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Abstract

We develop a GMM estimator for stationary heavy tailed data by trimming an
asymptotically vanishing sample portion of the estimating equations. Trimming en-
sures the estimator is asymptotically normal, and self-normalization implies we do
not need to know the rate of convergence. Tail -trimming, however, ensures asym-
metric models are covered under rudimentary assumptions about the thresholds,
and it implies possibly heterogeneous convergence rates below, at or above

p
T . Fur-

ther, it implies super-
p
T -consistency is achievable depending on regressor and error

tail thickness and feedback, with a rate arbitrarily close to the largest possible rate
amongst untrimmed minimum distance estimators for linear models with iid errors,
and a faster rate than QML for heavy tailed GARCH. In the latter cases the optimal
rate is achieved with the e¢ cient GMM weight, and by using simple rules of thumb
for choosing the number of trimmed equations. Simulation evidence shows the new
estimator dominates GMM and QML when these estimators are not or have not been
shown to be asymptotically normal, and for asymmetric GARCH models dominates
a heavy tail robust weighted version of QML.

1. INTRODUCTION We develop a Generalized Method of Tail-Trimmed Mo-
ments estimator for possibly very heavy tailed nonlinear time series. Heavy tails could
be the result of the underlying shocks (e.g. ARX) and/or the parametric structure (e.g.
GARCH), depending on the model. There now exists an abundance of evidence in favor of
asymmetry and heavy tails in �nancial, macroeconomic and actuarial data like exchange
rate and asset price �uctuations and insurance claims (Mandelbrot 1963, Campbell and
Hentschel 1992, Engle and Ng 1993, Embrechts et al 1997, Finkenstadt and Rootzén
2003); microeconomic data like auction bids and birth weight (Hill and Shneyerov 2009,
Chernozhukov 2010); and network tra¢ c (Resnick 1997). Coupled with the necessity for
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over-identifying restrictions in economic models, a robust GMM methodology will be use-
ful to the analyst unwilling to impose ad hoc restrictions. See Hansen (1982), Renault
(1997) and Hall (2005).

1.1 TAIL-TRIMMED ESTIMATING EQUATIONS

Let mt(�) denote estimating equations, a stochastic mapping

mt : �! Rq; compact � � Rr; q � r;

induced from some moment condition. The strong global identi�cation condition is

E [mt(�)] = 0 if and only if � = �
0 for unique �0 2 �:

Consider a strong-ARCH(1) process fytg as a simple example,

yt = ht�t, h2t = �
0 + �0y2t�1, �

0 = [�0; �0]0; �t
iid� (0; 1) and =t := �(y� : � � t) (1)

with least squares-type equations

mt(�) =
�
y2t � �� �y2t�1

	
zt�1, zt�1 =

�
1; y2t�1; :::

�
2 Rq; q � 2:

The GMM estimator solves

�̂G = argmin
�2�

8<:
 
1

T

TX
t=1

mt(�)

!0
�̂T

 
1

T

TX
t=1

mt(�)

!9=;
for some positive de�nite matrix �̂T 2 Rq�q, and T � 1 is the sample size. Under standard
regularity conditions �̂G is asymptotically linear (e.g. Newey and McFadden 1994)

T 1=2
�
�̂ � �0

�
= AT �

1

T 1=2

TX
t=1

mt(�
0) + op (1) for some AT 2 Rr�q,

so asymptotics are grounded on
PT

t=1mt(�
0).

Finite variances E[m2
i;t(�

0)] < 1 expedites Gaussian asymptotics, but this requires �t
and yt to have �nite 4th and 8th moments respectively. This rules out mildly heavy-tailed
shocks, integrated random volatility (e.g. IGARCH), and much more. If over-identifying
restrictions exist q � 3 with say z3;t�1 = jyt�1j2+�=2 and � > 0 then yt must have a
�nite (8 + �)th moment, a very tall order for �nancial time series (Embrechts et al 1997,
Finkenstadt and Rootzén 2003). The problem carries over to a large class of random
volatility models (cf. Meddahi and Renault 2004).
Models with heterogeneous estimating equations include the multifactor Capital Asset

Pricing Model with high risk (e.g. oil futures), composite market returns (e.g. NYMEX),
low risk asset returns (e.g. U.S. Treasury Bill), and factor premia (e.g. market capital-
ization and book-to-price ratio); VARX for causality modeling of �nancial and macroeco-
nomic returns; and multivariate random volatility. See French and Fama (1996), Ding
and Granger (1996), Mikosch and St¼aric¼a (2000), and Embrechts et al (2003).
QML equations by contrast allow for arbitrarily heavy tailed yt as long as E[�4t ] < 1.

But QML for GARCH with E[y4t ] = 1, like IGARCH, is well known for its poor �nite
sample properties (Lumsdaine 1995, 1996, Mikosch and Straumann 2006), and errors need
not be thin tailed (Mikosch and St¼aric¼a 2000, Hall and Yao 2003, Ling 2007, Davis and
Mikosch 2008, Linton et al 2010).
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Although GMM with a non-Gaussian limit is certainly achievable in the manner of M-
estimators (e.g. Hannan and Kanter 1977, An and Chen 1982, Knight 1987, Cline 1989,
Davis et al 1992), we seek an estimator that permits standard inference and is therefore
simple to use. We propose asymptotically negligibly trimming k1;i;T left-tailed and k2;i;T
right-tailed observations from each equation sample fmi;t (�)gTt=1, where kj;i;T ! 1 and
kj;i;T =T ! 0
De�ne tail speci�c observations of mi;t(�) and sample order statistics:

m
(�)
i;t (�) := mi;t(�)� I (mi;t(�) < 0) and m

(�)
i;(1)(�) � � � � � m

(�)
i;(T )(�) � 0

m
(+)
i;t (�) := mi;t(�)� I (mi;t(�) > 0) and m

(+)
i;(1)(�) � � � � � m

(+)
i;(T )(�) � 0

m
(a)
i;t (�) := jmi;t (�)j and m

(a)
i;(1)(�) � � � � � m

(a)
i;(T )(�) � 0:

Now trim any equation mi;t(�
0) that may have an in�nite variance between its lower

k1;i;T =T
th and upper k2;i;T =T th sample quantiles:

m̂�
i;T;t (�) := mi;t (�)� I

�
m
(�)
i;(k1;i;T )

(�) � mi;t (�) � m(+)
i;(k2;i;T )

(�)
�

(2)

= mi;t (�)� Îi;T;t (�)

m̂�
T;t (�) =

h
mi;t (�)� Îi;T;t (�)

iq
i=1

where Îj;T;t (�) = 1 if equation j is not trimmed,

and I(A) = 1 is A is true, and 0 otherwise1 . If the data generating process is symmetric
and mi;t(�

0) is heavy-tailed then symmetric trimming is appropriate: for ki;T ! 1 and
ki;T =T ! 0

m̂�
i;T;t (�) := mi;t (�)� I

�
jmi;t (�)j � m(a)

i;(ki;T )
(�)
�
: (3)

The Generalized Method of Tail-Trimmed Moments [GMTTM] estimator solves

�̂T = argmin
�2�

8<:
 
1

T

TX
t=1

m̂�
T;t (�)

!0
� �̂T �

 
1

T

TX
t=1

m̂�
T;t (�)

!9=; :
As long as mt(�

0) is integrable and satis�es a mixing condition, and standard smoothness
conditions apply, then

V
1=2
T

�
�̂T � �0

�
d! N (0; Ir)

for some sequence of positive de�nite matrices fVT g. Negligible trimming ensures m̂�
T;t(�)

identi�es �0 as T ! 1 for symmetric or asymmetric processes, and the Gaussian limit
holds for a host of heavy tailed time series. See Sections 2 and 4.
In Section 3 we present simple rules of thumb for selecting the rate kj;i;T ! 1 in

order to optimize the rate jjVT jj ! 1 for e¢ cient GMTTM, where jj � jj is the spectral
norm. Further, if mi;t(�

0) is symmetrically distributed and trimmed then any two-tailed
ki;T ensure identi�cation for each T . Otherwise, in Section 4 we present rules of thumb
for relating k1;i;T and k2;i;T that optimize the rate of identi�cation.

1Other criteria for trimming exist, including trimming according to a norm jj � jj: m(N)
t (�) := jjmt (�) jj.

In this case m̂T;t(�) = mt(�)I(jjmt(�)jj � m
(N)
(kT )

(�)) where kT ! 1 and kT =T ! 0. Simulation work
not presented here reveals the latter is massively dominated by component-wise trimming when q > 1,
irrespective of distribution symmetry.
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The components �̂i;T may have heterogeneous rates, and linear combinations of subsets
of �̂T may help optimize the rates (Antoine and Renault 2010). In the sequel, where
confusion is avoided, we simply say "rates of convergence" to refer variously to2 V 1=2T ,

diagfV 1=2T g, or jjVT jj1=2.
Inference does not require knowledge of the rates of convergence since we self-normalize,

and tail trimming equations with �nite variance has no impact on the rate. In partic-
ular, �̂T is T 1=2-consistent if all equations have a �nite variance. In Section 3 we show
sub-, exact- or super-T 1=2-convergence may arise in heavy tailed cases depending on the
equation form (e.g. QML versus least squares-type equations for GARCH); relative tail
thickness of error and regressor; and whether the error is iid (e.g. AR with iid shocks) or
depends on the regressor through some form of random volatility feedback (e.g. AR with
ARCH shocks, or GARCH).
The feasible rates of convergence, however, is dampened in general precisely due to

trimming, but the damage can be truly or nearly eradicated following simple rules of
thumb for choosing kj;i;T . GMTTM for linear regression models with in�nite variance iid
errors obtains the highest rate possible amongst M-estimators, identically T 1=�=L(T ) for
slowly varying L(T )!1 where � < 2 is the tail index (Davis et al 1992)3 . In the case of
AR-GARCH or GARCH feedback exists that depresses the rate to o(T 1=2). A simple rule
of thumb for selecting kj;i;T optimizes the rate to T 1=2=L(T ) which dominates QML for
GARCH with in�nite kurtosis errors (Hall and Yao 2003). See Section 3 for convergence
rate derivation for dynamic linear regression, IV, ARCH and AR-ARCH models. See also
Antoine and Renault (2010) for broad GMM theory under variable coe¢ cient estimator
rates that are no greater than T 1=2.
In Section 5 we show consistency and asymptotic normality are primitive properties

for linear-in-parameters models with innovations that have smooth distributions. Fi-
nally, perform a monte carlo study in Section 6 demonstrates the superiority of GMTTM
over GMM and QML for linear and nonlinear models including AR, GARCH, IGARCH,
Quadratic-ARCH, and Threshold-ARCH with Gaussian or Paretian innovations.
Fixed quantile or central order trimming, by comparison, imposes kj;i;T =T ! �j;i 2

(0; 1) for each equation i and tail j. This is the standard in the robust M-estimation
and Method of Moments literatures where symmetry is imposed �1;i = �2;i. See the
review below. In this case without further information the equations mi;t(�

0) must be
symmetrically distributed to ensure identi�cation of �0. Since key asymptotic arguments
in this paper exploit negligibility and degeneracy properties under tail trimming, a direct
extension to �xed quantile trimming is not evident. Finally, under the lightest trimming
case by extreme order sequences kj;i;T ! kj;i 2 N, too few equations are trimmed to
ensure asymptotic normality.

1.2 EXTANT METHODS

The best extant theory of Minimum Distance Estimation for time series covers M-
estimators, in particular QML and LAD for GARCH models and Least Trimmed Squares
in the robust estimation literature. Francq and Zakoïan (2004) prove the QML estimator
is asymptotically normal for strong-GARCH and ARMA-GARCH under E(�4t ) <1. See,
also, Hansen and Lee (1994), Lumsdaine (1996) and Jensen and Rahbek (2004) for results
covering stationary and non-stationary cases. Hall and Yao (2003) characterize non-
normal QML limit laws for linear GARCH models with possibly in�nite variance errors.

2 In t-tests of a single parameter restriction V 1=2i;i;T is the proper measure of a rate of convergence. The

norm jjVT jj1=2 measures the maximum rate which is required for asymptotic arguments.
3A slowly varying function L(T ) satis�es limT!1 L(�T )=L(T ) = 1 for all � > 0, hence L(T ) = o(T p)

for all p > 0 (Resnick 1987). The natural log ln(T ) is a classic example.
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Davis et al (1992) characterize a general class of M-estimators with smooth criterion, and
LAD, for stationary autoregressions with in�nite variance iid errors.
Linton et al (2010) prove asymptotic normality of the log-transformed LAD estimator

for non-stationary GARCH provided E(�2t ) < 1 for martingale di¤erence �t, and Ej�tjp
< 1 for some p > 0 for iid �t. See also Peng and Yao (2003).
Although robust estimation has a substantial history (Huber 1964, Stigler 1973, Ju-

recková and Sen 1996), only a few results concern fully nonlinear models with heavy tails.
Most regression treatments focus on breakdown point analysis for thin tailed data with
outliers under contamination (e.g. Rousseeuw 1985, Basset 1991, He et al 1996, µCiµzek
2005, 2008, 2009); most concern M-estimator frameworks (e.g. µCiµzek 2008 and the cita-
tions therein) or R-estimation (Koul and Saleh 1995, Andrews 2008); and when trimming,
truncation or weighting are employed only non-tail data quantiles are considered. Almost
all uses of tail trimming appear in the robust location and central limit theory literatures,
and to our knowledge extremum estimation and tail-trimming have never been combined.
See Horowitz (1998) for a tail-trimmed covariance matrix without supporting theory, and
Berkes et al (2010) for a CUSUM test based on a tail-trimmed series.
There are few regression estimators that are asymptotically normal for heavy tailed

data. Let st(�) � 0 denote criterion equations, for example st (�) = jyt � �0xtj for LAD.
Ling (2005, 2007) proposes Least Absolute Weighted Deviations [LAWD] and Quasi-
Maximum Weighted Likelihood [QMWL] criteria

PT
t=1 wt(c)st(�) where wt (c) is a sym-

metric smooth stochastic function of the data yt based on some threshold c. Since wt(c)
is not a function of �, the threshold c is not with respect to the criterion st(�). Linear
autoregressive and GARCH models are separately covered allowing E[�2t ] <1 and Ejytjp
< 1 for some p > 0 for consistency, but E[�4t ] < 1 must hold for asymptotic normality.
The rate of convergence is T 1=2 for both AR and ARMA-GARCH models since restrictions
imposed on wt(c) imply it operates like a smoothed �xed quantile trimming indicator. See
also Pan et al (2007) for ARMA estimation.

µCiµzek (2005, 2008) improves the breakdown point of M-estimators by trimming the
kT � �T largest st(�). Nonlinear models and models with limited dependent variables
are covered, the errors are assumed to be iid with a �nite variance, and asymptotic
variance estimation is neglected so inference is not available. Khan and Lewbel (2007)
use trimming to solve bias problems in semiparametric least squares estimation for linear
truncated regression models of iid data with thin tails. The literature is too large for a
fair review: see µCiµzek (2005, 2008) and his citations, and see Ruppert and Carroll (1980),
Rousseeuw (1985), Basset (1991), Tableman (1994), Stromberg (1993), and Agulló et al
(2008) for trimmed and truncated M-estimators.
The fundamental short-comings of trimming M-estimator criterion equations st(�) by

a �xed quantile of itself are super-T 1=2-convergence is impossible for stationary data under
required moment restrictions; asymptotic normality cannot be achieved when regressors
are heavy tailed; and in general asymmetric models and over-identifying restrictions are
ignored. Adaptive weighting based on observable data as in Ling (2005, 2007) neglects
criterion and normal equation information; and weights that act like �xed quantile trim-
ming, and rank-orders can only deliver a T 1=2-consistent estimator. See Section 2.4 for
direct comparisons of GMTTM with trimmed and weighted M-estimators.
A few results are couched in method of moments. µCiµzek (2009) trims a �xed quantile of

mt(�) for thin-tailed cross-sections under data contamination, covering limited dependent
and instrumental variables. Since the quantile is �xed identi�cation must be assumed
and an e¢ cient criterion weight does not exist. Powell (1986) and Honoré (1992) con-
struct least squares estimators couched in the method of trimmed moments for censored
linear regressions models of iid data. Ronchetti and Trojani (2001a) symmetrically trun-
cate mt(�) and propose a method of simulated moments to overcome bias in asymmetric
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models. See also Ronchetti and Trojani (2001b) and Dell�Aquila et al (2003). The error
distribution must therefore be known and heavy-tailed cases are ignored.

Throughout �min(A) and �max(A) are the minimum and maximum eigenvalues of A.
The Lp-norm is jjxjjp = (

P
i;j Ejxi;j jp)1=p, and the spectral (matrix) norm is jjAjj =

(�max(A
0A))1=2. (z)+ := maxf0; zg: K denotes a positive �nite constant whose value may

change from line to line; � > 0 is a tiny constant; N is a whole number.
p! and d! denote

probability and distribution convergence. Id is a d-dimensional identity matrix and A1=2

denotes the square-root matrix for positive de�nite A. U0(�1; �2) := f� 2 � : �1 � jj� �
�0jj � �2g for any 0 � �1 < �2 and U0(�) = U0(0; �). sup� = sup�2� and inf� = inf�2�.

2. TAIL-TRIMMED GMM In this section we develop a model-free theory of
GMTTM based on primitive properties of mt(�). We treat speci�c models in Sections
3-5.

2.1 TAIL-TRIMMING

Denote by Li(�); Ui(�) 2 [0;1] equation speci�c support bounds: �Li(�) � mi;t(�) �
Ui(�) a:s: The problem of interest is some mi;t(�

0) may have an unbounded support and
in�nite variance. Assume by convention the �rst q 2 f1; :::; qg equations are trimmed:

m̂�
T;t (�) =

h
mi;t (�)� Îi;T;t (�)

iq
i=1

=
hn
mi;t (�)� Îi;T;t (�)

oq
i=1

; fmi;t (�)gqi=q+1
i0

and assume throughout q � 1 since otherwise the following reduces to known results.
Let positive integer sequences fk1;i;T ; k2;i;T : 1 � i � qg and positive sequences of

threshold functions fli;T (�); ui;T (�) : 1 � i � qg satisfy

kj;i;T !1, kj;i;T =T ! 0, 1 � k1;i;T + k2;i;T < T

li;T (�)! Li(�) and ui;T (�)! Ui(�) uniformly on compact � � Rr,

and for all � 2 �

T

k1;i;T
P (mi;t(�) < �li;T (�)) = 1 and

T

k2;i;T
P (mi;t (�) > ui;T (�)) = 1. (4)

Thus, li;T (�) and ui;T (�) are identically the equation speci�c lower k1;i;T =T th ! 0 and
upper k2;i;T =T th ! 0 tail quantiles (e.g. Leadbetter et al 1983: Theorem 1.7.13). We
can always �nd threshold sequences fli;T (�); ui;T (�)g that satisfy (4) since we assume
the marginal distributions of mi;t(�) are absolutely continuous. See Appendix A for all
assumptions and related discussions, in particular condition D1.
The practice of GMTTM involves m̂�

T;t (�) in (2), but theory centers around determin-
istic trimming:

m�
i;T;t (�) := mi;t (�)� I (�li;T (�) � mi;t (�) � ui;T (�)) (5)

= mi;t (�)� Ii;T;t (�) : 1 � i � q

m�
T;t (�) = [mi;t (�)� Ii;T;t (�)]qi=1 where Ij;T;t (�) = 1 for q + 1 � j � q:

Although mt(�) identi�es �
0, we can only say m�

T;t(�) eventually identi�es �
0:

E
�
m�
T;t(�

0)
�
! 0:
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This is easily guaranteed by Lebesgue�s dominated convergence theorem for any frac-
tiles kj;i;T ! 1 since E[mt(�

0)] = 0 and tail trimming is negligible kj;i;T = o(T ). It is
interesting to note "eventual identi�cation" runs contrary to weak and nearly weak iden-
ti�cation where information vanishes at some rate (e.g. Stock and Wright 2000, Antoine
and Renault 2009). Here, information amasses at some rate. If the DGP of fmt(�

0)g is
symmetric then E[m�

T;t(�
0)] = 0 for any thresholds li;T (�

0) = ui;T (�
0) and fractiles k1;i;T

= k2;i;T .
Since trimming is negligible and we assume mt (�) has absolutely continuos marginal

distributions, the asymptotic covariance matrix of �̂T is identical in form to the standard
GMM estimator. We state the results here and develop the details in the appendices.
Thus, we need standard covariance and Jacobian matrix constructions. The instantaneous
and long run covariances are

�T (�) := E
�
m�
T;t (�)m

�
T;t (�)

0� and �T := �T (�
0);

ST (�) :=
1

T

TX
s;t=1

E
�
m�
T;s (�)m

�
T;t�

0� and ST := ST (�
0);

population and sample Jacobia are

JT (�) :=
@

@�
E
�
m�
T;t(�)

�
2 Rq�r and JT = JT (�

0)

J�T;t(�) :=

�
@

@�
mi;t(�)� Ii;T;t (�)

�q
i=1

and J�T (�) :=
1

T

TX
t=1

J�T;t(�)

Ĵ�T;t(�) :=

�
@

@�
mi;t(�)� Îi;T;t (�)

�q
i=1

and Ĵ�T (�) :=
1

T

TX
t=1

Ĵ�T;t(�);

and the GMTTM scale is

VT (�) := T �HT (�) [J 0T (�)�TST (�)�TJT (�)]
�1
HT (�) and VT := VT (�

0)

where
HT (�) := JT (�)

0�TJT (�) 2 Rr�r and HT := HT (�
0):

We scale the covariance ST with 1=T to help clarify the di¤erence between jjVT jj1=2 and
T 1=2. See Section 3.

