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Title: An Econometric Analysis of Brand Level Strategic Pricing Between Coca Cola 

and Pepsi Inc. 

 

I. Introduction 

Analysis of strategic behavior of firms using structural models is widely used in the 

New Empirical Industrial Organization (NEIO) literature. The basic approach is to specify 

and estimate market level demand and cost specifications after taking into account specific 

strategic objectives of firms. The empirical implementation of these models can be 

complex due to highly non-linear nature of flexible demand and cost functions and the 

specification of strategic firm behavior. As a result, researchers have tended to simplify the 

structural model by specifying ad-hoc or approximated demand specifications, and reduced 

form conditions of the firm’s objectives.  In this paper we attempt to overcome some of 

these shortcomings.  

In strategic market analysis estimated demand parameters play a crucial role as the 

estimation of market power and strategic behavior depends crucially on the estimated price 

and expenditure elasticities. For example, Gasmi, Laffont and Vuong (1992) (hereafter 

GLV) and Golan, Karp and Perloff (2000) have used ad-hoc linear demand specifications. 

A major problem with ad-hoc demand specifications is that they do not satisfy all the 

restrictions of consumer theory. As a result estimated parameters may imply violation of 

basic tenets of economic rationality. Even under a correct specification of strategic game, 

any misspecification of demand may generate spurious results and incorrect policy 

prescriptions due to incorrect elasticity estimates.  

Researchers have tried to overcome these shortcomings of demand specification by 

specifying flexible demand functions based on well-behaved utility functions. For 
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example, Hausman, Leonard and Zona (1994) and Cotterill, Dhar and Putsis (2000) use a 

linear approximation to the Almost Ideal Demand System (LA-AIDS; see Deaton and 

Muellbauer, 1980a). The problem with LA-AIDS is that the validity of its elasticity 

estimates is subject to debate in the economic literature (e.g., Green and Alston 1990; 

Alston et al., 1994; Buse, 1994; Moschini, 1995). As a result, there is no clear consensus 

on the right way to estimate elasticities with LA-AIDS. For example, Hahn (1994) argues 

that LA-AIDS violates the symmetry restrictions of consumer demand.1 This suggests that 

it is desirable to avoid approximation to the AIDS since such approximation imposes 

restrictions on price effects.  

To avoid such approximated and ad-hoc demand specification, there is another 

strand of the NEIO literature that uses characteristic based demand system based on 

random utility model. Nevo (2000), Vilas-Boas and Zhao (2001) and others use 

characteristic-based demand system. Empirically this approach is appealing due to 

parsimonious description of the parameter space. However, the specification of random 

utility models often imposes restrictions that may not be implied by general utility theory. 

In a recent paper Bajari and Benkard (2001) show that many standard discrete choice 

models have the following undesirable properties: as the number of product increases, the 

compensating variation for removing all of the inside goods tends to infinity, all firms in a 

Bertrand-Nash pricing game have markups that are bounded away from zero, and for each 

good there is always some consumer that is willing to pay an arbitrarily large sum for the 

good.  These properties also imply discrete choice demand curve is unbounded for any 

price level. To avoid this problem, Hausman (1997) uses linear and quadratic 

approximations to the demand curve in order to make welfare calculations (e.g., multi 
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stage demand system with LA-AIDS at the last stage), favoring them over the CES 

specification, which has an unbounded demand curve.    

In terms of specifying behavioral rules for a firm, two broad approaches can be 

found in the empirical literature. GLV (1992), Kadiyali, Vilcassim and Chintagunta (1996) 

and Cotterill and Putsis (2001) have derived and estimated profit maximizing first-order 

conditions under the assumption of alternative games (e.g., Bertrand or Stackelberg) along 

with their demand specifications. However these studies derive estimable first-order 

conditions based on ad-hoc demand specifications. Cotterill, Putsis and Dhar (2000) use 

the more flexible LA-AIDS but they approximate the profit maximizing first-order 

condition with a first-order log linear Taylor series expansion. Implications of using such 

approximated first-order conditions have not been fully explored. In the other strand of 

empirical literature, researchers have relied on instrumental variable estimation of the 

demand specification (e.g., Hausman, Leonard and Zona 1994; and Nevo, 2000). The 

advantage of this approach is that it avoids the pitfall of deriving and estimating 

complicated first-order conditions. But in terms of estimating market power and merger 

simulation, this approach restricts itself to Bertrand conjectures and the assumption of 

constant marginal costs (Warden, 1998).  

In this paper we overcome some of these shortcomings by specifying a fully 

flexible ‘representative consumer model’ based nonlinear Almost Ideal Demand 

Specification (AIDS) and structural first-order conditions for profit maximization. Unlike 

Cotterill, Putsis and Dhar (2000), our derived first-order conditions are generic and avoid 

the need for linear approximation. As a result they can be estimated with any flexible 

demand specification that has closed form analytical elasticity estimates. We propose to 
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estimate our system (i.e., the demand specification and first-order conditions) using full 

information maximum likelihood (FIML).  

In this paper, we also test for different stylized strategic games, namely: Nash 

equilibrium with Bertrand or Stackelberg conjectures, and Collusive games. In empirical 

analysis of market, the correct strategic model specification is just as critical as the demand 

and cost specification. Until now most antitrust analysis of market power has tended to 

assume Bertrand conjectures (Cotterill, 1994a; Warden, 1998). One exception is Dhar, 

Putsis and Cotterill (2000), who test for Bertrand and Stackelberg game at the product 

category level. They test within a product category (e.g., breakfast cereal) for Stackelberg 

and Bertrand game between two aggregate brands: private label and national brand. As a 

result, their analysis is based on ‘two player game’.  Similarly, GLV (1992) estimates and 

test for strategic behavior of Coke and Pepsi brands.  In this paper, we consider games with 

multi firms and multi brands.  In such a market, a firm may dominate a segment of the 

market with one brand and then follow the competing firm in another segment of the 

market with another brand.  So, the number of possible games that needs to be tested 

increases greatly.  To the best of our knowledge this is the first study to test for strategic 

brand level competition between firms. 

In this paper, we also control for expenditure endogeneity in the demand 

specification. Most papers in the industrial organization literature have failed to address 

this issue. Dhar, Chavas and Gould (2002) and Blundell and Robin (2000) have found 

evidence that expenditure endogeneity is significant in demand analysis and can have large 

effects on the estimated price elasticities of demand. 
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Empirically we study the nature of price competition between four major brands 

marketed by Pepsi and Coca Cola Inc. GLV (1992) was one of the first papers to estimate 

a structural model for the carbonated soft drink industry (CSD). They developed a strategic 

model of pricing and advertising between Coke and Pepsi using demand and cost 

specification. Compared to the GLV study, our database is more disaggregate. As a result 

we are able to control for region specific unobservable effect on CSD demand. Also, we 

incorporate two other brands produced by Coca Cola and Pepsi Inc.: Sprite for Coca Cola, 

and Mountain Dew for Pepsi. Of the four brands, three are Caffeineted (Coke, Pepsi and 

Mt. Dew) and one is a clear non-caffeineted drink (Sprite). Characteristically, Mountain 

Dew is quite unique. In terms of taste it is closer to Sprite but due to caffeine content, 

consumers can derive alertness response similar to Coke and Pepsi.2  These four brands 

dominate the respective portfolio of the two firms.     

