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Abstract

This paper introduces a new class of multivariate volatility models that utilizes high-frequency

data. We discuss the models�dynamics and highlight their di¤erences from multivariate GARCH

models. We also discuss their covariance targeting speci�cation and provide closed-form formu-

las for multi-step forecasts. Estimation and inference strategies are outlined. Empirical results

suggest that the HEAVY model outperforms the multivariate GARCH model out-of-sample,

with the gains being particularly signi�cant at short forecast horizons. Forecast gains are ob-

tained for both forecast variances and correlations.

Keywords: HEAVY model; GARCH; multivariate volatility; realized covariance; covariance

targeting; multi-step forecasting; Wishart distribution.
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1 Introduction

This paper introduces a new class of multivariate volatility models capable of producing precise

multi-step forecasts of the conditional covariance matrix of daily returns. Multivariate volatility

models have been the focus of a voluminous literature summarized recently by Bauwens et al.

(2006) and Asai et al. (2006), where the focus in the latter is on multivariate stochastic volatility.

The covariance matrix of daily asset returns is a key input in portfolio allocation, option pricing

and �nancial risk management. An interesting question is whether the increasing availability of

high-frequency �nancial data enables the development of more accurate forecasting models for the

conditional covariance of daily returns. We address this question by studying a new class of models

which utilize high-frequency data for the objective of multi-step volatility forecasting. We call this

class multivariate High-frEquency-bAsed VolatilitY (HEAVY) models.

Volatility forecasts from HEAVY models have some properties that distinguish them from those

of multivariate GARCH models. HEAVY models have a relatively short response time which

means they are likely to perform well in periods where the level of volatility or correlation is

subject to abrupt changes. HEAVY models also have short-run momentum e¤ects so that volatility

forecasts may exhibit a continuation of upward (or downward) trends before mean reverting. The

latter distinction pertains to comparing the HEAVY model to a baseline speci�cation such as the

GARCH(1,1) model. More richly parameterized GARCH models could, of course, also exhibit

momentum e¤ects.

The univariate HEAVY model was introduced in Shephard and Sheppard (2010) where it is

shown - for a wide spectrum of asset classes - that the HEAVY model outperforms the GARCH

model in- and out-of-sample. The forecast gains tend to be more pronounced at short forecast

horizons, typically the �rst few days. In the empirical section of this paper, we show similar results

in a multivariate setting. The multivariate analysis poses additional interesting questions such as

whether the forecast gains are due to the variance forecasts of individual assets, their correlations

or a combination of both. We develop a novel out-of-sample model evaluation strategy to address

this question.

To highlight the distinction between HEAVY and GARCH models, and how HEAVY models

di¤er from recently proposed models which also utilize high-frequency data, we start with a brief

overview of the univariate HEAVY model of Shephard and Sheppard (2010). Let FLFt and FHFt
respectively denote the information set generated by low-frequency (i.e. daily) and high-frequency

(i.e. intra-daily) data up to time t, where t = 1; 2; :::; indexes days. Also let rt denote the (de-

meaned) daily return and vt denote the realized measure (e.g. realized variance) at time t. The

univariate HEAVY model in its linear speci�cation is the 2-equation system

E[r2t jFHFt�1 ] := ht = ch + bhht�1 + ahvt�1;

E[vtjFHFt�1 ] := mt = cm + bmmt�1 + amvt�1;
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while the GARCH model is

E[r2t jFLFt�1] := h�t = cg + bgh�t�1 + agr2t�1:

The primary distinction between HEAVY and GARCH models is the conditioning information

set used in modelling the conditional variance of daily returns. The �rst equation of the HEAVY

model uses the lagged realized measure, vt�1, to drive to dynamics of ht, whereas the GARCH

model uses the lagged squared return. The second equation of the HEAVY model is needed for

multi-step forecasts of ht.

The HEAVY model utilizes recently developed estimators of ex post volatility of daily returns

that have proven to be more precise compared to squared returns. Realized variance is the �rst

realized measure to be systematically studied and used in modelling and forecasting the volatility

of daily returns. Andersen and Bollerslev (1998) show that the realized variance has a much

lower noise-to-signal ratio than the daily squared return when used as proxy for the unobserved

variance, while Barndor¤-Nielsen and Shephard (2002) formalize the econometrics of the realized

variance. In the context of multi-step forecasting, Shephard and Sheppard (2010) show that the

use of the realized kernel of Barndor¤-Nielsen et al. (2008) leads to notable in- and out-of-sample

improvements in predicting ht, especially at short forecast horizons.

Univariate HEAVY models are related to recently proposed models by Engle (2002), Engle

and Gallo (2006), Cipollini et al. (2007), Brownlees and Gallo (2010) and Hansen et al. (2011).

Engle (2002) models volatility using a multiplicative error model (MEM).1 He applies this model to

squared returns and realized volatility as separate models, but they were not considered as a system

for multi-step forecasting of the conditional variance of daily returns. These models are usually

referred to as GARCH-X models when both vt�1 and r2t�1 appear in the ht equation. Engle and

Gallo (2006) model a 3-variable system comprising the squared return, the high-minus-low price

range and the realized variance in an MEM setup. Cipollini et al. (2007) allow for contemporaneous

correlations in a 4-variable vector MEM including the absolute daily return and three realized

measures, and tackle the problem of a suitable multivariate density choice using copulas.

The papers by Brownlees and Gallo (2010) and Hansen et al. (2011) are the closest in structure

to the univariate HEAVY model. The model in Brownlees and Gallo (2010) has a HEAVY-like

structure with the di¤erence being that it uses a smoothed version of the realized measure to drive

ht by specifying the latter as an a¢ ne function of mt. Hansen et al. (2011) treat the dynamics

of the realized measure di¤erently. While the HEAVY model postulates GARCH-type dynamics

for the realized measure by modelling its conditional expectation, Hansen et al. (2011) relate the

realized measure itself to ht and a term that captures leverage e¤ects.

Multivariate volatility models are becoming increasingly important not only because of their

direct application in portfolio allocation and asset pricing, but also due to the insights they provide

1An MEM can be used for any non-negative valued process which can be modelled as i.i.d. innovations from a

density with non-negative support scaled by a conditionally deterministic factor.
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into risk management practices. Using low-frequency data, Brownlees and Engle (2010) portray the

importance of modelling conditional correlations for systemic risk management, where they show

that a rise in a �rm�s stock volatility and correlation with the market magni�es its contribution to

their proposed measure of systemic risk. Highly leveraged �nancial companies in the recent �nancial

crisis are a case in point. The work of Hansen et al. (2010), which is independent and concurrent,

utilizes realized measures in modelling a stock�s conditional beta in a GARCH-like framework. Our

primary empirical example focuses on the returns of Bank of America and the S&P 500 exchange

traded fund (ETF) during the recent �nancial crisis, which relates to the applications in these

papers.

There is some recent research that focuses only on modelling and forecasting the realized co-

variance matrix; see, for example, Voev (2008), Chiriac and Voev (2011) and Bauer and Vorkink

(2011). The focus in these studies is on developing parsimonious models to forecast the realized

covariance matrix. In contrast, this paper develops a framework for forecasting the covariance of

daily returns which also requires forecasts of the realized measure. We �nd the realized measure

to be a more precise factor to drive the volatility dynamics for daily returns compared to the outer

product of daily returns which is used in GARCH models.

Jin and Maheu (2010) pursue an objective similar to ours by utilizing realized measures to

improve the density forecasts of multivariate daily returns; however, their model is di¤erent from

ours as it is cast in the multivariate stochastic volatility framework. In addition, they propose a

di¤erent nexus between the dynamics of daily returns and the realized measure. The implication

of this is that our model is much easier to estimate and allows for straightforward out-of-sample

model evaluation since we provide closed-form forecasting formulas.

The structure of the paper is as follows: Section 2 introduces multivariate HEAVY models with

some detailed analysis of their properties using a linear speci�cation. Section 3 discusses estimation

and inference. In Section 4, we present the out-of-sample model evaluation framework. Section 5

contains the results of our empirical analysis, while Section 6 concludes the paper. Appendix A

derives the second moments�structure implied by the model. All proofs are collected in Appendix

B. The Web Appendix to this paper includes relevant results from matrix algebra and calculus,

an overview of the Wishart distribution related to the discussion in Section 3, as well as additional

empirical results.

2 Multivariate HEAVY Models

2.1 De�nitions and Notation

Let the multivariate log-price process be given by the (k � 1) vector Y �� , where � 2 R+ represents
continuous time. Suppose we observe m+1 intra-daily prices, assumed to be uniformly spaced, so
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that the jth intra-daily vector of returns on day t is given by

Rj;t = Y
�
(t�1)+ j

m

� Y �
(t�1)+ (j�1)

m

; j = 1; :::;m; t = 1; 2; :::.