2.2 MAIN RESULTS

The main results follow: �̂T is consistent for �0 and asymptotically normal. See
Appendix A for assumptions details concerning distribution properties D, identi�cation
properties I and matrix properties M.

THEOREM 2.1 Under D1-D6, I1-I3 and M1-M2 �̂T
p! �0.

The rate V 1=2T (�̂T � �0) = Op(Ir) can similarly be shown under conditions D1-D6,
I1-I3 and M1-M2, without proving asymptotic normality of �̂T , by using arguments in
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Pakes and Pollard (1989) and Newey and McFadden (1994). We do not present the result
here since asymptotic normality follows from the same set of assumptions4 .

THEOREM 2.2 Under D1-D6, I1-I3 and M1-M2 V 1=2T (�̂T � �0)
d! N (0; Ir) :

Remark 1: An "optimal" GMTTM weight sequence f�T g in the sense of asymp-
totic e¢ ciency is fS�1T =jjS�1T jjg for any fractiles fkj;i;T g due to the quadratic form VT =
T � HT (J 0T�TST�TJT )�1HT (Hansen 1982; Newey and MacFadden 1994: p. 2164). In
this case

VT = T
�
J 0TS

�1
T JT

�
:

Remark 2: Under �-mixing D3 the long-run covariance of the tail-trimmed equa-
tions ST satis�es jj��1T ST jj � K and jjS�1T �T jj � K. See Lemma C.2 in Appendix C.
The e¢ cient weight therefore reduces to �T = �

�1
T =jj��1T jj.

Remark 3: The existence of an e¢ cient weight �T = S
�1
T jjST jj is non-trivial since

a symmetric variance form does not arise under �xed quantile trimming. In this case JT
has two components that enter VT asymmetrically as T ! 1, so an optimal weight does
not exist (µCiµzek 2009). Under tail trimming, however, each Ji;j;T also decomposes into
two components, a mean Jacobian and a Jacobian of a mean:

Ji;j;T = E

�
@

@�j
mi;t(�)j�0 � Ii;T;t(�0)

�
+

@

@�j
E
�
mi;t(�

0)� Ii;T;t(�)
�
j�0 :

The latter is asymptotically dominated by the former due to negligibility Ii;T;t(�) ! 1
a:s: so

Ji;j;T = E

�
@

@�j
mi;t(�)j�0 � Ii;T;t(�0)

�
� (1 + o(1)):

See Lemma C.4 in Appendix D.

If the Jacobian and covariance are asymptotically bounded JT ! J and ST ! S then
the rate is exactly T 1=2 since V 1=2T � T 1=2V 1=2 for some positive de�nite V 2 Rr�r. This
holds for any stationary DGP for which the conventional GMM estimator is asymptotically
normal, so tail trimming is always a safe practice. Otherwise the rates need not be
homogeneous over �̂i;T and may be greater or less than T 1=2. See Section 3.

LEMMA 2.3 If lim supT�1 jjST jj < 1 and lim supT�1 jjJT ]jj < 1 then the rate of con-

vergence of each �̂i;T is T 1=2.

2.3 COVARIANCE AND JACOBIAN MATRIX ESTIMATION

Unless speci�c dependence information is available for mt(�
0) we must estimate the

long run covariance ST non-parametrically. A now classic approach is a kernel HAC
estimator

ŜT (~�T ) =
1

T

TX
s;t=1

k ((s� t) =
T ) m̂�
T;t(

~�T )m̂
�
T;t(

~�T )
0

4A standard aproach to proving asymptotic normality of MDE�s involves �rst demonstrating con-
sistency and T 1=2-convergence (cf. Pakes and Pollard 1989, Newey and McFadden 1994). This pat-

tern is not well suited to our problem since showing V 1=2T (�̂T � �0) = Op(Ir) follows from consis-
tency is quite tedious in lieu of non-di¤erentiability and the nonlinearity imbedded order statistics
fm(�)

i;(k1;i;T )
(�) ;m

(+)
i;(k2;i;T )

(�)g. Our proof of Theorem 2.2 relies on a version of the �-method based

on an asymptotic expansion that exploits non-degeneracy properties under tail-trimming. See Appendix
D for background theory.
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for some consistent plug-in ~�T , where k(�) is a kernel function and 
T ! 1 is bandwidth
(cf. Newey and West 1987). We restrict k(�) and 
T = o(T ) in condition K1 of Appendix
A based on theory developed in Davidson and de Jong (2000). Kernels covered include
Bartlett, Parzen, Quadratic Spectral, Tukey-Hanning and others.
Since ŜT (~�T ) may itself be used for GMTTM estimation, in practice ~�T need not be

the �nal GMTTME �̂T . Candidate plug-ins include one-step GMTTM (e.g. naïve �̂T =
Iq), but also untrimmed estimators like the OLS, GMM and QML since in general they
converge faster than GMTTM. See Section 3.

LEMMA 2.4 Under D1-D6, I1-I2, K1 and M1 jjS�1T ŜT (~�T ) � Iqjj = op(1) for any
jj~�T � �0jj = Op(T�1=2jjST jj1=2jjJT jj�1).

Remark 1: If the equations are su¢ ciently orthogonal that ST = �T (1 + o(1))

then the appropriate estimator of ST is �̂T (~�T ) = 1=T
PT

t=1 m̂
�
T;t(

~�T )m̂
�
T;t(

~�T )
0. Since

kernel class K1 includes k((s � t)=
T ) = 0 8s 6= t and k((s � t)=
T ) = 1 8s 6= t we have
jjS�1T �̂T (~�T ) � Iqjj = op(1) by Lemma 2.4.
Remark 2: In principle ~�T may be a �rst-stage GMTTM estimator based on some

weight �T and fractile policy f~kj;i;T g. Notice irrespective of the choice of plug-in ~�T ,
we must have the Jacobian JT and covariance ST re�ect the policy fkj;i;T g of the �nal
GMTTM estimator based on its weight and fractiles.

Tail trimming implies the Jacobian JT is proportional to E[J�T;t], cf. Lemma C.4 in

Appendix D. Due to its simple form consistency Ĵ�T (~�T ) = JT � (1 + op(1)) follows for
any consistent ~�T .

LEMMA 2.5 Under D1-D6, I2 and M1-M2 J�T (~�T ) = JT � (1 + op(1)) and Ĵ�T (~�T ) =
JT � (1 + op(1)) for any jj~�T � �0jj p! 0:

The e¢ cient-weighted covariance matrix V �1T is estimated by

V̂ �1T (�) = T �
n
Ĵ�T (�)

0Ŝ�1T (�) Ĵ�T (�)
o�1

:

Since trivially the e¢ cient estimator satis�es jj�̂T � �0jj2 =O(jjVT jj�1=2) =O(T�1=2jjJT jj�1jjST jj1=2)
by Theorem 2.2, the scale estimator V̂ �1T (�̂T ) is consistent by Lemmas 2.4 and 2.5.

THEOREM 2.6 Under D1-D6, I1, I2 and M1-M2 V̂T (�̂T ) = VT � (1 + op(1)).

Remark : It is important to note we only show jjV̂T (�̂T ) � VT jj = op(jjVT jj), and
not jjV̂T (�̂T ) � VT jj

p! 0 since that requires �̂T
p! �0 far faster than Op(jjVT jj�1=2). This

is irrelevant, however, since any estimator V̂T (�̂T ) = VT � (1 + op(1)) = VT + op(jjVT jj)
su¢ ces for inference. Consider a t-ratio V̂ 1=2i;i;T (�̂T )�̂i;T : if �

0
i = 0 then V̂ 1=2i;i;T (�̂T )�̂i;T =

V
�1=2
i;i;T �̂i;T � (1 + op(1))

d! N(0; 1) by Theorems 2.2 and 2.6, and Cramér�s Theorem.

2.4 ROBUST M-ESTIMATORS

We now discuss why trimming M-estimator criterion equations may fail to promote
asymptotic normality.

Least Trimmed Squares: Consider a linear model with least squares criterion

yt = �
00xt + �t with st(�) :=

�
yt � �0xt

�2
:
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Assume �t is zero-mean with distribution function F�(�) := P (�t � �), and two-tailed
inverse F�1j�j (�) := inff� � 0 : P (j�tj � �) � �g. The �xed quantile LTS estimator solves
(Ruppert and Carrol 1980, Rousseeuw 1985, µCiµzek 2008)

~�T = argmin
�2�

(
1

T

TX
t=1

st(�)� I
�
st(�) � s([T�])(�)

�)
, � 2 (0; 1) :

If the distribution governing st(�) is absolutely continuous on �-a:e:, fxt; �tg have �-
nite variance marginal distributions, f�t; xtg are geometrically �-mixing, and ~J (�) :=
�E[xtx0tI(j�tj � F�1j�j (�))] is non-singular, then for the given linear DGP

T 1=2
�
~�T � �0

�
= ~J (�)

�1 1

T 1=2

X
�txtI

�
j�tj � F�1j�j (�)

�
+ op (1)

d! N
�
0; ~V �1(�)

�
,

where ~V (�) = ~J(�)0 ~��1 ~J(�) and ~�(�) := E[�2txtx
0
tI(j�tj � F�1j�j (�))]. See

µCiµzek (2005,
2008). Clearly if the error �t is independent of xt and any stochastic element of xt has
an in�nite variance then 1=T 1=2

P
�txtI(�

2
t � �2([T�])) does not have a Gaussian limit

since only �t is trimmed, and ~�(�) and ~J(�) do not exist. The object that governs
asymptotics is the gradient (@=@�)st(�)j�0 ; so its components �txi;t must be trimmed to
ensure asymptotic normality, not simply �t.

Quasi-Maximum Trimmed Likelihood: Consider an ARCH(1) yt = ht�t, �t
iid�

(0; 1), h2t (�) = � + �y2t�1, (�; �) � 0 with QML criterion equations st(�) = lnh2t (�) +

y2t =h
2
t (�). See Neykov and Neytchev (1990) and µCiµzek (2008) for Maximum Trimmed

Likelihood of models of the conditional mean.
Since a standard question is whether a conditional heteroscedastic e¤ect exists, suppose

not for simplicity: �0 = 0. If the distribution governing �t is absolutely continuous then by
Lemma 2.1 of µCiµzek (2008) gT;t (�) := (@=@�)sT;t(�) = (@=@�)st(�) � I(st(�) � F�1s(�) (�))
a:s. on �-a:e: By direct computation it follows under �0 = 0

gT;t
�
�0
�
= �

�
�2t � 1

� �
1; y2t�1

�0 � I �j�tj � F�1j�j (�)� :
Now exploit independence to deduce

E
�
g22;T;t

�
�0
��
= E

h�
�2t � 1

�2
I
�
j�tj � F�1j�j (�)

�i
� E

�
y4t�1

�
:

Since �0 = 0 we know yt has an unbounded fourth moment E[y4t ] = 1 if and only if
E[�4t ] = 1. In this case the QMTL Jacobian is unbounded, and by asymptotic linearity
and independence between �t and yt�1 the estimator is not asymptotically normal.

Adaptive M-Estimation: Ling�s (2005, 2007) symmetrically weighed LAD and
QML criteria work like smoothed �xed quantile trimmed criteria. Although heavy-tails are
allowed the imposed weight structure rules out super-T 1=2-convergence. Further, theory
is only delivered for symmetric DGP�s, only �xed quantiles of the data yt are considered
for the weight function, and by construction over-identi�cation is not allowed. The theory
developed cannot be immediately extended to the problem of tail-trimming parametric
equations mt(�).

3. FRACTILE SELECTION AND GMTTM CONVERGENCE RATES
We now characterize convergence rates for heavy tailed models, which provides rules of
thumb for selecting the fractile rate kj;i;T ! 1. We treat asymmetric fractile selection
separately in Section 4.
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We speci�cally treat regression models with martingale di¤erence equations mt(�
0).

Let h � 1. In the spirit of Section 4 it can be shown E[m�
i;T;s(�

0)m�
j;T;t+h(�

0)] = 0 for
fm�

i;T;s(�
0);m�

j;T;t+h(�
0)g with symmetric joint distributions, and any two-tailed fki;T g

hence ST = �T . Similarly, E[m�
i;T;s(�

0)m�
j;T;t+h(�

0)] ! 0 su¢ ciently fast for in�nitely
many policies fk1;i;T ; k2;i;T g such that ST = �T (1 + o(1)). We therefore assume ST =
�T for clarity.
By positive de�niteness and the Cauchy-Schwarz inequality we can de�ne diagonal

matrices �T 2 Rq�q with elements

�i;i;T = �
�1=2
i;i;T =

�
E[
�
m�
i;T;t

�
�0
��2
]
��1=2

: ��1T �T�
�1
T ! � a positive de�nite matrix.

Now write

VT = T �
�
��1T JT

�0 � ��1 � ���1T JT
�
� (1 + o (1)) and ��1 = [�i;j ]qi;j=1:

Assume �i;j 6= 0 8i; j, to simplify exposition. The component-wise rates are

T�i := V
1=2
i;i;T = KT

1=2 �

24 qX
l1;l2=1

�l1;l2��1l1;l1;T�
�1
l2;l2;T

Jl1;i;TJl2;i;T

351=2 : (6)

Textbook intuition explains T�i . Holding everything else constant, if �i;i;T = (E[(m
�
i;T;t

�
�0
�
)2])1=2

! 1 due to heavy-tailed errors then T�i ! 1 slowly: sharp estimates are more di¢ cult
to obtain from models with disproportionately dispersive errors (an "outlier" e¤ect). Con-
versely, using Jacobian relation Lemma C.4 in Appendix C, if jJl;i;T j= jE[(@=@�i)ml;t(�)j�0Il;T;t(�0)]j
� (1 + o(1)) ! 1 due to heavy tailed regressors then T�i ! 1 quickly: sharpness im-
proves with regressor dispersion and association (a "leverage" e¤ect.). If both error and
regressor are heavy-tailed and exhibit feedback then �T may overwhelm JT . In this section
we inspect the gamut of such cases.
In order to characterize �T and JT we consider dynamic linear regression, AR, ARCH

and AR-ARCH models with least-squares and in some cases QML equations. Since we
only care about convergence rates, initially all equations are symmetrically trimmed with
two-tailed thresholds ci;T and the same fractiles kj;i;T = kT to simplify notation. Hence

T

kT
P
���mi;t

�
�0
��� > ci;T � = 1:

This allows for a cleaner discussion of rules for selecting the rate kT ! 1.
Throughout f�tg is iid Lp-bounded, p > 0, with an absolutely continuous distribution

on R-a:e., symmetric about 0. Assume covariance and Jacobian non-degeneracy properties
D 5 and M2 throughout. See Appendix A. Let L(T ) be a slowly varying function,

L (T )!1 and L (T ) � T;

whose value or rate may change with the context.

3.1 DYNAMIC REGRESSION WITH IID ERRORS

We �rst examine a stationary dynamic linear regression with an intercept

yt = �
00xt + �t, x1;t = 1, xt 2 Rr with mt(�) = (yt � �x0t)xt;

where �t and xt are mutually independent. Stochastic xi;t are measurable with R-a:e:
continuous, stationary, symmetric distributions. Independence rules out random volatility
errors. See Sections 3.2-3.4 for this case.
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De�ne the moment suprema of zt 2 f�t; xi;tg,

�z := sup f� > 0 : E jztj� <1g > 1;

where �z = 1 is possible (e.g. uniform, normal, or bounded support). Identi�cation
requires integrability of �txi;t hence �z > 1. If any zt 2 f�t; xi;tg has an in�nite variance
�z 2 (1; 2] then assume the distribution tail decays as a power law:

P (jztj > z) = dzz��z (1 + o (1)) with indices �z 2 f��; �ig > 1: (7)

By Karamata�s Theorem zt satis�es the following property for trimmed higher moments
(e.g. Resnick 1987: Theorem 0.6; Problem 4.2.8; cf. Feller 1971: §IX.8):

�z < 2 : E
�
z2t I (jztj � c)

�
� Kc2P (jztj > c) as c!1 (TM)

�z = 2 : E
�
z2t I (jztj � c)

�
� L(c) as c!1 where L(c)!1 is slowly varying.

Heavy-tailed convolutions mi;t(�
0) = �txi;t also satisfy (7) with index ��;i := minf��; �ig

(Cline 1986), so ci;T = K(T=kT )1=��;i by construction.
De�ne

a��;(i) := min
j =2f1;ig

f1=��;j + (1� 1=�j)�i=��;ig , AT := (T=kT )1=2+1=��;i+�i=��;i�2a
�
�;(i)

BT := max
j =2f1;ig:�j�2

n
(T=kT )

2=�j�1
o
, CT := max

j =2f1;ig:�j�2

n
(T=kT )

2�2=�j�2=�i+2��1�;i (�i=�j+1��i)
o
:

By convention ��;1 = �� since x1;t = 1, a��;(i) = �i=��;i if there is only one stochastic
regressor, and a��;(i) is not de�ned if there is only an intercept.

LEMMA 3.1 (ARX with IID Error)

a: Let maxf��; �2; :::; �rg < 2. Each �i;i;T = (T=kT )1=��;i�1=2 and Ji;j;T � �E[xi;txj;tI(j�txj;tj
� cj;T )]. For stochastic fxi;t; xj;tg in general Ji;i;T � K(T=kT )

��1�;i (2��i), Ji;j;T =

O((T=kT )
��1�;j (�j=�i+1��j)) 8i 6= j, and Ji;j;T � K if xi;t is independent of xj;t.

Hence the slope rates are in general

T�i � KT 1=2 (T=kT )
1=2��i=��;i+1=��;i [K +O (AT )]

1=2 , i = 2; :::; r:

Further J1;1;T = �1+o(1) and Ji;1;T ; J1;i;T = O(1) � (1 + o(1)), hence the intercept
rate is

T�1 = KT
1=2 �K(kT =T )1=���1=2 (1 +O(1)) :

b. Let �� > 2. If �i > 2 then T�i � T 1=2 � [K + O(BT )]
1=2, and if �i < 2 then

T�i � KT 1=2(T=kT )1=�i�1=2 � [K +O(CT )]
1=2.

Remark 1: Notice T�1 = o(T
1=2) when �� < 2. Irrespective of the other regressors,

as long as the error �t is heavy tailed the intercept rate is sub-T 1=2-consistent due an
outlier e¤ect: to kT =T ! 0 under tail trimming allows jj�T jj ! 1.
Remark 2: If the error has a �nite variance then T�i is governed entirely by the

regressor tails, hence �̂i;T is super-T 1=2-consistent when xi;t has an in�nite variance due
to a leverage e¤ect: under tail-trimming jjJT jj ! 1. If �t and xi;t have �nite variances
but some other regressor xj;t is heavy-tailed, then all we can say is �̂i;T is at least T 1=2-
consistent since cross-Jacobia complexity precludes sharper results.
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Remark 3: We ignore the hairline in�nite variance cases �� = 2 or �i = 2 to retain
brevity. We inspect the case in speci�c models below which can be easily veri�ed from
(TM) and the arguments used to prove Lemma 3.1.