In the present study, unlike the GLV (1992) and Golan, Karp and Perloff (2000) 

study, we do not model strategic interactions of firms with respect to advertising. Due to 

lack of city and brand specific data on advertising we ignore strategic interactions in 

advertisement (although we do control for the cost of brand promotion in our structural 

model). Our analysis is based on quarterly IRI (Information Resources Inc.)-Infoscan 

scanner data of supermarket sales of carbonated non-diet soft drinks (hereafter CSD) from 

1988-Q1 to 1989-Q4 for 46 major metropolitan cities across USA.3    

The paper is organized as follows. First, we present our conceptual approach. 

Second, we discuss our model selection procedures. Third, we present our empirical model 

specification. Fourth, econometric and statistical test results are presented. And finally we 

draw conclusions from this study. 
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II. Model Specification 

We specify a brand level non-linear Almost Ideal Demand System (AIDS) model. 

We then derive first-order conditions of profit maximization under alternative game 

theoretic assumptions using AIDS. Finally, we estimate the model using full information 

maximum likelihood procedure.  

a. Overview of the AIDS Demand Specification 

This is the first study to use nonlinear AIDS in analyzing strategic competition 

between firms. So in this section we describe the derivation of AIDS in details for 

interested readers.  

The standard household utility maximization problem can be represented as: 

V(p, M) = Maxx {U(x): p’ x ≤  M}, (1a) 

with its associated dual expenditure minimization problem: 

E(p, u) = Minx {p’ x: U(x) ≥  u},  (1b) 

where x = (x1, …, xN)’ is (N×1) vector of consumer goods, p = (p1, …, pN)’ is a (N×1) 

vector of goods prices for x, M denotes total expenditure on these N goods, U(x) is the 

household direct utility function, and u is a reference utility level. The solution to (1a) 

gives the Marshallian demand functions xM(p, M), while the solution to (1b) gives the 

Hicksian demand functions xH(p, u). By duality, E(p, V(p, M)) = M and xM(p, M) = xH(p, 

V(p, M)), where xH = ∂E/∂p via Shephard’s lemma. 

Following Deaton and Muellbauer (1980b), assume that the expenditure function 

E(p, u) takes the general form: 

E(p, u) = exp[a(p) + u b(p)], (2) 
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where x = (x1, …, xN)’ is (N×1) vector of consumer goods, p = (p1, …, pN)’ is a (N×1) 

vector of goods prices for x, M denotes total expenditure on these N goods, U(x) is the 

household direct utility function, and u is a reference utility level, a(p) = δ + α’ ln(p) + 0.5 

ln(p)’ Γ ln(p), α = (α1, …, αN)’ is a (N×1) vector, Γ =   is a (N×N) 

symmetric matrix, and b(p) = exp[

















NN1N

N111

γγ

γγ

∑ =

N

1i
βi ln(pi)]. Differentiating the log of expenditure 

function ln(E) with respect to ln(p) generates the AIDS specification: 

wilt = αi + ∑ γij ln(pjlt) + βi ln(Mlt/Plt),  (3) 
=

N

1j

where wilt = (pilt xilt/Mlt) is the budget share for the ith commodity consumed in the lth city at 

time t. The term P can be interpreted as a price index defined by  

ln(Plt) = δ + αm ln(pmlt) + 0.5 ∑ =

N

1m ∑ =

N

1m ∑ =

N

1j
γmj ln(pmlt) ln(pjlt). 

The above AIDS specification can be modified to incorporate the effects of socio-

demographic variables (Z1lt, …, ZKlt) on consumption behavior, where Zklt is the kth socio-

demographic variable in the lth city at time t, k = 1, …, K. Under demographic translating, 

assume that αi takes the form αilt = α0i+ ∑ =

K

1k
λik Zklt, i = 1, …, N. Then, the AIDS 

specification (3) becomes: 

wilt = α0i + λik Zklt + ∑ =

K

1k ∑ =

N

1j
γij ln(pijlt) + βi ln(Mlt) - βi [δ + α0m ln(pmlt) 

+ λmk Zklt ln(pmlt) + 0.5 

∑ =

N

1m

∑ =

N

1m ∑ =

K

1k ∑ =

N

1m ∑ =

N

1j
γmj ln(pmlt) ln(pjlt)].  (4) 

The theoretical restrictions are composed of symmetry restrictions: 

γij = γji for all i ≠ j, (5a) 
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and homogeneity restrictions: 

∑=

N

1i
α0i = 1; λik = 0, ∀k; ∑=

N

1i ∑=

N

1i
γij = 0, ∀ j; and ∑=

N

1i
βi = 0.  (5b) 

The system of share equations represented by (4) is nonlinear in the parameters. The 

parameter δ can be difficult to estimate and is often set to some predetermined value 

(Deaton and Muellbauer, 1980b). For the present analysis, we follow the approach 

suggested by Moschini, Moro and Green (1994) and set δ = 0. 

b. Derivation of the Profit Maximizing First-order Conditions 

Here we explain our approach in deriving the estimable profit maximizing first-

order conditions (FOC). We derive our base model FOC’s, assuming firm forms 

conjectures on pricing behavior of competitors when it changes its own prices. Conjectural 

variation (CV) models have been widely used in theoretical and empirical modeling and in 

analyzing the comparative static of different strategic games of firms (Dixit, 1986; 

Genesove and Mullin, 1995). Since CV models nest most of the non-cooperative game that 

we investigate (see below), they will help to simplify the testing of different games.  

For the simplicity of exposition lets assume there are two firms and each firm 

produces two brands (Firm 1 produces brand 1 and 2, and Firm 2 produces brand 3 and 4. 

So, firm profits (Π1 and Π2) can be written as: 

π1 = (p1 – c1) x1 + (p2 – c2) x2, for firm 1, (6a) 

π2 = (p3 – c3) x3 + (p4 – c4) x4, for firm 2. (6b) 

The firms face demand functions xi = fi(p1, p2, p3, p4), i = 1, …., 4, where fi(⋅) is given by 

the AIDS specification (4) (after omitting the time subscript t and location subscript l to 

simplify the notation). Assume that each firm anticipates the reaction of the other firm to 

its own pricing. In this paper, we assume that firms form conjecture such that each brand 
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price is a function of the prices of competing brands price. The nature of this conjecture 

depends on the strategic games (see below). Denote by p1(p3, p4) and p2(p3, p4) the 

conjectures of  firm 1, and by p3(p1, p2) and p4(p1, p2) the conjecture of firm 2. As a result, 

firm i’s brand level demand specification can be written as:  

xi = fi(p1(p3, p4), p2(p3, p4), p3(p1, p2), p4(p1, p2)), i = 1, …., 4. (7) 

From (6) and (7), we will first derive the first-order conditions for profit 

maximization. For firm 1, the corresponding FOCs to the profit function (6a) under the CV 

approach are: 

x1 + (p1 – c1) [∂f1/∂p1 + (∂f1/∂p3)(∂p3/∂p1) + (∂f1/∂p4)(∂p4/∂p1)]  

 + (p2 – c2) [∂f2/∂p1 + (∂f2/∂p3)(∂p3/∂p1) + (∂f2/∂p4)(∂p4/∂p1)] = 0, (8a) 

and 

x2 + (p1 – c1) [∂f1/∂p2 + (∂f1/∂p3)(∂p3/∂p2) + (∂f1/∂p4)(∂p4/∂p2)]  

+ (p2 – c2) [∂f2/∂p2 + (∂f2/∂p3)(∂p3/∂p2) + (∂f2/∂p4)(∂p4/∂p2)] = 0. (8b) 