Assuming, for instance, 24-hour trading means m = 1440 for one-minute returns, and Rj;t is the

vector of returns for the jth minute on day t. The vector of daily returns is Rt =
Xm

j=1
Rj;t. The

outer product of daily returns is the (k � k) matrix denoted by Pt = RtR0t. The realized measure
on day t is a (k � k) matrix denoted by Vt. One example of Vt which we use in this paper is the
realized covariance (RCt) matrix de�ned as

RCt =
mX
j=1

Rj;tR
0
j;t:

Barndor¤-Nielsen and Shephard (2004) show that, in the absence of market microstructure

noise, RCt is a mixed normal consistent estimator of the quadratic covariation of Y �� as m!1. In
the presence of market microstructure noise, RCt is a biased estimator. Therefore, in practice one

needs to sample sparsely and use subsampling. An alternative is to use a noise-robust estimator

such as the realized kernel of Barndor¤-Nielsen et al. (2008, 2011).

Letting FLFt and FHFt be as de�ned previously, the HEAVY model is the 2-equation system

E[PtjFHFt�1 ] = E[RtR0tjFHFt�1 ] := Ht; (1)

E[VtjFHFt�1 ] :=Mt; (2)

where, for simplicity, we assume E[RtjFHFt�1 ] = 0 so that Ht is the conditional covariance matrix

of daily returns, or alternatively, the conditional expectation of the outer product of daily returns.

We will occasionally use Et[�] := E[�jFHFt ] to denote the expectation conditional on FHFt . Thus

the conditional �rst moments (Ht, Mt) are assumed FHFt�1 -measurable.
We shall call (1)-(2) the HEAVY-P and HEAVY-V equations, respectively. HEAVY models can

be equivalently represented as

Pt = H
1
2
t "tH

1
2
t ; (3)

Vt =M
1
2
t �tM

1
2
t ; (4)

where "t and �t are (k � k) symmetric innovation matrices satisfying Et�1["t] = Et�1[�t] = Ik,

where Ik is an identity matrix. We have de�ned the symmetric square root of a generic positive

semide�nite matrix A, denoted by A
1
2 , using the spectral decomposition such that A

1
2 = U�

1
2U 0

where U is a matrix containing the eigenvectors of A, and �
1
2 is a diagonal matrix containing the

square root of the eigenvalues of A. The representation (3)-(4) is a matrix-variate generalization of

the univariate MEM introduced in Engle (2002) and the vector MEM presented in Cipollini et al.

(2007).
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Since our focus is on multivariate volatility models, we use the terms HEAVY and GARCH to

refer to their multivariate formulation unless otherwise stated. The di¤erence between the HEAVY-

P equation and the GARCH model is the conditioning information set. GARCH models condition

on FLFt�1 and thus Ht is in�uenced by the squares and cross products of past daily returns (i.e. lags
of Pt). In the HEAVY-P equation, we condition on FHFt�1 which enables us to use lags of Vt to
project the path of Ht.

Equations (1)-(2), or equivalently (3)-(4), de�ne a class of models which links the dynamics of

Ht to the realized measure. This becomes clear once we specify the dynamic equations for Ht and

Mt. Choosing a speci�cation for the dynamics of Ht and Mt yields a particular model within the

HEAVY class. For ease of presentation, we will focus in the rest of this paper on one particular

speci�cation within the HEAVY class which is akin to a multivariate GARCH(1,1) model, and we

shall refer to it simply as the HEAVY model.

2.2 Model Parameterization

A primary challenge in multivariate volatility modelling is to ensure that the conditional covariance

matrix is positive semide�nite. In the GARCH literature, one of the ways this has been approached

is the BEKK parameterization introduced by Engle and Kroner (1995). We can adopt that approach

to our model, which we call BEKK-type parameterization although the models are distinct. The

BEKK-type parameterization is

Ht = CHC
0
H +BHHt�1B

0
H +AHVt�1A

0
H ; (5)

Mt = CMC
0
M +BMMt�1B

0
M +AMVt�1A

0
M : (6)

The (k�k) matrices AH , BH , AM and BM each have k2 free parameters, while CH and CM are

(k�k) lower triangular matrices each with k� = k(k+1)=2 free parameters. The parameterization
in (5)-(6) guarantees that Ht and Mt are positive semide�nite for all t assuming H0 and M0 are

positive semide�nite. If, in addition, CH and CM are full rank matrices, then Ht and Mt are

positive de�nite for all t. We refer to AH , BH , AM and BM as the dynamic parameters, which are

of main interest to us. Sometimes we consider CH and CM to be "nuisance parameters".

Although our interest is to obtain multi-step forecasts of Ht, forecasts from (6) are needed due

to the presence of Vt�1 in (5). Forecasting the realized measure itself has been the focus of a number

of recent studies, e.g. Andersen et al. (2003, 2007, 2011). We note that postulating GARCH-type

dynamics for the realized measure is consistent with its empirical properties such as time-varying

volatility of realized volatility and evidence of excess kurtosis; see Corsi et al. (2008). Therefore,

(6) may produce accurate forecasts of Mt.

Of course, other parameterizations for (5)-(6) could be adopted. For instance, a higher order lag

structure akin to GARCH(p,q) processes, or a component model which decomposes the conditional

covariance matrix into long-run (permanent) and short-run (transitory) components as in Engle
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and Lee (1999). Also, a long memory model could be speci�ed for (6) as proposed in Chiriac and

Voev (2011).

The unrestricted BEKK-type parameterization in (5)-(6) has O(k2) parameters. To avoid the

curse of dimensionality one could impose that AH , BH , AM and BM are scalars or diagonal

matrices, which yields the scalar or diagonal HEAVY model, respectively. In either case, the

resulting equations for the diagonal elements of Ht and Mt would constitute univariate HEAVY

models. The equations for the o¤-diagonal elements would also have a HEAVY structure in which

the conditional covariances are driven by their own lags and the corresponding realized covariances.

If the elements of AH , BH , AM and BM are unrestricted (i.e. a full HEAVY parameterization),

the multivariate HEAVY model no longer comprises univariate HEAVY models, since in this case

the evolution of every element in Ht and Mt will be in�uenced by own as well as cross-asset e¤ects.

Example 1 For the Ht equation in the scalar HEAVY model, AH = aHIk and BH = bHIk where
aH and bH are scalars, which gives the following parameterization

Ht = CHC
0
H + b

2
HHt�1 + a

2
HVt�1:

In the case of the bivariate diagonal HEAVY model, the Ht equation is given by 
h11;t h12;t

h21;t h22;t

!
=

 
c11;H 0

c21;H c22;H

! 
c11;H 0

c21;H c22;H

!0

+

 
b11;H 0

0 b22;H

! 
h11;t�1 h12;t�1

h21;t�1 h22;t�1

! 
b11;H 0

0 b22;H

!

+

 
a11;H 0

0 a22;H

! 
v11;t�1 v12;t�1

v21;t�1 v22;t�1

! 
a11;H 0

0 a22;H

!
;

where aij denotes the (i; j)th element of matrix A.

To better understand the dynamics, we express (5)-(6) in vector form. De�ne pt := vech(Pt),

vt := vech(Vt), ht := vech(Ht) and mt := vech(Mt), where the vech operator stacks the lower

triangular part including the main diagonal of a (k � k) symmetric matrix into a (k� � 1) vector,
k� = k(k + 1)=2. These (k� � 1) vectors retain the unique elements of the matrices of interest to
us. An equivalent representation of (3)-(4) is

Pt = Ht +H
1
2
t ("t � Ik)H

1
2
t ; Vt =Mt +M

1
2
t (�t � Ik)M

1
2
t ;

which, using the vech notation, can be expressed as

pt = ht + e"t; vt = mt + e�t;
where e"t = vech(H 1

2
t ("t�Ik)H

1
2
t ) = Lk(H

1
2
t 
H

1
2
t )Dkvech("t�Ik) and e�t = vech(M 1

2
t (�t�Ik)M

1
2
t ) =

Lk(M
1
2
t 
M

1
2
t )Dkvech(�t � Ik).2 The matrices Lk and Dk are, respectively, the elimination and

2The second equality in each expression follows from the property that for any (k� k) matrices A and B, with B
being symmetric, vech(ABA0) = Lk(A
A)Dkvech(B); see Web Appendix A.
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duplication matrices de�ned in Web Appendix A. This representation is particularly convenient

since e"t and e�t are a vector martingale di¤erence sequence with respect to FHFt�1 .
Similarly, (5)-(6) can be written as

ht = CH +BHht�1 +AHvt�1; (7)

mt = CM +BMmt�1 +AMvt�1; (8)

where CH = Lk(CH 
CH)Dkvech(Ik), BH = Lk(BH 
BH)Dk and AH = Lk(AH 
AH)Dk. CM ,
BM , and AM are de�ned similarly using the parameters of (6). CH and CM are (k� � 1) vectors,
while AH , BH , AM and BM are (k� � k�) matrices. The elimination and duplication matrices, Lk
and Dk, are non-stochastic matrices of zeros and ones, so the parameters in (7)-(8) are uniquely

identi�ed from (5)-(6) and vice versa.

