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Abstract

This paper studies three econometric issues which appear in the estima-
tion of dynamic discrete games: (1) the identification of strategic interactions
among players; (2) the existence of multiple equilibria, that makes maximum
likelihood estimation unfeasible even in relatively simple models; and (3) the
exponential degree of complexity in the solution and estimation. First, we
present conditions for nonparametric identification of players’ payoff functions
which apply regardless multiplicity of equilibria. Second, we propose a simple
pseudo-maximum likelihood estimator (PMLE) and prove its consistency and
asymptotic normality. We present also a version of this estimator that exploits
randomization techniques to approximate value functions. This estimator can
be computed in polynomial time, and it is asymptotically equivalent to the
PMLE if \/T/R — 0 as T — o0, where T is the sample size and R is the
number of simulations.
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1 Introduction

Empirical discrete games have proved to be useful econometric tools that provide
parsimonious descriptions of strategic and social interactions among economic agents.
The range of recent applications includes, among others, models of firms’ entry (Bres-
nahan and Reiss, 1990, Berry, 1992, Reiss, 1996, Toivanen and Waterson, 2000), firms’
spatial competition (Davis, 2000, and Seim, 2000), family labor supply (Kooreman,
1994), and models with social interactions (see Brock and Durlauf, 2001). However,
two main problems have limited the scope of applications to relatively simple static
games with a small number of players and choice alternatives: the problem of multi-
ple equilibria, and the “curse of dimensionality” associated with the solution of these
models. This paper studies these problems in a class of dynamic discrete games and
develops techniques for the estimation of players’ preferences. The paper analyzes
also the identification of strategic interactions (or social interactions) in these games,
i.e., the so called reflection problem (Manski, 1993). We show that certain types of
dynamic games provide exclusion restrictions that can be exploited to identify non-
parametrically strategic interactions. The rest of this introductory section describes
previous work on these issues and the contribution of this paper.

Multiple equilibria. Multiple equilibria is a prevalent feature in most empirical
games, discrete or not, where best response functions are non-linear in other play-
ers’ actions. Models with multiple equilibria do not have a unique reduced form and
this indeterminacy may pose practical and theoretical problems in the estimation of
structural parameters. In particular, extremum estimators based on criterion func-
tions which depend on reduced form probabilities, like maximum likelihood, can be
unfeasible. Nevertheless, in games where unobservables appear additively in best re-
sponse functions there is a relatively standard estimation procedure: orthogonality
between unobservables and observable exogenous variables provides moment condi-
tions that can be used to obtain consistent estimates of structural parameters. In fact,
continuous differentiability and strict monotonicity of unobservables in best response

functions is a sufficient condition to apply this approach.! However, these conditions

!Under continuous differentiability and strict monotonicity of unobservables in best response



do not hold in discrete games.

Econometricians have used two main approaches to deal with this problem in
discrete games. A first approach has been to impose restrictions which guarantee
equilibrium uniqueness. In particular, if strategic interactions have a recursive struc-
ture (i.e., player 1’s payoff does not depend on other players’ actions; player 2’s payoff
depends on player 1’s action but not on other players’ actions; etc) the equilibrium is
unique and the model has a well-defined reduced form (see Heckman, 1978, Blundell
and Smith, 1994, and Kooreman, 1994). However, this assumption imposes strong
restrictions on players’ strategic interactions which are not plausible in many appli-
cations. Furthermore, as shown by Tamer (2000), these restrictions may not be nec-
essary for the identification of the model.> A second approach consists on exploiting
only those predictions of the game which are invariant across the multiple equilibria.
For instance, Bresnahan and Reiss (1990) and Berry (1992) consider static models of
firms’ entry where the number of entrants (but not their identity) is constant over
the multiple equilibria. Their estimator maximizes a likelihood for the number of
entrants, regardless their identity. However, this solution is problem-specific since an
invariant function of the outcome may not always be available. It also implies a loss
of efficiency since not all of the information contained in the sample is used. More
importantly, this loss of information can make impossible to identify some parameters
of interest.

The estimation approach that we proposed in this paper is based on a represen-
tation of equilibria in the space of players’ choice probabilities. That is, equilibrium
choice probabilities solve an equilibrium mapping that we call best response probability
mapping. In a first stage, we obtain nonparametric (or semiparametric) estimates of
equilibrium choice probabilities. This first stage identifies the equilibrium that play-
ers in our data are actually playing. In a second stage, our estimator of structural

parameters maximizes a pseudo likelihood function where players’ probabilities are

functions it is possible to invert these functions to obtain an expression where unobservables appear
additively. This is the estimation approach proposed by Berry (1994) and implemented by Berry,
Levinshon and Pakes (1995) in the context of Bertrand games in differentiated product markets.
2Notice also that in the context of dynamic games this recursive structure in one-period payoff
functions does not guarantee the uniqueness of Markov Perfect equilibrium. The reason is that
intertemporal payoffs do not have this recursive structure even when one-period payofts do.



best responses to the equilibrium probabilities estimated in the first stage. We prove
consistency and asymptotic normality of this pseudo maximum likelihood (PML) es-
timator. The procedure can be applied repeatedly in order to get a K-stage estimator
with better statistical properties than the two-stage estimator. Two assumptions play
an important role in our econometric approach: (1) players have incomplete informa-
tion about other players’ state variables, which allows us to represent Markov Perfect
equilibria in terms of players’ choice probabilities; and (2) players, or nature, do not
randomize among multiple equilibria, which implies that population choice probabil-
ities are equilibrium probabilities and not a mixture of equilibrium probabilities.

Curse of dimensionality. Computational costs in the solution and estimation of
these models have also limited the range of empirical applications to static models
with a relatively small number of players and choice alternatives. The cost of comput-
ing an equilibrium in these models increases exponentially with the number of players.
Therefore, though single-agent models with discrete decision and state variables can
be solved in polynomial time, the solution of discrete games requires exponential time
(i.e., there is a “curse of dimensionality”). Recent work by Pakes and McGuire (1994
and 2002) provides an efficient stochastic algorithm to compute Markov-Perfect equi-
libria in dynamic discrete games. However, the typical nested fixed-point algorithms
used to estimate single agent dynamic models and static games (see Berry, 1992,
Rust, 1994, or Seim, 2000) require the repeated solution of the model for each trial
value of the vector of parameters to be estimated. Therefore, the cost of estimating
these models using these nested algorithms is several orders of magnitude larger than
solving the model just once.

We show that the cost of implementing our PML estimator is of the same order of
magnitude as one Newton iteration for solving the dynamic game. Therefore, this cost
is several orders of magnitude smaller than the cost of a nested fixed-point algorithm.
However, just one Newton iteration can be computationally very expensive for some
dynamic games, and its degree of complexity is also exponential in the number of
players. For that reason, we also propose a version of the PML estimator that exploits
randomization techniques to approximate value functions (see Rust, 1997, and Pakes

and McGuire, 2002). This estimator can be calculated in polynomial time, and it is



asymptotically equivalent to the PML estimator if v/T' /R — 0 as T — oo, where T
is the sample size and R is the number of simulations. In this sense, this method
breaks the “curse of dimensionality” in the estimation of this class of models.

Identification and reflection problem. We show that, given the discount factor and
the probability distribution of unobservables, expected payoffs (i.e., players’ payoff
functions integrated over the probability distribution of other players’ equilibrium
strategies) are nonparametrically identified. This identification holds with or without
multiple equilibria as long as players (or nature) do not switch over time among
different equilibria. Given expected payoffs, the identification of payoff functions (i.e.,
not integrated over other players’ equilibrium strategies) is subjected to the so called
reflection problem (Manski, 1993), and therefore exclusion restrictions are needed.
We discuss exclusion restrictions that appear in the context of dynamic games.