In the following assume all random variables are heavy tailed maxf��; �2; :::; �rg � 2.
General examples are similar.

EXAMPLE 1 (Slope Rate Lower Bound): Assume maxf��; �2; :::; �rg < 2, and
note lim infT!1 T�i=[T

1=2 (T=kT )
1=2��i=��;i+1=��;i ] � K depends solely on the dispersion

of �t and xi;t. As long as 1=2 � �i=��;i + 1=��;i > 0 then �̂i;T is super-T 1=2-consistent.
There are two cases.

Case 1 (�i � ��): In this case the leverage e¤ect dominates, so T�i �KT 1=2 (T=kT )
1=�i�1=2

only re�ects the tails of xi;t. Simply choose a light fractile kT = [�L(T )] for � > 0 and
slowly varying L(T ) ! 1 to obtain

T�i � KT 1=�i=L(T ):

The GMTTME rate is therefore in�nitessimally close to the highest achievable rate T 1=�i

for stationary data with Paretian tails evidently by any estimation method, including
untrimmed OLS, LAD, QML, smooth M-estimators, and Whittle and Yule-Walker es-
timation (e.g. Hannan and Kanter 1977, An and Chen 1982, Cline 1989, Davis et al
1992, Hall and Yao 2003). The latter estimators, however, have non-Gaussian limits, so
the GMTTME o¤ers a two-fold advantage: it obtains the highest possible rate and is
asymptotically normal.

Case 2 ( �i > ��): If �t is more heavy-tailed than xi;t then super-T 1=2-convergence
still arises as long as xi;t has an in�nite variance �i < 2 and the dispersion of �t is not
too great, �� > 2(�i � 1). If �i = 1:5, for example, then any �� � 1 allows a dominate
leverage a¤ect. The converse �� � 2(�i � 1) naturally arises in random volatility models
with AR-in-squares representations. See Sections 3.2-3.4.

EXAMPLE 2 (Independent Regressors): If stochastic xi;t are independent ran-
dom variables then because they have �nite means Ji;j;T � K 8i 6= j. The leverage e¤ect
vanishes hence T�i = o(T

1=2) if the error has an in�nite variance.

EXAMPLE 3 (Tail Homogeneity): If �� = �i = � < 2 for all i, then ��;i = � and
a��;(i) = 1, hence AT = (kT =T )

1=2 = o(1) and the rate reduces to

T�i � KT 1=2 (T=kT )
1=��1=2

:

Similarly, using property (TM) when � = 2 it is easy to verify T�i � KT 1=2L(T ). Super-
T 1=2-convergence arises if and only if variance is in�nite � � 2. In this case the leverage
a¤ect dominates the outlier e¤ect.

The following provide deeper intuition as to why super-T 1=2-convergence may or may
not arise.

EXAMPLE 4 (Location): Consider estimating location

yt = �
0 + �t, �t

iid� (7), � 2 (1; 2];

with one equation mt(�) = yt � �. The Jacobian is JT = �1 + o(1), and the covariance
�T = �

1=2
T = T 1=2(T=kT )

1=��1=2 when � < 2 or �T = T 1=2L(T ) when � = 2. Therefore
T� = KT

1=2(kT =T )
1=��1=2 = o(T 1=2) if � < 2 and T� = KT 1=2=L(T ) = o(T 1=2) if � = 2,

so GMTTM is sub-T 1=2-consistent when � � 2.
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Remark 1: The reason for the sluggish rate is essentially the same as in Example
2: bounded regressors cannot provide explanatory leverage against a heavy tailed shock.
In the above simple model there is only an outlier e¤ect.
Remark 2: It is straightforward to show over identifying restrictions involving lags

of yt have no impact on the sub-T 1=2 rate since the added regressors yt�i are independent.
Remark 3: Since there is only an outlier e¤ect when � � 2, maximal trimming

optimizes the rate. Set kT = [T=L(T )] to achieve T� = KT 1=2=L(T ).

EXAMPLE 5 (AR with iid error): Consider a stationary in�nite variance autore-
gression

yt =
rX
i=1

�0i yt�i + �t, �t
iid� (7), � 2 (1; 2].

The AR process fytg satis�es (7) with the same index � (Cline 1989, Brockwell and Cline
1985). Since �� = �i = ��;i = �, apply Example 3 to get T�i=T

1=2 � K (T=kT )1=��1=2 !
1.

Remark 1: The AR(1) case is particularly revealing: for slowly varying L0 (T ) ; L (T )
! 1

� < 2 : T� = KT
1=2 jJT j

�T
� KT 1=2

E
�
y2t�1I (j�tyt�1j � c1;T )

��
E
�
�2ty

2
t�1I (j�tyt�1j � c1;T )

��1=2 � KT 1=2 (T=kT )
2=��1h

(T=kT )
2=��1

i1=2
� = 2 : T� � KT 1=2

E
�
y2t�1I (j�tyt�1j � c1;T )

��
E
�
�2ty

2
t�1I (j�tyt�1j � c1;T )

��1=2 � KT 1=2 L0 (T )

[L0 (T )]
1=2

= T 1=2L (T ) :

The case � = 2 can be veri�ed from (TM) and the proof of Lemma 3.1. Independent
errors mean y2t�1 and �

2
ty
2
t�1 have the same tail shape up to a constant scale, so L0(T )

are the same in the numerator and denominator (Cline 1986), hence T� � T 1=2L (T ) for
some L (T ).
Consider the case � < 2. The numerator Jacobian

E
�
y2t�1I (j�tyt�1j � c1;T )

�
� K (T=kT )2=��1

works like a tail-trimmed variance. If sequences fcy;T ; kT g satisfy (T=kT )P (jytj > cy;T )!
1 then arguments in the proof of Lemma 3.1 reveal E[y2t�1I(jyt�1j � cy;T )] � c2y;TP (jyt�1j
> cy;T ) = K(T=kT )

2=��1. Trimming by �tyt�1 delivers the same rate because �t is inde-
pendent of yt�1 and each have tail index � < 2, hence �tyt�1 has index � (Cline 1986).
By comparison the denominator�

E
�
�2ty

2
t�1I (j�tyt�1j � c1;T )

��1=2
= (T=kT )

1=��1=2

is a tail-trimmed standard deviation of an object with the same tail index �. Therefore
T� � KT 1=2(T=kT )

1=��1=2 dominates T 1=2 when �t has an in�nite variance. If �t is not
independent of yt�1 then the above arguments fails, and feedback can cause �T ! 1 so
fast that super-T 1=2-convergence cannot arise. See Sections 3.2 and 3.3.
Remark 2: Heavy-tailed regressors without error-regressor feedback promotes a

pure leverage e¤ect, so minimal trimming is optimal. If kT is regularly varying kT = [T�]
for � 2 (0; 1) then T�i � KT 1=���(1=��1=2) > KT 1=��� for any tiny �; � > 0. Conversely
if slowly varying kT = [� ln(T )] then T�i = KT

1=�=L(T ), arbitrarily close the maximum
rate T 1=�, cf. Davis et al (1992).
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EXAMPLE 6 (Instrumental Variables): It is tempting to use heavy-tailed instru-
ments zt to induce super-T 1=2-convergence. Consider a simple scalar model for reference

yt = �
0xt + �t, where fxt; �tg

iid� (0; 1) and mt (�) = (yt � �xt) zt 2 R:

Assume the instrument zt 2 R has tail (7) and index �z 2 (1; 2), and is valid: it is
independent of �t and infT�N jE[xtztI(j�tztj � cT )]j > 0 for large N . For example, we
might use zt = x2t if xt has a �nite variance and in�nite kurtosis. Since mt(�

0) = �tzt has
tail index �z (Cline 1986), the Cauchy-Schwarz inequality and arguments in the proof of
Lemma 3.1 reveal

T�i = KT
1=2 E [xtztI (j�tztj � c1;T )]
(E [�2t z

2
t I (j�tztj � c1;T )])

1=2
� KT 1=2

 
E
�
z2t I (j�tztj � c1;T )

�
E [�2t z

2
t I (j�tztj � c1;T )]

!1=2
= KT 1=2:

A thin-tailed regressor xt handicaps the Jacobian rate irrespective of the instrument zt.

3.2 ARCH WITH LEAST SQUARES EQUATIONS

Consider a Strong-ARCH(p) model with least squares-type equations

yt = ht�t, �t
iid� (0; 1) , h2t = �

0 +

pX
i=1

�0i y
2
t�i = �

00xt; �
0 > 0; �0 � 0; � = [�; �0]0

mt (�) =
�
y2t � �0xt

�
� xt, xt =

�
1; y2t�1; :::; y

2
t�p
�0
:

Assume the Lyapunov exponent associated with the stochastic recurrence equation form
is negative5 . Then fyt; htg are stationary with tail (7) and index �y > 0 as long at least
one as one �0i > 0 (e.g. Basrak et al 2002: Theorem 3.1). If �0i > 0 then mt(�

0) = (�2t �
1)h2txt have tails (7) with indices f�y=2; �y=4; :::; �y=4g6 .
Integrability of least squares-type mt(�

0) requires E[�2t ] < 1 and Ejh2ty2i;tj < 1, so
assume

E
�
y4t
�
<1 hence �y > 4.

If �0 = 0 or �0 > 0 and �y > 8 then mi;t(�
0) have �nite variances so all T�; T�i � KT 1=2.

The harsh moment requirement is relaxed with QML equations due to scaling. See Section
3.4.
Since (@=@�)mt(�) = �xtx0t have indices in f�y=4; �y=2;1g and �y > 4 each compo-

nent is integrable, thus JT � J . The standard deviations �i;i;T are almost as simple to
compute since �y 2 (4; 8) implies the intercept term �1;1;T � (E[(�2t � 1)2h4t ])1=2 = K, and
the remaining �i;i;T = (E[m2

i;t(�
0)Ii;T;t(�

0)])1=2 � Kci;T (kT =T )
1=2 = K(T=kT )

4=�y�1=2

by trimmed moment property (TM) and ci;T = K(T=kT )
1=(�y=4) for tail (7). Therefore

J1;1;T =�1;1;T � K and all other Ji;i;T =�i;i;T � K(T=kT )�(4=�y�1=2) = o(1). Now use (6)
to deduce T�; T�i � KT 1=2. If �y = 8 similar steps under (TM) reveal T�; T�i � KT 1=2.
This proves the next claim.

LEMMA 3.2 (Strong-ARCH) Any stationary strong-ARCH process with negative Lya-
punov exponent and �y > 4 has GMTTME rates T�, T�i � KT 1=2.

Remark 1: Strong-ARCH are AR in squares y2t = �0xt + vt, where E[vtj=t�1] =
0. But stationary AR equations all have the same tail index � when �t is iid with tail (7).

5The Lyapunov condition can be replaced with
Pp
i=1 �

0
i < 1, or

Pp
i=1 �

0
i = 1 and the error distribution

does not have an atom at zero (Bougerol and Picard 1992).
6 In the ARCH(1) case �y solves (Ej�tj�y )2=�y�01 = 1: large �01 implies small �y (de Haan et al 1989).
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In the ARCH case the AR-in-squares error vt = y2t � h2t = (�2t � 1)�00xt depends on xt,
thus m1;t(�

0) = (�2t � 1)h2t = vt has tail index �y=2 > 2 and all other mi;t(�
0) = (�2t �

1)h2ty
2
t�i+1 for i � 2 have index �y=4 > 1 due to feedback. The intuition from Section 3.1

su¢ ces to explain the rate: models with disproportionately heavy-tailed "errors" render
less sharp estimates (in this case, less than super-T 1=2-consistent).
Remark 2: The tails of �t do not play any role per se. Thicker tailed �t and/or

larger slopes �0 imply yt is heavier tailed: why yt is heavy tailed is irrelevant.

3.3 AR-ARCH WITH LEAST SQUARES EQUATIONS

Consider an AR(1) with ARCH(1) error

yt = �
0yt�1 + ut;

���0�� < 1; ut = ht�t, �t iid� N(0; 1)

h2t = �
0 + �0u2t�1; �

0 > 0; �0 > 0; � = [�; �; �]0

E
h
ln
����0 + ��0�1=2 �t���i < 0;

and three least squares-type equations used to estimate each � = [�0; �0; �0]0,

mt (�) =

264 (yt � �yt�1) yt�1
(yt � �yt�1)2 � �� � (yt�1 � �yt�2)2�
(yt � �yt�1)2 � �� � (yt�1 � �yt�2)2

�
� (yt�1 � �yt�2)2

375 :
Thus fytg is stationary, geometrically �-mixing with regular varying tail (7) and index �y
> 0 (Borkovec and Klüppelberg 2001: Theorems 1 and 3), and mi;t(�

0) satisfy (7) with
indices f�y; �y=2; �y=4g. Error normality can be replaced with su¢ cient distribution
smoothness.
Integrability again requires �y > 4, hence JT � J . If �y > 8 then �T = T 1=2I3. If �y

2 (4; 8) use E[y4t ] < 1 to deduce E[u4t ] < 1, E[h4t ] < 1 and E[�4t ] < 1 so �1;1;T � K,
�2;2;T � K, and �3;3;T = E[(�2t � 1)2h4ty4t�1I(j�2t � 1jh2ty2t�1 � c3;T )] � K(T=kT )8=�y�1.
This gives trimmed standard deviations �1;1;T = �2;2;T = 1 and �3;3;T = (T=kT )

4=�y�1=2.
Similarly if �y = 8 then �1;1;T = �2;2;T = 1 and �3;3;T = L(T ). The same conclusion as
the Strong-ARCH case is therefore reached by working through formula (6): all rates are
T 1=2 since feedback between ut and yt�1 dulls the rate below super-T 1=2-convergence

LEMMA 3.3 (AR-ARCH) Any stationary AR(1)-ARCH(1) with �t
iid� N(0; 1), E[ln j�0

+
�
�0
�1=2

�tj] < 0 and �y > 4 has GMTTME rates T� = T� = T� � KT 1=2.

EXAMPLE 7 (AR with ARCH Error): Estimate only the AR slope �0 in the
above AR-ARCH:

mt(�) = (yt � �yt�1) yt�1:
Notice mt(�

0) = �thtyt�1 has a tail index �y=2 due to feedback, half that in the iid case
Example 5. But this implies mt(�

0) is integrable only if �y > 2. Arguments in the proof
of Lemmas 3.1 can be used to deduce the following.

COROLLARY 3.4 (AR with ARCH Error) Under the conditions of Lemma 3.3 if
only �0 is estimated with one equation mt(�) = (yt � �yt�1)yt�1 then T� � KT 1=2

if �y > 4, T� � KT 1=2 (T=kT )�(2=�y�1=2) if �y 2 (2; 4), and T� � KT 1=2=L(T ) if
�y = 4:
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Remark : Feedback between error ut and regressor yt�1 substantially elevates es-
timating equation tail thickness relative to the Jacobian, hence the convergence rate T�
falls below T 1=2.

3.4 ARCH WITH QML EQUATIONS

Consider an ARCH(1) with QML equations

yt = ht�t; �t
iid� (0; 1) , h2t = �

0 + �0y2t�1 = �
00xt; �

0 > 0; �0 � 0

mt(�) =
�
y2t � �0xt

�
f�0xtg�2xt;

where E[mt(�)] = 0 if and only if � = �
0. Integrability requires E[�2t ] < 1, and assume

at least one �0i > 0 to highlight the impact of scaling.
If E[�4t ] = 1 assume �t has tail (7) with index �� 2 (2; 4]. Scaling mt(�

0) = (�2t
� 1)h�2t xt with �

0 > 0 implies only the tails of �t matter, and JT � J . This implies
diminished rates of convergence when E[�4t ] = 1 for the reasons given in Section 3.1.

LEMMA 3.5 Assume Ejytjp < 1 for some p > 0, �0 > 0 and E[�2t ] < 1. If �� > 4
then T� = T� = KT 1=2, if �� = 4 then T�; T� � KT 1=2=L(T ), and if �� 2 (2; 4)
then T�; T� � KT 1=2 (T=kT )

�(2=���1=2) :

Remark 1: In lieu of scaling only trivial restrictions on the tails of yt are required,
as long as E[�2t ] < 1.
Remark 2: Although QML equations permit far heavier tails than least-squares

equations, the rates of convergence su¤er when �t has an in�nite kurtosis since scaling
eliminates a leverage e¤ect. Nevertheless the rate can be made arbitrarily close to T 1=2

when �� 2 (2; 4] by maximal trimming kT = [T=L(T )]: T�; T� � KT 1=2=L(T ). Compare
this with the QML rate T 1�2=�� for any �� 2 (2; 4) (Hall and Yao 2003: Theorem 2.1).
Since 1 � 2=�� < 1=2 is strict for any �� 2 (2; 4), then GMTTM beats QML in rate of
convergence as long as the rule of thumb kT = [T=L(T )] is used.
Remark 3: Ling (2007) requires E[�4t ] < 1 for his weighted QML estimator to be

asymptotically normal. This follows since Ling only weighs according to lagged yt, and
not �t. By conparison, GMTTM achieves asymptotic normality under only E[�2t ] < 1
because by trimming by mt(�

0) = (�2t � 1)h�2t xt we necessarily control for large errors
�t. Indeed, jjh�2t xtjj is square integerable (Francq and Zakoïan 2010), so heavy tails are
solely associated with �t (Cline 1986).

Remark 4: The same conclusion is met for (nonlinear) GARCH yt = ht(�
0)�t; �t

iid�
(0; 1), with QML equations mt(�) = (y

2
t � h2t (�))h�4t (�) � (@=@�)ht(�) as long as h�2t (�0)

� (@=@�)ht(�)j�0 is integrable.
Remark 5: Although we do not tackle the general problem of nonlinear error-

regressor dependence, it seems reasonable to suspect such feedback will always reduce the
rate below T 1=2 when tails are thick enough.

4. FRACTILE SELECTION FORASYMMETRIC EQUATIONS The pre-
ceding section presents rules for selecting how fast kj;T ! 1 to maximize the e¢ cient
GMTTM rates of convergence. In this section we use the rate of identi�cation E[m�

T;t]!
0 as a criterion for selecting an asymmetric policy fk1;T ; k2;T g. Let mt(�

0) 2 R denote
a speci�c equation, and drop �0 everywhere for notational simplicity. The existence of
asymmetric equations is hardly in question. An ARCH(1) yt = (�0 + �

0y2t�1)
1=2�t, �0; �

0

> 0, with �t
iid� N(0; 1) has asymmetrically distributed least squares and QML equations.

17



Let mt = (�
2
t � 1)z2t denote a particular scalar least squares equation zt 2 f1; y2t�1g. Then

mt has tail (7) with index � > 0 (de Haan et al 1989), hence as m ! 1

P
��
�2t � 1

�
z2t > 1

�
� m�P

��
�2t � 1

�
z2t > m

�
! d2

P
��
�2t � 1

�
z2t < �1

�
� m�P

��
�2t � 1

�
z2t < �m

�
! d1:

Since �t
iid� N(0; 1) it follows d2 > d1.

Now let mt be an arbitrary scalar equation. Simplify exposition further by sharpening
condition D1.ii in Appendix A to an exact Pareto tail: for all m � M and some M � 1

P (mt < �m) = d1m��1 and P (mt > m) = d2m
��2 ;

where di > 0, and minf�ig > 1 ensures integrability. It is a simple exercise to show for
large T

E
�
m�
T;t

�
= E [mtI (�lT � mt � uT )] =

�
d1�1
�1 � 1

�
1

l�1�1T

�
�
d2�2
�2 � 1

�
1

u�2�1T

:

Although identi�cation E[m�
T;t] ! 0 holds for any thresholds flT ; uT g ! 1 hence any

intermediate order sequences fk1;T ; k2;T g, we can always relate k1;T to k2;T to promote
E[m�

T;t] ! 0 arbitrarily fast. In general, the heavier tail (e.g. d2 > d1 and/or �2 < �1)
should be trimmed less (e.g. uT > lT hence k2;T < k1;T ). Simply consider symmetric
trimming lT = uT = cT with d2 > d1 and �1 = �2. Then E

�
m�
T;t

�
< 0 because a

disproportionate number of large positive values are being trimmed. The is ameliorated
for each T by lowering the number of trimmed right-tail equations k2;T < k1;T . This is
strongly demonstrated by simulation in Section 6.
The thresholds flT ; uT g for Pareto tails by construction (4) are lT = d1=�11 (T=k1;T )

1=�1

and uT = d
1=�2
2 (T=k2;T )

1=�2 . Use this to deduce E[m�
T;t]� 0 for any T when d

1=�2
2 =(T=k2;T )

1�1=�2

� d1=�11 =(T=k1;T )
1�1=�1 or fk1;T ; k2;T g satisfy

k
1�1=�2
2;T

k
1�1=�1
1;T

= T 1=�1�1=�2
d
1=�1
1

d
1=�2
2

(1� 1=�2)
(1� 1=�1)

= T 1=�1�1=�2 �D (d; �)

The ARCH model is a simple case since �1 = �2 = � for any particular equation,
hence k2;T =k1;T � (d1=d2)

1=(��1). For example, if kj;T � �jT= ln(T ) then any policy
f�1; �2g must satisfy �2=�1 � (d1=d2)

1=(��1). Similarly, if kj;T � �jT
�j then �2=�1 �

(d1=d2)
1=(��1) and �1 = �2.