By substituting ht = pt � e"t and mt = vt � e�t into (7)-(8), it is straightforward to show that
the HEAVY model has the following VARMA(1,1) representation 

pt

vt

!
=

 
CH

CM

!
+

 
BH AH

0 BM +AM

! 
pt�1

vt�1

!
+

 e"te�t
!
�
 
BH 0

0 BM

! e"t�1e�t�1
!

since
�e"0t;e�0t�0 is a vector martingale di¤erence sequence with respect to FHFt�1 , assuming Var[�e"0t;e�0t�0]

exists. The coe¢ cient matrix attached to
�
p0t�1; v

0
t�1
�0 determines the persistence of the HEAVY

system. For covariance stationarity, the eigenvalues of this matrix must be less than one in modulus.

Since it is block triangular, its eigenvalues are members of the multiset of the eigenvalues of BH and

(BM +AM ).3 In the following assumption we explicitly state this covariance stationarity condition,

where for any (k � k) matrix A with eigenvalues �1; :::; �k, �(A) := max
i
j�ij denotes the spectral

radius of A.

Assumption 1 In the HEAVY model given by (7)-(8), �(BH) < 1 and �(BM +AM ) < 1.

The covariance stationarity condition in Assumption 1 is analogous to the one given in Engle

and Kroner (1995). This can be seen by noting that for any square matrix A, D+k (A
 A)Dk and
(A
A) have the same eigenvalues, where D+k = (D0kDk)�1D0k is the Moore-Penrose inverse of Dk;
see Magnus (1988, Theorem 4.10). Also, it holds that for any square matrix A, D+k (A 
 A)Dk =
Lk(A
A)Dk; see Lutkepohl (1996, Section 9.5.5). Thus BH = Lk(BH 
BH)Dk and (BH 
BH)
have the same eigenvalues. A similar argument applies to (BM +AM ).

We can express the unconditional �rst moments of pt and vt in terms of the model parameters.

By taking unconditional expectation of (7)-(8), it is straightforward to show that

!H := E[pt] = (Ik� �BH)�1
�
CH +AH(Ik� �BM �AM )�1CM

�
; (9)

3A multiset is a set that allows for some or all of its elements to be repeated. This general de�nition is needed to

allow for the case when BH and (BM +AM ) have some common eigenvalues.
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!M := E[vt] = (Ik� �BM �AM )�1CM : (10)

In Appendix A, we derive the unconditional second moments of pt and vt, which correspond to

the fourth moments of the returns (i.e. kurtosis) and second moments of the realized measure (i.e.

volatility of volatility).

2.3 Covariance Targeting

The covariance targeting parameterization was introduced by Engle and Mezrich (1996) for the

univariate GARCH model. This allows the unconditional moments of the model to be estimated

by the empirical moments, and the dynamic parameters would then be estimated using a quasi-

likelihood. The HEAVY model di¤ers from ARCH-type models by using a shock other than the

outer-product of returns to model the conditional covariance. This has an implication for the

covariance targeting speci�cation when the dynamics of the model are restricted from the full

speci�cation in (5), as is the case when AH is assumed to be diagonal or scalar. We elaborate on

this point after the following proposition, which gives two covariance targeting parameterizations

of the HEAVY model.

Proposition 1 Let 
H := E[Pt] = E[Ht] and 
M := E[Vt] = E[Mt]. The covariance targeting

parameterization of the HEAVY model in (7)-(8) is

ht = (Ik� �BH �AH�)!H +BHht�1 +AHvt�1; (11)

mt = (Ik� �BM �AM )!M +BMmt�1 +AMvt�1; (12)

where � = Lk(�
 �)Dk, � = 

1
2
M


� 1
2

H , !H := vech(
H), !M := vech(
M ), and Lk and Dk denote

respectively the elimination and duplication matrices of order k. An alternative covariance targeting

parameterization for (7) is

ht = (Ik� �BH �A�H)!H +BHht�1 +A�Hevt�1; (13)

where evt = ��1vt is a rotated realized measure such that E[evt] = !H .
While the covariance targeting speci�cation in (11)-(12) is a reparameterization of the original

model in (7)-(8), the speci�cation (13)-(12) corresponds to a di¤erent model which uses a rotated

rather than the original realized measure. This is why the coe¢ cient matrix on evt�1 is now denoted
by A�H . The two models are equivalent, implying A

�
H = AH� holds, if and only if both A

�
H and AH

are fully parameterized matrices. When AH is restricted to be scalar (diagonal), this equivalence

does not hold unless � / Ik (� is diagonal).
Using (13)-(12) has the advantage that it is easier to impose the condition �(BH + A�H) < 1

during estimation; see Assumption 2 below. Imposing the condition �(BH + AH�) < 1 is more

involved, particularly in the diagonal and full HEAVY models since � is a (k� � k�) matrix with
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non-zero elements. For the covariance targeting parameterization to be sensible, we need (11)-

(12), or alternatively (13)-(12), to be consistent with a positive de�nite long run target for Ht and

Mt. Therefore, we replace Assumption 1 with the following assumption which guarantees both

covariance stationarity of ht and mt as well as having positive de�nite targets.

Assumption 2 In the covariance targeting parameterization of the HEAVY model given by (11)-
(12), �(BH +AH�) < 1 and �(BM +AM ) < 1. In the covariance targeting parameterization of the

HEAVY model given by (13)-(12), �(BH +A�H) < 1 and �(BM +AM ) < 1.

Estimating the model in its covariance targeting speci�cation can be carried out in two steps,

and we discuss the appropriate inference method in this case in Section 3.3.

2.4 Multi-Step Forecasting

We are primarily interested in forecasting the conditional covariance of daily returns, Ht. One-step

forecasts are directly computable using (7), which expresses Ht in its vech form. To compute s-step

forecasts for s = 2; 3; :::, we need the forecasts from (8) as well to compute the s-step conditional

expectation of the realized measure appearing in the right-hand side of (7). The s-step forecast of

ht is given in the following proposition.

Proposition 2 Let the model be given by (7)-(8), then the s-step forecast of ht is

Et[ht+s] =
s�1X
i=1

Bi�1H CH +B
s�1
H ht+1

+

s�1X
i=1

Bi�1H AH

8<:
s�i�1X
j=1

(BM +AM )
j�1CM + (BM +AM )

s�i�1mt+1

9=; ; (14)

where ht+1 and mt+1 are FHFt -measurable. Alternatively, let the model be given by (11)-(12), then

the s-step forecast of ht is

Et[ht+s] = !H +B
s�1
H (ht+1 � !H) +

s�1X
i=1

Bi�1H AH(BM +AM )
s�i�1(mt+1 � !M ): (15)

The di¤erence between (14) and (15) is that the latter is obtained under a covariance targeting

speci�cation in which the constant terms CH and CM are replaced with expressions involving !H
and !M ; see Section 2.2. In (14), Assumption 1 implies Et[ht+s] ! !H as s ! 1 since the

coe¢ cients on ht+1 and mt+1 will tend to zero, while the limit of the constant terms including CH
and CM will be the right-hand side of (9). In (15), we also have that Et[ht+s] ! !H as s ! 1;
however, in this case Assumption 2 is the operative assumption since the derivation of this equation

is based on the covariance targeting speci�cation.
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In deriving (15), we focused on the covariance targeting speci�cation given by (11)-(12) since it

is more constructive to study the properties of the HEAVY model forecasts. For example, (15) can

be used to compute the HEAVY model�s half-life (of a deviation of the 1-step forecast of ht from

!H) and compare it to that of the GARCH model. The presence of the term (mt+1 � !M ) also
indicates that mean reversion of the forecast matrix is not necessarily monotonic. To forecast using

the covariance targeting speci�cation in (13)-(12), A�H will appear in (15) instead of AH . Thus the

term (mt+1 � !M ) must be pre-multiplied by ��1 to ensure positive de�niteness of Et[Ht+s].

3 Estimation and Inference

3.1 The Distribution of "t and �t

For the HEAVY model in (3)-(4),

Pt = H
1
2
t "tH

1
2
t ; Vt =M

1
2
t �tM

1
2
t ;

the natural choice for the density of the innovation matrices, "t and �t, is the Wishart distribution.

It is an appropriate choice in models where the support of the random variable of interest is

restricted to the space of positive semide�nite matrices.4 Web Appendix B provides an overview

of the Wishart distribution including the de�nitions and notation used in this section.

In GARCH models, the vector of daily returns is usually modelled as Rt = H
1
2
t �t with �t

i:i:d:�
N(0; Ik), which motivates quasi-maximum likelihood estimation (QMLE). For the HEAVY-P equa-

tion, we have Pt = RtR0t = H
1
2
t "tH

1
2
t , where "t = �t�

0
t. The assumption that �t

i:i:d:� N(0; Ik) implies

that "t follows a Wishart distribution.