Similar first-order conditions can be derived for firm 2. Note that (8a) and (8b) can 

be alternatively expressed as:  

TR1 + (TR1 – TC1) ψ11 + (TR2 – TC2) ψ12 = 0,     (9a) 

and   

TR1 + (TR1 – TC1)ψ21 + (TR2 – TC2) ψ22 = 0,  (9b) 

where TRi  denotes revenue, TCi  is total variable cost, ψ11 = [ε11 + ε13 η31 p1/p3 + ε14 η41 

p1/p4], ψ12 = [ε21 + ε23 η31 p1/p3 + ε24 η41 p1/p4], )ψ21 = [ε12 + ε13 η32 p2/p3 + ε14 η42 

p2/p4], ψ22 = [ε22 + ε23 η32 p2/p3 + ε24 η42 p2/p4], εij = ∂ln(fi)/∂ln(pj) is the price elasticity of 

demand, and ηij = ∂pi/∂pj is the brand j’s conjecture of brand i’s price response, i, j = 1, …, 

4. Combining these results with similar results for firm 2 gives  
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TR = (I + Ψ)-1 Ψ TC,        (10) 

where TR = (TR1, TR2, TR3, TR4)’, TC = (TC1, TC2, TC3, TC4)’, Ψ = 

 is a (4×4) matrix. Equation (10) provides a generic representation 

of the first-order conditions. This generic representation is similar to Nevo (1998). But, 

unlike Nevo and Cotterill et al., by transforming the FOCs in terms of elasticities, the 

supply side can easily be estimated with complex demand specifications like AIDS or 

Translog.  



















4443

3433

2221

1211

00
00

00
00

ΨΨ
ΨΨ

ΨΨ
ΨΨ

As mentioned earlier our derived FOCs are generic and different structures of ψ 

matrix correspond to different strategic games. In the case of Nash game with Bertrand 

conjecture the ψ matrix becomes:  

11 21

12 22

33 43

34 44

0 0
0 0

0 0
0 0

B

ε ε
ε ε

ε ε
ε ε

 
 
Ψ =
 
 
  

  (11) 

A cursory comparison of ψ and ψB matrix implies that Bertrand game imposes 

restrictions that all ηij’s are zero, in the CV model. So, the Bertrand game is nested in our 

CV model.  

Finally, note that the case of fully collusive game would correspond to the 

following ψ matrix 
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11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

COL

ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε

 
 
Ψ =

 
  




. (12) 

Note that, when collusion is defined over all brands, then the (I+ψ) matrix 

becomes singular due to Cournot aggregation condition. In this paper, we do not 

investigate a fully collusive game. Rather, we estimate partial brand level collusion, such 

as collusive pricing between Coke and Pepsi with Sprite and Mountain Dew playing 

Bertrand game. Given the historic rivalries between Coca Cola and Pepsi, such collusion 

may not be realistic. Below, we estimate this collusive model mainly for the purpose of test 

and comparison with other estimated models.  

 c. Reduced Form Expenditure Equation 

Similar to Blundell and Robin (2000), we specify a reduced form expenditure 

equation where household expenditure in the lth city at time t is a function of median 

household income and a time trend: 

Mlt = f(time trend, income).  (13) 

 

III. Model Selection Procedures 

The analysis by GLV (1992) was one of the first to suggest procedures to test 

appropriate strategic market models given probable alternative cooperative and non-

cooperative games. They use both likelihood ratio and Wald tests to evaluate different 

model specification. Of the two types of tests, the Wald test procedure is sensitive to 

functional form of the null hypothesis. Also, the Wald test can only be used in situations 

where models are nested in each other. As such, GLV (1992) suggest estimating alternative 
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models assuming different pure strategy gaming structures and then testing each model 

against the other using nested and non-nested likelihood ratio tests. In our view this is a 

suitable approach only in the case where the numbers of firms and products are few 

(preferably not more than two) and the demand and cost specification are not highly non-

linear. Otherwise as the number of products or firms increases, the number of alternative 

models to be estimated also increases exponentially.  

This is due to the fact that a firm may play different strategies for different brands. 

One brand of the firm may be a Stackelberg leader but the other brand may have a price 

followship strategy. It is even possible that firms may be collusive for some brands and at 

the same time plays non-collusive Stackelberg or Bertrand games on other brands. For 

each brand, managers of Coca Cola and Pepsi can choose from four stylized pure 

strategies.  These strategies are Stackelberg leadership, Stackelberg followship, non-

cooperative Betrand and collusion. For each brand this implies four conceivable pure 

strategies in pricing against each of the competing brands.  In Table 1, we 

diagrammatically present the strategy profile for each brand.  With four brands and four 

pure strategies in pricing, there are 256 (i.e., four firms with four strategies: 44) pure 

strategy equilibrium.  Given the large numbers of pure strategy games and highly non-

linear functional forms of our models, use of likelihood ratio based tests is not very 

attractive for our analysis. Indeed, we would need to estimate 256 separate models to test 

each models against the other. Out of sample information may help us to eliminate some of 

the games. 

        In Table 2, we present a sample of 12 representative games based on pure 

strategy pricing as described in Table 1. Of all the probable games, only the collusive game 
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[1] is not nested in our CV model derived earlier. So, except in the case of collusive model, 

we can test games by testing the statistical significance of the restrictions imposed by the 

game on the estimated CV parameters.  

We follow Dixit (1986) to develop null hypothesis in testing nested models. Dixit 

(1986) shows that most pure strategy games can be nested in a CV model.  As a result CV 

approach provides a parsimonious way of describing different pure strategy games.  

Following Dixit (1986), CV parameters can be interpreted as fixed points that establish 

consistency between the conjecture and the reaction function associated with a particular 

game.  In this paper we use our estimated CV model to test the different market structures 

presented in Table 1. For example, if all the estimated CV parameters were zero, then the 

appropriate game in the market would be Bertrand (game 2 in Table 2). This generates the 

following null hypothesis (which can be tested using a Wald test): 

[ηC,P ηC,MD ηS,P ηS,MD ηP, C ηP,S ηMD, P ηMD, S]′ = [0]′    (14) 

where C stands for Coke, P for Pepsi, S for Sprite and MD for Mountain Dew. 

In the case of any Stackelberg game, Dixit (1986) have shown that at equilibrium, 

the conjectural variation parameter of a Stackelberg leader should be equal to the slope of 

the reaction function of the follower, and followers CV parameter should be equal to zero. 

Thus, in a game where Coca Cola’s brands leads Pepsi’s brands (i.e., game 6 in Table 2: 

both Coke and Sprite leads Pepsi and Mountain Dew), corresponds to the following null 

hypothesis: 

[ηC,P ηC,MD ηS,P ηS,MD ηP, C ηP,S ηMD, P ηMD, S]′ = [RP,C RMD,C RP,S RMD,S  0 0 0 0]′  (15)          

where Ri,j’s are estimated slope of the reaction function of brand i of the follower to a price 

change in j of the leader. For the rest of the games (as in Table 2), we can generate similar 
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restrictions and test for them using a Wald test. We estimate the slope of the reaction 

functions by totally differentiating the derived first order conditions.   

We propose a sequence of test in the following manner. First we test our non-nested 

and partially nested models against each other using Vuong test (1989). In the present 

paper, our collusive model and CV model are partially nested. One major advantage of 

Vuong test is that it is directional. This implies that the test statistic not only tells us 

whether the models are significantly different from each other but also the sign of the test 

statistic indicates which model is appropriate. If we reject the collusive model, then the rest 

of the pure strategy models can be tested using Wald tests because they are nested in our 

CV model. 