The rest of the paper is organized as follows. Section 2 describes the class of models
considered in this paper, presents the basic assumptions, and defines a Markov-perfect
equilibrium in this class of models. Section 3 discusses the identification of primitives.
Section 4 presents our pseudo maximum likelihood estimator (PMLE). In section 5,
we analyze the degree complexity in the implementation of the PMLE and propose
a randomized version of this estimator. We conclude and summarize in section 6.

Proofs of different results are provided in the Appendix.

2 A dynamic discrete game

This section presents a dynamic discrete game with incomplete information. In order
to make some of the discussions more intuitive we consider a model where a finite
number of companies decide the number of outlets to operate in a local market and

the spatial location of these outlets.?

2.1 Framework and basic assumptions

The market is a city divided into a finite number of non-overlapping locations or

cells. Locations are characterized by demand conditions which can change over time

3Davis (2000) and Seim (2000) consider similar models in a static context.



(e.g., number of households, distribution of household income, age, etc). Let d; be
the vector with the characteristics of all locations at period t. There are N firms
operating in the market, which we index by i € I = {1,2,...N}. At every discrete
period t firms decide simultaneously how many stores to operate and their locations.
Profits are bounded from above such that the maximum number of stores is finite.
Therefore, a firm’s set of choice alternatives, A, is discrete and finite. We represent
the decision of firm ¢ at period ¢ by the variable a;; € A = {1, ..., J}.

At the beginning of period t a firm is characterized by two vectors of state vari-
ables, x;; and £, which affect its profitability. Variables in x;; are common knowledge
for all firms in the market, but the vector ¢; is private information of firm i.* Let
xy = (dy, ¢, Tot, ..., Tne) and e = (€14, Eat, ..., Ent) be the vectors of common knowl-
edge and private information variables, respectively. A firm’s current profits depends
on x;, on its own private information €;, and on the vector of firms’ current deci-
sions, a; = (at, as, ..., ant). Let ﬂi(at, Ty, &) be firm i’s current profit function. We
assume that {x;,e;} follows a controlled Markov process with transition probability
p(Ti11,E441|as, 4, €¢). This transition probability is common knowledge.

A firm decides its network of stores to maximize expected discounted intertempo-

ral profits:

E{iﬁs_t I1;(as, 75, €is) | %5#} (1)

s=t
where 3 € (0,1) is the discount factor. The primitives of the model are the profits
functions {II;(.) : i = 1,2,...N}, the transition probability p(.|.), and the discount

factor 3. We consider the following assumptions on these primitives.

ASSUMPTION 1: Private information appears additively in the profit function. That
is,

I (ag, e, ) = Wy (ag, 20) + €ulai)

where II;(.) is a real valued function, and e;; = {ex(1),1(2),...,ex(J)} € R’ is a

vector of real valued random variables.

4For instance, some variables which could enter in x; are the firm’s network of outlets at pre-
vious period or the firm’s previous market share. Managerial ability at different outlets could be a
component of ;.



ASSUMPTION 2: The transition probability p(z:y1,€r1]ar, ¢, €¢) factors as:

p($t+1,€t+1|at,$t,€t) :pe(€t+1) f($t+1 | ataxt)

That is: (1) given firms’ decisions at period ¢, private information variables do not
affect the transition of common knowledge variables; (2) future realizations of private
information variables are independent of current decisions and common knowledge
variables; and (3) private information variables are independently and identically
distributed over time. We also assume that private information is independently
distributed across firms: p.(g;) = Hj\; L 9i(€it), where, for any firm 1, g;(.) is a density

function which is absolutely continuous with respect to the Lebesgue measure.

ASSUMPTION 3: Common knowledge variables have a discrete and finite support:

r, € X = {2', 2%, ..., 2%} where | X|is a finite number.

2.2 Strategies and Bellman equations

The game has a Markov structure, and we assume that firms play Markov strategies.
That is, if {x;,e4} = {xs, €5} then firm i's decisions at periods ¢ and s are the same.
Therefore, we can omit the time subindex and use 2’ and & to denote next period
state variables. Let a = {a;(z,¢;)} be a set of strategy functions or decision rules,
one for each firm, with a; : X x R’ — A. Associated with a set of strategy functions

a we can define a set of conditional choice probabilities P* = { P*(a;|z)} such that,
P ai|z) = Prlos(z,e;) = a; |z] = /I{ai(fﬁ,&') = a;} gi(e:) de; (2)

where I{.}is the indicator function. The probabilities { P*(a;|z) : a; € A} represent
the expected behavior of firm ¢ from the point of view of the rest of the firms when
firm ¢ follows its strategy in a.

Let 7;(a;, z; P%;) be firm i’s expected profit if it chooses alternative a; and the other

firms behave according to their respective strategies in «..” Since private information

5In the terminology of Harsanyi (1995), the profits functions II;(ay, as, ...,ay, x) are conditional
payoff functions, and the expected profits m;(a;, x; P%,) are semi-conditional payoff functions.



variables are independent across firms, it is clear that:
ﬂ-i(a'ivx; sz) = Z (H Pf(aﬂx)) Hi(a'ha—i?x) (3)
a_;€AN=1 \j#i
Let Vi(z,&;; P%) be the value of firm i if this firm behaves optimally now and in the

future given that the other firms follow their strategies in a. By Bellman’s principle

of optimality, we can write:

a; €A

Vi(z, &5 P%) = max {m(ai,x; P*) +eia;) + 8 [/Vi(az’,ag; P2) g(&) de}| fi(a'|x, a;

r'eX
(4)
where f;(2'|z, a; P%,) is the transition probability of z conditional on firm i choosing

—1

a; and the other firms behaving according to a:
fil@|zai P2) = Y (H Pﬂ%lﬁ)) f@|z, ai,a-) (5)
a_;€AN—L \j#i
It is convenient to define value functions integrated over private information vari-
ables. Let Vj(x; P%) be the integrated value function [ V(x,e;; P%) g(de;). Based on

this definition and equation (4), we can obtain the integrated Bellman equation:

Vi(z; P%) = max {m(ai,x;Po‘i) +ei(a;) + 8 Vi(a'; PY) fi(@ |z, as; PY) 3 gi(de;)
@i z'eX

(6)

The right hand side of equation (6) is a contraction mapping in the space of value

functions (see Rust et al, 2002, and Aguirregabiria and Mira, 2002). Therefore, for

each firm, there is a unique function V;(z; P%) that solves this functional equation

for given a.

2.3 Markov-perfect equilibria

Let ¢,(x,e;; P*;) be the best response of firm i if other players follow their strategies
in a.. That is,

¢i(@, e P%) = arg max {vilai, z; P%) + £i(ai) | (7)

6In a static game, firm 4’s best response to other firms’ strategies in o is arg maXq,c A
{mi(a;, z; P%;) + €:;(a;)}, and we can use these best response functions to define (Bayesian) Nash
equilibria.

; P2

—1

J



where {v;(a;, z; P%)} are the conditional choice value functions:
vi(ai, z; P%) = mi(a;, v; P%) + B Z Vi@lé P%) ﬁ-(x’|x, ai; P%) (8)
z'eX
So far « is arbitrary and does not necessarily describe the equilibrium behavior of
other firms. The following definition characterizes equilibrium strategies of all firms

as best responses to one another.