One of the key results on the Wishart distribution is that if any matrix S � Wk(n;�), then

ASA0 � Wk(n;A�A
0) for any (k � k) nonsingular matrix A. Assuming a Wishart density for "t

and �t implies that Pt and Vt are assumed to be conditionally Wishart distributed. However, one

distinction between the densities of "t and �t relates to the di¤erences in the ranks of Pt and Vt.

The matrix Pt = RtR
0
t has rank 1 by construction if there is at least one non-zero return in Rt.

Whether using the realized covariance estimator or the realized kernel of Barndor¤-Nielsen et al.

(2011), the matrix Vt is guaranteed to be full rank under standard regularity conditions, provided

that k < m, where m is the number of intra-daily returns. This di¤erence in rank entails that "t
should have a singular Wishart density and �t a standardized Wishart density. The discussion in

Web Appendix B makes it clear that this distinction is necessary for the two conditional moment

assumptions, Et�1["t] = Ik and Et�1[�t] = Ik, to be satis�ed.

Therefore, we assume "t
i:i:d:� SINGWk(1; Ik) and �t

i:i:d:� SWk(k; Ik). The densities of "t and �t
are given by, respectively, (B.2) and (B.1) in Web Appendix B. Thus PtjFHFt�1 � SINGWk(1;Ht)

4Some recent multivariate stochastic volatility models also employ the Wishart distribution to model time-varying

correlations; see Chib et al. (2009) and the references cited therein, and also Jin and Maheu (2010).
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and VtjFHFt�1 � SWk(k;Mt). The distinction between the densities of "t and �t is of no consequence

to QMLE as we show in a moment. However, it is needed to have a correctly speci�ed model

satisfying Et�1["t] = Et�1[�t] = Ik.
5

3.2 Quasi-Maximum Likelihood Estimation

The HEAVY model is parameterized with a �nite-dimensional (��1) parameter vector � 2 � � R�.
Decompose � = (�0H ; �

0
M )

0 where the (�H � 1) vector �H and (�M � 1) vector �M denote the

parameter vectors of the HEAVY-P and HEAVY-V equations, respectively. Let �0 = (�0H;0; �
0
M;0)

0

denote the true parameter vector. The log-likelihood for the tth observation will be denoted by

lH;t(�H) and lM;t(�M ). Inference for the HEAVY model will be based on QMLE of the following

two log-likelihood functions

lH;t(�H) = cH �
1

2

�
log jHtj+ tr(H�1

t Pt)
�
; lM;t(�M ) = cM � k

2

�
log jMtj+ tr(M�1

t Vt)
�
;

where cH and cM are constants with respect to �H and �M ; see, respectively, (B.2) and (B.1) in

Web Appendix B. Thus the distinction between the densities of "t and �t is of no consequence for

QMLE of the model parameters. Engle and Gallo (2006) argue similarly for the Gamma density

where the shape parameter is of no consequence when estimating the scale parameter by QMLE.

We assume the initial values, H0 and M0, are known and are positive semide�nite. We also

assume that �H and �M are variation free in the sense of Engle et al. (1983), which allows for

equation-by-equation estimation. This assumption is not essential and is only used to simplify

estimation and inference. The QML estimator is b� = (b�0H ;b�0M )0 whereb�H = argmax
�H2�

LH(�H); b�M = argmax
�M2�

LM (�M );

and LH(�H) =
XT

t=1
lH;t(�H), LM (�M ) =

XT

t=1
lM;t(�M ).

For the BEKK model, Comte and Lieberman (2003) show strong consistency of QMLE by

verifying the conditions given in Jeantheau (1998). Hafner and Preminger (2009) show similar

results for the VEC model which nests the BEKK model, and their results also apply to integrated

processes. An important condition to establish strong consistency is for the model to admit a

strictly stationary and ergodic solution, which we assume for the HEAVY model.

Before discussing the asymptotic distribution of b�, we �rst give results on the score vector in
the following proposition. It will be convenient to consider the score for each equation separately.

Proposition 3 (i) The score vectors, SH;t(�H) =
@lH;t(�H)

@�0H
and SM;t(�M ) =

@lM;t(�M )

@�0M
of dimen-

sions (1� �H) and (1� �M ), respectively, are given by

SH;t(�H) =
@lH;t(�H)

@�0H
=
1

2

�
(vec(Pt))

0 � (vec(Ht))0
�
(H�1

t 
H�1
t )

@vec(Ht)

@�0H
; (16)

5One can test for the Wishart distribution assumption by making use of the property that if S � Wk(n;�), then
a0Sa
a0�a � �

2
(n) for any (k � 1) vector a 6= 0; see Gupta and Nagar (2000). Also, conditional moment tests can be used

to detect misspeci�cation.
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SM;t(�M ) =
@lM;t(�M )

@�0M
=
1

2

�
(vec(Vt))

0 � (vec(Mt))
0� (M�1

t 
M�1
t )

@vec(Mt)

@�0M
: (17)

(ii) Under Et�1["t] = Ik and Et�1[�t] = Ik, the score vectors evaluated at the true parameter

value are a martingale di¤erence sequence with respect to FHFt�1 .

The scores have a similar structure to those of GARCH models (e.g. Bollerslev and Wooldridge

(1992)). In analogy with generalized least squares, the terms in square brackets can be considered

"errors", while (H�1
t 
H�1

t ) and (M�1
t 
M�1

t ) are weights and the derivatives @vec(Ht)
@�0H

and @vec(Mt)
@�0M

are instruments which are orthogonal to the errors at the maximum likelihood estimator, which is

a condition for consistency.

To discuss the asymptotic distribution of the QML estimator, b�, we de�ne the (1� �) combined
score vector St(�) = (SH;t(�H); SM;t(�M )). Having established that the scores are a martingale

di¤erence sequence with respect to FHFt�1 , it can be shown under certain regularity conditions (e.g.
Comte and Lieberman (2003)) that

p
T
�b� � �0� d�! N(0; I�1J I�1);

where

J = E
�
St(�)

0St(�)
�
= E

24 @lH;t(�H)
@�H

@lH;t(�H)

@�0H

@lH;t(�H)
@�H

@lM;t(�M )

@�0M
@lM;t(�M )
@�M

@lH;t(�H)

@�0H

@lM;t(�M )
@�M

@lM;t(�M )

@�0M

35 ;
I = �E

�
@St(�)

@�

�
= �E

24 @2lH;t(�H)

@�H@�
0
H

0

0
@2lM;t(�M )

@�M@�
0
M

35 :
The block diagonality of the Hessian, I, is due to the assumption that �H and �M are variation

free, which implies that equation-by-equation standard errors are correct for the HEAVY system.

With covariance targeting, a two-step estimation procedure is adopted and in this case the score

vector will no longer be a martingale di¤erence sequence, but it will have mean zero at the true pa-

rameter value. Also, the Hessian will not be block diagonal due to accounting for the accumulation

of estimation error from the �rst step. We formalize inference in the case of covariance targeting

in the following subsection.

3.3 Two-Step Estimation Under Covariance Targeting

With covariance targeting, the parameter vectors �H and �M are decomposed into �H = (!0H ;e�0H)0
and �M = (!0M ;

e�0M )0 and are to be estimated in two steps. The unconditional moments, !H and

!M , will be estimated in the �rst step by a moment estimator

b!H = T�1 TX
t=1

pt; b!M = T�1
TX
t=1

vt;

12



and then e�H and e�M will be estimated by QMLE in the second step. The asymptotics of the

QML estimator in this case is a direct application of two-step GMM estimation discussed in Newey

and McFadden (1994). De�ne elH;t(!H ; !M ;e�H) and elM;t(!M ;e�M ) to be the tth observation log-
likelihoods for the covariance targeting HEAVY model. Two-step estimation gives the following

(1� �) vector of moment conditions

eSt(e�) =  (pt � !H)0; @elH;t
@e�0H ; (vt � !M )0;

@elM;t

@e�0M
!
; e� = (!0H ;e�0H ; !0M ;e�0M )0;

which is no longer martingale di¤erence sequence with respect to FHFt�1 . In this case
p
T
�b� � �0� d�! N(0; I�1J (I�1)0);

where

J = Var

"
1p
T

TX
t=1

eSt(e�)# ;

I = �E
"
@ eSt(e�)
@e�

#
= �E

266666664

�Ik� @2elH;t
@!H@e�0H 0 0

0
@2elH;t
@e�H@e�0H 0 0

0
@2elH;t
@!M@e�0H �Ik� @2elM;t

@!M@e�0M
0 0 0

@2elM;t

@e�M@e�0M

377777775
:

In implementation we use a HAC estimator (e.g. Newey and West (1987)) to estimate J . With
covariance targeting, variation freeness between the parameters of the HEAVY-P and HEAVY-V

equations no longer holds since � depends on !M . Thus the block
@2elH;t
@!M@e�0H now appears in the

Hessian to account for this dependence in the second step of estimation.