IV. Database 

Table 3 provides brief descriptive statistics of all the variables used in the analysis.  

Figure 1 plots prices of the four brands. During the period of our study, Mountain Dew 

was consistently the most expensive, followed by Coke, Pepsi and Sprite.  Figure 2 plots 

volume sales by brands. In terms of volume sales Coke and Pepsi were almost at the same 

level, Sprite and Mountain Dew’s sales were significantly lower than Coke and Pepsi’s 

sales.   

 
V. Empirical Model Specification 

As noted above, we modify the traditional AIDS specification with demographic 

translating. As a result, our AIDS model incorporates a set of regional dummy variables 

along with selected socio-demographic variables. Many previous studies using multi-

market scanner data, including Cotterill (1994), Cotterill, Franklin and Ma (1996), and 

Hausman, Leonard and Zona (1994) use city specific dummy variables to control for city 
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specific fixed effects for each brand. Here we control for regional differences by including 

nine regional dummy variables.4 

Our AIDS specification incorporates five demand shifters, Z, capturing the effects 

of demographics across marketing areas. These variables include: median household size, 

median household age, percent of household earning less than $10,000, percentage of 

household earning more the $50,000, and supermarket to grocery sales ratio. Also to 

maintain theoretical consistency of the AIDS model, the following restrictions based on (5) 

are applied to the demographic translating parameter α0i: 

α0i = dir Dr, dir = 1, i = 1,…, N.  (16) 9

1r=∑ 9

1r=∑

where dir is the parameter for the ith brand associated with the regional dummy variable Dr 

for the rth region. Note that as a result, our demand equations do not have intercept terms. 

We assume constant linear marginal cost specification. Such cost specification is quite 

common and performs reasonably well in structural market analysis (e.g., Kadiyali, 

Vilcussim and Chintagunta, 1996; GLV, 1992; Cotterill, Putsis and Dhar, 2000). The total 

cost function is: 

               T_Cost = Fi + Mcostilt * xilt (17) 

Where Fi is the brand specific unobservable (by the econometrician) cost component and 

assumed not to vary at the mean of the variables.  Mcostilt is the observable cost component 

and we specify it as: 

 MCostilt = θi1 UPVilt + θi2 MCHilt  (18) 

where UPVilt in is the unit per volume of the ith product in the lth city at time t and 

represents the average size of the purchase. For example, if a consumer purchases only 

one-gallon bottles of a brand, then units per volume for that brand is one. Alternatively, if 
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this consumer buys a half-gallon bottle then the unit per volume is 2. This variable 

captures packaging-related cost variations, as smaller package size per volume implies 

higher costs to produce, to distribute and to shelve. The variable MCHilt measures 

percentage of a CSD brand i sold in a city l with any type of merchandising (e.g., buy one 

get one free, cross promotions with other products, etc.). This variable captures 

merchandising costs of selling a brand. For example, if a brand is sold through promotion 

such as: ‘buy one get one free’, then the cost of providing the second unit will be reflected 

in this variable.  

Following Blundell and Robin (2000), to control for expenditure endogeneity, the 

reduced form expenditure function in (4) is specified as: 

Mlt = η Trendt + ∑ δr Dr + φ1 INClt + φ2 INClt
2, t  = 1,…, 8,  (19) 9

1r=

where Trendt in (13) is a linear trend, capturing any time specific unobservable effect on 

consumer soft-drink expenditure. The variables Dr’s are the regional dummy variables 

defined above and capture region specific variations in per capita expenditure. The variable 

INClt is the median household income in city l and is used to capture the effect of income 

differences on CSD purchases. 

We estimate the system of three demand and four FOCs using FIML estimation 

procedure.  One demand equation drops out due to aggregation restrictions of AIDS.  The 

variance-covariance matrix and the parameter vector are estimated by specifying the 

concentrated log-likelihood function of the system.  The Jacobian of the concentrated log-

likelihood function is derived based on the models seven endogenous variablesl: 3 quantity 

demanded variables (e.g. xi’s), 4 price variables (e.g. pi’s) and the expenditure variable (e.g. 

M).  Note that we have one less quantity demanded variables than price variables. This is 
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due to the fact that we can express the demand for the fourth brand as function of rest of 

the endogenous variables: x4 = M – (p1x1 + p2x2  + p3x3) / p4. 

 

VI. Regression Results and Test of Alternative Models 

We estimate three alternative models:  (1) collusive oligopoly where the two firms 

colludes on the price of Coke and Pepsi, (2) Bertrand model, and (3) the conjetctural 

variation model.5 

We assume that the demand shifters and the variables in the cost and expenditure 

specification are exogenous. In general the reduced form specifications (i.e. equation (17) 

and (19)) are always identified. The issue of parameter identification in non-linear 

structural model is rather complex.6  We checked the order condition for identification that 

would apply to a linearized version of the demand equations (4) and found it to be 

satisfied. Finally, we did not uncover numerical difficulties in implementing the FIML 

estimation. As pointed out by Mittelhammer, Judge and Miller (2000, pages 474-475) we 

interpret this as evidence that each of the demand equations is identified.7 

Table 4 presents system R2 based on McElroy (1977). In terms of goodness of fit 

the full CV model fits the best and collusive model fits the least. However, goodness of fit 

measure in nonlinear regression may not be the appropriate tool to choose among models. 

To test for an appropriate nesting structure and to select the best model we run further tests 

based on likelihood ratio and Wald test statistics.  

As mentioned earlier we estimate only one game with collusion. From the pure 

strategy profile in Table 1 if we eliminate collusive strategy then we will be left with 

eighty one (i.e., four brands with three strategies each: 34) probable games.8 Of these 
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games full Bertrand model discussed above is one of them.  So, in this paper in total we 

test for eighty-two games, including a collusive game.     

Collusion (game 1 in Table 2):  As mentioned before we test only one game with 

collusion.  Existing literature and anecdotal evidence do not suggest that collusion is 

pervasive. Our collusion model where Coca Cola and Pepsi Inc. collude on pricing of Coke 

and Pepsi is partially nested within our full CV model. So, following GLV we use a 

modified likelihood ratio test based on Vuong (1989). The test statistic is –3.56. Under a 

standard normal distribution, the test statistic is highly significant. And the sign of the test 

provides strong evidence that the full CV model is more appropriate than the collusive 

model.  

Bertrand Game (game 2 in Table 2): Nash equilibrium with Bertrand conjectures has been 

widely used in the NEIO literature for market power analysis (e.g., Nevo, 2001). This 

motivated us to estimate this model separately so that we can test this model rigorously 

against our alternative estimated models. We first use our estimated full CV model to test 

for Bertrand conjecture. In the case of Nash equilibrium with Bertrand conjecture all the 

estimated CV parameters should be not significantly different from zero. At 95% 

significance level, 7 out of 8 CV parameter estimates are significant (Table 5). To provide 

additional information, we first used a Wald test to investigate formally the null hypothesis 

that all the CV parameters are zero. The estimated Wald test statistic is 4211.24. Under a 

chi-square distribution, we strongly reject the null hypothesis of Bertrand conjectures. Note 

that, unlike the likelihood ratio test, the Wald test can be specification sensitive 

(Mittelhammer, Judge and Miller, 2000). So, we also conducted a likelihood ratio test of 

the Bertrand model versus the full CV model. Testing the null hypothesis that restrictions 
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based on Bertrand conjectures are valid, we also strongly reject this null hypothesis with a 

test statistic of 865.78. In conclusion, all our tests suggest overwhelmingly that the 

Bertrand conjecture is not a valid conjecture in this market.  