Table 1 presents three classes of k1;T based on the Section 3 rules of thumb for opti-
mization GMTTM rates convergence, and solving for k2;T .

18



Table 1 : General Policy Classes fk1;T ; k2;T g
k1;T Class k2;T k2;T Class

L1 (T ) D (d; �)1=(1�1=�2) L1 (T )(1�1=�1)=(1�1=�2) T�1(1��1=�2)=(1�1=�2) L2 (T )T
�2

T

L1 (T )
D (d; �)1=(1�1=�2) T

L1 (T )
(1�1=�1)=(1�1=�2)

T

L2 (T )

�1T
�1

�
�
1�1=�1
1 D (d; �)

�1=(1�1=�2)
T [�1(1�1=�1)+(1=�1�1=�2)]=(1�1=�2) �2T

�2

In each case the rate of increase kj;T ! 1 should di¤er across tails only if tail indices
di¤er. The �rst class k1;T � L1 (T ) only makes sense if �2 � �1 since �2 < �1 implies
�2 < 0 hence k2;T ! 0. Otherwise �x k2;T � L2 (T ) and solve for k1;T . If �2 > �1 the
right-tailed observations are trimmed exponentially faster than left-tailed observations.
Only the heaviest tail can have a slowly varying fractile in this class. Based on Section 3
this class apparently makes sense solely for models without error-regressor feedback.
The remaining classes T=Lj (T ) and �jT�j apply to both tails for any scales or indices.

In the second class T=Lj (T ) the heavier tail (e.g. �1 < �2) receives heavier trimming
(e.g. k1;T =k2;T ! 1) aligning this class naturally to models with error-regressor feed-
back. In the third class �1T�1 the heavier tail (e.g. �1 < �2) receives lighter trimming
(e.g. k1;T =k2;T ! 0), aligning this class with models that do not exhibit error-regressor
feedback.
GARCH models with innovations that have the same left- and right-tail index have

least squares and QML equations that are symmetric in �1 = �2 = �. In each class above
it is easy to show

if �1 = �2 = � then k2;T = (d1=d2)
1=(��1)

k1;T ;

so a thicker right tail d2 > d1 implies trimming fewer right tail equations k2;T < k1;T .
The nuisance tail parameters di and �i are easily estimated (e.g. Hill 1975, Hall 1982).

See Hill (2010a) for proofs of consistency for mixing processes.

5. AUTOREGRESSIONS AND ARCH We now verify the major assumptions
for heavy-tailed stationary AR and ARCH with weight �T = S

�1
T jjST jj.

5.1 Autoregression

Consider a stationary AR(r) process with iid, heavy-tailed errors

yt = �
00xt + �t, xt = [yt�1; :::; yt�r]

0 , �t
iid� (7) with � 2 (1; 2) , E[�t] = 0 (8)

mt(�) =
�
yt � �0xt

�
xt:

Assume �t has an absolutely continuous marginal distribution symmetric at zero, uni-
formly bounded and positive R-a:e: Then yt is uniformly L1+�-bounded geometrically
�-mixing (An and Huang 1996: Theorem 3.1), and yt and mi;t(�

0) = �tyt�i have tail (7)
with the same index � while mi;t(�) = �tyt�i � (�0 � �)0xty

2
t�i has tail (7) with index

�=2 if � 6= �0 (Cline 1986, 1989, Davis and Resnick 1996).
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Impose symmetric trimmingm�
i;T;t(�) =mi;t(�)I(jmi;t(�)j � ci;T (�)) where (T=kT )P (jmi;t(�)j

> ci;T (�)) ! 1, with the same fractile kT for each equation.
Error independence with Paretian tail (7), stationarity, linearity, distribution continu-

ity, mixing and the e¢ cient weight ensure continuity and power-law tails D1 (cf. Cline
1986), di¤erentiability D2, mixing D3, identi�cation I1 and covariance non-degeneracy
M2. The envelope bounds D4 are trivial given the linear form of mt(�), compactness of
�, and Lp-boundedness.
Further I2 is trivial since E[m�

T;t(�
0)] = 0 under symmetry, integrability and orthogo-

nality; M1 holds under I1 and D1-D6 for �̂T = Ŝ
�1
T jjŜT jj given HAC consistency Lemma

2.4.
What remains is Jacobia property D5, indicator property D6, and smoothness I3.

D5 (Jacobia).

D5.i. Each part is trivial given the linear data generating process and iid innovations
with absolutely continuous marginal distribution.

D5.ii. We must show sup�2U0(�T )fjjJT (�) � JT jjg = o(jjJT jj). Stationarity, Lp-
boundedness of yt and the construction J�T;i;j;t(�) = �yt�iyt�jIT;j;t(�) for a linear AR im-
ply E[(sup�2U0(�T )fjjJ

�
T (�) � J�T jjjg)s] � K for any s 2 (0; p=2), hence sup�2U0(�T )fjjJ

�
T (�)

� J�T jjg = op(jjJT jj) by Markov�s inequality and jjJT jj ! 1. Hence D5.ii follows if we
show jjJ�T � JT jj = op(jjJT jj).
In lieu of the general Jacobian property E[J�T;t] = JT (1 + o(1)) by Lemma C.4 in

Appendix C, it su¢ ces to show

1

T

TX
t=1

yt�iyt�jIT;j;t(�
0)� E

�
yt�iyt�jIT;j;t(�

0)
�

kJT k
:=

1

T

TX
t=1

Yi;j;T = op (1) :

Since geometric �-mixing ensures fyt�iyt�jIT;j;t(�0);=tg forms a geometric L2-mixingale,
apply stationarity and the Theorem 2.1 partial sum bound in Hill (2010b) to deduce
E(1=T

PT
t=1 Yi;j;T )2 � T�1E[Y2i;j;T ]. Lemma 3.1 dictates jjJT jj � K(T=kT )

2=��1, and
arguments in the line of proof of Lemma 3.1 can be used to show E[y2t�iy

2
t�jIT;j;t(�

0)] �
K (T=kT )

4=��1. Therefore

1

T
E
�
Y2i;j;T

�
= O

 
1

T

(T=kT )
4=��1

(T=kT )4=��2

!
= O

�
(T=kT )

T

�
= o(1):

The law now follows by Chebyshev�s inequality.

D6 (indicator class). The fdd�s of mi;t(�) are absolutely continuous so we may as-
sume without any loss of generality the thresholds ci;T (�) are continuous. Further, fdd�s
of mi;t(�) have bounded densities uniformly on �. Therefore Ii;T;t(�) is L2-Lipschitz:
E[(Ii;T;t(�) � Ii;T;t(~�))2] � Kjj� � ~�jj. Proving the L2-bracketing numbers satisfy D6 is
then a classic exercise. See Giné and Zinn (1984), Pollard (1984, 1989, 2002) and van der
Vaart and Wellner (1996).

I3 (smoothness). De�ne QT (�) := E[m�
T;t (�)]

0 � �T � E[m�
T;t (�)]. Identi�cation at

interior point �0 2 � and the de�nition of a derivative imply E[m�
T;t (�)] = JT (� � �0)

+ o(jjJT jj � jj� � �0jj), hence mT := sup� jjE[m�
T;t (�)]jj � KjjJT jj � (1 + o(1)) given

compactness of �. Therefore since �T is bounded

inf
jj���0jj>�

�
m�2T QT (�)

	
� inf

jj���0jj>�

��
� � �0

�0 J 0T
kJT k

�T
JT
kJT k

�
� � �0

��
�(1 + o (1))+o (1) :
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But boundedness and positive de�niteness of �T imply J 0T�TJT =jjJT jj2 is positive de�nite
for su¢ ciently large T , so I3 follows.

Asymptotic normality is therefore a primitive property of GMTTM for stationary AR
data with a su¢ ciently smooth error distribution. The above veri�cation with Theorems
2.2 and 2.6 and Lemma 3.1 su¢ ce to prove the following claim.

COROLLARY 5.1 Let yt satisfy (8) and let �T = S�1T =jjST jj�1. Then V 1=2T (�̂T � �0)
d! N(0; Ir) and V̂T = VT (1 + op(1)). In particular, T 1=2(T=kT )1=��1=2(�̂i;T � �0i )
d! N(0; Vi) for any kT ! 1 and kT = o(T ) each i and some Vi < 1. Further,
(T 1=�=L(T ))(�̂i;T � �0i )

d! N(0; Vi) for some Vi < 1 and slowly varying L(T ) !
1 when kT � L(T ):

Remark : The result generalizes to autoregressive distributed lags, and AR-ARCH
with adjustments to the convergence rates.

5.2 ARCH, GARCH, Nonlinear-GARCH

The ARCH(p) process fytg from section 3.2 is stationary, Lp-bounded, and geomet-
rically �-mixing with tail (7). See Basrak et al (2002: Theorem 3.1) and Meitz and
Saikkonen (2008: Proposition 1). The Lyapunov condition can be replaced with

Pp
i=1 �

0
i

< 1, or
Pp

i=1 �
0
i = 1 and the error distribution does not have an atom at zero (Bougerol

and Picard 1992).
Least squares and QML equations mt(�) are di¤erentiable in � with absolutely con-

tinuous marginal distributions, and integrable at �0 for all �y > 4 (least squares) or all
�y > 2 (QML). All conditions can be veri�ed using arguments from Sections 4.1 and 5.1.
The same basic arguments apply to a wide variety of smooth nonlinear AR-GARCH

models, including Quadratic ARCH, smooth transition AR and GARCH, Asymmetric
GARCH, and so on (An and Huang 1996, Borkovec and Klüppelberg 2001, Carrasco and
Chen 2002, Cline 2007, Meitz and Saikkonen 2008).

6. SIMULATION STUDY In this section we compare one-step and two-step

GMTTM�s, denoted �̂
(1)

T and �̂
(2)

T , to a variety of estimators detailed below. The models
are LOCATION, AR(1), ARCH(1), GARCH(1,1), Threshold ARCH(1) and Quadratic
ARCH(1), covering symmetric and asymmetric DGP�s.
Let N0;1 denote a standard normal law and P
 a symmetric Pareto law with index 


> 0 : if �t is governed by P
 then P (�t > �) = P (�t < � �) = (1=2) � (1 + �)�
 . Random
draws from P
 with 
 > 2 are standardized to ensure �t

iid� (0; 1). De�ne the moment
supremum �y = supf� > 0 : Ejytj� < 1g. See Table 2 for each DGP yt = f(�0; �t; xt)
where xt may contain a constant and lags of yt. We simulate 1000 samples of size T =
1000 for each model.
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TABLE 2 - Data Generating Processes
Model Type Functional Form: f(�0; �t; xt) �0r iid errors �t �y

LOCATION 1 + �t 1 P1:5, P2:5 1:50; 2:50

AR(1) :9� yt�1 + �t; :9 P1:5, P2:5 1:50; 2:50

ARCH(1) f:3 + :5y2t�1g1=2�t :5 N0;1 4:657

ARCH(1) f:3 + :6y2t�1g1=2�t :6 N0;1 3:80

ARCH(1) f:3 + :6y2t�1g1=2�t :6 P2:5 1:80

GARCH(1,1) f:3 + :3y2t�1 + :6h2t�1g1=2�t :6 N0;1 4:10

IGARCH(1,1) f:3 + :4y2t�1 + :6h2t�1g1=2�t :6 N0;1 2:00

GARCH(1,1) f:3 + :3y2t�1 + :6h2t�1g1=2�t :6 P2:5 1:50

TARCH(1) f:3 + :6y2t�1 � I(yt�1 < 0)g1=2�t :6 N0;1 5:258

TARCH(1) f:3 + :6y2t�1 � I(yt�1 < 0)g1=2�t :6 P2:5 2:60

QARCH(1) j:3 + :8yt�1j �t :8 N0;1 3:509

QIARCH(1) j:3 + yt�1j �t 1 N0;1 2:00

All processes in this study have regularly varying distribution tails (7) with index �y
> 0 (Hannan and Kanter 1977, Cline 1986, 1989, Borkovec and Klüppelberg 2001, Cline
2007). In the iid and AR cases tail thickness is gauged by the Pareto innovations, and all
equations mi;t(�

0) have symmetric tail indices.
We compare GMTTM with Ling�s (2005) and Pan et al�s (2007) Least Absolute

Weighted Deviations [LAWD] �̂LW , untrimmed GMM �̂G, QML �̂QL and Ling�s (2007)
Quasi-Maximum Weighted Likelihood [QMWL] �̂QW . Similar results for GARCH models
are obtained with Peng and Yao�s (2003) Log-LAD.
Write �̂ to denote any estimator. All model are estimated by GMTTM, GMM, and

QML (QML is just OLS for LOCATION and AR models); we use LAWD for LOCATION
and AR models; and QMWL for all GARCH models. Estimator descriptions are detailed
below. Based on our data generating processes OLS is consistent, and LAWD and QMWL
are T 1=2-convergent and asymptotically normal respectively for each LOCATION and
linear AR, and each linear GARCH model. See Davis et al (1992) and Ling (2005, 2007).

The collective GARCH group have heavy tails due to the innovations �t
iid� P2:5 and/or

the parametric structure. The kurtosis of yt is in�nite in most cases, and variance is
in�nite for IGARCH and QIARCH, and ARCH and GARCH with Pareto errors. Thus,
in all random volatility models the GMM estimator is not asymptotically normal, and
QML has not been shown to deliver an asymptotically normal estimator when E[�4t ] =
1. Nevertheless, QML is consistent in all cases10 .

7Basrak et al (2002: eq. 2.10) show E[(��2t + 
)�=2] = 1 for GARCH(1,1) yt = ht�t with iid �t and
h2t = � + �y2t�1 + 
h2t�1, provided the Lyapunov index is negative. The index � is computed as �̂ =

argmin�2Kfj1=N
PN
t=1(��

2
t + 
)�=2 � 1jg over K 2 f:01; :02; :::; 10g based on N = 100; 000 iid random

draws �t from N0;1, P2:5 or P2:1. The 1% bands are less than .001 in all cases.
8An ARCH a¤ect exists only for the left-tail, so � solves ��=2E[j�tj�I(�t < 0)] = 1 (Cline 2007: Lemma

2.1 and Example 3). But �t is symmetrically distributed about 0, hence ��=2E[j�tj�] = 2. The monte
carlo experiment described in above allows for computation of �.

9Since yt = j� + �yt�1j�t use Lemma 2.1 of Cline (2007) to deduce ��E[j�tj�] = 1.
10Let Q̂q(�) denote the QML criterion. It can be easily veri�ed for all models above (@=@�)Q̂q(�) =PT
t=1 gt(�) for some L1+�-bounded martingale di¤erence sequence fgt(�0);=tg. Since an L1+�-bounded

mds trivially forms a uniformly integrable L1-mixingale, Andrews�(1988: Theorem 1) law of large numbers

applies: 1=T
PT
t=1 gt(�0)

p! 0. Further, each gt(�) satis�es Andrew�s (1992: W-LIP) Lipschitz condition

W-LIP given di¤erentiability and the QML criterion form, so sup� j1=T
PT
t=1fgt(�) � E[gt(�)]gj

p! 0 by
Theorem 3 of Andrews (1992). Consistency of QML is now a standard exercise (e.g. Pakes and Pollard
1989: Corollary 3.4). See also Hall and Yao (2003) for the GARCH case with in�nite kurtosis errors.
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6.1 Evaluation

We analyze rth parameter estimates �̂T;r for brevity. Consult the third column of
Table 2 for the true �0r. Estimator performance is gauged by simulation means, mean-
squared-errors, and Kolmogorov-Smirnov tests of standard normality. Let f�̂T;j;rg1000j=1 be
the independently drawn sequence of estimates of �0r.
We use the simulation mse ŝ2T;r = (1=1000)

P1000
j=1 (�̂T;j;r � �0r)

2 to generate an iid

sequence of ratios ft̂j;rg1000j=1 , t̂j;r = f�̂T;j;r � �0rg=ŝ2T;r. We report (1=1000)
P1000

j=1 �̂T;j;r,
ŝT;r, and the KS test is based on ft̂j;rg1000j=1 .

6.2 Estimating Equations

The GMM and GMTTM estimating equations are mt (�) = ut(�) � zt(�) for some
"error: ut(�) 2 R and "regressor" zt(�) 2 Rq described in Table 3. In each location and
AR model least squares-type equations are used, ut(�) = yt � �0xt. Recall QML-type
equations in GARCH cases allows for the minimal moment condition E[�2t ] < 1. We
therefore use QML-type ut(�) = (y2t � h2t (�))h�4t (�) for GARCH models with index �y �
4 and least squares-type ut(�) = y2t � h2t (�) if �y > 4.
We consider both exact and over-identi�cation cases concerning choice of zt(�). Exact

identi�cation allows for direct comparisons with least squares and QML. The two cases
result in qualitatively similar results, so we only present output for exact identi�cation
See Hill and Renault (2010) for omitted results.

TABLE 3 - Estimating Equations mt (�) = ut (�) � zt (�)
Model iid errors �t �y ut (�) 2 R zt(�) 2 Rq : q = 1 or 2a

Location P1:5, P2:5 1:5; 2:5 LS, LS 1 or [1; yt�1]
0

AR(1) P1:5, P2:5 1:5; 2:5 LS, LS [yt�i]
q
i=1

ARCH(1) N0;1 4:65 LS
�
1;
�
y2t�i

	q
i=1

�0
ARCH(1) N0;1; P2:5 3:80, 1:80 QML, QML

�
1;
�
y2t�i

	q
i=1

�0
GARCH(1,1)b N0;1 4:10 LS

�
1;
�
y2t�i; h

2
t�i(�)

	q
i=1

�0
GARCH(1,1) N0;1; P2:5 2:00, 1:50 QML, QML

�
1;
�
y2t�i; h

2
t�i(�)

	q
i=1

�0
+ �

@

@�
h2t�1(�)

TARCH(1)c N0;1; P2:5 5:25; 2:60 LS, QML
�
1; y2t�1It�1; :::; y

q
t�qIt�q

�0
QARCH(1) N0;1; N0;1 3:50; 2:00 QML, QML ht(�)� [1; fyt�igqi=1]

0

Notes: a. In all cases q = 1 or 2. Exact identi�cation corresponds to q = 1.
b. h2t (�) = ! + �y

2
t�1 + �h

2
t�1(�); c. It := I(yt < 0):

6.3 GMTTM Fractile Selection

Equations mi;t(�
0) in each model are either all symmetric or all asymmetric, except

QARCH. In the latter case the constant term equation is skewed right,

QARCH: m1;t(�
0) =

�
y2t � h2t

�
h�3t =

�
�2t � 1

�
h�1t ;

hence asymmetrically trimmed. The remaining QARCH equations are symmetric,

QARCH: mi;t(�
0) =

�
y2t � h2t

�
h�3t yt�i =

�
�2t � 1

�
h�1t yt�i =

�
�2t � 1

�
h�1t ht�i�t�i;

because �t is iid symmetrically distributed about zero. Hence mi;t(�
0) are symmetrically

trimmed. We therefore discuss QARCH separately.
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In all models except QARCH we use the same fractiles fk1;T ; k2;T g for each equation
since evaluation focuses on just �̂T;r. In the �rst experiment we use regularly varying
trimming fractiles kj;T = [T�j ] where �j 2 f:01; :02; :::; :99g. Models with symmetri-
cally distributed equations (LOCATION, AR) are trimmed symmetrically: �1 = �2. All
GARCH models except QARCH demand asymmetric trimming for each equation. These
results are summarized in Tables 4-6.
The class T�j is best aligned with symmetric equations without error-regressor feed-

back, as in LOCATION and AR. Still, this policy does not optimize the convergence rates
in any model treated here. In a second experiment we use rate optimizing policies: kT =
[� ln(T )] for AR; kT = [�T= ln(T )] for LOCATION; and kj;T = [�jT= ln(T )] for GARCH11 .
In all cases except QARCH we minimize the KS statistic over a one or two dimensional
grid of �i 2 f:01; :02; :::; 3:0g. See Table 7.
In the QARCH case we use asymmetric fractiles for the �rst equation fk1;1;T ; k2;1;T g

and identical left and right fractiles kT for all remaining equations. A three dimensional
grid search is therefore performed over fkT ; k1;1;T ; k2;1;T g = fT�; T�1 ; T�2g in the �rst
experiment and fkT ; k1;1;T ; k2;1;T g= f[�T= ln(T )]; [�1T= ln(T )]; [�2T= ln(T )]g in the second
experiment.