4 Model Evaluation

For out-of-sample model evaluation, we use a quasi-likelihood (QLIK) loss function of the form

Lt;s(�t+s;H
a
t+sjt) = log

���Ha
t+sjt

���+ tr((Ha
t+sjt)

�1�t+s); (18)

where �t+s is the actual (unobserved) covariance matrix and Ha
t+sjt denotes its s-step forecast using

model a conditional on time t information. Since �t+s is unobservable, our analysis will be based

on some proxy denoted by b�t+s, which we take to be the realized covariance matrix, Vt+s. The loss
function (18) evaluates the s-step predicted density from model a using the proxy b�t+s as data6,
and it provides a consistent ranking of volatility models in the sense of Patton (2011) and Patton

and Sheppard (2009) as it is robust to noise in the proxy b�t+s; see also Laurent et al. (2009).
6Note that (18) is the negative of the log-likelihood of a multivariate normal density excluding the constant terms.

The switched sign is due to de�ning (18) as a "loss" function.
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Note that even if - at time t - the true density of Rt+1 is normal (i.e. the density of Pt+1 is

Wishart), normality will not hold under temporal aggregation unless the conditional covariance

matrix is constant. Therefore the s-step density will not be normal implying that the density used

for the QLIK loss function (18) is misspeci�ed. However, the loss di¤erence between two competing

models a and b, Lt;s(�t+s;Ha
t+sjt) � Lt;s(�t+s;H

b
t+sjt), can be interpreted as a Kullback-Leibler

distance which yields a valid assessment even if both models are misspeci�ed. Cox (1961) proposes

a likelihood ratio test based on this idea, while Vuong (1989) provides the theoretical framework

in the case of nested and non-nested models. Similar approaches are proposed for out-of-sample

model selection in Amisano and Giacomini (2007) and Diks et al. (2008).

We denote the loss di¤erence between the HEAVY and GARCH models by

Dt;s = Lt;s(�t+s;H
HEAV Y
t+sjt )� Lt;s(�t+s;HGARCH

t+sjt ); t = Q;Q+ 1; :::; T � s;

where Lt;s(�) is given by (18), T is the size of the full sample and Q is the size of the estimation

window. We assume Q is �xed so that we use a rolling-window of data to estimate the model

parameters, which gives T �Q�s+1 data points for out-of-sample model evaluation. The average
loss is denoted by

Ds =
1

T �Q� s+ 1

T�sX
t=Q

Dt;s

which is used to test H0 : E[Dt;s] = 0, for all s, against a two-sided alternative. Let D
�
s denote the

average loss evaluated at the true parameter value, then we have

p
T (Ds �D

�
s)

d�! N(0;�s);

where �s is the asymptotic variance ofDt;s estimated using a HAC estimator. Signi�cantly negative

values of the test statistic indicate superior forecast performance of the HEAVY model. This

predictive ability test was �rst introduced by Diebold and Mariano (1995), and later formalized by

West (1996) and Giacomini and White (2006).

We extend this strategy in the context of multivariate volatility models by conducting separate

tests for forecasts of the individual variances and also for the dependence structure of the group of

assets under consideration. Consider the margins-copula decomposition of the log-likelihood of Rt,

log f(X) =

kX
i=1

log fi(xi) + log c(F1(x1); F2(x2); :::; Fk(xk)); (19)

where f(X) is the joint density of the returns of the k assets, fi(xi) and Fi(xi), i = 1; :::; k, are

respectively the density and cumulative distribution function of asset i returns, and c(�) is the
copula density.7 The normality assumption for Rt implies that f(X), fi(xi) and c(�) correspond to
the multivariate normal density, normal density and normal copula, respectively.

7Nelsen (2006) and Patton (2009) provide recent reviews of copula theory and �nancial applications.
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We decompose the QLIK loss in (18) in a similar fashion to (19). So computing the loss

in (18) based on the whole forecast matrix (Ha
t+sjt) corresponds to log f(X), while computing

the loss based on a particular diagonal element of Ha
t+sjt, say h

a
ii;t+sjt, corresponds to log fi(xi).

The latter corresponds to the loss encountered in forecasting the individual variance for asset i,

and we compute it for all k assets. We compute the loss attributed to forecasting the dependence

structure (summarized by the copula contribution) as the residual, i.e. corresponding to log f(X)�Xk

i=1
log fi(xi). Based on this QLIK loss decomposition, we conduct the predictive ability test,

outlined above, separately for each margin as well as the copula. Due to the normality assumption,

the copula parameter is the conditional correlation matrix of the daily returns, thus we use the

terms margins-copula and variances-correlations interchangeably.

5 Empirical Application

We use high-frequency data on Spyder (SPY), the S&P 500 ETF, along with some of the most

liquid stocks in the Dow Jones Industrial Average (DJIA) index. These are: Alcoa (AA), American

Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General Electric (GE),

International Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), and Exxon Mobil

(XOM). The sample period is 1/2/2001 to 31/12/2009 with a total of 2242 trading days, and the

data source is the TAQ database. We choose the starting date for the sample to be after decimal

pricing had been fully implemented in the NYSE, which took place on 29/1/2001.

We focus on the realized covariance matrix as our choice for Vt. In computing the realized

covariance matrix, we use 5-minute returns with subsampling. We exclude the opening and closing

15 minutes of trading to control for overnight e¤ects. For the daily return, we focus on the open-

to-close returns which of course ignore overnight e¤ects, and for consistency with the realized

covariance estimator we compute the open-to-close daily returns over the same interval.8 Our

estimation and forecast evaluation computations were repeated using the noise-robust realized

kernel of Barndor¤-Nielsen et al. (2011) with the results being qualitatively similar in general.9

The main focus of our empirical application will be on modelling and forecasting the conditional

covariance matrix of a stock (BAC) and an index (S&P 500) using the scalar HEAVY model. Most

of the model�s features can be readily seen in this bivariate model which is analyzed in Section

5.1. In Section 5.2 we report estimates of the scalar HEAVY model for the ten DJIA stocks using

covariance targeting. In Web Appendix C, we report empirical results for the diagonal HEAVY

model for SPY-BAC, as well as scalar and diagonal models for other pairs of assets selected from

the ten DJIA stocks.
8We also estimated some of the models using close-to-close returns. The di¤erences in results are discussed at the

end of Section 5.1.
9These are not reported in the interest of parsimony, but are available upon request.

15



5.1 Bivariate Scalar HEAVY Model: S&P 500 and Bank of America

Figure 1 contains the annualized realized volatility of SPY and BAC, their realized correlation

and realized beta for BAC over the full sample. The sharp increase in volatility in 2008-2009 is

associated with the turmoil in �nancial markets during the recent �nancial crisis. The increase

in BAC volatility is much more pronounced especially after the collapse of Lehman Brothers in

mid September 2008. BAC realized correlation with the market seems to have been relatively high

during the crisis, and its realized beta increased sharply and was very volatile during this period.

SPY realized volatility
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Figure 1: SPY and BAC annualized realized volatility, realized correlation and BAC realized beta.

In Table 1, we present the HEAVY and GARCH model estimates. We also report estimates

for the GARCH-X model which is similar to (7) with pt�1 included on the right-hand side with

coe¢ cient DGX . So the GARCH-X model nests both the HEAVY-P equation and the GARCH

model. For ease of interpretation, we only report the parameter estimates for the models�vech

representation excluding the constant terms.

The estimate of BH implies that the elements of Ht will be smooth, although less smooth

than the corresponding estimates from the GARCH model with the estimate of BG equal to 0.934.

For the HEAVY-V equation, the BM coe¢ cient is relatively small implying that the estimated

conditional moments will be somewhat erratic. In terms of magnitude, these estimates are largely

in line with those from the univariate HEAVY model in Shephard and Sheppard (2010), and they
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HEAVY-P GARCH GARCH-X HEAVY-V

AH BH AG BG AGX BGX DGX AM BM

SPY-BAC
(st. error)

0:214
(0:054)

0:727
(0:068)

0:062
(0:010)

0:934
(0:011)

0:187
(0:056)

0:741
(0:068)

0:019
(0:012)

0:421
(0:033)

0:574
(0:033)

Log-likelihood decomposition (HEAVY-P versus GARCH)

HEAVY-P GARCH HEAVY-P gains

Margin 1 (SPY) -658 -713 55

Margin 2 (BAC) -1,593 -1,648 55

Copula 815 808 7

Joint distribution -1,436 -1,553 117

Predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

Margin 1 (SPY) -3.72 -3.03 -2.33 -1.23 0.84 1.87

Margin 2 (BAC) -3.27 -2.45 -1.70 -0.58 1.06 2.04

Copula -3.37 -3.22 -3.39 -3.28 -3.26 -3.85

Joint distribution -4.32 -3.78 -3.23 -2.33 -0.07 1.03

Table 1: Scalar HEAVY estimation and forecast evaluation results for SPY-BAC. Top panel: parameter estimates

of HEAVY, GARCH and GARCH-X with standard errors reported in parentheses. Middle panel: decomposition of

the log-likelihood (excluding constant terms) at the estimated parameter values. Bottom panel: t-statistics of the

predictive ability tests for HEAVY versus GARCH.

also suggest a somewhat high level of persistence. Compared to the nesting GARCH-X model, there

is no loss of �t when moving to HEAVY-P since the coe¢ cient on pt�1 (DGX) is not statistically

signi�cant. This is not the case when moving from GARCH-X to GARCH which suggests that vt�1
e¤ectively crowds out pt�1.

