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Abstract

In the paper, we develop a general methodology to estimate and test for a condi-
tional mean model given in continuous time. Our model specifies the conditional
mean of instantaneous change of a given stochastic process as a function of other
covariates. The model yields a continuous time regression for the instantaneous
change of an underlying process on its conditional mean change with the error
process given by a general martingale. We call it the martingale regression,
since the parameter in the model is identified by the residual process being a
martingale. Upon an appropriate time change, the continuous part of the error
process in the martingale regression can always be transformed into a Brown-
ian motion. We use this property and apply a minimum distance method to
estimate the parameters in the model. To implement our methodology, we may
simply collect the samples at the required random time intervals, and define our
estimates to be the parameter values which make the empirical distribution of
the residuals closest to independent and identically distributed normals. It is
shown by simulation that our approach yields a very reliable method of inference
applicable for the general continuous time conditional mean model.
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1. Introduction

This paper develops a general methodology for the statistical inference in a conditional mean
model given in continuous time. Our model specifies the instantaneous rate of change in the
conditional mean of a given stochastic process as a parametric function of some covariate
process. As a result, it yields a continuous time regression model with a general martingale
error process. The model is called the martingale regression, since it is identified by the
condition that the error process is a martingale. This is in contrast with the conventional
approach based on the traditional framework of classical regressions, for which the reader is
referred to Bergstrom (1984). Our model is quite general. In particular, it does not impose
any restriction on the error process, allowing for a variety of conditional volatilities that
are time-varying and stochastic. Our methodology is therefore applicable for a wide range
of continuous time models that are used in the fields of economics and finance. General
continuous-time asset pricing models given in parametric form may be well fitted into our
framework. Diffusions with a parametric specification of drift function are also considered
as a special case of our model, so all our results can be applied to them as well.

It has been the usual practice to analyze continuous time models by applying high
frequency data directly on the discretized versions of the models. However, the direct
use of high frequency data on the discretized models to do inference for the underlying
continuous time models is not desirable for several reasons. First, it necessarily yields some
discretization bias, which may be substantial unless the discretization is appropriately done
and carefully taken care of. Second, on the high frequency domain, the error process
generating volatility dominates the conditional mean process of interest in many economic
and financial models. The information in the sample on the conditional mean is therefore
severely contaminated by the volatility component, when the sampling interval is too small.
Third, the distributions of errors in many models are changing over time especially at high
frequencies and very far away from being normal, due in particular to the presence of time-
varying and stochastic volatilities that are often quite persistent and strongly endogenous.
Consequently, the usual statistical theory relying on asymptotic normality is generally not
applicable, which would invalidate the use of the standard inference in such models.

In this paper, we propose an approach to more effectively deal with the martingale
regression. Our methodology uses some fundamental properties of martingales and does
not rely on any orthogonality condition. It is based on the use of a time change, which
transforms a general martingale into Brownian motion, given by the celebrated theorem of
Dambis, Dubins and Schwarz. The DDS theorem, for short, implies that any continuous
martingale becomes Brownian motion if its sample path is read using a clock running at the
speed inversely proportional to the rate of increase in the quadratic variation. The DDS
theorem has already been used by several authors in various contexts. Yu and Phillips (2001)
exploited it to estimate the linear drift in diffusion models based on the Gaussian likelihood.
The martingale and semimartingale tests by Park and Vasudev (2006) and Peters and de
Vilder (2006) also rely on the same idea. Moreover, Andersen, Bollerslev and Dobrev (2007)
used the time change given by the DDS theorem in testing the adequacy of jump-diffusion
models for return distribution, and Jacewitz and Park (2009) recently employed it to allow
for general stochastic volatilities in their study of the predictive regressions. Chang (2008)
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also used a closely related approach to invent a Gaussian panel unit root test.
We use the idea of time change to conveniently identify and estimate the martingale

regression. As we mentioned earlier, the martingale regression is identified by the condi-
tion that the error process is a martingale. Unfortunately, the martingale condition for
identification is very difficult to implement. If the error process is continuous, however, we
may invoke the DDS theorem to identify the model after time change by the condition that
the error process is Brownian motion. Needless to say, the Brownian motion condition for
identification is much easier to invoke, using its Gaussianity and independent increment
properties. Indeed, our estimate of the unknown parameter is defined to be the value that
yields the time changed error process mostly closely follow Brownian motion. More pre-
cisely, we obtain the estimate by minimizing the Crämer-von Mises distance between the
empirical distributions of the increments of error process in the time changed regression
and the corresponding distributions of Brownian increments. It is shown in the paper that
the estimator is consistent and asymptotically normal under suitable regularity conditions.
The asymptotic variance can be estimated by the block bootstrap or sub-sampling.