6.4 GMTTM Weight

Let �̂
(1)

T be the one-step GMTTM estimator based on the naïve weight �̂T = Iq, and

�̂
(2)

T (~�T ) the two-step estimator with e¢ cient weight �̂T = �̂�1T (~�T ) � jj�̂T (~�T )jj and
plug-in ~�T .

In simulations not reported here �̂
(1)

T dominated �̂
(2)

T (�̂
(1)

T ) across models and evaluation
criteria due to the computational complexity of a multi-step algorithm under nonlinearity

associated with trimming. Further, the two-step �̂
(2)

T (�̂Q) with a QML plug-in dominated

�̂
(1)

T and �̂
(2)

T (�̂G) with a GMM plug-in. Since QML is more stable than GMM and one-
step GMTTM due to non-trimming and scaling (for GARCH), and �̂Q is consistent for

each DGP in this study, we compute �̂T = �̂
(2)

T (�̂Q) in all cases. In all cases the GMM
estimator is computed in two steps using a QML �rst-step plug-in.

6.5 LAWD and QMWL

Ling (2005,2007) proposes weighted versions of LAD and QML respectively for sym-
metric heavy tailed AR and GARCH models. In this study use LAWD (Ling 2005) for
LOCATION and AR models, and QMWL for all GARCH models.
The LWAD estimator for AR models solves argmin�2�f

PT
t=2 wtjyt � �0xtjg. Ling�s

(2005) suggested weight wt is inspired by arguments in Huber (1964): wt = 1 if at = 0

and wt = (y
(a)
([:05T ]))

3=a3t if at 6= 0, where at := jyt�1jI(jyt�1j � y
(a)
([:05T ])). Thus, values

above the 5th two-tailed percentile are given monotonically less weight.
The QMWL estimator for GARCHmodels solves argmin�2�f

PT
t=2(lnh

2
t (�) + y

2
t =h

2
t (�))g

with Ling�s only suggested weight wt = 1 if Yt = 0 and wt = (y
(a)
([:05T ]))

4=a4t if at 6= 0,

where Yt :=
PR

i=1 i
�9jyt�ijI(jyt�ij � y(a)([:05T ])). Ling requires R =1 but does not suggest

how to choose R in practice, so we simply use R = [T 1=2]. Notice trimming is symmetric
which is appropriate for LOCATION, AR, ARCH and GARCH, but apparently not for
asymmetric GARCH models, a topic beyond our present scope.

6.6 Summary of Results
11Convergence rate optimization has only been veri�ed for LOCATION, AR and ARCH in Section 3.

We must leave the study of the convergence rate for nonlinear models and GARCH models to future
research.
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Refer to Tables 4-7 for all results. Tail-trimming always delivers an approximately
normal estimator. The GMTTME is roughly normal even for the profoundly heavy-tailed
linear and nonlinear GARCH models. By comparison the GMME fails tests of normality
in every heavy tailed case as expected, and the QMLE is non-normal in all cases where
it is not asymptotically normal (in�nite variance location and AR, GARCH with in�nite
kurtosis error).
As expected LAWD leads to a sharp estimate for heavy tailed LOCATION and AR

models since those data generating processes are symmetric. However, the symmetri-
cally weighted QMWL criterion generates biased estimates for asymmetric TARCH and
QARCH models. The most notable �ndings are summarized below.

i: In the presence of heavy-tails the GMME and QMLE strongly fail KS tests of
normality. By comparison the GMTTME passes roughly as well as in any other case.

ii: LAWD and QMWL are designed for heavy tailed symmetric models, although in
principle can be extended to asymmetric models. Following the methods described in
Ling (2005, 2007) the estimators are sharp for heavy tailed linear models, while QMWL
in general leads to biased estimates for heavy tailed asymmetric GARCH. The distortion
is particularly acute for heavy tailed TARCH.

iii: The QMLE fails normality tests in all GARCH cases where the errors have an in�-
nite fourth moment. Further, even though the QMLE for IGARCH with Gaussian innova-
tions is asymptotically normal (e.g. Lumsdaine 1996), for small samples it is demonstrably
non-normal as shown elsewhere (e.g. Lumsdaine 1995).

v: Asymmetric trimming for asymmetrically distributed equations is always optimal.
Approximate normality for a small sample is promoted by trimming more observations
from the thinner tail, with the intuition discussed in Section 4.

v: Lighter trimming ensures approximate normality for location and AR models, where
heavier tailed equations require monotonically less trimming. Conversely, GARCH models
with heavier tailed equations requires heavier trimming. Both outcomes match theory
predictions from Section 3. This is veri�ed by optimizing the KS statistic over fractile
classes [T�j ], [�j ln(T )] or [�jT= ln(T )] and comparing �j and �j . In general the heavier
the tails in location and AR the smaller is the KS minimizing � and �; and the heavier
the tails in GARCH the larger is � and �.

vi: The GMTTME works equally well if kj;T = [T�j ] or the convergence rate optimizing
variety kj;T = [�j ln(T )] or [�jT= ln(T )] is used. This is rather trivial since a grid search
renders the KS minimizing values fk2;T ; k2;T g essentially identical.
vii: A remarkably few number of trimmed large equation observations renders an

approximately normal GMM estimator, and corrects for bias and e¢ ciency a¤ects due
to heavy tails. The largest fractiles in this study occurred with the in�nite variance AR
model with least squares equations and the in�nite variance ARCH model with QML
equations (kT = 28) and the GARCH model with in�nite variance (kT = 30). In the
ARCH model trimming fewer than 3% of total equations drops the KS statistic from .175
(p-value < .01) to .075 (p-value > .05), and in the GARCH model the drop is .195 to
.063.

7. CONCLUSION This paper develops a robust GMM estimator for possibly very
heavy tailed data commonly encountered in �nancial and macroeconomic applications.
This is accomplished by trimming an asymptotically vanishing portion of the sample
estimating equations. Our approach applies equally to asymmetric or symmetric processes
with thin or thick tails.
We prove trimming estimating equations themselves ensures asymptotic normality,

while tail -trimming can promote consistency for �0, super-T 1=2-convergence for models

25



without error-regressor feedback, and a rate that beats QML for GARCH models with
in�nite kurtosis errors. Although Ling�s (2007) weighted QML for GARCH with heavy-
tailed errors leads to a slightly higher rate of convergence than GMTTM, by construction
over-identifying conditions are ignored and to date nonlinear GARCH is left untreated.
GMTTM allows both by construction.
Simulation work demonstrates the new estimator is approximately normal for a variety

of linear and nonlinear data generating processes with heavy tails; symmetric trimming
leads to profoundly poor estimates for asymmetric data; GMTTM dominates GMM and
QML in heavy tailed cases; and dominates QMWL for asymmetric GARCH models with
heavy tailed errors.
Future work should tackle rates of convergence for nonlinear processes; the trade-

o¤ between small sample distribution and e¢ ciency; adaptive methods for selecting the
trimming fractiles fk1;i;T ; k2;i;T g; and other criteria for trimming.

APPENDIX A: Assumptions

Let f�T g be a sequence of positive de�nite weight matrices �T 2 Rq�q. The sample
criterion is

Q̂T (�) :=
1

T

TX
t=1

m̂�
T;t(�)

0 � �̂T �
1

T

TX
t=1

m̂�
T;t(�), where �̂T 2 Rq�q;

hence the GMTTME solves
�̂T = argmin

�2�
fQ̂T (�)g:

Under the identi�cation and smoothness conditions detailed below, �̂T exists and is unique.
Asymptotic arguments require the following matrix constructions, some of which are

already de�ned above. The trimmed equation instantaneous and long run covariance
matrices are

�T (�) := E
�
m�
T;t (�)m

�
T;t (�)

0� and �T := �T (�0)
ST (�) :=

1

T

TX
s;t

E
�
m�
T;s (�)m

�
T;t (�)

0� and ST := ST (�0);
the tail-trimmed moment envelope is

mT = sup
�2�



E �m�
T;t(�)

�

 ;
population and sample Jacobia are

JT (�) :=
@

@�
E
�
m�
T;t(�)

�
2 Rq�r and JT = JT (�

0)

J�T;t(�) :=

�
@

@�
mi;t(�)� Ii;T;t (�)

�q
i=1

and J�T (�) :=
1

T

TX
t=1

J�T;t(�)

Ĵ�T;t(�) :=

�
@

@�
mi;t(�)� Îi;T;t (�)

�q
i=1

and Ĵ�T (�) :=
1

T

TX
t=1

Ĵ�T;t(�);
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and the Hessian and scale are

HT (�) := JT (�)
0�TJT (�) 2 Rr�r and HT := HT (�

0)

VT (�) := T �HT (�) [J 0T (�)�TST (�)�TJT (�)]
�1
HT (�) and VT := VT (�

0):

Write compactly throughout

ci;T (�) := max fli;T (�) ; ui;T (�)g and cT (�) = max
1�i�q

fci;T (�)g

ki;T = max fk1;i;T ; k2;i;T g and kT = max
1�i�q

fki;T g :

Four sets of assumptions ensure identi�cation for �0; �̂T can be expressed asymptoti-
cally as a linear function of

PT
t=1 m̂

�
T;t(�

0);
PT

t=1 m̂
�
T;t(�) is su¢ ciently close to

PT
t=1m

�
T;t(�)

uniformly on �; S�1=2T

PT
t=1m

�
T;t(�

0) is asymptotically normal; and Ĵ�T (~�T ) and ŜT (~�T )

are consistent for consistent ~�T . Most are versions of standard regularity conditions
contoured to heavy tailed data under tail trimming. The remaining are easily veri�ed
for linear-in-parameters models. See Section 4 for dynamic linear regression and ARCH
models.
Let f=tg be any sequence of increasing �-�elds adapted to fmt(�)g, � 2 �, where f=tg

itself does not depend on �. The �rst set characterizes matrix norms, weight limits and
covariance de�niteness12 .

M1 (weight). �T is positive de�nite for every T � N and su¢ ciently large N � 1;
and jj�̂T � �T jj

p! 0 and jj�T � �0jj ! 0 for some positive de�nite �0, 0 < jj�0jj <1.

M2 (covariance non-degeneracy). Each AT (�) 2 f�T (�); ST (�)g satis�es
lim infT�N inf�f�min(AT (�))g > 0:

Remark 3: M1 is standard. M2 imposes positive de�niteness for su¢ ciently large
T � N since trimming can technically render a zero matrix, hence, e.g. �min(�T (�)) = 0
for some T .

The second set promotes local identi�cation of �0.

I1 (identi�cation by mt(�)). E[mt(�)] = 0 if and only if � = �0, a unique interior
point of compact � � Rr:

I2 (identi�cation by m�
T;t(�)). E[m

�
T;t(�

0)] = o(jjST jj1=2=T 1=2) for T � N and su¢ -
ciently large N � 1.

I3 (smoothness). infT�N inf jj���0jj>�fm�1T jjE[m�
T;t(�)]jjg > 0 for tiny � > 0, and

lim infT�NfmT g > 0 for some N � 1.

Remark 1: Identi�cation E[m�
T;t(�

0)] ! 0 is assured by I1 and Lebesgue�s domi-
nated convergence. In lieu of the GMM quadratic criterion, I2 states m�

T;t(�) identi�es �
0

su¢ ciently fast as information accumulates T ! 1. If the marginal distributions mt(�
0)

12We simplify notation by ignoring measurability issues that arise when taking a supremum over an
index set when the index itself is a function. We implicitly assume all functions in this paper satisfy
Pollard�s (1984) permissibility criteria, the measure space that governs all random variables is complete,
and therefore all majorants are measurable. See also Dudley (1978) for an appeal to Suslin measurability or
image admissible Suslin. Thus, probability statements for majorants are with respect to outer probability,
and expectations over majorants are outer expectations.
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are symmetric then E[m�
i;T;t(�

0)] = 0 by I1 for any fractiles k1;i;T = k2;i;T or thresholds
li;T (�

0) = ui;T (�
0). Further, we show in Section 4 if m�

i;T;t(�
0) has exact Pareto tails then

E[m�
i;T;t(�

0)] � 0 arbitrarily close for each T for in�nitely many sequences fk1;i;T ; k2;i;T g.
Otherwise ST = o(T ) is trivial in thin-tailed cases by the Cauchy-Schwarz inequality,
and holds for any threshold sequences fli;T (�); ui;T (�)g for equations with power-law tail
decay under intermediate order tail-trimming. See Lemma C.2.
Remark 2: Versions of smoothness I3 are standard for consistency (Huber 1967,

Pakes and Pollard 1989, Newey and McFadden 1994). The envelope scale mT is required
sincemt(�) need not be integrable on �-a:e: in heavy-tailed cases, whereas E[m�

T;t(�)]=mT

is always well de�ned. Consider an AR(1) yt = �
0yt�1 + �t with j�0j < 1, =t = �(y� : � �

t); martingale di¤erence innovations E[�tj=t�1] = 0 with in�nite variance E[�2t ] =1, and
one equation mt(�) = (yt � �yt�1)yt�1. Then E[mt(�

0)j=t�1] = 0 a:s: hence E[mt(�
0)]

= 0, but in general mt(�) = �(� � �0) � y2t�1is non-integrable for any coe¢ cient � 6= �0.
This matters for a proof of consistency �̂T

p! �0 since that requires a ULLN for m�
T;t(�)

by well known arguments (e.g. Pakes and Pollard (1989)13 .

The next set concerns properties of the equations mt(�), trimming indicators Ii;T;t(�)
and the random Jacobian matrices J�T;t(�) and Ĵ

�
T;t(�). Let �i(�) 2 (0;1] denote the

moment supremum of mi;t(�): Ejmi;t(�)jp < 1 if and only if p < �i(�), where �i(�) =
1 is possible (e.g. bounded support, exponential tail decay). Similarly �2;i � � is the
set of all � such that �i(�) � 2.

D1 (distribution).

i: The �nite dimensional distributions of mt(�) are strictly stationary and absolutely con-
tinuous with respect to Lebesgue measure on �.

ii. Let inf� �i(�) > 0 and �i(�
0) > 1. If �i(�)� 2 then P (jmi;t(�)j > m)g= di(�)m��i(�)(1

+ o(1)). In particular sup�2�2;i
jm�i(�)P (jmi;t(�)j > m)�di(�)j ! 0 where inf�2�2;i

di(�)
> 0.

D2 (di¤ erentiability). mt(�) is continuous and di¤erentiable on �-a.e:

D3 (mixing). mt(�) is stationary geometrically �-mixing (absolutely regular): �l :
= supA�=+1t+l

EjP (Aj=t�1) � P (A)j = o(�l) for � 2 (0; 1).

D4 (envelope bounds). sup� jjmt(�)jj and sup� jj(@=@�)mt(�)jjg are L�-bounded :

D5 (Jacobia).

i: JT (�) exists on �-a.e.; lim infT�N jjJi;i;T jj > 0 for each i 2 f1; :::; qg; sup� jjJT (�)jj <
1 for each T ; fJT (�); J�T (�); E[J�T;t(�)]; Ĵ�T (�)g have full column rank for each T � N
and each � 2 �.

ii: sup�2U0(�T )fjjJT (�) � JT g = o(jjJT jj) for any �T ! 0.

D6 (indicator class). fIi;T;t(�) : � 2 �g satis�es metric entropy with L2-bracketing
H[ ](";�; jj � jj2) = O(ln(")), " 2 (0; 1).

Remark 1: Distribution continuity D1.i and equation di¤erentiability D2 reduce
generality, but simplify key uniform arguments since trimming adds substantial complex-
ity. In regression models D1.i requires at least idiosyncratic shocks to have a density.
Power-law tails D1.ii in the in�nite variance case permit elegant representaitons of tail

13Although the untrimmed equations mt(�) need not be integrable for arbitrary �, we prove
sup� jj1=T

PT
t=1fm�

T;t(�) � E[m�
T;t(�)]gjj = op(mT ) in Lemma D.3 in Appendix D, which su¢ ces for

consistency.
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trimmed vectors. The assumption is very mild since distribution tails are bounded by
regularly varying function by Markov�s inequality, and power-laws govern those in�nite
variances processes that satisfy a central limit theorem (Ibragimov and Linnik 1997, Lead-
better et al 1983, Resnick 1987)14 .
Remark 2: Mixing D3 and indicator metric entropy D6 promote uniform laws for

m�
T;t(�) and m̂

�
T;t(�) � m�

T;t(�), while geometric decay keeps notation simple. Never-
theless, many nonlinear AR-nonlinear GARCH models are covered (An and Huan 1996,
Carrasco and Chen 2002, Meitz and Saikonnen 2008).
Remark 3: Although we do explicitly bound the rate cT (�) ! 1 it is implicitly

bounded under power-law tail decay D1.ii since for any intermediate order sequences
fk1;i;T ; k2;i;T g

sup
�

n
cT (�)= k�T (�)k1=2

o
= o(T 1=2):

See Lemma C.1 in Appendix C. Therefore power-law tails ensures ��1=2T (�)m�
T;t(�) is

uniformly relatively stable

max
1�t�T

�
sup
�




��1=2T (�)m�
T;t(�)




� = op �T 1=2� ;
a property held by �nite variance processes that are stationary with weakly dependent
maxima (Naveau 2003), or are merely identically distributed (Bonnal and Renault 2004:
Lemma A.1; Kitamura et al 2004: Lemma D.2)15 .
Remark 4: Jacobian non-degeneracy D5.i is standard. Smoothness D5.ii ensures if

jjJT (�)jj ! 1 due to heavy tails then the rate is proportional to jjJT jj for � "close" to
�0. The assumption automatically holds for linear models. See Section 4.
Remark 5: The D4 moment bounds, D5 Jacobia properties and D6 indicator class

are used to prove 1=T
PT

t=1fm̂�
T;t(�) � m�

T;t(�)g = op(1) uniformly on �, required for
consistency. Uniformity under non-di¤erentiability of Ii;T;t(�) is expedited if fIi;T (�) : �
2 �g exhibits good metric entropy properties, where metric entropy with L2-bracketing
D6 delivers a required uniform CLT and uniform maximal inequality16 . We must exploit a
uniform maximal inequality, and the simplest set of su¢ cient conditions with the greatest
payo¤ appears to be due to Doukhan et al (1995) under D3 and D6.

Finally, the kernel class for the HAC estimator ŜT (�).