DEFINITION: A stationary Markov-perfect Equilibrium (MPE) in this game is a set
of strategy functions o such that for any firm i and for any (z,¢;) € X x R’,

ar(x>€i) = Qsi(x?gi;PS[;) (9)

Following Milgrom and Weber (1985) we can also represent a MPE in probability
space.” Let a* be a set of MPE strategies, and let P* be the set of conditional choice
probabilities associated with these strategies. Then, P* = ®(P*), where for any
vector of probabilities P, ®(P) = {®;(a;|z; P-;)}, and:

®i(ailz; Py) = Ni(ail{vi(d, z; P-y) 1 j € A}) (10)

where A;(a;|{c; : j € A}) is the operator [ I (a; = argmax;eca [c; + €;(7)]) g:(de;). We
call the functions ®; best response probability functions. Given our assumptions on the
distribution of private information, best response probability functions are continuous
in P, and therefore an equilibrium in probabilities exits. In general, the equilibrium
is not unique.

Equilibrium probabilities solve the coupled fixed-point problem defined by (6) and
(10). Given a set of probabilities P we obtain value functions V; as solutions of the N
fixed point problems in (6); and given these value functions we obtain best response

probabilities using the right hand-side of equation (10).

2.4 An alternative equilibrium mapping

Based on results in Aguirregabiria and Mira (2002), we now define an equilibrium
mapping that avoids the solution of the N fixed point problems in (6). This alterna-

tive equilibrium mapping is an important building block in our estimation method.

"Milgrom and Weber consider both discrete-choice and continuous-choice games. In their termi-
nology {P*} are called distributional strategies, and P* is an equilibrium in distributional strategies.

8



Let P* = {P;(ai|x)} be an equilibrium in choice probabilities, and let V}*, Vi, ...,
V3 be the firms’ value functions associated with this equilibrium. Since equilibrium
probabilities are best responses, we can rewrite the Bellman equation (6) as,

Vit(z) = > Pa]z) [m(ai,x;Pj )+ ei(a; P (x } + 68> Vi) f(a|z; PY) (11)
a;€A z'eX
where f(x2'|x; P*) is the transition probability of z induced by P*.# The term e;(a;; P (x))
is the expectation of ¢;(a) conditional on x and on alternative a; being the optimal
response for player i. By Hotz-Miller proposition (Hotz and Miller, 1993), these
conditional expectations are only functions of a; and P (z).

Taking equilibrium probabilities as given, expression (11) describes the vector of

values V;* as the solution of a system of linear equations. In vector form:

x| = B F(P)| Vit =3 Pi(ai) # [milas; PT) + eqlas; PY)) (12)

a; €A

where Ijx| is the identity matrix; F'(P*) is a matrix with transition probabilities
f(&'|z; P*); and P?(a;), m;(a:; P*,) and e;(as; PF) are vectors of dimension | X| with
the obvious definitions. Let I';(P*) = {I';(z; P*) : * € X} be the solution to this
system of linear equations, such that V;*(z) = I';(x; P*). For arbitrary probabilities
P, not necessarily in equilibrium, I';(.) can be interpreted as a wvaluation operator:
that is, I';(x; P)is the expected value of firm i if all firms (including firm i) behave
today and in the future according to their choice probabilities in P. Therefore, we
can represent the equilibrium condition as P* = W(P*), where V(P) = {¥;(a;|z; P)}
and:

Ui(aiz; P) = Ai(ail{0:(j, 25 P)}) (13)
where now the conditional choice values v; are based on the operator I';(z; P) instead
of on the values Vj(z; P_;), i.e., 0;(4, 7; P) = m(j, 7; P_3)+8 X wex Li(x; P) fi(a'|x, j; Py).

The only difference between equilibrium mappings ®; and ¥; is that in the second
mapping we use the valuation operators I';(z; P) instead of the values V;(x; P_;). To

evaluate ®; one has to solve N dynamic programming problems, but to obtain I'; one

8That is, f(2'|z; P*) = ZQEAN ( PZ* a;|z >f(x’:t,a) = Z eAPZ (a;|z) fi (' |z, a;).



has to solve N systems of linear equations. Of course, this does not necessarily mean
that solving for an equilibrium using mapping V¥ is cheaper that using mapping ,
because the number of iterations needed with each of these operators can be different.
However, in the context of the estimation of the model, we will see that using mapping

U instead of ® can provide significant computational gains.

2.5 An example: A conditional logit dynamic game

We illustrate the previous definitions and results in the context of a dynamic game
version of McFadden’s conditional logit (McFadden, 1984). Payoff functions have the

following form:

1L (a, z, &) = y1(as, ;) 01+ ya(as, ©_3) O + ys(as, a_s) O3 + 5(a;) (14)
where 6y, 05, and 03 are column vectors of structural parameters, and y;(.), ya(.),
and ys3(.) are row vectors of functions of decision and state variables. Following
Manski’s terminology: (1) the term y(a;, z;)0; captures correlated effects; (2) the
component ys(a;, x_;)0s represents contextual effects; and (3) the term ys(a;,a_;)03
captures strategic interactions or endogenous effects. Private information variables
{ei(a) : a € A} are independently and identically distributed over time, over individ-
uals and over choice alternatives with Extreme value type 1 distribution.

Expected payoffs induced by a vector of probabilities P are:
mi(as, ; Pi) = yi(as, ;) 01 + yalas, ;) 02 + si[as; Pi(z)] 03 (15)

where s; [a;; P—_;(x)] = Za,i <H#i Pj(a,j|x)> ys(a;,a—;). Given the extreme value

distribution of ¢, the (integrated) Bellman equation is:

J=1

Vi(w; Pj) = In [zexp (m,a P) + BY, Vilas L) Fielajs Po)}| (16)

And best response probability functions are:

(I>z'(ai|$; P—i) =

exp {7‘-2(@271' P—Z) + 8> (x P—Z) J;( |l‘,a¢; P—i)} (17)

ijl €xXp {ﬂ-l<j7x7 Pfl)—’_ﬁZm"/l( ( /|(L’,],P,l)}

10



We show in the Appendix that in this model the equilibrium mapping ¥, has the

following form:

,(ala; P) = exp { Gii(a, ; P) 01 + Goila, z; P) 05 + 8i(a, z; P) 03+ &(a,z; P) }
AR )T T - y /. -
23:1 exp{ 71:(j, z; P) 01 + G2i(4, x5 P) 02 + 3:(4,7; P) 03 + &(j,z; P)}

(18)

where the values #1;, U2;, S; and €; can be obtained from choice and transition prob-

abilities, without knowing the structural parameters {6;,602,03}. In Section 4, we

exploit this property to obtain a simple estimator of structural parameters.

3 Econometric identification of primitives

3.1 Data and data generating process

A researcher observes firms’ actions and common knowledge state variables at T’

independent markets: {am, Tm, ), : m = 1,2, ..., T} where m is the market subindex,
and 7T is the number of markets, which is large.” For the moment, we consider that
the econometrician observes all common knowledge state variables, but we relax this
assumption later in this section. The researcher is interested in the estimation of the
primitives of the model § = {I1;, g;, f, 3 : i« € I}. Under Assumption 2 the transition
probability f can be identified from transition data: f(z'|x,a) = Pr(z), = o'|xm =
x, 4y = a). Therefore, in this section we treat f as known and study the identification
of the rest of the primitives from the conditional distribution Pr(am,|z.,)-

Let P° = {Pr(am = a|ry, = x) : (a,7) € AN x X} be the true conditional dis-
tribution of a,, in the population. Let D be a mapping from the space of primitives
© to the space of distributions € such that D(#) is the set of Markov-perfect equi-
libria (in choice probabilities) associated with #. In general, there will be values of
the primitives for which the model has multiple equilibria. This implies that D is

not a function but a correspondence. In this context, how the population P° has

been generated? Is it the result of randomization over the different equilibria in some

9We consider asymptotics in the number of markets because this is the most common framework
in empirical applications in industrial organization. However, all the results in the paper can be
extended to the case of asymptotics in the number of time periods with a small number of players
and one market.