The estimates also suggest that the HEAVY model half-life (of a deviation of the 1-step forecast

of ht from its long run) is substantially shorter than that of the GARCH model suggesting that

the former�s forecast responds faster to abrupt changes in the level of volatility or correlation.10

The log-likelihood and its decomposition into marginal and copula likelihoods in the middle

panel of Table 1 indicate an improvement in �t of the HEAVY-P equation compared to the GARCH

model. Note that the two models are non-nested so direct LR tests are not possible; however, we

will present below the outcome of the predictive ability tests discussed in Section 4. Although non-

nested, the decomposition suggests that the HEAVY-P equation improves on GARCH for both the

margins and the copula. The model residuals, b"t and b�t, seem to be centered around the identity

matrix, with the exception of two large outliers in b�t corresponding to the realized variances of
SPY and BAC on 27/2/2007, due to the 9% fall in the Shanghai stock exchange index that day.

An interesting feature from the residual analysis is that it displays evidence of the leverage e¤ect

10The half-life can be easily computed from (15) by noting that the two gaps, (ht+1�!H) and (mt+1�!M ), tend
to have the same sign as our results indicate that the elements of ht and mt tend to be very highly correlated. Thus

these two gaps can be set, without loss of generality, equal to a (k� � 1) vector of ones.
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Figure 2: Left panel: scatter plots of SPY and BAC residuals in the HEAVY-P and HEAVY-V equations. Right

panel: scatter plots of the residuals mapped into probability integral transforms (PITs).

between the returns and the realized measure. This is shown in Figure 2. The upper-left chart

shows the scatter plot of b�1;t and b�11;t which are the innovations to the daily return and realized
variance of SPY, respectively.11 The lower-left chart displays the innovations to the daily return

and realized variance of BAC. The right panel charts correspond to the same plots but mapped into

copula space where the empirical distribution function is used to transform the innovations into

probability integral transforms. The leverage e¤ect can be seen in the right panel. For instance,

large negative innovations to SPY returns tend to be associated with large positive innovations to

its realized variance indicating higher volatility in response to bad news. The same applies to BAC

innovations.

The bottom panel of Table 1 gives the results of the predictive ability tests. We estimate the

model using a rolling-window of 1486 observations and then use the parameter estimates to obtain

forecasts of Ht at horizons s = 1; 2; 3; 5; 10; 22 days using (14). The size of the rolling window is

chosen such that our forecasts start at 3/1/2007. The reported �gures are t-statistics to test equal

predictive ability and signi�cantly negative t-statistics favour the HEAVY model over the GARCH

model. The results show that HEAVY outperforms GARCH especially at short forecast horizons.

11b�1;t is the �rst element of the vector b�t = bH� 1
2

t Rt, and b�11;t is the (1; 1) element of the matrix b�t = cM� 1
2

t VtcM� 1
2

t .
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This is true for the whole covariance matrix forecast as well as its decomposition into margins

and copula, which provides further insight into the source of forecast gains. The copula gains

are maintained at longer forecast horizons indicating that the realized measure provides valuable

information for forecasting the conditional correlation.
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Figure 3: One-step and multi-step forecasts for the SPY-BAC conditional correlation.

As pointed out earlier, the forecast pro�le of the HEAVY model is distinct from that of the

GARCH(1,1) model particularly over short forecast horizons due to momentum e¤ects. This can be

seen in Figure 3 which plots the forecasts of the SPY-BAC conditional correlation (implied by the

forecasts of Ht) over the period 03/11/2008 to 30/09/2009. This is an interesting period for analysis

as it marks a very volatile period during the 2007-2009 �nancial crisis. The solid lines are the 1-step

forecasts, and at selected points we plot the forecast pro�le at this date for 22 days into the future.

We do this only for selected peak and trough points for clarity of illustration. The momentum e¤ects

in the HEAVY model can be readily seen. Whereas the GARCH correlation forecast monotonically

mean reverts, the HEAVY forecast displays some short run momentum in�uenced by the deviation

of the realized measure from its long run before ultimately mean reverting. Interestingly, the plot

also shows how the 1-step forecasts from both models diverge in some periods pointing to important

di¤erences in the information content of the realized measure and the outer product of daily returns.

It is interesting to track the model�s performance in relation to the accuracy of the realized
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HEAVY-P GARCH-X HEAVY-V Joint LL

AH BH AGX BGX DGX AM BM gain

RC 1-min 0.256 0.597 0.128 0.741 0.052 0.527 0.471 65

RC 5-min 0.214 0.727 0.187 0.741 0.019 0.421 0.574 117

RC 10-min 0.202 0.760 0.189 0.764 0.011 0.362 0.633 120

RC 15-min 0.185 0.787 0.169 0.793 0.012 0.300 0.696 116

RC 30-min 0.143 0.842 0.134 0.843 0.009 0.236 0.759 107

Realized kernel 0.213 0.677 0.194 0.689 0.015 0.508 0.488 128

Joint distribution predictive ability tests at di¤erent forecast horizons (days)

(1) (2) (3) (5) (10) (22)

RC 1-min -3.59 -3.08 -2.47 -1.82 0.30 1.50

RC 5-min -4.32 -3.78 -3.23 -2.33 -0.08 1.03

RC 10-min -4.08 -3.70 -3.21 -2.35 -0.23 0.99

RC 15-min -4.26 -3.87 -3.34 -2.64 -0.26 1.11

RC 30-min -3.81 -3.34 -2.75 -2.01 -0.13 1.12

Realized kernel -4.25 -3.76 -3.23 -2.63 -0.46 1.00

Table 2: Scalar HEAVY estimation and forecast evaluation results for SPY-BAC using di¤erent realized measures.

Top panel: scalar HEAVY and GARCH-X parameter estimates using di¤erent sampling intervals in computing the

realized covariance and also using the realized kernel. Log-likelihood gains from the HEAVY model are reported in

the last column. Bottom panel: t-statistics of the predictive ability tests for HEAVY versus GARCH.

measure. For this purpose, we report in Table 2 the parameter estimates, log-likelihood gains and

out-of-sample performance using various sampling intervals for the realized covariance estimator.

The table also includes results when using the realized kernel as the realized measure. In general,

the results indicate that when sampling between 5 and 15 minutes, the parameter estimates of the

HEAVY and GARCH-X models are rather stable implying similar persistence levels, and indeed

the estimates become very close when sampling at 30 minutes. At 1-minute sampling, there is

substantial drop in the estimate of BH and a moderate increase in AH . Using the realized kernel

leads to a noticeable decline in the smoothing parameters in both equations of the HEAVY model

as well as the GARCH-X model. In terms of forecasting performance, the results are similar.

To investigate the sensitivity of the results to including overnight e¤ects, we also estimated

the scalar HEAVY model using close-to-close returns for SPY-BAC and also for other asset pairs

selected from the ten DJIA stocks and analyzed in Web Appendix C. The primary di¤erence when

using close-to-close returns is an increase in the loadings on the shock terms in both the HEAVY

and GARCH models through AH ; AM and AG, and particularly so for the GARCH model. The

HEAVY model still provides gains for the joint and marginal log-likelihoods. The copula gains

are obtained only for the pairs IBM-MSFT, AXP-DD and GE-KO. Interestingly, the predictive

ability test results indicate that the HEAVY model gains for the joint log-likelihood are sustained

at all horizons in most cases, which is also the case for some of the margins. The copula gains

are signi�cant at all horizons for the pairs IBM-MSFT and AXP-DD, only at longer horizons for
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SPY-BAC and BAC-JPM , and insigni�cant for XOM-AA and GE-KO.

5.2 Covariance Targeting Scalar HEAVY Model

In this subsection, we estimate the scalar HEAVY model including all ten DJIA assets. We show the

estimation results for both the original HEAVY speci�cation and the covariance targeting model

given by (13)-(12). We focus on this covariance targeting speci�cation since it is easier to handle the

parameter restrictions required for covariance stationarity and positive de�niteness of the target.

For the GARCH model, we also estimate its covariance targeting parameterization which has a

similar structure to (12). With covariance targeting, the number of parameters to be estimated

through numerical optimization is reduced from 57 to 2 parameters per equation, where the latter

are the dynamic parameters of interest.

Table 3 presents the estimates of the dynamic parameters for the HEAVY and GARCH models.