Test of other Games:  Except for the collusive and the full Bertrand model, we use our 

estimated CV model to test for rest of the game.   

In the case of Stackelberg games, only the leader forms conjectures. Such 

conjectures should be consistent with the associated reaction functions and significant, and 

follower’s conjectures should be zero. In the case of estimated full CV model we do not 

observe any such patterns of significance, where one brand’s conjectures are positive and 

significant and the competing brand’s conjectures are insignificant.  

Table 5 presents estimated CV parameters and estimated slope of the reaction 

functions at the mean. For any two brands to have Stackelberg leader-follower relationship 

estimated CV parameters of the leader should be equal to the estimated reaction slope of 

the follower. For example, for Coke to be the Stackelberg leader over Pepsi, Cokes 

estimated conjecture over Pepsi’s price (i.e., 0.4126) should be equal to the estimated 

reaction function slope of Pepsi (i.e. -0.3599). This is a sufficient condition.  In addition, 

Pepsi’s conjecture on Coke’s price (i.e. –0.3232) should be equal to zero. Assuming that 

rest of the brand relationship is Bertrand our Wald test of the game investigates the 

empirical validity of these restrictions. The other games are tested in a similar fashion, 

using the restrictions on CV estimates and estimated reaction function slopes. We reject all 

the games at the 5% level of significance.9  Using Wald test we fail to accept any of the 

game as described in Appendix Table A1.10  
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Consistency of Conjectures: We fail to accept any of the game with Stackelberg 

equilibrium. So, we test for less restrictive sufficient condition of Stackelber leadership. 

That is we test for consistency of estimated conjectures. Consistency of conjectures implies 

a firm behaves as if it is a Stackelberg leader even though there may not be any firm 

behaving as Stackelberg follower. Results of the test of consistent conjectures are 

presented in Table 6. In general, our estimated reaction function slopes at the mean are 

quite different from the corresponding conjectures. This helps explain the overwhelming 

rejection of all the game scenarios with Stackelberg conjectures. Only Pepsi has a 

consistent conjecture with respect to Sprite at 1% level of significance. 

  

Failure to accept any specific nested games implies CV model is the most 

appropriate and general model. So, we focus our further analysis on our CV model. First, 

we explore the issue of estimating elasticities and Lerner Index using alternative models. 

The Lerner Index is defined as (Price-Marginal cost)/Price and calculated using the 

estimated FOCs. One of the main reasons to estimate a structural model is to estimate price 

and expenditure elasticities, and associated indicators of market power (e.g., Lerner Index). 

We evaluate the impact of alternative model specifications on elasticity and market power 

estimates. Table 7 and 8 present price and expenditure elasticity estimates for the full CV 

model.  

Dhar, Chavas and Gould (2001) and Vilas-Boas and Winer (1999) found that after 

controlling price and expenditure endogeneity, efficiency of the elasticity estimates 

improve dramatically. This study also finds significant improvements in terms of the 

efficiency of our elasticity estimates.11   
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In our CV model the estimated own price elasticities have the anticipated signs, and 

own and cross price elasticities satisfy all the basic utility theory restrictions (namely 

symmetry, Cournot and Engel aggregation). Also, all the estimated cross and own price 

elasticities are highly significant suggesting rich strategic relationships between brands. 

Our estimated expenditure elasticities are all positive and vary between 0.74 to 1.85, with 

Pepsi being the most inelastic and Mountain Dew being the most elastic brand.  

Table 9 presents Lerner indices. Each is an estimate of price-cost margin for the 

entire soft drink marketing channel, i.e. it includes margins of the manufacturers, 

distributors and retailers. Using our CV model, Pepsi has the lowest price-cost margin and 

Mountain Dew has the highest. This is consistent with the fact that Mountain Dew is the 

fastest growing carbonated soft drink brand, with a higher reported profit margin than most 

brands.12  

For the purpose of evaluating the impact of model specification, we also estimate 

the Lerner Index for the Bertrand and collusive games. Our estimated Lerner Index from 

the CV model, Bertrand, and collusive games are quite different. To compare them, we 

calculated the average absolute percentage differences (APD) among the estimated Lerner 

Indices, where APD between any two estimates (ε* and ε**) is defined as: 

APD = {100 |ε* - ε**|}/{0.5 |ε* + ε**|}. 

The average APD between Lerner Index estimates from the CV and the full Bertrand game 

is 19.14. Between the CV and the collusive model it is 57.92. Such large differences in 

estimated Lerner Index across models indicate that appropriate model specification is very 

important for empirical market power analysis.  
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VII. Concluding Remarks 

In this paper we analyze the strategic behavior of Coca Cola and Pepsi Inc. in the 

carbonated soft drink market. This is the first study to use the flexible nonlinear AIDS 

model within a structural econometric model of firm (brand) conduct. Also, we derive 

generic first-order conditions under different profit maximizing scenario that can be used 

with most demand specifications and to test for strategic games. This approach avoids 

linear approximation of the demand and/or first-order conditions.  

In this paper we test for brand level alternative games between firms.  Most of the 

earlier studies in differentiated product oligopoly either tested for games at the aggregate 

level (i.e., Cotterill, Putsis and Dhar, 2000) or between two brands (Golan, Karp, and 

Perloff, 2000; and GLV, 1992).  Given that most oligpolistic firms produces different 

brands, test of brand level strategic competition is more realistic.  

We first test our partially nested collusive model against our CV model. We find 

statistical evidence that the CV model is more appropriate than the collusive model. The 

remaining stylized games considered in this paper are in fact nested in the CV model. Our 

tests for specific stylized multi brand multi firm market pure strategy models (relying on 

Wald tests) are attractive because of its simplicity. Treating each game as a null 

hypothesis, we reject all null hypotheses. Our overall test results imply that the pricing 

game being played in this market is much more complex than the stylized games being 

tested.  

However, we have not considered all possible games. It may well be that some 

complex game not considered in this paper would appear consistent with the CV model. As 
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a result, if the researcher do not have any specific out of sample information on specific 

game being played then it is appropriate to estimate CV model.   

We use estimated parameters from different models to estimate elasticities and 

Lerner Index. We find these estimates to be quite sensitive to model specifications. The 

empirical evidence suggests that the CV model is the most appropriate.  

One of the shortcomings of this paper is that we do not consider mixed strategy 

games as in Golan, Karp and Perloff (2000). The pure strategy games considered here are 

degenerate mixed strategy games. It is possible that actual game involve games with mixed 

strategies. Additional research is needed to consider such models.   

 

   

 24



Table 1: Strategy Profiles of Each Brand 

(*) Represents brand strategy that is being considered. (*) implies probable pure strategy that can be considered.  With four brands and 
four probable strategies, the number of pure game that can be generated is 256.   