11



particular set D(6°)? Do players (or nature) select different elements of D(6°) at dif-
ferent markets or at different periods of time? We consider the following assumption

about the data generating process or equilibrium selection device.

ASSUMPTION 4 (No sunspots): Given a value for the primitives of the model, 6 =
{1L;, gi, f, B : i € I}, players (or nature) select only one equilibrium in D(0) and they

do not switch to other equilibria as long as 6 does not change.

This assumption implies that there is at least one value §° such that P° € D(6).
In contrast, when players switch or randomize among different equilibria, P° is a
mixture of the equilibria in D(#") and this mixture does not belong to D(6"). As-
sumption 4 plays an important role in the identification results and in the estimation

method that we present in this paper.

3.2 Identification of payoff functions

We present sufficient conditions for the nonparametric identification of payoff func-
tions {Il;(a,x)} taking the discount factor and the distribution of players’ private
information as given. We proceed in two parts. First, Proposition 1 establishes
sufficient conditions for nonparametric identification of expected payoff functions
{mi(a;,z; P°,)}. Then, we consider the identification of payoffs {II;(a,z)} taking

expected profits as given.

PROPOSITION 1: Consider the following conditions: (1) Assumptions 1 to 4;
(2) P° = {Pr(am = alz,, = ) : (a,x) € AN x X}is nonparametrically iden-
tified; (3) {g; : © € I} and (B are known; and (4) We impose the normalization
L(a; = Jya_i,x) = 0 for any (i,a_;,x). Under these conditions, expected payoffs

{mi(a;,z; P°,)} are nonparametrically identified.

Notice that this Proposition holds with or without multiple equilibria. That is,
under Assumption 4 the conditions for the identification of expected payoffs (and for
that matter, of payoffs) do not depend on whether the model has multiple equilibria
or not.

Condition (2) holds if the econometrician observes {a,z} over its full support

AN x X. However, P° can be nonparametrically identified under weaker conditions.

12



In particular, P° can be identified when the econometrician does not observe some
common knowledge state variables. Let =, = {zm,§,,}, where z,, is observable to

the researcher and ¢, is unobservable.

ASSUMPTION b5: &, is independent of z,, and is independently and identically dis-
tributed over markets with probability distribution \(§). Furthermore, £, has discrete
and finite support T = {&' &% ... "}, where M\(&) > 0 for any £ € Y.

It is clear that P° = {Pr(a,, = a|zm = 2) : (a,2) € AN x Z} is identified from
the data. But Proposition 1 requires the identification of P°. To understand why P°
can be identified in this model, notice that the independence of private information
variables imposes restrictions on the probabilities P": i.e., conditional on common
knowledge variables, players’ actions should be independent. Therefore, once we
condition on observable state variables z,,, the spatial correlation between the actions
of any two players should be explained by unobservable market characteristics. More

formally, assumptions 2 and 5 imply the following relationship between P° and P°
and \:

P(al2) = 3~ A(€) lH P(ailz, f)] (19)

ey i=1
These restrictions can be used to identify P° and ) from P°. We establish sufficient

conditions for identification in the following Lemma.

LEMMA 1: Consider the following conditions: (1) Assumptions 1, 2, 3 and 5; (2)
P° = {Pr(ap = alzm = 2) : (a,2) € AN x Z} is nonparametrically identified; (3)
Order condition, L < int (JN/ [N(J—-1)+ 1]); and (4) Rank condition, for any
(a;,2) € Ax Z and any & and & in T, P2(a;|z,&) # PPaiz,&). Under these

conditions \ and P° are nonparametrically identified.

The conditions in Lemma 1 do not impose any restriction on the support of z.!
Conditions (3) and (4) can be relaxed if we incorporate assumptions on Z and on the
variability of P° over Z. Notice, that the order condition for identification implies
that when the number of players increases we can allow for more points in the support

of unobservable market characteristics. For instance, in a binary choice game we need

10Tn fact, this Lemma applies also when there are not observable variables z.
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at least three players to identify P° and A\ when L = 2; we need four players when
L = 3; and we can identify a support T with nine points when the number of players
is six.

We now consider the identification of payoff functions II; given choice probabilities

and expected payoffs. Remember that:

ﬂ-?(a’i?'z:f) = ﬂ-i(ahzvf; PO Z PO a’— |’27£) Hi(aiva—iazvg) (20)

For each value (a;,z,£) we have only one equation and J¥~! unknown payoffs II;.
It is clear that without further restrictions we cannot identify II; from P° and n.
First, we need an order condition to identify II;: the number of payoff values in
{IL;} should not be larger than the number of expected payoffs {n?}. However, the
problem of identifying I1; is more complicated than just imposing this order condition.
It is related to the so called refiection problem which appears in models with social
interactions (see Manski, 1993 and 1995).

To illustrate this point, we consider the specification of payoffs in the example in

section 2.5. For simplicity, we incorporate the unobservable variable £ additively.

;(a, 2, &) = yi(ai, zi) 01 + ya(ai, 2—) 02 +ys(as, a—;) 03 + yala;) € (21)

Since 7¥(a;, 2,&) = E(Ili(a, 2,€)|a;, 2,€), we can write 7¥(a;, 2,€) = IL(a, 2,£) +
u;, where u; is orthogonal to z and £. Therefore, we have the following regression
equation:

™ (2,€) = 11(2:) 01 + ya2(2-) 02+ ys(a_s) O3 + & + u, (22)

where we have omitted a; as an argument for notational simplicity.. We know 7%(z, £),
y1(2i), y2(2z_i), ys(a_;) and the probability distribution of £, and we want to estimate
0 = {61,05,05}. In this regression ys(a_;) is endogenous because players’ actions de-
pend on the unobservables ¢ and u;. Notice that a_; is endogenous in this regression
even if there is not unobservable common knowledge state variables, i.e., £ = 0 with
probability one. In principle, we do not have exclusion restrictions to instrument
ys(a_;) because z is an argument in the regression. Therefore, without further re-

strictions, the identification of 6, relies on functional form assumptions on y;(.) and
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yo ().

Suppose that we can partitioned z; in two sub-vectors, z/* and z”, such that: (1)
Player i's payoff depends on 24 = {28 z4',..., 24} and on its own zZ but not on
2B e, ya(2i) = ya(24); and (2) the matrix (25 y3(a_;)) has full-column rank.
Under these conditions, 6 is identified for any specification of yi(.), ya(.), and ys(.).
This exclusion restriction applies both to static and dynamic games. However, there
are some dynamic games where this type of restriction seems more plausible. For
instance, consider a dynamic game where firms face costs of changing their decision
from period t — 1 to period ¢t. That is the case in models with adjustment costs or
switching costs. Suppose that a firm’s payoff function depends on the current actions
of all firms (i.e., contemporaneous strategic interactions) and on its own previous
action (i.e., adjustment costs), but not on other firms previous actions (i.e., not lagged

strategic interactions). In this context, if E(a_;;—1ys(a—;)) is full-column rank, and

strategic interactions are identified.

4 Estimation

Consider that the primitives of the model are known up to a vector of structural
parameters #, and that primitives are continuously differentiable in #. Assumption 4
implies that there is at least one value 6° such that P° is an equilibrium associated
with #°. Furthermore, under the conditions in Proposition 1 and the exclusion restric-
tions described in previous section, #° is unique. The researcher wants to estimate 6"
given a sample {am, zm : m = 1,2,...,T}. First, we describe a maximum likelihood

estimator of 8° and discuss its theoretical and practical limitations.