In our approach, we only estimate and test for the continuous part of the martingale
regression. In most of the existing economic and financial models, jumps are generated
exogenously and do not include any information on model parameters. Therefore, for the
applications of our methodology, we simply regard jumps as pure noise and employ a pre-
liminary test to identify and discard the observations contaminated by noisy jumps. To
test for jumps at the preliminary step, we may use the test by Lee and Mykland (2008),
which serves our purpose well and performs quite satisfactorily. Of course, our method is
subject to the potential problems of statistical procedures based on preliminary tests, such
as increased variances for estimators and size distortions in tests. To minimize the nega-
tive effect of preliminary test, we recommend to use samples collected at relatively lower
frequencies such as daily rather than intra-day observations at ultra-high frequencies.2 At
daily frequency, for instance, moderately large jumps occur only intermittently and the
impact of preliminary test appears to be minimal and insignificant in practical applications
of our methodology.

For the actual implementation of our methodology, we of course have to rely on discrete
samples. We assume that the observations are available at high frequencies such as daily.3

Our methodology uses the observations at two different levels of frequencies. First, we use
all available observations to estimate the time change required to identify the martingale
regression by the error process being Brownian motion, instead of a general martingale
process. Second, we collect the samples at a constant incremental level of the estimated
quadratic variation of the error process, and use them to estimate the unknown parameter
of the model by the minimum distance method. For instance, we may use the daily obser-

2For the type of models considered in the paper, it is well known that the efficiency of estimator is
determined by the sampling horizon, not by the sample size. Using lower frequency observations, therefore,
do not deteriorate the efficiency of estimator, as long as they are sampled frequently enough to study the
underlying continuous time model.

3Our methodology and its asymptotic theory are applicable as long as the sampling interval is sufficiently
small relative to the sampling horizon. Therefore, we may allow for observations at monthly or quarterly
frequency as long as the sampling horizon is large enough.
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vations to estimate the required time change, and then obtain the samples at the average
monthly increments of the quadratic variation of the error process to estimate the unknown
parameters in the model. Note that we need to collect samples at random intervals in this
step. Our asymptotics require that the sampling frequency is small and the sampling hori-
zon is large. Provided in our analysis are sufficient conditions we need to ensure that the
errors incurred by using discrete samples become negligible.

We perform a set of simulations to evaluate the performance of our martingale estimator
(MGE). For comparison, we also consider the maximum likelihood estimator (MLE), which
uses full information on the entire structure of our simulation models. The overall perfor-
mance of our martingale estimator (MGE) is quite good, and at least comparable to that
of the MLE for all models considered in our simulations. We notice some tendency that the
MLE does relatively better than the MGE as the sampling horizon increases. However, for
the normal range of sampling horizons that we encounter in most practical applications, we
do not observe any evidence of asymptotic relative efficiency of the MLE. In fact, in terms
of bias, the MGE does substantially better than the MLE. This is especially so, when the
sampling horizon is only modest.4 In general, the bias of the MLE is of an unacceptably
magnitude except for the case that the sampling horizon is unrealistically large. In sharp
contrast, the bias of the MGE is generally very small and becomes truly negligible in many
cases, even when the sampling horizon is quite small. The standard deviation of the MGE
is largely the same as that of the MLE.