Brand    Pepsi Mountain Dew
Stackelberg
Leadership 

Stackelberg 
Followship 

Bertrand Collusion Stackelberg
Leadership 

Stackelberg 
Followship 

Bertrand Collusion

Stackelberg 
Leadership 

        * *

Stackelberg 
Followship 

*        *

Bertrand         * *

 
 
 
 
 

Coke 

Collusion         * *

Stackelberg 
Leadership 

        * *

Stackelberg 
Followship 

*        *

Bertrand         * *

 
 
 

Sprite 

Collusion         * *
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Table 2: Probable Pure Strategy Games€ 

Game Set 1: Game estimated and tested against CV model using likelihood ratio test: 

1 Collusive Game: Coke and Pepsi are the collusive brands. And Sprite and Mountain 
Dew uses Bertrand conjecture. 

2 Full Bertrand Game: Both the firms use Bertrand conjecture over all brands. 

Game Set 2: To Test following strategic games we used Wald test procedure: 

3 Mixed Stackelberg and Bertrand Game 1:  Coke leads Pepsi in a Stackelberg game. 
Rest of the brand relationship is Bertrand. 

4 Mixed Stackelberg and Bertrand Game 2: Coke leads Mountain Dew in a Stackelbarg 
game. Rest of the brand relationship is Bertrand. 

5 Mixed Stackelberg and Bertrand Game 3: Coke leads both Pepsi and Mountain Dew in 
a Stackelberg game. Rest of the brand relationship is Bertrand. 

6 Mixed Stackelberg and Bertrand Game 4: Coke leads Pepsi and Mountain Dew, and 
Sprite leads Pepsi and Mountain Dew in a Stackelberg game.  

7 Mixed Stackelberg and Bertrand Game 5: Coke leads Pepsi and Mountain Dew leads 
Sprite. Rest of the brand relationship is Bertrand. 

8 Mixed Stackelberg and Bertrand Game 7: Sprite leads Mountain Dew in a Stackelberg 
game. Rest of the brand relationship is Bertrand. 

9 Mixed Stackelberg and Bertrand Game 9: Pepsi leads Coke in a Stackelberg game. 
Rest of the brand relationship is Bertrand. 

10 Mixed Stackelberg and Bertrand Game 11: Pepsi leads Coke and Moutain Dew leads 
Sprite in a Stackelberg game. Rest of the brand relationship is Bertrand. 

11 Mixed Stackelberg and Bertrand Game 15: Mountain Dew leads Sprite in a Stackelberg 
game. Rest of the brand relationship is Bertrand. 

12 Mixed Stackelberg and Bertrand Game 15: Pepsi leads Coke and Sprite leads 
Mountain Dew in a Stackelberg game. Rest of the brand relationship is Bertrand. 

€ A sample list of pure strategy pricing Games. A detailed list of pure strategy game with 
three strategy is presented in Appendix Table A1. 
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Table 3:  Descriptive Statistics of Variables Used in the Econometric Analysis 

Mean Purchase Characteristics 

Brands Price ($/gal) 
[pi] 

Expend. 
Share 
[wi] 

Volume 
Per Unit 
[VPUi] 

Total  
Revenue 

($Million/ 
city) 

% 
Merchandising

[MCHi] 

Coke 3.72 (0.09) 0.44 (0.12) 0.44 (0.07) 1.03 (0.93) 83.19 (7.53) 
Mt. Dew 3.93 (0.15) 0.05 (0.04) 0.44 (0.07) 0.09 (0.07) 69.22  (14.41) 
Pepsi 3.65 (0.09) 0.44 (0.13) 0.45 (0.07) 1.03 (0.95) 83.51 (7.66) 
Sprite 3.63 (0.09) 0.07 (0.02) 0.42 (0.05) 0.17 (0.15) 78.79 (9.75) 
Mean Values of Other Explanatory Variables 

Variables Units Mean 

Median Age (Demand Shift Variable - [Zlt]) Years 32.80 (2.4) 

Median HH Size (Demand Shift Variable - [Zlt]) # 2.6 (0.1) 
% of HH less than $10k Income (Demand Shift Variable - [Zlt]) % 16.8 (3.3) 
% of HH more than $50k Income (Demand Shift Variable - [Zlt]) % 20.8 (4.9) 
Supermarket to Grocery Sales ratio (Demand Shift Variable - [Zlt]) % 78.9 (5.8) 
Concentration Ratio (Price Function: CR4

lt) % 62.4 (13.8) 
Per Capita Expenditure (Mlt) $ 5.91 (1.22) 
Median Income (Expenditure Function: INClt) $ 28374 (3445.3) 

 
Note: Numbers in parenthesis are the standard deviations. 
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Table 4: Estimated System R2 

Model Estimate 

Conjectural Variation Game 0.7182 

Bertrand Game 0.6079 

Collusive Game (Collusion of Coke and Pepsi Brand) 0.5242 

 

Table 5:  Estimated Conjectures and Slope of Reaction Functions¶ 

 
Conjecture 
 

Reaction Function  
 

Brand [*] 
Conjecture on 

Brand [*] 

Estimates 
 

Brand [*]  Reaction to [*]’s 
Price Change 

Estimate 
 

[Coke] [Pepsi] 0.4126    
(0.0189) 

[Pepsi]  [Coke] -0.3599 
(0.1665) 

[Coke] [Mt. Dew] -0.4431 
(0.3799) 

[Mt. Dew] [Coke] 1.3406 
(0.07552)

[Sprite] [Pepsi] 0.0368   
(0.0028) 

[Pepsi]  [Sprite] 1.69198 
(0.11753)

[Sprite]  [Mt. Dew] 0.1674  
(0.0771) 

[Mt. Dew]  [Sprite] -1.1259 
(0.0526) 

[Pepsi] [Coke] -0.3232 
(0.1487) 

[Coke]  [Pepsi] 1.3109 
(0.16659)

[Pepsi] [Sprite] 9.5276  
(2.0698) 

[Coke]  [Mt. Dew] 0.40856 
(0.07552)

[Mt. Dew] [Coke] -0.3153  
(0.1551) 

[Sprite] [Pepsi] 4.7133 
(0.11753)

[Mt. Dew]  [Sprite] 4.9466 
(2.1354) 

[Sprite] [Mt. Dew] -2.3821 
(0.0526) 

¶Numbers within the parenthesis (*) are the standard deviation of the estimates.  
Highlighted numbers are significant at the 5% level of significance.
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Table 6:  Test of Consistency of conjectures for Stackelberg Game¶ 
 Nature of Consistent Conjecture Test 

Statistic 

1 Pepsi has consistent conjecture over Sprite [1] 5.4634 

2 Mt. Dew has consistent conjecture over Sprite [1] 11.2938 

3 Pepsi and Mt. Dew have consistent conjecture over Sprite [1] 13.6508 

4 Coke has consistent conjecture over Pepsi [1] 20.4324 

5 Mt. Dew has consistent conjecture over Coke [1] 21.4919 

6 Coke has consistent conjecture over Mt. Dew [1] 22.3875 

7 Mt. Dew has consistent conjecture over Coke and Sprite [2] 27.5216 

8 Coke has consistent conjecture over Pepsi and Mt. Dew [2] 38.8266 

9 Pepsi has consistent conjecture over Coke [1] 84.2452 

10 Pepsi and Mt. Dew have consistent conjecture over Coke [2] 94.6637 

11 Sprite has consistent conjecture over Pepsi and Mt. Dew [2] 127.593 

12 Pepsi has consistent conjecture over Coke and Sprite [2] 150.537 

13 Pepsi and Mt. Dew have consistent conjecture over Coke and Sprite [4] 158.521 

14 Sprite has consistent conjecture over Mt. Dew 175.028 

15 Sprite has consistent conjecture over Pepsi 197.332 

16 Coke and Sprite have consistent over conjecture over Mt. Dew 200.356 

17 Coke and Sprite have consistent over conjecture over Pepsi 382.218 

18 Coke and Sprite have consistent conjecture over Pepsi and Mt. Dew 587.856 
¶Number in within the bracket [*] is the number of restrictions imposed for the test. Null 
hypothesis of each test is that conjectures are consistent. Highlighted numbers are 
significant at the 5% level of significance.
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Table 7:  Price Elasticity Matrix (CV Model) ¶± 
 Coke Sprite Pepsi Mountain Dew 