4.1 Maximum likelihood estimation

In principle, we could follow a maximum likelihood approach to estimate 6°. Let
© C R¥ be the space of the parameter vector @, where © is compact. For 6 € O,
let D(0) be the set of equilibria, in probability space, associated with 6: i.e., D(0) =

'Notice that a functional form assumption on y3(a_;) (e.g., ys(a_;) = > i @) does not help to
solve this identification problem.
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{P*(0), P**(0), ...}
DEFINITION (Equilibrium type): Let 0 and 6’ be two elements of ©. And let P(0) €
D(#) and P'(6") € D(¢') be two equilibria associated with 6 and ', respectively. We
say that P(f) and P'(#") belong to the same equilibrium type if limgy_4 P'(0") = P(0).

For simplicity, suppose that there is a finite number @) of equilibrium types, which
we index by ¢. In general, not all the equilibrium types exist for every 8 € ©. let
O, C O be the subset of parameter vectors for which equilibrium ¢ exists.

For any type g, define the following equilibrium type-specific log-likelihood func-
tions: | . ) |

() — { T Zm:l Z¢=1 In PYaim|zm; 0) if 6 €06, ‘ (23)
—00 if 6¢0,

Under assumption 4, the population probabilities P° belong to some equilibrium type.
If we knew this equilibrium type, say gy, we would maximize (% (6) with respect to
6 and obtain the MLE of §°. Assumptions 1 to 4 and the differentiability of primi-
tives with respect to 6 guarantee that (?(6) is a continuously differentiable function.
Therefore, if O, is a compact set, this estimator is consistent, asymptotically normal
and efficient.

Although we do not know the equilibrium type of P°, we can obtain the MLE of §°
using the following procedure. First, for any type q, let 6’ be the maximum likelihood
estimator of 8° conditional on P° being type ¢: that is, 0" = arg maxgee, [9(6). Then,

the maximum likelihood estimator is defined as:

N - ~q q ~q B 4 ag'
Ovre =0 < 190) = qlegg’%g}l 0°) (24)

It is straightforward to prove that, under Assumptions 1 to 4 and the additional as-
sumption that all the sets ©, are compact, this estimator is consistent, asymptotically
normal and efficient. That is, under these conditions we choose 6" asymptotically
with probability one, and 0™ is CAN and AE.

However, this estimator has important theoretical and practical limitations. First,
in models with multiple equilibria some sets 0, (including ©,,) may not be compact
and this can result in the inconsistency of this estimator. Second, for the implemen-

tation of this method we should know all the equilibrium types that the model has on
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©. This is computationally impractical even for relatively simple models. And third,
to obtain an equilibrium type-specific estimator, say 9(1, we need an algorithm that
guarantees that for different values of § we always select equilibrium type q. This can
be a very difficult task for some types of equilibria (see McKelvey and McLennan,
1996).

Given these important computational problems, the previous ML estimator has
not been used in empirical applications. Instead, the approach in some applications
has been to maximize a “likelihood function” where, for every trial value of 6, the re-
searcher lets the algorithm that searches for an equilibrium “decide” the probabilities
that should enter in the likelihood. In general, the sample criterion obtained in this
way is not a well defined likelihood function and it does not have a clear statistical
interpretation. The statistical properties of the estimator that maximizes this crite-
rion function are unknown. In fact, given that when 6 changes the algorithm may
“jump” between equilibrium types, this criterion function can be very discontinuous

and typical theorems for extremum estimators do not apply.

4.2 Pseudo maximum likelihood estimator

Consider the following pseudo likelihood function:

Ir( Z _12 In U, (@i | Tm; P°, 0) (25)

where W is the equilibrium mapping defined in section 2. For arbitrary € this pseudo
likelihood is not equal to the likelihood associated with the equilibrium type of PY,

e., lNT(PO,H) # [%(6). However, the true and the pseudo likelihoods are equal at
0 = 6" ie., by the equilibrium condition and Assumption 4, ¥(P?,§°) = P*®(§°).
Based on this property, we define the following pseudo-maximum likelihood estimator.
Let P be an initial nonparametric estimator of P’. The pseudo maximum likelihood

estimator of @° is the value of # that maximizes the pseudo likelihood lNT(H, ]50):
éP]V[LE = arg %1638( ZT(p()? 9) (26)

The following Proposition shows that this estimator is consistent and asymptotically

normal under mild regularity conditions.
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PROPOSITION 2: Consider that © is a compact set and that 6° uniquely mazimizes

Io(P,0) = E (X In (| xm; P°,0)) in ©. Let PY be a root-T consistent and as-
ymptotically normal estimator of P° such that {\/T(P:? — PO 5 T 9lp(6°, PO)/QH’}
Opp Qg
A o o,
tribution of P2, and Q9, = 9%1.(P°,0°)/0000 . Under these conditions and Assump-

N(0,90), where Q° = l ], 0% is covariance matriz in the asymptotic dis-

tions 1 to 4 the estimator Oprrre converges a.s. to 6°, it is asymptotically normal,

and the variance of its asymptotic distribution is
VO = (Q5) 7 + (%) ! [A%p Ubp Al + p Afp + Afp O] () !

where AYp = 021, (P°,6°)/800P'.

Root-T consistency and asymptotic normality of the first stage nonparametric
estimator (together with regularity conditions) are sufficient to guarantee root-T
consistency and asymptotic normality of the pseudo maximum likelihood estima-
tor. A sufficient condition for asymptotic efficiency is that the Jacobian matrix
O, (agm|Tm; P°,0°)/00OP is zero. To see this, notice that this condition implies
that: (1) AYp = 0, and therefore V° = (Q9,)"; and (2) by the implicit function
theorem, OW;(aim|Tm; P°,60°)/00 = OP™(aip|Tm;0°)/00, and therefore score and
pseudo-score are equal at #° and VO = (Q9,)~' = (8%1%(6°)/000¢')~", which is the
covariance matrix of the MLE. In other words, under the zero Jacobian matrix con-
dition Fisher’s information matrix is block diagonal and the asymptotic variance of
the first stage estimator does not affect the asymptotic variance of the second stage
estimator. In Aguirregabiria and Mira (2002) we proved that this condition is satis-
fied for the class of discrete choice dynamic programming models considered in Rust
(1987, 1994), among others. However, in general this condition does not hold for the
mapping V¥; in the class of dynamic games that we consider in this paper.

There are several reasons why this estimator is of interest. First, it solves the
problem of indeterminacy associated with multiple equilibria. Second, repeated solu-
tions of the dynamic game are avoided and this can result in significant computational
gains. Furthermore, for some models the pseudo likelihood function ZT(PO, 0) is glob-

ally concave in 0, which in general it is not the case for the likelihood function. That
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is the case in the conditional logit game presented in Section 2.5. This can also reduce

significantly the computational cost in the estimation.

Example: Consider the conditional logit model in section 2.5. In this model, the prob-
abilities ¥;(alaz; PP, 0) that enter in the pseudo-likelihood function have the following

logistic form:

U (| o ]50’ 6) — eip{ g?im(afi) 01 + 95, (a;) 02 + 39 (a;) O3 + é?m(ai) }

where, given P°, the values §%, . 79, 5% and & can be obtained by solving a
system of linear equations with dimension | X|(J — 1) (see the Appendix). Therefore,
the pseudo likelihood function is just the likelihood of a standard conditional logit
model. It is simple to incorporate unobservable common knowledge state variables
in this model. For instance, consider that 6, 65 and 3 are vectors of random coef-
ficients which depend on &, such that 04, = 01 + 01€,,, where 0, and o, are vectors
of parameters. We can estimate this random coefficients logit model by simulated

maximum likelihood as in McFadden and Train (2000).