The parameter estimates show some di¤erences compared to the average estimate from bivariate

models for the same assets; see Web Appendix C. The estimates of the smoothing parameters (BH ,

BM and BG) have all increased especially BM , while the estimates of AH , AM and AG are now

smaller. The log-likelihood decomposition results show uniform gains for the HEAVY model in all

margins and the copula. The copula gains seem particularly impressive. In terms of parameter

estimates and the log-likelihood decomposition, the covariance targeting model (bottom panel)

shows only slight di¤erences compared to the non-targeting speci�cation.

In Figure 4, we present summary results of the predictive ability tests for the covariance tar-

geting scalar HEAVY and GARCH models. The �gure shows the t-statistics for tests of the joint

distribution and copula, as well as the minimum, maximum and median t-statistics for the ten

margins. In the �rst three days, the HEAVY model gains are con�rmed for the joint distribution,

all margins and the copula. The gains of the joint distribution are maintained up to 11 days ahead,

then it falls into the insigni�cance region before improving again towards the end of the forecast

horizon. For the margins, the median t-statistics show gains up to 7 days ahead. The copula

gains are maintained throughout until the end of the forecast horizon, which is consistent with the

substantial overall gain in the copula log-likelihood.

6 Conclusion

This paper introduces a new class of multivariate volatility models with robust performance in out-

of-sample prediction of the covariance matrix for a collection of �nancial assets. While GARCH

models - in their many variations - have proved successful in the past two decades, the increasing

availability of high-frequency data provides important additional information. Utilizing this infor-

mation to forecast the conditional variance of daily asset returns has already borne fruit in the

univariate case as documented by several recent studies.

Our study is one of the �rst to document this feature in the multivariate case using a relatively
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Scalar models

HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Dynamic parameters
(st. error)

0:141
(0:021)

0:792
(0:037)

0:024
(0:002)

0:973
(0:001)

0:247
(0:011)

0:744
(0:010)

Log-likelihood decomposition

HEAVY-P GARCH HEAVY-P gains

Margin 1 (BAC) -1,611 -1,696 85

Margin 2 (JPM) -1,999 -2,098 99

Margin 3 (IBM) -1,267 -1,323 56

Margin 4 (MSFT) -1,471 -1,525 54

Margin 5 (XOM) -1,331 -1,420 89

Margin 6 (AA) -2,332 -2,381 49

Margin 7 (AXP) -1,957 -2,034 77

Margin 8 (DD) -1,530 -1,595 65

Margin 9 (GE) -1,532 -1,590 58

Margin 10 (KO) -911 -956 45

Copula 4,861 4,661 200

Joint distribution -11,080 -11,958 878

Covariance targeting scalar models

HEAVY-P GARCH HEAVY-V

AH BH AG BG AM BM

Dynamic parameters
(st. error)

0:177
(0:022)

0:818
(0:023)

0:022
(0:001)

0:977
(0:001)

0:234
(0:009)

0:761
(0:010)

Log-likelihood decomposition

HEAVY-P GARCH HEAVY-P gains

Margin 1 (BAC) -1,616 -1,753 138

Margin 2 (JPM) -1,985 -2,119 133

Margin 3 (IBM) -1,257 -1,327 69

Margin 4 (MSFT) -1,464 -1,525 61

Margin 5 (XOM) -1,340 -1,424 84

Margin 6 (AA) -2,324 -2,379 55

Margin 7 (AXP) -1,940 -2,046 106

Margin 8 (DD) -1,528 -1,592 64

Margin 9 (GE) -1,521 -1,595 74

Margin 10 (KO) -911 -954 43

Copula 4,781 4,629 151

Joint distribution -11,105 -12,084 978

Table 3: Scalar HEAVY estimates for ten DJIA assets. Top panel: parameter estimates and log-likelihood

(excluding constant terms) decomposition for scalar HEAVY and GARCH without covariance targeting. Bottom

panel: parameter estimates and log-likelihood (excluding constant terms) decomposition for the covariance

targeting scalar HEAVY and GARCH.
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Figure 4: Predictive ability tests�t-statistics for the covariance targeting scalar HEAVY and GARCH models.

large group of assets. We present our results in the framework of the multivariate HEAVY class of

models. Using a linear speci�cation, we discuss in some detail the model�s dynamic properties, its

covariance targeting representation, and provide closed-form forecasting formulas. We show how

the pro�le of forecasts from HEAVY models di¤ers from GARCH models, in particular with regard

to its persistence and short-run momentum e¤ects. We also discuss QMLE of HEAVY models

under the assumption of a Wishart distribution for the innovation matrices.

In an application to the S&P 500 ETF and ten stocks from the DJIA index, we compare the

HEAVY and GARCH models in the challenging environment of the �nancial crisis. We show that

forecasts from the HEAVY model dominate GARCH forecasts with the gains being particularly

signi�cant at short forecast horizons. The results seem consistent across di¤erent pairs of assets

and also when using all ten DJIA stocks in a covariance targeting model. The HEAVY model�s

relatively short response time compared to GARCH seems to enable it to e¢ ciently track sudden

changes in asset return volatilities and correlations. With regard to the latter, our results for

log-likelihood decompositions and predictive ability tests strongly suggest that high-frequency data

provides timely and important information for modelling and forecasting conditional correlations.

For future research, a number of extensions could potentially add to our understanding of how

best to model and forecast multivariate volatility. It would be interesting to add asymmetric terms
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to the HEAVY model to explicitly capture the leverage e¤ect and see how this improves its forecast

performance. It might also be bene�cial to use a long-run/short-run component model in the

dynamic equations to separate out transitory movements in volatility.
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A Second Moments�Structure

Since the model is expressed for pt (i.e. for the squares and cross-products of daily returns), we are

able to obtain explicit expressions for the fourth moment of returns by deriving Var[pt]. Similarly,

by deriving Var[vt], we are able to analyze the second moment of the realized measure which gives

an expression for the volatility of volatility; see Engle (2002) and Corsi et al. (2008) for a discussion

of modelling the volatility of volatility using the VIX and realized volatility, respectively.

The following proposition gives the structure of the second moments of pt and vt, which is

derived under the assumption Et�1["t] = Et�1[�t] = Ik. The expressions in (A.1)-(A.2) can be

simpli�ed further by assuming a Wishart distribution for the innovations which gives (A.3)-(A.4).

Proposition 4 (i) Under the assumption that Et�1["t] = Et�1[�t] = Ik, the second moments of pt
and vt are given by

Var[pt] = E
�
ZH;tVart�1[vech("t)]Z

0
H;t

�
+Var [ZH;tvech(Ik)] ; (A.1)

Var[vt] = E
�
ZM;tVart�1[vech(�t)]Z

0
M;t

�
+Var [ZM;tvech(Ik)] ; (A.2)

where ZH;t = Lk(H
1
2
t 
 H

1
2
t )Dk, ZM;t = Lk(M

1
2
t 
 M

1
2
t )Dk and Vart�1[�] denotes the variance

conditional on FHFt�1 .
(ii) Under the additional assumption that "t and �t are i:i:d: Wishart distributed, the second

moments of pt and vt are given by

E[ptp
0
t] = 2D

+
k E [(Ht 
Ht)]L

0
k + E[hth

0
t]; (A.3)

E[vtv
0
t] = 2kD

+
k E [(Mt 
Mt)]L

0
k + E[mtm

0
t]; (A.4)

where D+k = (D
0
kDk)

�1D0k is the Moore-Penrose inverse of Dk.

Dropping the t subscripts to avoid cluttered notation, the second moment structure of pt given

in (A.3) will have the following structure in the 2-dimensional case

E[pp0] = E

0B@ r41 r31r2 r21r
2
2

r31r2 r21r
2
2 r1r

3
2

r21r
2
2 r1r

3
2 r42

1CA = E

0B@ 3h211 3h11h12 2h212 + h11h22

3h11h21 2h221 + h11h22 3h12h22

2h221 + h11h22 3h21h22 3h222

1CA ;
where r1 and r2 denote the daily returns for assets 1 and 2, respectively, and hij , i; j = 1; 2,

are the elements of Ht. Applying a vec operator to (A.3) gives a similar result to (10) in Hafner

(2003), which discusses the fourth moment structure of GARCH models when Ht follows a GARCH

speci�cation and daily returns are assumed to be normally distributed.

The result in (A.4) seems novel in the context of realized measures. In the univariate case,

Corsi et al. (2008) estimate the volatility of realized volatility by utilizing consistent estimators

of the integrated quarticity of returns, such as realized quarticity, realized quad-power quarticity
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and realized tri-power quarticity. In an application to S&P 500 index futures, they show that the

unconditional distributions of these three measures are skewed and leptokurtic even after applying

a log transformation. The three measures also exhibit clustering which prompts the authors to

develop a GARCH-type model for realized volatility. Engle (2002) also discusses di¤erent models

for volatility of volatility using the VIX time series.