Coke -3.7948 

(0.0591) 

0.0016 

(0.0051) 

2.1814 

(0.0538) 

0.4311 

(0.0108) 

Sprite 0.1468 

(0.0426) 

-2.8400 

(0.0707) 

3.6776 

(0.1242) 

-1.8568 

(0.0562) 

Pepsi 2.3381 

(0.0602) 

0.5995 

(0.0177) 

-3.9384 

(0.0583) 

0.2529 

(0.0108) 

Mountain Dew 3.5060 

(0.1468) 

-2.7280 

(0.0831) 

1.7659 

(0.1082) 

-4.3877 

(0.0734) 
¶Numbers within the parenthesis (*) are the standard deviation of the estimates. 
± Rows reflect percentage change in demand and column reflect percentage change in 
price. Highlighted numbers are significant at the 5% level of significance. 
 

Table 8:  Expenditure Elasticity Matrix (CV Model) ¶ 

Brands Estimate 

Coke 1.1806 

(0.0282)  

Sprite 0.8725 

(0.0773) 

Pepsi 0.7478 

(0.0340) 

Mountain Dew 1.8438 

 (0.2102) 
¶Numbers within the parenthesis (*) are the standard deviation of the estimates.  
Highlighted numbers are significant at the5% level of significance. 
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Table 9:  Lerner Index 

Strategic Game Estimate 

 Coke Sprite Pepsi Mountain

Dew  

Conjectural Variation Game [1] 0.3233 0.3795 0.3221 0.5197 

Bertrand Game [2] 0.2647 0.2991 0.2601 0.4625 

Collusive Game [5] 0.7274 0.1940 0.6726 0.6325      
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Figure 1: Brand Price
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Figure 2: Volume Sales by Brands (Millions of Gallons)
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Table A1: Probable Strategic Games with Three Pure Strategies (Stackelberg leadsership, Stackelberg followsship, Bertrand)  
              
              Brand R Brand   Brand   R Brand  Brand R Brand  Brand R Brand

1 Coke           leads Pepsi  Coke leads M. Dew Sprite leads Pepsi Sprite leads M. Dew
2 Coke             leads Pepsi  Coke leads M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew
3 Coke            leads Pepsi  Coke leads M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew
4 Coke leads Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
5 Coke leads Pepsi  Coke  Bertrand M. Dew     Sprite leads Pepsi Sprite leads M. Dew
6 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite      leads Pepsi Sprite Bertrand M. Dew
7 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite     Bertrand Pepsi Sprite leads M. Dew
8 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
9 Coke Bertrand Pepsi  Coke  leads M. Dew     Sprite leads Pepsi Sprite leads M. Dew

10 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite      leads Pepsi Sprite Bertrand M. Dew
11 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite     Bertrand Pepsi Sprite leads M. Dew
12 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
13 Coke          leads Pepsi  Coke follows M. Dew Sprite leads Pepsi Sprite leads M. Dew
14 Coke leads Pepsi  Coke  follows M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew 
15 Coke leads Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew 
16 Coke leads Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
17 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite leads Pepsi Sprite leads M. Dew 
18 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew 
19 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew 
20 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
21 Coke           follows Pepsi  Coke leads M. Dew Sprite leads Pepsi Sprite leads M. Dew
22 Coke follows Pepsi  Coke  leads M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew 
23 Coke follows Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew 
24 Coke follows Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
25 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite leads Pepsi Sprite leads M. Dew 
26 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew 
27 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew 
28 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
29 Coke           Bertrand Pepsi  Coke Bertrand M. Dew Sprite leads Pepsi Sprite leads M. Dew
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30 Coke             Bertrand Pepsi  Coke Bertrand M. Dew Sprite leads Pepsi Sprite Bertrand M. Dew
31 Coke            Bertrand Pepsi  Coke Bertrand M. Dew Sprite Bertrand Pepsi Sprite leads M. Dew
32 Coke             Bertrand Pepsi  Coke Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew
33 Coke leads Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite follows M. Dew 
34 Coke leads Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
35 Coke leads Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
36 Coke leads Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
37 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite follows M. Dew 
38 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
39 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
40 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
41 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite follows M. Dew 
42 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
43 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
44 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
45 Coke leads Pepsi  Coke  follows M. Dew Sprite      follows Pepsi Sprite follows M. Dew
46 Coke leads Pepsi  Coke  follows M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
47 Coke leads Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
48 Coke leads Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
49 Coke Bertrand Pepsi  Coke  follows M. Dew       Sprite follows Pepsi Sprite follows M. Dew
50 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
51 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
52 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
53 Coke follows Pepsi  Coke  leads M. Dew Sprite      follows Pepsi Sprite follows M. Dew
54 Coke follows Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
55 Coke follows Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
56 Coke follows Pepsi  Coke  leads M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
57 Coke follows Pepsi  Coke  Bertrand M. Dew       Sprite follows Pepsi Sprite follows M. Dew
58 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew 
59 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew 
60 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew 
61 Coke Bertrand Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite follows M. Dew 
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62 Coke             Bertrand Pepsi  Coke Bertrand M. Dew Sprite follows Pepsi Sprite Bertrand M. Dew
63 Coke             Bertrand Pepsi  Coke Bertrand M. Dew Sprite Bertrand Pepsi Sprite follows M. Dew
64 Coke             Bertrand Pepsi  Coke Bertrand M. Dew Sprite Bertrand Pepsi Sprite Betrand M. Dew
65 Coke          leads Pepsi  Coke leads M. Dew Sprite leads Pepsi Sprite follows M. Dew
66 Coke            leads Pepsi  Coke leads M. Dew Sprite follows Pepsi Sprite leads M. Dew
67 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite leads Pepsi Sprite follows M. Dew 
68 Coke leads Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite leads M. Dew 
69 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite leads Pepsi Sprite follows M. Dew 
70 Coke Bertrand Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite leads M. Dew 
71 Coke leads Pepsi  Coke  follows M. Dew Sprite leads Pepsi Sprite follows M. Dew 
72 Coke leads Pepsi  Coke  follows M. Dew Sprite follows Pepsi Sprite leads M. Dew 
73 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite leads Pepsi Sprite follows M. Dew 
74 Coke Bertrand Pepsi  Coke  follows M. Dew Sprite follows Pepsi Sprite leads M. Dew 
75 Coke follows Pepsi  Coke  leads M. Dew Sprite leads Pepsi Sprite follows M. Dew 
76 Coke follows Pepsi  Coke  leads M. Dew Sprite follows Pepsi Sprite leads M. Dew 
77 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite leads Pepsi Sprite follows M. Dew 
78 Coke follows Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite leads M. Dew 
79 Coke Bertrand Pepsi  Coke  Bertrand M. Dew Sprite leads Pepsi Sprite follows M. Dew 
80 Coke Bertrand Pepsi  Coke  Bertrand M. Dew Sprite follows Pepsi Sprite leads M. Dew 
81 Coke Bertrand Pepsi   Coke  Bertrand M. Dew  Sprite      Bertrand Pepsi  Sprite Bertrand M. Dew

Note: Here follows implies Stackelberb followsship; leads implies Stackelberg leadsership, Bertrand implies Bertrand Nash equilibrium. 

