 ], and

- Ġ (T ∗2 ; 0) = 0.

Players born between T ∗1 and T ∗2 are more likely to move close to
their birth dates than close to T ∗2 .
Overall, competition is fiercer close to T ∗1 , and then tends to
decrease.
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Discussion: Coordination Failures

In the simple equilibrium, both the distribution of player’s types
and that of their moving times conditional on their types have no
atoms:

- the probability of a joint move by both players is nil, and

- thus coordination failures play no role in the derivation of this
equilibrium.

The possibility of coordination failures play a role in our analysis:
the assumption that they are always detrimental to both players is
key to the proof that the equilibrium distributions of players’
moving times have no atoms, and are actually uniquely determined.
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Discussion: Eroding Reputation
Let q (t) be the probability that a given player is not yet born by time t
given that no player has moved yet by this time:

q(t) =


1− F (t) if t ≤ T ∗1 ,

[1−F (t)]L(t)
L(T∗1 ) if T ∗1 < t ≤ T ∗2 ,

1 if t > T ∗2 .

Over the interval (T ∗1 ,T
∗
2 ), the mapping t 7→ q(t) continuously increases

from 1− F (T ∗1 ) to 1.
One can interpret q(t) as the reputation of each player at time t if she
has not moved by then (Hendricks (1992)). The reputation of each
player i evolves according to

q̃(t) =

 q(t) if player i has not moved by time t,

0 if player i has moved by time t.
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Discussion: Eroding Reputation

One can prove that the reputation of each player follows a
submartingale. Reputations tend to erode:

- as time elapses, it becomes increasingly difficult to maintain a
reputation of not being born,

- therefore, players are less ready to wait before moving and
players move immediately from time T ∗2 onwards.

This is an important difference with Hendricks (1992) where the
reputation of a firm is the posterior belief that it is an imitator
given that no firm has adopted yet. In this case, the reputation of
a firm follows by construction a martingale. Therefore an innovator
may in equilibrium wait until time T2 > T ∗2 to adopt.
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Discussion: Comparative Statics in the Case of the Simple Equilibrium

Consider a family of cumulative distribution functions Fθ
parameterized by θ ∈ R, which satisfies the monotone likelihood

ratio property (MLRP); that is, the mapping t 7→ Ḟθ1
(t)

Ḟθ0
(t)

is

increasing whenever θ1 > θ0:

- if the family {Fθ}θ∈R satisfies MLRP, both T ∗1,θ and T ∗2,θ are
increasing functions of θ, and

- if the family {Fθ}θ∈R satisfies MLRP, so does the family
{Gθ(· ; 0)}θ∈R.

Illustration with the case of the family of exponential distributions
{Fθ}θ∈R++ with parameters λ = 1

θ .
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Discussion: Comparative Statics in the Case of the Simple Equilibrium

Exponential distribution function

Function G (· ; 0) with λ′ > λ.

t

G

λ

λ’

T1
*(λ’) T1

*(λ) T2
*(λ’) T2

*(λ)
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Concluding remarks

- Analysis of the adoption of a new technology by a player that
does not know when she will face a competitor,

- derivation of the unique simple perfect Bayesian equilibrium of
the game: coordination failures play not role in the derivation
of the equilibrium since players never simultaneously move,

- potential competition does not completely dissipate rents,

- this model links the two canonical models of Reinganum
(1981) and Fudenberg and Tirole (1985),

- extension to the case where the payoff function depends on
the player’s type.
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