K1 (kernel). k(�) is a member of class K, where

K = fk : R! [�1; 1] j k(0) = 1; k(x) = k(�x) 8x 2 R;Z 1

�1
jk(x)jdx <1;

Z 1

�1
j$(�)jd� <1;

k(�) is continuous at 0 and all but a �nite number of pointsg;
14We assume a Paretian tail P (jmi;t(�)j > m)g = di(�)m

��i(�)(1 + o(1)) to simplify notation. It is
straightforward to generalized D1.ii to P (jmi;t(�)j > m)g = m��i(�)L(�;m) for slowly varying L(�;m)
and bounded L(�; �). See, e.g., Resnick (1987).
15Technically D1.ii only requires the tails to be identically distributed. Relative stability aligns with a

necessary and su¢ cient condition for the distribution limit of a sum of an iid array to be Gaussian (e.g.
Kallenberg 2002: Theorem 5.15).
16The brackets fl; ug of an index function class F satisfy l � f � u for every member f 2 F , where

fl; ug may not be members of F ; an "-L2-bracket fl; ug satis�es jjl � ujj � "; the L2-bracketing numbers
N[ ](";�; jj � jj2) are the number of "-L2-brackets required to cover F , and metric entropy with L2-
bracketing is H[ ](";�; jj � jj2) = ln(N[ ](";�; jj � jj2)). See Giné and Zinn (1984), Pollard (1984), van
der Vaart and Wellner (1996) and Dudley (1999). Since H[ ](";�; jj � jj2) = O(j ln(")j) under D6 impliesR 1
0 H

1=2
[ ]
(";�; jj � jj2)d" < 1, a required stochastic equicontinuity condition for weak convergence of a

partial sum of IT;t(�) applies (see Dudley�s 1978 landmark paper).
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and $(�) = (2�)�1
R1
�1 k(x)e

i�xdx < 1. Further
PT

s;t=1 jk((s � t)=
T )j = o(T 2);

max1�s�T
PT

t=1 k((s � t)=
T ) = o(T ) and bandwidth 
T = o(T ).

Remark : Class K includes Bartlett, Parzen, Quadratic Spectral, Tukey-Hanning
and other kernels. See Davidson and de Jong (2000) and the citations therein.

APPENDIX B: Proofs of Main Results

The following proofs exploit threshold and moment properties Lemmas C.1-C.3 and
limit theory Lemmas D.1-D.8. See Appendices C and D respectively.

Proof of Theorem 2.1. De�ne m̂�
T (�) := 1=T

PT
t=1 m̂

�
T;t(�),m

�
T (�) := 1=T

PT
t=1m

�
T;t(�),

and QT (�) := E[m�
T;t (�)]

0 � �T � E[m�
T;t (�)]. The following is similar to Pakes and

Pollard�s (1989: p. 1039) argument. Use smoothness I3 and weight boundedness M1 to
de�ne �(�) := infT�N inf jj���0jj>�fm�2T � QT (�)g > 0 for arbitrarily large N and tiny � >

0. Since P (jj�̂T � �0jj > �) � P (m�2T QT (�̂T ) > �(�)) it su¢ ces to show QT (�̂T ) = op(m2T )
to prove jj�̂T � �0jj

p! 0.
Now, the Lemma D.5 uniform criterion probability bound implies

QT (�̂T ) � Q̂T (�̂T ) +
���Q̂T (�̂T )�QT (�̂T )��� � Q̂T (�̂T ) + �m2T +QT (�̂T )�� op (1) ;

hence QT (�̂T )(1 � op(1)) � Q̂T (�̂T ) + op(m2T ). By construction Q̂T (�̂T ) � Q̂T (�
0), while

weight bound M1, the Lemma D.2.a asymptotic approximation and covariance bound
Lemma C.2.c dictate Q̂T (�

0) is bounded:

Q̂T (�
0) � K



m̂�
T (�

0)


2 � K �

m�

T (�
0)


+ op �kST k1=2 =T 1=2��2 = K �

m�

T (�
0)


+ op (1)�2 :

Finally, the Lemma D.3 law of large numbers states jjm�
T (�

0) � E[m�
T;t(�

0)]jj p! 0,
and jjE[m�

T;t(�
0)]jj = o(jjST jj1=2=T 1=2) = o(1) by identi�cation I2 and covariance bound

Lemma C.2.c. Therefore jjm�
T (�

0)jj = op(1) by Minkowski�s inequality which completes
the proof.

Proof of Theorem 2.2. Asymptotic linearity Lemma D.6 states

V
1=2
T

�
�̂T � �0

�
= �V 1=2T

�
H�1
T J 0T�T

� 1
T

TX
t=1

m̂�
T;t(�

0)� (1 + op (1)) :

Invoke asymptotic approximation Lemma D.2.a coupled with the construction of VT to
deduce

V
1=2
T

�
�̂T � �0

�
= �V 1=2T

�
H�1
T J 0T�T

� 1
T

TX
t=1

m�
T;t(�

0)� (1 + op (1)) + op (1) :

Now invoke central limit theorem Lemma D.7 and V 1=2T (T�1=2H�1
T J 0T�TS

1=2
T ) ! Ir to

conclude for some fAT g, ATSTAT ! Ir,

V
1=2
T

�
�̂T � �0

�
= �A�1=2T T�1=2

TX
t=1

m�
T;t(�

0)� (1 + op (1)) + op (1)
d! N (0; Ir) :
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Proof of Lemma 2.4. De�ne x̂�T;t(�) := �
0m̂�

T;t(
~�T ) and x�T;t(�) := �

0m�
T;t(�

0) for any
conformable �0� = 1, and write kT;s;t = k((s � t)=
T ). Since it su¢ ces to showPT

s;t=1 kT;s;tx̂
�
T;s(�)x̂

�
T;t(�)PT

s;t=1E
h
x�T;s(�)x

�
T;t(�)

i p! 1 8�0� = 1;

and x�T;t(�) is geometrically �-mixing under D3 with the same bounds as jjm̂�
T;t(�0)jj, we

need only consider the univariate case mT;t(�0) 2 R (e.g. Newey and West 1987). Thus,
by Minkowski�s inequality we must show

AT := S�1T
1

T

TX
s;t=1

kT;s;t

n
m̂�
T;s(

~�T )m̂
�
T;t(

~�T )�m�
T;s(�

0)m�
T;t(�

0)
o

p! 0

BT := S�1T
1

T

TX
s;t=1

kT;s;tm
�
T;s(�

0)m�
T;t(�

0)
p! 1:

Cross-product expansion Lemma D.2.d with jj~�T � �0jj2 = O(T�1=2jjST jj1=2jjJT jj�1)
implies AT

p! 0.
In order to show BT

p! 1 we will apply Theorem 2.1 of Davidson and de Jong (2000)
= DJ. It su¢ ces to verify their Assumptions 1-3. DJ�s Assumption 1 holds by K1.
Their Assumptions 2 and 3 concern a Near Epoch Dependence property and relate

the NED property to the bandwidth 
T . Both conditions are used solely to promote
partial sum variance bounds. It helps to translate DJ�s environment into ours. In
their setting m�

T;t(�
0) is assumed Lr-bounded for r > 2, or uniformly square integrable,

with a standardization XT;t : = T�1=2�
�1=2
T m�

T;t(�
0). Under geometric �-mixing D3

fm�
T;t(�

0);=tg forms a geometric L2-mixingale with constants eT;t (cf. McLeish 1975:
Theorem 2.1). Therefore fXT;t;=tg forms a geometric L2-mixingale with constants ET;t
:= T�1=2�

�1=2
T eT;t.

Their Assumption 2 is used only to ensure E(
PT

t=1 XT;t)2 � K
PT

t=1 E2T;t � K by
invoking McLeish�s (1975: Theorem 1.6) maximal inequality and by bounding eT;t. But
under Lemma C.2.a jj��1T ST jj � K hence E(

PT
t=1 XT;t)2 � K without any reference

to mixingale constants. A careful inspection of DJ�s proof of their Theorem 2.1 reveals
E(
PT

t=1 XT;t)2 � K su¢ ces in place of their Assumption 2.
Finally, Assumption 3 states 
T �max1�t�T fE2T;tg= o(1) and is used, like Assumption

2, only to ensure partial sum bounds for L2-mixingale functions of XT;t. See especially the
proofs of their Lemmas A.3 and A.4. Lemma C.2.a, however, implies we can always side-
step the use of mixingale coe¢ cients in partial sum variance bounds for geometrically
�-mixing data, in particular we can always replace eT;t with Kjj�T jj1=2, hence ET;t =
T�1=2�

�1=2
T eT;t with T�1=2. Therefore 
T � T�1 = o(T=T ) under K1. This completes

the proof.

Proof of Lemma 2.5. Recall JT = JT (�
0) = (@=@�)E[m�

T;t(�)]j�0 and write m̂�
T (�) =

1=T
PT

t=1 m̂
�
T;t(�). We only prove Ĵ

�
T (
~�T ) = JT � (1 + op(1)) since J�T (~�T ) = JT � (1 +

op(1)) is similar.
Denote by ei 2 Rr the unit vector (e.g. e2 = [0; 1; 0; :::; 0]0), de�ne a sequence of

bounded positive numbers f"T g that satis�es lim infT�1 "T jjJT jj > 0 and jj~�T � �0jj="T
p! 0. This is always possible in lieu of the plug-in rate and Lemma C.2.c: jj~�T � �0jj="T

31



= Op(T
�1=2jjST jj1=2) = op(1). De�ne

�J�i;j;T (�; "T ) :=
1

2"T
� 1

T

TX
t=1

�
m̂�
j;T;t(� + ei"T )� m̂�

j;T;t(� � ei"T )
	
:

Minkowski�s inequality implies for arbitrary �


Ĵ�T (~�T )� JT


 � 


Ĵ�T (~�T )� �J�T (�; "T )



+ 

 �J�T (�; "T )� JT



Apply asymptotic expansion Lemma D.1.b to deduce for some ~�T;� 2 f~�T � ei"T ; ~�T +
ei"T g

Ĵ�T (
~�T ) = �J�i;j;T (

~�T;�; "T ) + op (kJT k) ; hence



Ĵ�T (~�T )� �J�T (�; "T )




 = op (kJT k) :
Since jj~�T;� � �0jj � jj~�T � �0jj = op(1) it remains to show jj �J�T (~�T ; "T ) � JT jj =

op(jjJT jj) for any jj~�T � �0jj
p! 0. De�ne

U0 (�1; �2) :=
�
� 2 � : �1 �



� � �0

 � �2	 for 0 � �1 � �2
JT (�1; �2) := sup

�2U0(�1;�2)

�
kJ�T (�)� JT k

kJT k

�
Stochastic di¤erentiability Lemma D.8 and the fact that U0(�1; �2) � U0 (0; �2), and
consistency ~�T

p! �0 imply for large K and any non-zero constant vector a 2 Rr=0


nm̂T (~�T + a"T )� m̂T

�
�0
�o
�
n
E
h
m�
T;t

�
~�T + a"T

�i
� E

�
m�
T;t

�
�0
��o




� K
n
1 + kJT k �




~�T + a"T � �0


o� op (1)� (JT (�1; �2) + op (1))
� K

n
1 + kJT k �




~�T � �0


+ kJT k � ka"T ko� (JT (�1; �2) + op (1))
= op ("T kJT k) +Op ("T kJT k � JT (�1; �2)) :

Similarly, by di¤erentiability of E[m�
T;t(�)],







E
h
m�
T;t(

~�T + a"T )
i
� E

�
m�
T;t

�
�0
��

"T
� aJT








=



JT "�1T �

~�T + a"T � �0
�
� aJT + op

�
kJT k "�1T

�
~�T + "T � �0

��



=



JT "�1T �

~�T � �0
�


+ op (kJT k) = op (kJT k) :

Replace ~�T + a"T with ~�T � a"T to deduce the same bounds. Therefore


 �J�T (~�T ; "T )� JT


 =





m̂�

T (
~�T + "T )� m̂�

T (
~�T � "T )

2"T
� JT






 = op (kJT k)+Op (kJT k � JT (�1; �2))
hence we have shown Ĵ�T (~�T ) = JT (1 + op(1)) + Op(jjJT jj � JT (�1; �2)).
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Since 0 � �1 < �2 are arbitrary, the proof is complete if we show for some sequence of
positive numbers f�1;T g, �1;T ! 0 and �2;T = 2�1;T :

JT (�1;T ; �2;T )
p! 0:

De�ne
mT (�1; �2) = sup

�2U0(�1;�2)



E �m�
T;t (�)

�

 :
The required limit follows from expansion Lemma D.1.b, and a generalization of ULLN
Lemma D.3 to U0 (�1; �2). For each � 2 U0 (�) we can always �nd a sequence f�T;�g 2
U0 (�1; �2), �T;� 6= �0 for each �nite T � N , such that

E
�
m�
T;t (�T;�)

�
� E

�
m�
T;t

�
�0
��

�T;� � �0

 =

m�
T (�T;�)�m�

T

�
�0
�

�T;� � �0

 + op (1)�

mT (�1; �2)

�T;� � �0


= J�T (�)�

�
�T;� � �0

�

�T;� � �0

 � (1 + op (1)) + op (1)� mT (�1; �2)

�T;� � �0

 ;
where each op(1) term does not depend on �. Moreover, by moment expansion Lemma
C.3

E
�
m�
T;t (�T;�)

�
� E

�
m�
T;t

�
�0
��

�T;� � �0

 = JT �

�
�T;� � �0

�

�T;� � �0

 � (1 + o (1)) :
Further, by construction jj�T;� � �0jj � �2;T =2. Together it follows

sup
�2U0(�)

�
kJ�T (�)� JT k

kJT k

�
= op (1) + op

�
mT (�1; �2)

�2;T kJT k

�
:

Therefore JT (�1;T ; �2;T )
p! 0 if mT (�1;T ; �2;T )=[�2;T jjJT jj] = O(1). By the de�nition of

a derivative, the construction U0(�1;T ; �2;T ) � U0(0; �2;T ) = U0(�2;T ) and identi�cation
I2,

mT (�1;T ; �2;T ) � K�2;T sup
�2U0(�2;T )

kJT (�)k � (1 + o (1))

Now invoke Jacobian smoothness D5.ii to conclude

mT (�1; �2)

�2;T kJT k
� K�2;T kJT k (1 + o(1)) + o(1)

�2;T kJT k
= O(1):

Proof of Lemma 3.1. We treat the cases �� � 2 and �� > 2 separately.
Case 1 (maxf��; �2; :::; �rg < 2): First recall properties of regularly varying tails.
Since �t and stochastic xi;t are mutually independent with tails (7) and indices �� and �i,
the convolutions �txi;t satisfy (Cline 1986)

mi;t(�
0) = �txi;t � (7) with index ��;i := min f��; �ig ; (9)

where x1;t = 1 implies (10) with ��;i = ��. Therefore by the construction of ci;T and kT ,
and tail (7),

ci;T = K (T=kT )
1=��;i : (10)

Finally, processes zt with regularly varying tails (7) and index �z 2 (0; 2] satisfy by
Karamata�s Theorem (e.g. Feller 1971: §IX.8; Resnick 1987: Theorem 0.6):

�z < 2 : E
�
z2t I (jztj � c)

�
� Kc2P (jztj > c) as c!1: (11)
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Use (6), and �i;i;T > 0 and Ji;i;T > 0 for all T � N and some N 2 N by D5.i and M2, to
express T�i as

T�i = KT
1=2 Ji;i;T
�i;i;T

�

264K +K

0@maxj 6=i
n
��1j;j;TJj;i;T

o
��1i;i;TJi;i;T

1A2

� (1 +O (1))

375
1=2

: (12)

Step 1 (�T ;�T ): Properties (10) and (11) imply

�i;i;T = E
�
m2
i:T;t(�

0)
�
� c2i;TP

���mi;t(�
0)
�� > ci;T � � c2i;T kTT = K (T=kT )

2=��;i�1 :

Hence �i;i;T = (T=kT )1=��;i�1=2.

Step 2 (JT ): By Lemma C.4 Ji;j;T = �E[xi;txj;tI(j�txj;tj � cj;T )] � (1 + o(1)).
Assume initially all regressors are stochastic. Since �i; �� � 2 it follows �i < �� + 2.
Thus, by independence, (10) and (11)

E
�
x2i;tI (j�txi;tj � ci;T )

�
= K

Z "
c2i;T
�2
P

�
jxi;tj >

ci;T
j�j

�#
f� (d�)

� K

Z
E

"
c2i;T
�2

�
ci;T
j�j

���i#
f� (d�)

= Kc2��ii;T E
h
j�tj�i�2

i
= Kc2��ii;T = (T=kT )

(2��i)=��;i :

We bound the cross-products E[xi;txj;tI(j�txj;tj � cj;T )] by case. If xi;t and xj;t are
independent then E[xi;txj;tI(j�txi;tj � ci;T )] � K given supt2ZEjxi;tj <1 8i. If they are
perfectly positively dependent then since xi;t; xj;t � (7) with indices �i; �j 2 (1; 2) it can
only be the case that xi;t = sign(xj;t) � jxj;tjp where p = �j=�i. But this implies �j �
p � 1 < �� hence

E [xi;txj;tI (j�txj;tj � cj;T )] =

Z
E

"
jxj;tjp+1 I

 
jxj;tj(p+1)=2 �

�
cj;T
j�j

�(p+1)=2!#
f� (d�)

= K

Z "�
cj;T
j�j

�p+1
P

�
jxj;tj >

cj;T
j�j

�#
f� (d�)

� K

Z
E

"�
cj;T
j�j

�p+1�
cj;T
j�j

���j#
f� (d�)

= Kc
p+1��j
j;T

Z
E
h
j�j�j�p�1

i
f� (d�)

= Kc
p+1��j
j;T = K (T=kT )

(�j=�i+1��j)=��;j :

The perfect negative dependence case is similar. Hence Ji;j;T = O((T=kT )
��1�;j (�j=�i+1��j)).

Finally, use x1;t = 1 to deduce E[x21;tI(j�txi;tj � ci;T )] � 1 � kT =T , E[xi;tx1;tI(j�tx1;tj
� ci;T )] = E[xj;tI(j�tj � ci;T )] = O(1) and E[x1;txi;tI(j�txi;tj � ci;T )] = E(E[xi;tI(jxi;tj
� ci;T =j�tj]j�t) = O(1). Therefore J1;1;T = �1 + o(1) and Ji;1;T ; J1;i;T = O(1) � (1 +
o(1)).

Step 3 (T�i): Consider the slope rates, the intercept rate being similar. The claim
follows from (12) by noting

��1i;i;TJi;i;T = (T=kT )
1=2�1=��;i (T=kT )

(2��i)=��;i = (T=kT )
1=2+(1��i)=��;i
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and

max
j 6=i

n
��1j;j;TJj;i;T

o
= O

�
max
j =2f1;ig

n
(T=kT )

1=2�1=��;j � (T=kT )(�i=�j+1��i)=��;i
o�

= O
�
(T=kT )

1=2+1=��;i�minj =2f1;igf1=��;j+(1�1=�j)�i=��;ig
�

Case 2 (�� > 2): In this case �1;1;T = E
�
m2
1;T;t(�

0)
�
< 1 hence �1;1;T = 1; if

any �i > 2 then �i;i;T = 1; and if �i < 2 then arguments under Case 1 imply �i;i;T =
(T=kT )

1=�i�1=2.
The intercept Jacobia J1;i;T and Ji;1;T are characterized by Case 1 since �i > 1. If

both �i; �j < 2 then Ji;j;T follow from Case 1. If �i; �j > 2 then Ji;j;T = �K.
If �i > 2 > �j then by Case 1 and ��;j = �j it follows Jj;j;T = K(T=kT )2=�j�1, Ji;j;T =

O((T=kT )
1=�i+1=�j�1), and Jj;i;T = O((T=kT )

��1�;i (�j=�i+1��i)). The rate can be deduced
from (12) by noting if �i > 2 then

��1i;i;TJi;i;T = 1�K,
���� max
j =2f1;ig:�j>2

n
��1j;j;TJj;i;T

o���� = K
max

j =2f1;ig:�j�2

n
��1j;j;TJj;i;T

o
= O

�
(T=kT )

1=�j�1=2
�

hence T�i � T 1=2 � [K + O(maxj =2f1;ig:�j�2f(T=kT )2=�j�1g)]1=2.
The rate under �i < 2 follows similarly since ��1i;i;TJi;i;T = ( T=kT )

1=�i�1=2 and

maxj =2f1;ig:�j�2f�
�1
j;j;TJj;i;T g = O(maxj =2f1;ig:�j�2f(T=kT )

1=2�1=�j+��1�;i (�i=�j+1��i)g).

Proof of Lemma 3.5. See Hill and Renault (2010).

APPENDIX C : Threshold and Moment Properties

LEMMA C.1 (threshold bound) Under power-law tail decay D1 sup�fcT (�)=jj�T (�)jj1=2g
= o(T 1=2).