A potentially important limitation of this PMLE is that initial nonparametric
estimates of P can be very imprecise, and this will imply large asymptotic vari-
ances and significant finite sample biases in the estimates of structural parameters.
We propose two ways of dealing with this problem. First, it is possible to exploit
the parametric assumption about the distribution of €'s to obtain initial semipara-
metric estimates of P°. These estimates will be more precise than nonparametric
estimates. Second, we can apply our procedure recursively to obtain a sequence of
consistent estimators that may have better asymptotic and finite sample properties
than the initial estimator. Let 9;MLE be our initial estimator. Associated with
this estimator we can obtain consistent estimates of choice probabilities that exploit
the structure of the model. Let P! be this vector of estimated probabilities, where
Pl (a;|z) = U, (a;|z; P°, 9; vp)- Then, we can obtain a new pseudo-maximum likeli-
hood estimator as 9?3 VMLE = arg MaXpco iT(G, Pl) In general, we can obtain a K-stage
PML estimator as:

~

_ 7 (PE-1
Oprrp = arg max lr(P",0) (27)
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where, for K > 1, P (a;|z) = ¥;(a;|x; pK_laégMLE)-

5 Complexity and a randomized PML estimator

5.1 Degree of complexity of the PML estimator

The dimension or size of a dynamic discrete game can be described in terms of three
integers: the number of players, N, the number of actions per player J, and the
number of possible states, | X|. Notice that x = {x1, s, ..., xx } where z; is a player-
specific state variable. Therefore, the dimension of the state space depends on the
number of players, and we can write | X| = SV, where S is the dimension of the space
where x; lives. The size of the estimation problem depends also on the number of
observations, T

First, we measure the computational cost of implementing the PML estimator
in a problem of size {N, J, S, T}. Following the literature of complexity theory, the
worst case complexity of a problem of size n, denoted by comp(n), is the minimal
number of simple algebraic operations (i.e., sums or multiplications of two numbers)
necessary to solved the hardest possible problem with that size. This measure of com-
plexity is generally represented by asymptotic lower or upper bounds. For instance,
comp(n) = O(h(n)) means that the function h(n) is an asymptotic upper bound for
the complexity of a problem with size n, that is, lim,, . |comp(n)/h(n)| < co.

Table 1 presents the degree of complexity of different computational tasks which
should be performed in the implementation of the PML estimator. For all these tasks,
complexity is exponential in the number of players. Therefore, there is a “curse of
dimensionality” in the estimation of discrete games with a relatively large number
of players. Notice that this problem exists even when the game is static because for
static models we should also compute expected payoffs 7;, and this computation is

subject to a curse of dimensionality.

5.2 Randomized PML estimator

We present here a version of the PML estimator that exploits Monte Carlo techniques

to approximate expected profits and the valuation operators I';(P). This estimator
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exploits the randomization method proposed by Rust (1997) in the context of solving

12 We show that this estimator can be

single agent dynamic programming models.
calculated in polynomial time, and that it is asymptotically equivalent to the PMLE
when the number of Monte Carlo simulations and the sample size go to infinity. In
this sense, this estimator breaks the curse of dimensionality in the estimation of this
class of dynamic discrete games.

First, we follow Rust (1997) to define a randomized version of our equilibrium
mapping V. Let & = {uy, us, ...} be an infinite sequence of independent random draws
from a U(0, 1). This sequence is fixed and it does not depend on any of the primitives
of the model or on the sample. Let uz denote the first R elements of the sequence .
Given transition probabilities f = {f(2'|z,a)}, choice probabilities P = {P;(a;|z)}
and ur, we generate R independent random draws from the unconditional (ergodic)
distribution of the state variables z."* Let Xp = {Z, : r = 1,2, ..., R} be this set of
random draws. For every z € X5 we obtain R independent random draws of players’
decisions using the conditional choice probabilities {P;(.|Z)} and @g."* Let {a,(Z) :
r =1,2,..., R} be this set of simulations, where a,(%) = {G1.(Z), @2 (Z), ..., an,(Z) }-
The sequence g is an argument in all the simulators that we define below. However,
for notational simplicity, we omit @z as argument and instead we use a subindex R:
i.e., for any function h(.), hg(.) = h(.;Ug).

Given these random draws, we define the following simulators of expected profits

and transition probabilities. For every (a;,Z) € A X Xg:

R
7TzR<az; ;P 0 ZHz Ay Gy ~> ; 9) (28)
r:l

12Rust shows that his randomization tehnique solves the curse of dimensionality in the solution of
discrete choice dynamic programming problems with continuous state variables. Here the problem
is slightly different because our state space is discrete, though there is a curse of dimensionality
associated with the number of players. Also, our main concern here is estimation.

13In principle, there is a curse of dimensionality in the computation of probabilities in f and P,
and in the calculation of the unconditional distribution of x given f and P. However, we show
below that for the implementation of our estimator we need estimates of these probabilities at only
R values of z, where R does not increase exponentially with the size of the problem.

4By the conditional independence of players’ actions, the computation of these draws is not
subject to a curse of dimensionality.
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And for every (a;,Z,7') € A x Xg X Xg:
1 R

fir(¥|2,a; P) = i) Yo f(E 2, ai,a 0(Z)) (29)

r=1

Since Zj,e X fi.r(Z'|Z, a;; P) does not necessarily sum to one, we consider the fol-

lowing simple normalization (Rust, 1997):

f 7|7 AZ j:, j:, a;, P

[ir(@Z, a;; P) = ]{,RE | S )
> fir(@|%, a;; P)

Now, we use the previous simulators to define randomized versions of the mappings

T;(P;6) and W;(P, ). The randomized operator (or simulator) I'; (P, 8) is the R x 1

(30)

vector of values V; that solves the system of linear equations:

[IR — ﬁ FR } V Z P al 7T17R(a2';P, 9) +6¢(CL¢§R)] (31)

a; €A

where F r(P) is the R x R matrix of transition probabilities that we obtain using the

simulators f; r('|#, a;; P). Finally, the simulator of the equilibrium mapping ¥; is:
U, p(aila; P,0) = Ai(a; | {8 r(j, z; P,0)}) (32)

where {0; r(j,z; P,0)} are simulators of conditional choice value functions,

R
0. r(j,z; P,0) = 7, r(jJ, x; P,0) + Z r(Z.; P,0) flR(.'Er|(L’ a;; P) (33)

r=1

It is clear that, by a strong law of large numbers, all these simulators are un-
biased as R goes to infinity. They are also continuously differentiable in # and P.
Furthermore, given that the random draws %z do not change with 6 and P, these sim-
ulators are stochastically equicontinuous in 6. The degree of complexity of calculating
simulated expected profits and transition probabilities is O(N.JR?) and O(NJR?),
respectively. And the computational cost of solving the system of equations that
defines T; » has order of magnitude O(R?).

Let P° be a consistent estimator of P9, The simulated PML estimator of 6° is

the value of # that maximizes in © the simulated pseudo likelihood function,
o) =237 SV SN 1
Qr.r(P",0) = szz1 Y Y p(aim|zm; P, 0) (34)
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Notice that to construct this simulated likelihood we need to evaluate the mapping
¥, at the sample points {Zm : m = 1,2,....,T}. Therefore, these sample values
should belong to Xp, and R should be greater or equal than 7.'°> The remaining
R—T random draws are generated using the transition probability f(.|z,a) for values
(x,a) taken randomly from the sample. Also, notice that to obtain all the previous
simulators we do not have to estimate choice probabilities at every point in the space
X. We only need to estimate these probabilities at the R values in Xg. Therefore,
the degree of complexity of evaluating the simulated pseudo likelihood is O(R?).

The following proposition establishes the asymptotic properties of this estimator.

PROPOSITION 3: Under the conditions in Proposition 2 the simulated pseudo-
mazimum likelihood estimator (S-PMLE) is asymptotically equivalent to the PMLE
if VT/R goes to zero as T goes to infinity.