 39



Appendix Table A2: Regression Results (CV Model): 
 
Variable Value Confidence Interval (95%) 

Coke Lower  Upper 
Region Binary 1 0.4449 0.5015 0.3882 
Region Binary 2 0.3095 0.3549 0.2640 
Region Binary 3 0.3926 0.4251 0.3601 
Region Binary 4 0.3710 0.4145 0.3275 
Region Binary 5 0.5511 0.5810 0.5211 
Region Binary 6 0.5998 0.6410 0.5585 
Region Binary 7 0.7025 0.7387 0.6663 
Region Binary 8 0.3073 0.3692 0.2453 
Region Binary 9 0.3793 0.4208 0.3377 
Median Age 0.1464 0.5724 -0.2796 
Median Household Size 0.8413 1.4682 0.2144 
% of HH earning less than $10,000 0.0486 0.1018 -0.0046 
% of HH earning more than $50,000 0.1068 0.1906 0.0230 
Supermarket to grocery sales ratio 0.0573 0.2010 -0.0864 
Total Expenditure on Softdrinks 0.0788 0.0545 0.1031 
Price of Coke -1.1842 -1.2316 -1.1369 
Price of Sprite 0.0063 0.0019 0.0108 
Price of Pepsi -0.1314 -0.1413 -0.1215 
Sprite 
Region Binary 1 0.0907 0.0808 0.1006 
Region Binary 2 0.0632 0.0526 0.0739 
Region Binary 3 0.0547 0.0477 0.0618 
Region Binary 4 0.0458 0.0392 0.0525 
Region Binary 5 0.0832 0.0762 0.0901 
Region Binary 6 0.0915 0.0839 0.0991 
Region Binary 7 0.1004 0.0943 0.1065 
Region Binary 8 0.0661 0.0559 0.0762 
Region Binary 9 0.0629 0.0537 0.0721 
Median Age 0.1221 0.0347 0.2095 
Median Household Size 0.2546 0.1255 0.3837 
% of HH earning less than $10,000 -0.0024 -0.0156 0.0108 
% of HH earning more than $50,000 0.0211 0.0063 0.0360 
Supermarket to grocery sales ratio 0.0243 -0.0044 0.0530 
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Total Expenditure on Softdrinks -0.0091 -0.0199 0.0018 
Price of Coke    
Price of Sprite 0.9848 0.9376 1.0321 
Price of Pepsi 0.2576 0.2415 0.2736 
Sprite 
Region Binary 1 0.4220 0.3638 0.4802 
Region Binary 2 0.5499 0.4938 0.6060 
Region Binary 3 0.4567 0.4198 0.4936 
Region Binary 4 0.5015 0.4528 0.5501 
Region Binary 5 0.3099 0.2712 0.3486 
Region Binary 6 0.2718 0.2101 0.3334 
Region Binary 7 0.1812 0.1406 0.2219 
Region Binary 8 0.5786 0.5071 0.6502 
Region Binary 9 0.4942 0.4472 0.5412 
Median Age -0.3002 -0.7958 0.1955 
Median Household Size -1.1276 -1.8641 -0.3911 
% of HH earning less than $10,000 -0.0435 -0.1092 0.0222 
% of HH earning more than $50,000 -0.1025 -0.1985 -0.0066 
Supermarket to grocery sales ratio -0.0531 -0.2181 0.1118 
Total Expenditure on Softdrinks -0.1117 -0.1414 -0.0820 
Price of Coke    
Price of Sprite    
Price of Pepsi -1.3475 -1.3988 -1.2962 

Cost Side Variables 
Coke 
Intercept 0.0984 0.0871 0.1098 
Volume per Unit 3.9901 3.7042 4.2761 
% Merchandising 0.2982 0.2783 0.3181 
Sprite 
Intercept 0.0191 0.0172 0.0209 
Volume per Unit 2.9059 2.5447 3.2672 
% Merchandising 0.2663 0.2440 0.2887 
Pepsi    
Intercept 0.1314 0.1247 0.1381 
Volume per Unit 3.0537 2.8704 3.2371 
% Merchandising 0.3287 0.3142 0.3431 
Mountain Dew    
Intercept 0.0104 0.0077 0.0132 
Volume per Unit 5.6314 4.8186 6.4442 
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% Merchandising 0.1742 0.1327 0.2157 
Expenditure Equation 
Time Trend -0.2971 -1.7706 1.1763 
Region Binary 1 -2.3953 -5.0176 0.2271 
Region Binary 2 -2.4676 -5.0721 0.1369 
Region Binary 3 -2.1883 -4.8134 0.4368 
Region Binary 4 -2.5114 -5.1515 0.1286 
Region Binary 5 -2.2477 -4.7944 0.2991 
Region Binary 6 -2.4061 -4.9739 0.1618 
Region Binary 7 -1.9104 -4.4340 0.6133 
Region Binary 8 -2.3797 -5.0293 0.2700 
Region Binary 9 -2.2641 -4.9129 0.3847 
Median HH Income 1.4355 -0.2691 3.1401 
Square of Median HH Income -0.1744 -0.4527 0.1039 
Estimated Conjectural Slope Coefficients 

Pepsi

Coke

dP
dP  

0.4126 0.3754 0.4497 

.Mt Dew

Coke

dP
dP  -0.4431 -1.1909 0.3047 

 

Pepsi

Sprite

dP
dP  

0.0368 0.0313 0.0422 

.Mt Dew

Sprite

dP
dP  0.1674 0.0157 0.3191 

Coke

Pepsi

dP
dP  -0.3232 -0.6159 -0.0304 

Sprite

Pepsi

dP
dP  

9.5276 
 

5.4537 
 

13.6016 

.

Coke

Mt Dew

dP
dP  -0.3153 

 
-0.6205 -0.0100 

.

Sprite

Mt Dew

dP
dP  

4.9466 0.7435 9.1497 
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Footnotes 

                                                 
1 For a detailed discussion on problems with LA-AIDS please refer to Chen (1998), Buse 

and Chan (2000). 

2 During the period of our study, Coca Cola Inc. did not have any specific brand to 

compete directly against Mountain Dew. Only in 1996 they introduced the brand Surge to 

compete directly against Mountain Dew. 

3 Information Resources Inc., collects data from supermarkets with more than $2 million in 

sales from major US cities. The size of supermarket accounts for 82% of grocery sales in 

the US. 

4 A list of the cities and definitions of the nine regions used in our analysis can be obtained 

from the authors upon request. Our region definitions are based on census definition of 

divisions. 

5 A regression result of the CV model is presented in the Appendix. 

6 For a detailed discussion please refer to Mittelhammer, Judge and Miller (2000, pages 

474-475).  

7 Due to space limitations, we report only related econometric results. More complete 

reports of the results are available from the authors on request.  

8 A detailed lists of all the games with three pure strategies is presented in Appendix Table 

A1. 

9 Detail test procedures and statistics are available from the authors on request. 

10 Detailed test statistics of all the games tested is available from the authors on request. 

11 Detailed results of models without controlling for endogeneity are available from the 

authors on request. 
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12 According to Andrew Conway, a beverage analyst for Morgan Stanley & Company: 

"Mountain Dew gives Pepsi about 20 percent of its profits because it's heavily skewed 

toward the high-profit vending-machine and convenience markets. In these channels, 

Mountain Dew is rarely sold at a discount." (New York Times, Dec 16, 1996).  
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