LEMMA C.2 (covariance bounds) Let D1, D3, and M2 hold.

a: lim supT�N sup� jj��1T (�)ST (�)jj � K and lim supT�N sup� jjS�1T (�)�T (�)jj � K.
b: �T = o(T ), �T (�) = o(T jjE[m�

T;t(�)]jj2) and sup� jj�T (�)jj = o(T sup� jj E[m�
T;t(�)]jj2):

c: ST = o(T ).

LEMMA C.3 (moment expansion) Under D5.i E[m�
T;t(�)] � E[m�

T;t(
~�)] = JT (~�)(�

� ~�) + o(jjJT (~�)jj � jj� � ~�jj) for any �; ~� 2 �.

LEMMA C.4 (Jacobian approximation) Under D1-D6 JT = E[J�T;t] � (1 + o(1)):

Proof of Lemma C.1. Use the arguments from the proof of Lemma C.2 under power-
law decay D1.ii to deduce

sup
�

(
max1�i�q fci;T (�)g

k�T (�)k1=2

)
� K � sup

�

8><>: max1�i�q fci;T (�)g�Pq
i=1 c

2
i;T (�)(ki;T =T )

�1=2
9>=>;

= O

 
T 1=2

min1�i�q fki;T g1=2

!
= o

�
T 1=2

�
:
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Proof of Lemma C.2. The covariance relationships follow from a partial sum variance
bound for tail-trimmed mixing processes. Write zT;t(�; r) := r0T�1=2�

�1=2
T (m�

T;t(�) �
E[m�

T;t(�)]) for any conformable r
0r = 1; where ��1=2T exists by M2 for su¢ ciently large

T .

Claim (a): Apply partial sum bound Theorem 2.1 in Hill (2010b) to deduce E[(
PT

t=1 z
2
T;t(�; r)]

� K
PT

t=1E[z
2
T;t(�; r)] = K. An identical argument reveals sup� E[(

PT
t=1 z

2
T;t(�; r)] �

K sup�
PT

t=1E[z
2
T;t(�; r)] = K, hence sup� jj��1T (�)ST (�)jj � K. The remaining claim

sup� jjS�1T (�)�T (�)jj � K follows from the construction of ST (�) and non-degeneracy M2.

Claim (b): If jj�T jj <1 the claim is trivial, so assume at least one E[m2
i;t(�

0)] =1,
and assume without loss of generality mi;t(�) is symmetrically trimmed with two-tailed
thresholds ci;T (�) and fractiles ki;T : (T=ki;T )P (jmi;t(�)j > ci;T (�)) = 1. Power-law tail
D1.ii implies ci;T = d(�0)1=�i(�

0)(T=ki;T )
1=�i(�

0) for some �i(�
0) 2 (1; 2]. Coupled with

properties of trimmed variances for regularly varying tails if �i(�
0) 2 (1; 2) then

E
h�
m�
i;T;t(�

0)
�2i � Kc2i;TP ���mi;t(�

0)
�� > ci;T � � Kc2i;T (ki;T =T ) = K(T=ki;T )2=�i(�0)�1

It is easy to show (T=ki;T )
2=�i(�

0)�1 = o(T ) for all �i(�
0) � 1. Similarly if �i(�

0) = 2
then E[(m�

i;T;t(�
0))2] � L(T )!1 a slowly varying function which is trivially o(T ). Now

invoke the Cauchy-Schwarz inequality to deduce �T = o(T ).
The uniform case is identical. If sup� jj�T (�)jj < 1 the claim is trivial. Otherwise

under D1.ii at least one equation tail index inf� �i(�) = inf�2�2;i
�i(�) < 2 by the def-

inition of subset �2;i � �. Therefore sup� E[(m
�
i;T;t(�))

2] � K sup�2�2;i
c2i;T (�)(ki;T =T )

= K(T=ki;T )
2= inf�2�2;i �i(�)�1 = o(T ) if inf�2�2;i �i(�) � 1. However, if inf�2�2;i �i(�) <

1 then sup�2�2;i
jE[m�

i;T;t(�)]j � sup�2�2;i
ci;T (�)(ki;T =T ) = K(T=ki;T )

1= inf�2�2;i �i(�)�1.
Therefore

sup�2�2;i
E
h�
m�
i;T;t(�)

�2i
sup�2�2;i

���E hm�
i;T;t(�)

i���2 � K(T=ki;T ) = o(T );
which proves (b).

Claim (c): The �nal claim follows from (a) and (b).

Proof of Lemma C.3. Apply Jacobian existence D5.i and the de�nition of a derivative.

Proof of Lemma C.4. Lemma D.1.b implies for rT ! 0 arbitrarily fast, some jj�� �
�0jj � jj� � �0jj and tiny � > 0

E
�
m�
T;t (�)

�
� E

�
m�
T;t

�
�0
��

� � �0

 = E

�
J�T;t (��)

�
�
�
� � �0

�

� � �0

 + o
0@rT � 

� � �0

1=�

� � �0



1A :
Further, moment expansion Lemma C.3 asserts

E
�
m�
T;t (�)

�
� E

�
m�
T;t

�
�0
��

� � �0

 = JT �

�
� � �0

�

� � �0

 � (1 + o (1)) :
Equate the right-hand-side of each equation and take jj�� � �0jj � jj� � �0jj ! 0 to prove
the claim.
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APPENDIX D: Limit Theory for Tail-Trimmed Sums

This appendix contains limit theory for tail-trimmed arrays. Since mt(�) are di¤eren-
tiable under D2, if some mi:t(�) has a �nite variance and is untrimmed such that mT;i:t(�)
= mi:t(�) and m̂T;i:t(�) = m̂i:t(�), the following claims applied to mT;i:t(�) can be proven
from existing arguments. We therefore assume all equations are trimmed for clarity: q =
q.
The �rst two results characterize expansions and rate of approximations for the trimmed

equations. De�ne

m̂�
T (�) :=

1

T

TX
t=1

m̂�
T;t(�) and m�

T (�) :=
1

T

TX
t=1

m�
T;t(�):

LEMMA D.1 (expansions) Assume D1-D6 hold. Let �m�
T (�) 2 fm�

T (�); m̂
�
T (�)g, �J�T (�)

2 fJ�T (�); Ĵ�T (�)g and �IT;t(�) 2 fIT;t(�); ÎT;t(�)g, choose �; ~� 2 � and let frT g be a
sequence of strictly positive numbers where rT ! 0 arbitrarily fast. In the following
o(1) and op(1) are not functions of t 2 Z or � 2 �. For some sequence f�T;�g
satisfying jj�T;� � ~�jj � jj� � ~�jj that may be di¤erent in di¤erent places, and for
in�nitessimal � > 0:

a: 1=T
PT

t=1mt(�)
n
�IT;t (�)� �IT;t(~�)

o
= op(rT )� jj� � ~�jj1=�

1=T
PT

t=1 Jt(�)
n
�IT;t (�)� �IT;t(~�)

o
= op(rT )� jj� � ~�jj1=�

b: �m�
T (�) = �m�

T (
~�) + �J�T (�T;�)(� � ~�) + op(rT )� jj� � ~�jj1=�:

LEMMA D.2 (approximation) Under D1-D4, and D6:

a:



PT

t=1

�
m̂�
T;t(�)�m�

T;t(�)
	


 = op �T 1=2 kST (�)k1=2� for any � 2 �

b: sup�

n


1=TPT
t=1fm̂�

T;t(�)�m�
T;t(�)g




o = op �sup� 

E[m�
T;t(�)]



� :
Recall the kernel function kT;s;t under K1. If additionally I2 and K1 hold then

c: sup�2U0(�)

�
km̂�

T (�)�m�
T (�)k =

�
1 + kJT k �



� � �0

�	 = op (1) for any � > 0:

d:



S�1T T�1

PT
s;t=1 kT;s;t

n
m̂�
T;s(

~�T )m̂
�
T;t(

~�T )
0 �m�

T;s(�
0)m�

T;t(�
0)0
o


 = op(1)

for any ~�T = �
0 +Op

�
T�1=2 kST k1=2 kJT k�1

�
Next, uniform laws and bounds for m�

T;t(�), Ii;T;t(�) and Q̂T (�).

LEMMA D.3 (LLN and ULLN) Under D1-D4 and I2 1=T
PT

t=1m
�
T;t(�

0) = op(1). If

additionally I3 holds sup�fjj1=T
PT

t=1(m
�
T;t (�) � E

�
m�
T;t(�)

�
)jjg = op(sup� E[jjm�

T;t(�)jj]).

LEMMA D.4 (uniform indicator laws) Let D1-D4 and D6 hold. De�ne I�T;t(�) :=
((T=kT )

1=2)fIi;T;t(�) � E[Ii;T;t (�)]g for any i, and let fI(�) : � 2 �g be a Gaussian
process with a version17 that has uniformly bounded and uniformly continuous sam-
ple paths with respect to the L2-norm. Then fT�1=2

PT
t=1 I�T;t(�) : � 2 �g =)�

fI(�) : � 2 �g and E[(sup�fjT�1=2
PT

t=1 I�T;t(�)jg)2] = O(1), and =)� denotes
weak convergence in the sense of Ho¤mann-Jørgensen (1984).

17Two random variables are versions of each other if they have the same �nite dimensional distributions.
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Remark : Ho¤mann-Jørgensen (1984) de�nes weak convergence for some index func-
tion space Z as

fIT (�) : � 2 Zg =)� fI (�) : � 2 Zg
if and only if limT!1E

�[g(IT (�))] = E�[g(I(�))] for all uniformly bounded g. See Dudley
(1978), Pollard (1984), and van der Vaart and Wellner (1994)18 .

LEMMA D.5 (uniform criterion bound) Under D1-D4 and D6

sup
�

8<:m
�2
T �

���Q̂T (�)�QT (�)���
1 +m�2T �QT (�)

9=; = op (1) :

Asymptotic linearity of �̂T and asymptotic normality of the tail-trimmed equations
follow.

LEMMA D.6 (asymptotic linearity) Under D1-D6, I1-I3 and M1-M2

V
1=2
T

�
�̂T � �0

�
= AT

TX
t=1

m̂�
T;t(�

0)� (1 + op (1)) + op (1) a:s:

where AT = �V 1=2T (H�1
T J 0T�T )T

�1 2 Rr�q.

LEMMA D.7 (CLT) Under D1, D3 and I2 T�1=2S�1=2T

PT
t=1m

�
T;t(�

0)
d! N(0; 1).

Stochastic di¤erentiability aids proving Jacobian estimator consistency.

LEMMA D.8 (stochastic di¤erentiability) Under D1-D6 and M2 for any � � 0

sup
�2U0(�)

(

�m̂�
T (�)� m̂�

T (�
0)
	
�
�
E
�
m�
T;t(�)

�
� E

�
m�
T;t(�

0)
�	



1 + kJT k �


� � �0



)

= sup
�2U0(�)

�
kJ�T (�)� JT k

kJT k

�
+ op(1):

Proof of Lemma D.1. Assume � and mt(�) are scalars and mt(�) is symmetrically
trimmed to simplify notation.
We only expand m�

T (�) since m̂
�
T (�) is similar. Write m

�
T;t(�) = mt(�) � IT;t(�) where

IT;t(�) = I(jmt(�)j � cT (�)), and choose jj� � ~�jj � � for any � > 0. Use di¤erentiability
D2 to deduce by Taylor�s theorem

m�
T;t(�) =

n
mt(~�) + Jt(�T;�)(� � ~�)

o
� IT;t (�)

where jj�T;� � ~�jj � jj� � ~�jj, and Jt(�) := (@=@�)mt(�). Therefore

m�
T (�)�m�

T (
~�) = J�T (�T;�)� (� � ~�) +

1

T

TX
t=1

mt(�)�
n
IT;t (�)� IT;t(~�)

o
(13)

+
1

T

TX
t=1

Jt(�T;�)� fIT;t (�)� IT;t(�T;�)g � (� � ~�):

18 In a landmark paper Dudley (1978) shows it su¢ ces to prove convergence in �nite dimensional

distributions and the metric entropy with bracketing bound
R 1
0 H

1=2
[ ]
(";Z; �)d" < 1, where � is the

metric under which the brackets are de�ned. This justi�es D6. See also Ossiander (1987) and Doukhan
et al (1995).
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We will show the second and third terms are op(rT ) � jj� � ~�jj1=�, proving both claims
(a) and (b).
Consider the second term in (13) and use IT;t (�) � IT;t(~�) 2 f�1; 0; 1g to bound����� 1T
TX
t=1

mt(�)
n
IT;t (�)� IT;t(~�)

o����� � 1

T 1=2

TX
t=1

���mt(�)
n
IT;t (�)� IT;t(~�)

o���
� 1

T 1=2

TX
t=1

���IT;t (�)� IT;t(~�)��� = AT (�; ~�)�BT (�; ~�):
The threshold construction (4), IT;t(�) 2 f0; 1g and triangle inequality imply for any p >
0

sup
�;~�2�

E
h���IT;t (�)� IT;t(~�)���pi = O (kT =T )

where O(�) is not a function of �. Combined with D1.i continuity and boundedness of the
�nite dimensional distributions of mt(�) and the mean-value-theorem, it follows EjIT;t (�)
� IT;t(~�)jp = O((kT =T )) � jj� � ~�jj. Now invoke stationarity D1.i, envelope bound D4
and the Cauchy-Schwarz inequality to deduce for tiny � > 0�
E
h
AT (�; ~�)

�
i�1=�

� T 1=2
h
E
���mt(�)

n
IT;t (�)� IT;t(~�)

o����i1=� = O �T 1=2 (kT =T )1=���


� � ~�


1=� :
Since � > 0 can be chosen arbitrarily small and kT =T ! 0 by tail trimming, invoke
Markov�s inequality to conclude for some rT ! 0 arbitrarily fast and op(�) not a function
of �

AT (�; ~�) = op

�
T 1=2

�
k
1=2
T =T

�1=� 


� � ~�


1=�� = op (rT )� 


� � ~�


1=� :
Since EjBT (�; ~�)j � T 1=2 follows trivially from jIT;t (�) � IT;t(~�)j 2 f0; 1g we have

shown for some rT ! 0 arbitrarily fast����� 1T
TX
t=1

mt(�)
n
IT;t (�)� IT;t(~�)

o����� � AT (�; ~�)�BT (�; ~�) = op (rT )� 


� � ~�


1=� :
Repeat the argument for the third term in (13) by invoking envelope bound D4 for Jt(�).

The proof of approximation Lemma D.2 requires consistency of the intermediate order
statistics m(�)

i;(kj;i;T )
(�). Simplify notation by considering the two-tailed equations m(a)

i;t (�)

:= jmi;t(�)j, and two-tailed fractiles and thresholds that satisfy (T=ki;T )P (jmi;t(�)j >
ci;T (�)) = 1. The order statistic m

(a)
i;(ki;T )

(�) therefore estimates ci;T (�).

LEMMA D.2.1 (uniform order statistic law) Under D1-D4 and D6 sup� jm
(a)
i;(kT )

(�)=ci;T (�)

� 1j = Op(k
�1=2
i;T ).

Proof. See Hill and Renault (2010).

Proof of Lemma D.2. Assume � and mt(�) are scalars and mt(�) is symmetrically
trimmed for notational convenience, and write �IT;t(�) := 1 � IT;t(�). Assume � and
mt(�) are scalars and mt(�) is symmetrically trimmed for notational convenience, and
write �IT;t(�) := 1 � IT;t(�).
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Claim (a): Let � 2 � be arbitrary, and write mt = mt(�); cT = cT (�), m̂�
T;t =

m̂�
T;t (�), m

�
T;t = m�

T;t (�), �IT;t = 1 � IT;t(�), ÎT;t = ÎT;t(�), and ST := ST (�). First
bound 






TX
t=1

�
m̂�
T;t �m�

T;t

	




 � max
1�t�T

n


mt

n
ÎT;t � IT;t

o


o� TX
t=1




ÎT;t � IT;t


 :
By construction jjmtfÎT;t � IT;tgjj � 2jjm(a)

(kT )
� cT jj, where m(a)

(kT )
=cT = 1 + Op(k

�1=2
T )

given Lemma D.2.1. Now use threshold bound Lemma C.1 and covariance relation Lemma
C.2.a to deduce

max
1�t�T

n


mt

n
ÎT;t � IT;t

o


o � 2


m(a)
(kT )

� cT



 = 2cT 


m(a)

(kT )
=cT � 1




 = op �kST k1=2 (T=kT )1=2� :
Next, by construction and the triangle inequality

TX
t=1




ÎT;t � IT;t


 � k1=2T






 1

k
1=2
T

TX
t=1

�
�IT;t � E

�
�IT;t
�	




+ k1=2T





k1=2T

�
T

kT
E
�
�IT;t
�
� 1
�





which is Op(k
1=2
T ) by the threshold construction (4) and an application of Lemma D.4.

Therefore
PT

t=1fm̂�
T;t �m�

T;tg = op(jjST jj1=2(T=kT )1=2k
1=2
T ) = op(jjST jj1=2T 1=2).

Claim (b): De�ne

M�
T := max

1�t�T

�
sup
�




mt (�) fÎT;t (�)� IT;t (�)g



� :

and repeat the above argument to reach

sup
�






 1T
TX
t=1

�
m̂�
T;t (�)�m�

T;t (�)
	




 � M�

T �
k
1=2
T

T
sup
�






 1

k
1=2
T

TX
t=1

�
�IT;t (�)� E

�
�IT;t (�)

�	





+M�

T �
k
1=2
T

T
sup
�





k1=2T

�
T

kT
E
�
�IT;t (�)

�
� 1
�



 :

Uniform indicator law Lemma D.4 and threshold construction (4) imply the right-hand-
side is Op(M�

T k
1=2
T =T ).

We need only prove M�
T = op(sup� jjE[m�

T;t(�)]jjT=k
1=2
T ) to complete the proof. Since���mt (�)

n
ÎT;t (�)� IT;t (�)

o��� � 2cT (�) ���m(a)
(kT )

(�)=cT (�)� 1
��� ;

use uniform law Lemma D.2.1, threshold bound Lemma C.1, and covariance bound Lemma
C.2.b to deduce

M�
T � K sup

�
cT (�) sup

�

���m(a)
(kT )

(�)=cT (�)� 1
��� � o�sup

�
k�T (�)k1=2 T 1=2=k1=2T

�

= o

�
sup
�



E �m�
T;t(�)

�

T=k1=2T

�
:

Claim (c): The claim follows from (b) and Jacobian smoothness sup�2U0(�) jjJT (�)jj=jjJT jj
= O(1) under D5.ii, since by the de�nition of a derivative and identi�cation I2

sup
�2U0(�)

( 

E �m�
T;t(�)

�


1 + kJT k �



� � �0


)
� sup

�2U0(�)

(
kJT (�)k �



� � �0


1 + kJT k �



� � �0


)
� K:
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Claim (d): Write mt = mt(�
0), ÎT;t = ÎT;t(�

0), IT;t = IT;t(�
0), �IT;t := 1 � IT;t, m̂�

T;t

= mtÎT;t, and m�
T;t = mtIT;t. We prove jjT�1S�1T

PT
s;t=1 kT;s;tfm̂�

T;sm̂
�
T;t � m�

T;sm
�
T;tgjj

= op(1) and jjT�1S�1T
PT

s;t=1 kT;s;tfm̂�
T;s(

~�T )m̂
�
T;t(

~�T )� m̂�
T;sm̂

�
T;tgjj= op(1) in two steps.

The claim then follows by the triangle inequality.

Step 1: Observe




 1T S�1T
TX

s;t=1

kT;s;t
�
m̂�
T;sm̂

�
T;t �m�

T;sm
�
T;t

	





� 2






 1T S�1T
TX

s;t=1

kT;s;tms

�
ÎT;s � IT;s

�
m�
T;t







+






 1T S�1T
TX

s;t=1

kT;s;tms

�
ÎT;s � IT;s

�
mt

�
ÎT;t � IT;t

�





= A1;T +A2;T :

We only bound A1;T since A2;T is similar. De�ne for any � > 0

�� (x) :=
1�

2�2�
�1=2 exp��x2��2=2	 and ��;T;j := �� (j=
T )

A1;T;� :=
2TX

t=�T+1

 
1



1=2
T

T�tX
l=1�t

k (l=
T )
1

T 1=2
S
�1=2
T mt+l

�
Î�T;t+l � I�T;t+l

�
I (0 � l � [
T =�])

!