6 Conclusions

In this paper we have presented several results and techniques to deal with some
common problems which appear in the estimation of dynamic discrete games.

First, we showed that, if players do not randomize among multiple equilibria, the
econometric identification of payoff functions does not depend on whether the model
has multiple or unique equilibria. Although it is well known that there is not a neces-
sary relationship between multiple equilibria and under-identification, non-uniqueness
makes a model more susceptible of being under-identified (Jovanovic, 1989). There-
fore, finding conditions for identification is particularly relevant in models with mul-
tiple equilibria.

Second, we illustrated the analogy between the problem of identifying strategic
interactions in our model and Manski’s reflection problem. We presented exclusion
restrictions that identify strategic interaction. These exclusion restrictions are based
on two economic assumptions: (1) players face adjustment costs when changing their

decisions; and (2) strategic interactions occur contemporaneously and not with a lag.

15Since we have a random sample, we can always consider sample values as random draws from
the unconditional distribution of x.
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We think that these are plausible assumptions in some applications.

Third, we propose a pseudo maximum likelihood estimator (PMLE) and obtained
its asymptotic properties. This method has several attractive features: it solves the
problem of indeterminacy associated with multiple equilibria, and it is computation-
ally cheaper than solving the model just once. In Aguirregabiria and Mira (2002)
we showed that in the context of single agent dynamic discrete models this PMLE is
asymptotically efficient. However, we show here that this property does not hold in
the case of static or dynamic discrete games. For that reason, the sequential K-stage
version of this estimator might be particularly useful for this type of models.

The cost of implementing the PMLE increases exponentially with the number of
players. This can make this method unfeasible even when the number of players is
relatively small, like 20 or 30 players. For that reason, we propose a simulated version
of this estimator that exploits randomization techniques proposed by Rust (1997). We
show that this simulated PMLE is asymptotically equivalent to the PMLE as long as
the number of Monte Carlo simulations grow faster than the sample size. Preliminary

experiments with this estimator (not reported here) show encouraging results.
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APPENDIX

[A.1]] MAPPING ¥; IN A CONDITIONAL LOGIT GAME

Given the Extreme value distribution of &;, the mapping ¥, has the following

form:
exp {7 (ai, ; P_;) + B3 Ti(a's Py) fi2! |z, ai; P
> exp {milj, @ Po) + 850 Tila's Py) ful@'|z, j; P-) }
In general, the mapping I';( P) has the following vector form:
Li(P) = [ =B F(P)™" Y Pia)* [milas; P) + ei(ai; P)] (A.1.2)

(lieA

where F(P) is the | X| x |X| matrix of transitions f(z'|x; P). Given our specification
of payoff function in the conditional logit model, we have that the | X| x 1 vectors of

expected payoffs 7;(a;; P_;) can be written as:
mi(as; P—;) = Yi(a;)0h + Ya(ai)02 + S(as, P-i)0s

where Yj(a;) is a | X| x K; matrix with rows y;(a, z); and S;(P) is a | X| x K3 matrix

with rows s;(a, P_;(x)). Also, given the extreme value distribution of &:
ei(ai; P;) =y — In(Pi(a,)),

where v is Euler’s constant. Therefore, we can write,

Di(P) = W (P) 6y + W2(P) 6, + WS (P) 65+ W (P) (AL3)
where: , )

Wi(P) = [I-BFP)" > _,Pila)=Yja)

WS(P) = ([ F(P)'Y, _, Pla)# S(a, Po)

We(P) = [U—-BFP)"Y. _, Pila)*eai; B)

The matrices W have the following interpretation. The m — th row of W}(P) is the
expected and discounted value of current and future realizations of y; for player ¢ given
that the current state is ™ and that agents behave, now and in the future, according
to choice probabilities in P. The other matrices have the same interpretation for the

other components of the payoff function.
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Solving the previous expression of I';( P) in the mapping ¥; we get:
exp { fii(a,; P) 01 + §aia, x5 P) 02 + Si(a, x; P) 05 + éi(a,z; P) }

J ~ . ~ . ~ . ~ .
Zj:l eXp{ y12(97x7 P) 91 +y2@<j,l’, P) 92 +Sl<j7x7 P) 93 —|—62(],x, P>}
(A.1.4)

W;(alz; P) =

where: B ,
?jjz’(a,l'; P) = yj(a'v I’Z) + ﬁzx/ fi(x’|x,a; P—Z) VVz'J(xl; P)
( P) = sia, 2 Pi(2) + B, Fi@|e,as P) WE(e; P)
e,z P) = B, fila'|w,a: Py) WE(a'; P)

[A.2] PROOF OF PROPOSITION 1

Let PY be the true population choice probabilities. The model imposes two sets
of restrictions on P% (1) choice probabilities are best responses to one another:
PP(a;|r) = ®;(a;|x; PY,); and (2) the Bellman equation implies a relationship be-
tween value functions and choice probabilities: V;(z; P°;) = T';(x; P°). Notice that
the mapping W, (a;|z; P) is just the mapping ®;(a;|z; P—;) where we have solved the
condition V;(z; P_;) = I';(x; P). Therefore, the two sets of conditions can be summa-
rized in just one: P2(a;|z) = W,(a;|z; P°). We prove here that this set of equations
identifies expected profits m;(a;, z; P°,).

For notational simplicity, we use the superindex 0 in those functions which depend
on P° and we omit this vector as an explicit argument, e.g., 7%(a;, ) = m;(a;, x; P°;).
Define the conditional choice value functions:

v (ai, ) = (a5, z) + B> TN £ (2|2, a) (A.2.1)
2'EX
Notice that by the equilibrium condition and by the definition of mapping ¥, we can

write:

P(a;|x) = ¥¥(as)z) = /I {ai = arg max [v?(j, ) +€¢(j)]} g:(de;) (A.2.2)

Under Assumption 1 and 2, the system of equations on (A.2.2) implies a one-to-
one relationship between P and the set of value differences {v?(a,z) — v{(J, )}
(see Proposition 1 in Hotz and Miller, 1993). Let @; be this mapping, such that
v(a,z) — v)(J, z) = Qs(a,z; P?). An important property of the mapping Q; is that

it only depends on the distribution of the unobservables ¢;. In particular, it does not
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depend on the other primitives of the model, i.e., discount factor, profits or transition
probabilities of common knowledge variables. Therefore, we can treat Q;(a,x; P?) as
known values.

Taking into account the definition of conditional choice value function we can
write:

Hawa)+8 3 [Fila'le,a) = fila'|le, D ) = Qula, s PY) - (A23)

z'eX

where we have used that 7%(J,z) = 0 by our normalization assumption. Notice that
I'?(z) depends on expected profits, and therefore it is not obvious that these profits
are identified from the previous system of equations. In particular, there might be
more than one set of expected profit functions that solve this system of equations.
Writing the system of equations (A 2.3) in vector form, and taking into account

that I = [I — BF°]” [Z P2(j) * (m2(5) + € (j))], we can write:

m2(ai) 8 [Foa) = FOD)] [1 = BF 7 [T PG = (m207) + €27)) | = Qulass PY),
(A.2.4)
where 7(a), T and Q;(a;; P?) are | X| x 1 vectors, and F?(a) are | X| x | X| matrices.