B Technical Proofs

B.1 Proof of Proposition 1

By taking unconditional expectation of (7) and (8) we have

!H = CH +BH!H +AH!M ; !M = CM +BM!M +AM!M : (B.1)

By de�nition � = 

1
2
M


� 1
2

H , which implies 

1
2
M = �


1
2
H , and 
M = 


1
2
M


1
2
M = �
H�

0 using

the fact that 

1
2
M and 


1
2
H are symmetric since we obtain the matrix square root by the spectral

decomposition. Thus !M := vech(
M ) = vech(�
H�
0) = Lk(� 
 �)Dk!H using (A.1) in Web

Appendix A for the last equality.

Let � = Lk(�
 �)Dk and substitute the last result for !M in the �rst expression in (B.1). By

collecting terms we have that the intercept coe¢ cients are given by CH = (Ik� � BH � AH�)!H
and CM = (Ik� �BM �AM )!M , which when substituted in (7) and (8) gives the stated result.

The proof for (13) follows by noting that E[evt] = ��1E[vt] = ��1!M = !H , where the last

equality follows from above by de�ning � = Lk(�
 �)Dk. The rest follows by collecting terms and
substituting for CH in the �rst expression in (B.1).

B.2 Proof of Proposition 2

We start with the proof of (14). The 1-step forecast of ht is Et[ht+1] = ht+1, since ht+1 is FHFt -

measurable. From (7), the 2-step forecast is

Et[ht+2] = Et[CH +BHht+1 +AHvt+1] = CH +BHht+1 +AHEt[vt+1]:

The 3-step forecast is

Et[ht+3] = Et[CH +BHht+2 +AHvt+2] = CH +BHEt[ht+2] +AHEt[vt+2]

= (Ik� +BH)CH +B
2
Hht+1 +AHEt[vt+2] +BHAHEt[vt+1];

where the last equality follows by substituting for Et[ht+2] from above and collecting terms. By

forward iteration, it is straightforward to show that

Et[ht+s] =
s�1X
i=1

Bi�1H CH +B
s�1
H ht+1 +

s�1X
i=1

Bi�1H AHEt[vt+s�i]: (B.2)
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Now �nd an expression for Et[vt+s�i] in terms of mt+1, which is FHFt -measurable. We start

with the 1-step forecast of vt which is Et[vt+1] = mt+1 by de�nition. The 2-step forecast is

Et[vt+2] = Et[Et+1[vt+2]] = Et[mt+2] = Et[CM +BMmt+1 +AMvt+1]

= CM + (BM +AM )mt+1;

since Et[vt+1] = mt+1. The 3-step forecast is

Et[vt+3] = Et[Et+1[vt+3]] = Et[CM + (BM +AM )mt+2] = CM + (BM +AM )Et[mt+2]

= (Ik� + (BM +AM ))CM + (BM +AM )
2mt+1;

where the second equality follows by substitution from above with a 1-period forward iteration, and

the last equality follows by substituting for mt+2, applying the conditional expectation operator

and collecting terms. By forward iteration, we have the following formula for the s-step forecast of

vt

Et[vt+s] =

s�1X
j=1

(BM +AM )
j�1CM + (BM +AM )

s�1mt+1: (B.3)

Using (B.3) to substitute for Et[vt+s�i] in (B.2), while adapting the summation limit by replacing

s in (B.3) with (s� i) gives the stated result.
The proof of (15) follows similar steps. We start by taking unconditional expectations of (7)

and (8) which gives

!H = CH +BH!H +AH!M ; !M = CM +BM!M +AM!M ;

so that the constant terms can be expressed as CH = !H � BH!H � AH!M and CM = !M �
BM!M �AM!M . Substituting these expressions in (7) and (8) gives

ht = !H �BH!H �AH!M +BHht�1 +AHvt�1

= !H +BH(ht�1 � !H) +AH(vt�1 � !M );

mt = !M �BM!M �AM!M +BMmt�1 +AMvt�1

= !M +BM (mt�1 � !M ) +AM (vt�1 � !M ):

Forward iteration of these equations as illustrated in the proof of (14) yields (15).

B.3 Proof of Proposition 3

We derive the score vector and prove that it is a martingale di¤erence sequence only for the HEAVY-

P equation. The derivation for the HEAVY-V equation is analogous. We derive the (1� �H) score
vector @lH;t(�H)

@�0H
from the log-likelihood equation which gives

@lH;t(�H)

@�0H
= �1

2

@ log jHtj
@�0H

� 1
2

@tr(H�1
t Pt)

@�0H
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= �1
2

@ log jHtj
@Ht

@Ht
@�0H

� 1
2

@tr(H�1
t Pt)

@H�1
t

@H�1
t

@Ht

@Ht
@�0H

= �1
2
(vec(H�1

t ))0
@vec(Ht)

@�0H
+
1

2
(vec(Pt))

0(H�1
t 
H�1

t )
@vec(Ht)

@�0H

=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� (vec(H�1
t ))0

� @vec(Ht)
@�0H

=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� (vec(H�1
t HtH

�1
t ))0

� @vec(Ht)
@�0H

=
1

2

�
(vec(Pt))

0(H�1
t 
H�1

t )� ((H�1
t 
H�1

t )vec(Ht))
0� @vec(Ht)

@�0H

=
1

2

�
(vec(Pt))

0 � (vec(Ht))0
�
(H�1

t 
H�1
t )

@vec(Ht)

@�0H
;

where in the second equality we used the chain rule and the matrix derivatives in the third equality

are obtained using the rules stated in Web Appendix A.

The score vector is a martingale di¤erence sequence such that Et�1[
@lH;t(�H)

@�0H
] = 0 as the condi-

tional expectation of the term in square brackets is 0 since

Et�1
�
(vec(Pt))

0 � (vec(Ht))0
�
= Et�1[(vec(Pt))

0]� Et�1[(vec(Ht))0] = 0;

where we use Et�1[(vec(Pt))0] = (vec(Ht))
0, which follows directly from the conditional moment

assumption Et�1["t] = Ik.

B.4 Proof of Proposition 4

For the �rst part of the proposition, we only show the proof for (A.1) as (A.2) follows similar

arguments. We start from pt := vech(Pt) = vech(H
1
2
t "tH

1
2
t ) = Lk(H

1
2
t 
 H

1
2
t )Dkvech("t), where

the last result follows from (A.1) in Web Appendix A. Let ZH;t = Lk(H
1
2
t 
 H

1
2
t )Dk, which is

FHFt�1 -measurable. Also, let Vart�1[�] denote the variance conditional on FHFt�1 . Using the variance
decomposition, we obtain

V [pt] = E [Vart�1[pt]] + Var [Et�1[pt]]

= E [Vart�1[ZH;tvech("t)]] + Var [Et�1[ZH;tvech("t)]]

= E
�
ZH;tVart�1[vech("t)]Z

0
H;t

�
+Var [ZH;tEt�1[vech("t)]]

as ZH;t is FHFt�1 -measurable. As Et�1["t] = Ik by assumption, it follows that Et�1[vech("t)] =

vech(Ik) which gives (A.1).

For (A.3), "t
i:i:d:� SINGWk(1; Ik) implies PtjFHFt�1 � SINGWk(1;Ht) and also impliesRtjFHFt�1 �

N(0;Ht) since Pt = RtR0t . Thus Vart�1[vec(Pt)] = Vart�1[(Rt 
 Rt)] = 2DkD+k (Ht 
Ht), where
the second equality follows from the conditional normality of Rt by Magnus (1988, Theorem 10.2)

noting that conditioning on FHFt�1 enables us to treat Ht as a nonstochastic matrix. Therefore

Vart�1[pt] = Vart�1[Lkvec(Pt)] = LkVart�1[vec(Pt)]L
0
k
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= 2LkDkD
+
k (Ht 
Ht)L

0
k = 2D

+
k (Ht 
Ht)L

0
k;

where the last equality follows since LkDk = Ik� by Magnus (1988, Theorem 5.5). We obtain the

unconditional second moment of pt using the variance decomposition

Var[pt] = E [Vart�1[pt]] + Var [Et�1[pt]] = E
�
2D+k (Ht 
Ht)L

0
k

�
+Var [ht]

= 2D+k E [(Ht 
Ht)]L
0
k +Var [ht] :

We can write Var[pt] = E[ptp0t]�E[pt]E[pt]0 and Var[ht] = E[hth0t]�E[ht]E[ht]0. By noting that
E[pt] = E [Et�1[pt]] = E[ht], the last equation for Var[pt] can be simpli�ed to give the stated result.

The proof of (A.4) is similar except in the intermediate step of deriving Vart�1[vec(Vt)], where

in this case Theorem 10.3 of Magnus (1988) directly applies since �t has a non-singular Wishart

distribution. Thus we have Vart�1[vec(Vt)] = 2kDkD
+
k (Mt 
Mt) and the rest of the proof follows

as in (A.3).
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