�

0@ 1



1=2
T

T�tX
j=1�t

��;T;j
1

T 1=2
S
�1=2
T m�

T;t+jI (0 � j � [
T =�])

1A� (1 + op (1)) :
By CLT Lemma D.7 




 1

T 1=2
S
�1=2
T

TX
t=1

m�
T;t







2

= O(1): (14)

Similarly, approximation Lemma D.2.a coupled with CLT Lemma D.7 and the Helly-Bray
theorem imply 




 1

T 1=2
S
�1=2
T

TX
t=1

mt

�
Î�T;t � I�T;t

�





2

= o(1): (15)

Now imitate Davidson and de Jong�s (2000: Lemmas A.2-A.3) arguments to deduce19

lim
�!0

lim sup
T!1

kA1;T �A1;T;� � (1 + op (1))k1 = 0: (16)

19De�ne XT;t := T�1=2S
�1=2
T m�

T;t. Davidson and de Jong (2000: p. 414) invoke E(
PT
t=1XT;t)

2

= O(1) under their Lemma A.1, which holds by a mixingale property and McLeish�s (1975: Theo-
rem 1.6) maximal inequality. But E(

PT
t=1XT;t)

2 � K
PT
t=1 E[X

2
T;t] � K(E[m�2

T;t]=ST )
PT
t=1(1=T ) �

K
PT
t=1(1=T ) = K by partial sum variance bound Lemma E.1 in Hill and Renault (2010) and variance

bound Lemma C.2.a, both without reference to McLeish (1975). The same argument applies to X�
T;t

:= T�1=2S
�1=2
T mtfÎ�T;t � I�T;tg since E(

PT
t=1X

�
T;t)

2 = o(1) is trivially bounded by K
PT
t=1 E[X

2
T;t]

� K(E[m�2
T;t]=ST )

PT
t=1(1=T ) � K

PT
t=1(1=T ) = K. Close inspection of Davidson and de Jong�s

(2000: Lemmas A.2-A.3) proofs reveals E(
PT
t=1XT;t)

2 � K
PT
t=1(1=T

1=2)2 and E(
PT
t=1X

�
T;t)

2 �
K
PT
t=1(1=T

1=2)2 su¢ ce.
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Next, consider the components of A1;T;�. It is straightforward to generalize approxi-
mation Lemma D.2.a to a weighted version with k(t=
T ) under K1. Speci�cally, de�ne
NT (�) := minfT; [
T =�] + 1g use stationarity to deduce for any �

T 1=2 max
�T+1�t�2T






 1



1=2
T

1

T 1=2
S
�1=2
T

T�tX
l=1�t

k (l=
T )
�
m̂�
T;t+l �m�

T;t+l

	
I (0 � l � [
T =�])







2

�
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T (�)
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T

SNT (�)S
�1
T







1=2






 1

N
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T (�)

S
�1=2
NT (�)

NT (�)X
t=1

k (t=
T )
�
m̂�
T;t �m�

T;t

	






2

! 0 as T !1;

since jjSNT (�)S
�1
T jj = O(1) and NT (�)=
T = O(1) by construction and covariance non-

degeneracy M2. Similarly, by a straightforward generalization of Lemma D.7 for any
�

T 1=2 max
�T+1�t�2T







 1



1=2
T

T�tX
j=1�t

��;T;j
1

T 1=2
S
�1=2
T m�

T;t+jI (0 � j � [
T =�])








2

�





N1=2

T (�)



1=2
T

SNT (�)S
�1
T







1=2






 1

N
1=2
T (�)

S
�1=2
[
T =�]

NT (�)X
t=1

��;T;jm
�
T;t








2

+ o (1)

! 0 as T !1:

Therefore
lim
�!0

lim sup
T!1

kA1;T;�k1 = 0: (17)

Combine (17) and (18) to conclude A1;T = op (1).

Step 2: Note




 1T S�1T
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s;t=1

kT;s;t

n
m̂�
T;s(

~�T )m̂
�
T;t(

~�T )� m̂�
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�
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 1T S�1T
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n
m̂�
T;s(
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o
m̂�
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+






 1T S�1T
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s;t=1

kT;s;t

n
m̂�
T;s(

~�T )� m̂�
T;s

on
m̂�
T;t(

~�T )� m̂�
T;t

o




 :
We will bound the �rst term, the second is similar. Use the Taylor expansion argument
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in the proof of expansion Lemma D.1 to deduce for some jj�T;� � �0jj � jj~�T � �0jj




 1T S�1T
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s;t=1

kT;s;t
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T;s(
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o
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 1T S�1T
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+






 1T S�1T
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n
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�
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�
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�
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�
�0
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+






 1T S�1T
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s;t=1

kT;s;tms(�
0)
n
ÎT;s

�
~�T

�
� ÎT;s

�
�0
�o
m̂�
T;t







=

4X
i=1

Bi;T :

The gist of Davidson and de Jong�s (2000: p. 419-420) Fourier inversion argument
applies. Extend their equation (A.51) to our environment to obtain

B1;T � K

Z 1

�1

 
kJT k�1






 1T
TX
s=1

e�i�s=
T ĴT;s(�T;�)






�





T�1=2S�1=2T

TX
t=1

ei�t=
T m̂�
T;t







!
j$ (�)j d�

= K

Z 1

�1
CT (�)DT (�) j$ (�)j d�;

where $(�) is de�ned under K1. Approximation Lemma D.2.a and CLT Lemma D.7
render DT (�) = Op(1). Further, Jacobian consistency Lemma 2.5 with jj�T;� � �0jj �
jj~�T � �0jj = Op(T

�1=2jjST jj1=2 � jjJT jj�1), and K1 properties
PT

s;t=1 jkT;s;tj = o(T 2),

max1�s�T
PT

t=1 jkT;s;tj= o(T ) and 
T = o(T ) imply CT (�) = op(1). Therefore
R1
�1 CT (�)DT (�) j$ (�)j d�

= op (1) by dominated convergence and K1. Similar arguments extend to the remaining
terms by exploiting expansion Lemma D.1.a.

Proof of Lemma D.3. The pointwise LLN

1

T

TX
t=1

m�
T;t

�
�0
�
=
1

T

TX
t=1

�
m�
T;t

�
�0
�
� E[m�

T;t

�
�0
�
]
	
+ E[m�

T;t

�
�0
�
] = op(1)

follows from identi�cation I2, covariance bound Lemma C.2.c and Chebyshev�s inequality.
The ULLN follows from a classic bracketing argument (e.g. Blum 1955, DeHardt 1971,

cf. Dudley 1999). De�ne for any i 2 f1; :::; qg

h�T;t(�) :=
m�
i;T;t (�)� E

�
m�
i;T;t(�)

�
sup
�2�




E hm�
T;t(�)

i


 :

Use the Lemma C.2.a,b to deduce the covariance bound ST (�) = o(T sup�2� jjE
�
m�
T;t(�)

�
jj2),

hence 1=T
PT

t=1fh�T;t(�) � E
�
h�T;t(�)

�
g = op(1) by Chebyshev�s inequality. Further,
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h�T;t(�) is uniformly L1-bounded so it belongs to a separable Banach space (Royden 1988).
Therefore the L1-bracketing numbers satisfy N[ ](";�; jj � jj1) < 1 (Dudley 1999: Propo-
sition 7.1.7). Together, the pointwise LLN and bracketing numbers N[ ](";�; jj � jj1) <
1 deliver sup� j1=T

PT
t=1(h

�
T;t (�) � E

�
h�T;t(�)

�
)j = op(1). See Theorem 7.1.5 of Dudley

(1999), cf. Blum (1955) and DeHardt (1971).

Proof of Lemma D.4. Threshold construction (4) and D3 imply I�T;t(�) is L2-bounded
uniformly on 1 � t � T , T � 1, and �, and geometrically �-mixing. Coupled with
metric entropy with L2-bracketing D6 we may extend Doukhan et al�s (1995: Theorem
1; eq. (2.17)) uniform central limit theorem to triangular arrays fI�T;t(�)g. See especially
Application 4 in Doukhan et al (1995). Therefore f1=T 1=2

PT
t=1 I�T;t(�) : � 2 �g =) fI(�)

: � 2 �g, a Gaussian process with a version that has uniformly bounded and uniformly
continuous sample paths with respect to jj � jj2.
Further, the conditions for Doukhan et al�s (1995: Theorem 2) uniform maximal in-

equality are satis�ed since their required bound (2.10) holds under their (2.17), which D6
ensures. Therefore E[(sup�fjT�1=2

PT
t=1 I�T;t(�)jg)2] = O(1) where O(1) which completes

the proof.

Proof of Lemma D.5. Write m̂�
T (�) := 1=T

PT
t=1 m̂

�
T;t(�) andm

�
T (�) := 1=T

PT
t=1m

�
T;t(�).

By weight property M1 and the triangle inequality

m�2T

���Q̂T (�)�QT (�)��� � m�2T km̂�
T (�)k

2 �



�̂T ��T


+m�2T jm̂�

T (�)
0�T m̂

�
T (�)�QT (�)j

�
n
km̂�

T (�)k
2 � op

�
m�2T

�o
+
n
K km̂�

T (�)�m�
T (�)k

2
o

+
�
Km�2T km�

T (�)k � km̂�
T (�)�m�

T (�)k
	
+
�
m�2T jm�

T (�)
0�Tm

�
T (�)�QT (�)j

	
= A1;T (�) +A2;T (�) +A3;T (�) +A4;T (�):

Uniform approximation Lemma D.2.b and lim infT�N mT > 0 under smoothness I3 imply

sup
�
fA1;T (�)g1=2 = sup

�

8<: km̂�
T (�)k

sup�2�




E hm�
T;t(�)

i



9=;� op (1)

� sup� km�
T (�)k

sup�2�




E hm�
T;t(�)

i


 � op (1) + op (1)
� sup� km�

T (�)� E [m�
t (�)]k

sup�2�




E hm�
T;t(�)

i


 � op (1) + op (1) :

Now apply the ULLN Lemma D.3 to deduce sup� fA1;T (�)g = op(1). Similar arguments
based on approximation Lemma D.2.b reveal sup� fA2;T (�)g and sup� fA3;T (�)g are op(1).
Finally, under M1

A4;T (�) = m�2T
��m�

T (�)
0�Tm

�
T (�)� E [m�

t (�)]
0
�TE [m

�
t (�)

0]
��

� Km�2T km�
T (�)� E [m�

t (�)]k
2
+Km�2T kE [m�

t (�)]k � km�
T (�)� E [m�

t (�)]k :

Lemma D.3 implies each term is op(1) uniformly on �.
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Proof of Lemma D.6. Apply µCiµzek�s (2008: Lemma 2.1) argument to deduce absolute
continuity of the equation distributions D1.i and equation di¤erentiability D2 ensures
Q̂T (�) is continuous and di¤erentiable at �̂T a:s: Now use Q̂T (�̂T ) � Q̂T (�) 8� 2 � to
deduce by µCiµzek�s (2008: Lemma 2.1) argument

Ĵ�T (�̂T )
0�̂T

1

T

TX
t=1

m̂�
T;t(�̂T ) = 0 a:s:

The Lemma D.1.b asymptotic expansion for 1=T
PT

t=1 m̂
�
T;t(�̂T ) implies we may write

Ĵ�T (�̂T )
0�̂T

(
Ĵ�T (�T;�)

0
�
�̂T � �0

�
+
1

T

TX
t=1

m̂�
T;t(�

0)

)
+Ĵ�T (�̂T )

0�̂T�op
�
rT �




�̂T � �0


1=�� = 0 a:s:
for some jj�T;� � �0jj � jj�̂T � �0jj, rT ! 0 arbitrarily fast and tiny � > 0.
Consistency jj�̂T � �0jj

p! 0 under Theorem 2.1 and Jacobian consistency Lemma 2.5
ensure both Ĵ�T (�̂T ) = JT (1 + op(1)) and Ĵ�T (�T;�) = JT (1 + op(1)). Further H

�1
T :=

(J 0T�TJT )
�1 exists given weight and Jacobian properties M1 and D5.i. Re-arrange terms

and exploit the construction of VT and rT ! 0 arbitrarily fast to deduce

V
1=2
T

�
�̂T � �0

�
= �

n
V
1=2
T H�1

T J 0T�T

o 1
T

TX
t=1

m̂�
T;t(�

0)� (1 + op (1)) + op (1)

= AT

TX
t=1

m̂�
T;t(�

0)� (1 + op (1)) + op (1) :

Proof of Lemma D.7. De�ne z�T;t(r) = r0T�1=2S
�1=2
T (�0)m�

T;t(�
0) for arbitrary r 2

Rs, r0r = 1, and observe identi�cation I2 implies both E[z�T;t(r)] = o(1) and E[z2�T;t(r)]

= 1 + o(1). The proof that
PT

t=1 z
�
T;t(r)

d! N(0; 1) follows from a standard martingale
di¤erence decomposition under geometric �-mixing D3. See Hill (2010c: Lemma 3.3).

Proof of Lemma D.8. Apply Minkowski�s inequality and the Lemma D.2.c uniform
approximation to obtain
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1 + kJT k �


� � �0



)
+ op (1)

Moment expansion Lemma C.3 and equation expansion Lemma D.1.b imply the last line
is bounded by sup�2U0(�)fjjJ�T (�) � JT jj=jjJT jjg + op (1).
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TABLE 4 : LOCATION, AR, kT � T�

LOCATION AR
�t � P2:5, LSa, �y = 2:5b, �0r = 1c �t � P2:5, LS, �y = 2:5, �0r = :9
�̂ Meand KSe �f kT �̂ Mean KS � kT

GMTTMg 1.01 (.33) .083 .44 21 GMTTM .900 (.01) .042 .48 28
GMM 1.00 (.41) .111 - - GMM .899 (.01) .097 - -
OLS .999 (.04) .121 - - OLS .899 (.01) .132 - -
LAWDh .996 (.01) .064 - - LAWD .900 (.01) .046 - -

�t � P1:5; LS, �y = 1:5, �0r = 1 �t � P1:5, LS, �y = 1:5, �0r = :9
�̂ Mean KS � kT �̂ Mean KS � kT

GMTTM 1.01 (.31) .072 .32 9 GMTTM .900 (.00) .066 .40 16
GMM 1.07 (.46) .145 - - GMM .898 (.02) .162 - -
OLS 1.01 (.15) .272 - - OLS .889 (.01) .253 - -
LAWD 1.00 (.02) .052 - - LAWD .900 (.00) .061 - -

a. LS = least squares type estimating equations for GMM and GMTTM.

b. True parameter value for the rth element �0r .
c. Error distribution (P1:5 or N0;1), and moment supremum or tail index of yt.
d. Simulation mean of parameter estimation (square root of mse in parentheses).
e. Kolmogorov-Smirnov test p-value. In the case of GMTTM, KS p-values are evaluated
at that kT = [T�] which minimizes KS. 1%, 5%, 10% critical values: .136, .122, .107.

f. KS minimizing � in the trimming fractile kT = [T�], � 2 f:01; :02; :::; :99):
g. GMTTM and GMM are computed in two steps with e¢ cient weight and QMLE plug-in,
under exact identi�cation. See Hill and Renault (2010) for GMTTM and GMM simulations
allowing over-identifcation.

h. LAWD = Least Absolute Weighted Deviations.
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TABLE 5 : ARCH, GARCH, kj;T � T�j
ARCH GARCH

�t � N0;1, LS, �y = 4:65, �0r = :5 �t � N0;1, LS, �y = 4:1; �0r = :6
�̂ Mean KS �1; �

a
2 k1; k

b
2 �̂ Mean KS �1; �2 k1; k2

GMTTMc .505 (.10) .073 .36,.07 12,2 GMTTM .594 (.19) .070 .07,.05 2,1
GMM .421 (.14) .327 - - GMM .615 (.24) .145 - -
QMLc .492 (.07) .051 - - QML .597 (.08) .098 - -
QMWLd .496 (.07) .095 - - QMWL .596 (.08) .096 - -

�t � N0;1, QMLd, �y = 3:8, �0r = :6 �t � N0;1, QML, �y = 2:0; �0r = :6
�̂ Mean KS �1; �2 k1; k2 �̂ Mean KS �1; �2 k1; k2

GMTTM .602 (.14) .083 .41,.17 17,4 GMTTM .608 (.18) .064 .47,.26 26,6
GMM .506 (.19) .248 - - GMM .523 (.18) .246 - -
QML .599 (.07) .082 QML .586 (.20) .262 - -
QMWL .600 (.06) .079 - - QMWL .602 (.09) .095 - -

�t � P2:5, QML, �y = 1:8, �0r = :6 �t � P2:5, QML, �y = 1:5; �0r = :6
�̂ Mean KS �1; �2 k1; k2 �̂ Mean KS �1; �2 k1; k2

GMTTM .604 (.24) .087 .48,.16 28,4 GMTTM .598 (.20) .063 .49,.16 30,3
GMM .571(.38) .175 - - GMM .543 (.22) .195 - -
QML .620 (.27) .110 - - QML .605 (.18) .569 - -
QMWL .598 (.22) .108 - - QMWL .569 (.23) .117 - -

a. KS minimizing pair f�1; �2g. b. kj = kj;T = [T�j ].
c. GMTTM and GMM are computed under exact identi�cation.
d. QMWL = Quasi-Maximum Weighted Likelihood.
e. QML-type estimating equations for GMM and GMTTM.

TABLE 6 : TARCH, QARCH, kT � T�

TARCH QARCH
�t � N0;1, LS, �y = 5:25; �0r = :6 �t � N0;1, QML, �y = 3:5; �0r = :8

�̂ Mean KS �1; �2 k1; k2 �̂ Mean KS f�1; �2g; �b k1; k2
GMTTMa .61 (.16) .046 .19,.04 4,1 GMTTM .792 (.44) .064 {.11,.05},.05 {2,1},1
GMM .557 (.15) .203 - - GMM .863 (.53) .092 - -
QML .595 (.09) .073 - - QML .896 (.66) .389 - -
QMWL .606 (.10) .063 - - QMWL .894 (.53) .144 - -

�t � P2:5, QML, �y = 2:6; �0r = :6 �t � N0;1, QML, �y = 2:0; �0r = 1
�̂ Mean KS �1; �2 k1; k2 �̂ Mean KS f�1; �2g; � k1; k2

GMTTM .602 (.22) .083 .26,.11 6,2 GMTTM 1.08 (.46) .079 {.17,.13},.05 {3,2},1
GMM .526 (.24) .224 - - GMM 1.16 (.54) .177 - -
QML .516 (.38) .323 - - QML .997 (.64) .287 - -
QMWL .676 (.27) .239 - - QMWL 1.11 (.61) .186 - -

a. GMTTM and GMM are computed under exact identi�cation.
b. The �rst QARCH equation is asymmetrically trimmed with k1;j;T = [T�j ], and the second
equation is symmetrically trimmed with kT = [T�]:
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TABLE 7 : GMTTM, kT � � ln(T ), �T= ln(T )
Model �t �y �0r Mean KS � kT

LOCATION P2:5 2:5 1 .996 (.32) .088 .15a 22
LOCATION P1:5 1:5 1 .995 (.13) .994 .06 9
AR P2:5 2:5 :9 .898 (.01) .053 .20b 29
AR P1:5 1:5 :9 .901 (.01) .089 .12 17

ARCH N0;1 3:8 :6 .593 (.09) .105 .12, .02c 17,3
ARCH P2:5 1:8 :6 .606 (.25) .116 .19, .02 28,3

IGARCH N0;1 2:0 :6 .597 (.21) .076 .19, .04 28,6
GARCH P2:5 1:5 :6 .595 (.26) .104 .23, .02 33,3

TARCH P2:5 2:6 :6 .618 (.29) .105 .04, .02 6,3
QARCH N0;1 3:5 :8 .812 (.48) .069 {.02, .01},.01d {3,1},1
QIARCH N0;1 2:0 1 .110 (.45) .074 {.03, .01},.01 {4,1},1

a. KS minimizing � for LOCATION where kT = [�T= ln(T )].
b. KS minimizing � for AR where kT = [� ln(T )]:
c. KS minimizing f�1; �2g for all GARCH except QARCH where kj;T = [�jT= ln(T )].
d. KS minimizing f�1; �2g for the �rst QARCH equation and two-tailed � for the all
remaning QARCH equations.
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