1

Rearranging terms we have that:
Bi(a,1) 70(1) + Bi(a,2) 7%(2) + ... + Bi(a, J — 1) 7)(J — 1) = Cij(a)  (A.2.5)

where C;(a) is a | X|x 1 vector, and { B;(a, j)} are | X| x | X | matrices with the following

form:
Cila) = Qu(ais P) — B [F(a)) - FO(J)] [T - p F°] [Z‘j_l PY(j) +e2(j)| (A.2.6)
and,

Bi(a, j) = { I+ B[F(a) - F(J)] [I|X\ - ﬁFO]il diag{P’(a)} if a=]j

BIFY(a) — FO(J)] [Tx) — BFY] ' diag{PY(j)}  if a#j
(A.2.7)

Both the matrices {B;(a, j)} and the vectors C;(a) only depend on {f, 3,¢9:, P? : i €
I}, i.e., they do not depend on profit functions.
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Since we have one of these expressions for each value a € A_;, we have a linear
system with |X|(J — 1) equations and unknowns, where the unknowns are the one-
period expected profits. We can write this system for firm i as: B; 70 = C;, where

70 = {79(1), 72),...,mY(J — 1)}, and B; is the | X|(J — 1) x | X|(J — 1) matrix:

) [FP(1) = F(I)] I = pF]
Bi=Ix-1)+08 [1;0® : diag{ P}
[FO(J = 1) = F()] [T - BF°
(A.2.8)

where 1; 1 is a 1 x (J — 1) vector of ones. It is simple to show that this matrix
is invertible. Therefore, there is a unique vector of expected profits ¥ which is

consistent with P°, f, g; and S3.

[A.3] PROOF OF LEMMA 1:

We consider here the worst case scenario in which there are not observable vari-
ables z. Let P° = {Pr(a,, = a) : a € AV} be the distribution of a,,, which is identified
from the data. Let A = {\(&) : £ € T} be the probability distribution of £, and let
PY = {P%a€) : a; € A, £ € Y, i € I} represent player’s choice probabilities. We
want to identify A and P° from P°. Independence of private information variables
implies that for any a € AY: P%(a) = Yeer M(€) [Hf\il Pio(ai|£)}. Or in vector form,
P = H()\, P%). The order condition for identification is dim(P°) > dim(\)+dim(P?),
which implies: J¥ —1 > (L—1)+ N(J—1)L, or L < int (JN/ IN(J—1)+ 1]) The
rank condition for identification requires the Jacobian matrix of H(\, P°) to be full-
column rank. Condition (6) in Lemma 1 and A(§) > 0 for any £ € T guarantee that

this rank condition holds.

[A.4] PROOF OF PROPOSITION 2

Consistency of PMLE: Notice that: (a) l(P,6) is continuous on a compact set,
so0 it is uniformly continuous; (b) I7(P,#) converges a.s. and uniformly in (P,6) to
I(P,0); and (c¢) P2 converges a.s. to P°. Under (a)-(c), ir(P2,6) converges a.s.
and uniformly in 0 to lo(P° 6) (Lemma 24.1 in Gourieroux and Monfort, vol. II,
page 392). Then, given that [OO(PO,Q) has a unique maximum in © at 6°, 6 =

arg maxgee I (P2, 0) converges a.s. to 6° (Property 24.2 in Gourieroux and Monfort,
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vol. II, page 387).
Asymptotic distribution of PMLE: First order conditions of optimality im-
ply that with probability approaching one 8l~T(]579,9T) /00 = 0. Since Iy (P, 6) is
twice continuously differentiable, we can apply the stochastic mean value theorem to
Alr(.,.)/90 between (PY,07) and (P°,6°). Let (Pr,0r) be the vector of mean values
which. By consistency of (1579, 9T), these mean values also converge a.s. to (P°,8°).
By the mean value theorem,

0 Olr (PP, br) aZT(P0,90)+aZT<PT,éT) (P 0)+8ZT<PT,9T)

00 00 000P' 9006’

Rearranging terms,

(Or—6°) (A.4.1)

0000 200 P’ 20
(A4.2)

where 9%l (Pr, 07)/(P,0)(P',0') —, 8?1 (P°,8°) /0(P,6)(P',0') (see Amemiya, The-
orems 4.2.1 and 4.1.5), and {\/T(FA’% — P T dlp(6°, PO)/89’] —q N(0,920). There-
fore, by Mann-Wald Theorem, it is straightforward to show that v/T(fr — 6°) —4
N(0,V7?), where:

\/T(@T B 90) _ l@iT(PT, éT)} - {8[T<PT, 9T) \/T(Pﬁ B PO) N \/TM

VO = (055) " + () ! [A%p Qbp A+ D0p Afp + Afp Ohy] () !
and A, = 0%1,,(P°,0°) /0POY .

[A.5] PROOF OF PROPOSITION 3

Consistency of S-PMLE (as T — oo and R — o0): First, by a strong law of large
numbers and for arbitrary (P,6), Qr r(P,60) converges to Qoo oo(P,0) = lo(P,0) as
T — oo and R — oo. Furthermore, since Q7 z(P,0) is continuously differentiable in
(P,0) and bounded, it converges a.s. and uniformly in (P, ) to [OO(P, 0). Therefore,
given that [OO(P, 0) is uniformly continuous and that ]5% converges a.s. to PY, we have
that Qr, a(P2,0) converges a.s. and uniformly in 0 to lo(P°,0). Finally, given that
loo(P°, ) has a unique maximum in © at 6°, 91 R = arg maxgpeo Qr, r(PY, ) converges
a.s. to 6°.

Asymptotic distribution of S-PMLE (as T — oo and vT/R — 0): First order
conditions of optimality imply that with probability approaching one 0Q)r, R(PTQ, 0)/00 =
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0. Since Qr r(P,0) is twice continuously differentiable, we can apply the stochastic
mean value theorem to dQr z( P, 0)/90 between (PY, 61 5) and (P°,6°). Let (Pr, 07 z)
be the vector of mean values. By consistency of (PTQ, 9T), these mean values also con-
verge a.s. to (P%,6°) as T — oo and R — oco. By the mean value theorem,

0Qrr(PY,0r5)  0Qrr(P°,6°) 0Qrr(Pr,0rR)
- 08 - 08 090 P!

0 (PY—P")+

Rearranging terms,

2000 D00P" BT,
(A.5.2)

where 9?Qqgr(Pr,07.1)/0(P,0)(P',0') —, 8*1o(P° 8°)/0(P,0)(P,0), as T — oo
and R — oo. Therefore, as both T" and R go to infinity, the only difference between
the asymptotic distribution of the S-PMLE and the one of the PMLE is in the last

- 1 o
\/T(éT,R_QO) _ _ [8QT,R(PT7 QT,R)] {QQTvR(PT, QT,R) \/T(qu B PO) n ﬁw}

term of equation (A.5.2). We can write this term as:

0Qrr(P’,0") =0Qr.(P,6") 0Qr,r(P°,6") 0Qr. (P, 0°)
VT==5 = VT=% +lﬁ s VT o9 ]
B Alp(P°,6°) Q. r(P°,6°) Alr(P°,0°%)
= VT—% +lﬁ s VT 5 ]

The term between brackets converges in probability to zero as T — oo and /T /R—0
(see for instance Gourieroux and Monfort, 1993). Therefore, it is straightforward that
as T — oo and VT /R — 0 the asymptotic distributions of S-PMLE and PMLE are

the same.
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Table 1
Worst-case complexity of different computational tasks
in the implementation of the PML estimator

Task comp(N,J,S,T)
Nonparametric estimation of {P?(a;|z)} O(T N J SV)
Expected payoffs: m;(a;,z) =) (HP (a;|z) ) i(a;,a ;1) O(JN sM)
a—i \j7#i

Transition probabilities: f;(z'|z,a;) =) (HP aﬂx) 2|z, a;,a-;) O(JN S

a—i \j#i
System of linear equations (LU decomposition)®: [I — 3 F(P)|W/ =Y/ O(S*" + K S?N)
Computation of: 9;(a;, z) = mi(a;, x) + B Xwex Li(z) fi(z'|z, ) O(T K J SN)

Note (a): K is the number of structural parameters in the specification of I1;
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