The rest of the paper is organized as follows. In Section 2, we present the model and
main ideas. The conditional mean model in continuous time is introduced and the main
ideas that are heavily used in the subsequent development of our methodology are explained
in detail. Our martingale estimator is also defined. The inferential problems in our approach
are addressed in Section 3. There we lay out how our continuous-time methodology may be
implemented in practice using discrete-time observations. The feasible martingale estimator
is considered and its asymptotics are developed. In particular, we show that the martingale
estimator has normal asymptotic distribution under appropriate regularity conditions. The
resampling method to estimate the asymptotic variance of the estimators is also discussed.
Section 4 presents some empirical illustrations and reports our simulation results. Various
issues arising in implementing our methodology are discussed in detail, and the finite sample
performance of our MGE is compared with that of the MLE by Monte Carlo simulations.
The effect of jumps on the performance of the MGE is also studied. We conclude the paper
in Section 5. Mathematical proofs are collected in Mathematical Appendix.

2. The Model and Main Ideas

2.1 Martingale Regression

Many economic and financial models can be specified in continuous time as

E(dYt|Ft) = µ(Xt, θ0)dt, (1)

4As is well known, the inference on conditional mean models in continuous time is mainly affected by the
sampling horizon instead of the number of observations in the sample.
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where (Yt) and (Xt) are stochastic processes,5 (Ft) is a filtration to which both (Yt) and
(Xt) are adapted, and µ is a known function defined on R×Θ with parameter set Θ ⊂ Rm

and parameter vector θ0 ∈ Θ. In the paper, we will call µ the instantaneous conditional
mean function. Clearly, we may rewrite (1) as a continuous time regression

dYt = µ(Xt, θ0)dt+ dUt, (2)

where (Ut) is a martingale with respect to the filtration (Ft), so that E(dUt|Ft) = 0.
Over an interval [t, t+ δ] for any t > 0 and small δ > 0, we have

E(Yt+δ − Yt|Ft) ≈ δµ(Xt, θ0)

if (µ(Xt, θ0)) is continuous a.s. in time t > 0. Therefore, (µ(Xt, θ0)) generally represents
the rate of instantaneous change in conditional mean of (Yt), given as a function of (Xt),
which is assumed to be known up to the unknown parameter θ0 ∈ Θ. For a variety of
models that are commonly used in economics and finance, (Yt) is specified as the logs of
asset prices or foreign exchange rates. In this case, Yt+δ − Yt denotes the returns from
holding the assets or foreign currencies over the interval [t, t + δ]. Correspondingly, (dYt)
represents their instantaneous returns at time t > 0.

It is important to note that the parameter θ0 ∈ Θ is identified in our model by the
martingale condition. That is, if we set

Ut(θ) = (Yt − Y0)−
∫ t

0
µ(Xs, θ)ds, (3)

then θ0 is the value of θ ∈ Θ such that (Ut(θ)) is a martingale. For this reason, we
call regression (2) the martingale regression. To achieve identification of the martingale
regression, we will assume that

Assumption 2.1 No distinctive values of θ ∈ Θ yield the stochastic processes (µ(Xt, θ)),
which are the same version.

Assumption 2.1 implies that the processes (µ(Xt, θ)) with different values of θ ∈ Θ have all
distinctive finite sample distributions, and allows us to identify θ0 ∈ θ in (2) uniquely by
the martingale condition.

We let the error process (Ut) in (2) be a general martingale process, and do not need
to impose any restrictive conditions. For the expositional convenience, however, we assume
that

Assumption 2.2 The error process (Ut) has a.s. continuous sample path.

Assumption 2.2 is essential for the development of our methodology and its asymptotic
theory in the paper. However, the presence of jumps in the error process can be readily

5Throught the paper, (Xt) is defined as a vector process though it is often specialized as a scalar process.
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accommodated in practical applications by employing a preliminary test for jumps. This
will be explained in detail in later sections.

Under Assumption 2.2, we may write

dUt = σtdWt, (4)

where (σt) is adapted to (Ft) and (Wt) is the standard Brownian motion with respect to
(Ft). We leave the specification of (σt) in (4) totally unrestricted, and therefore, our model
may have an arbitrary type of time-varying and stochastic heterogeneity. Our model for
the instantaneous conditional mean changes is thus truly general.

Within the conventional framework, all parametric asset pricing models derived under no
arbitrage condition in continuous time yield the continuous time regression that we specify
in (2). To see this more clearly, we let (Pt) be the price of a financial asset, and let (πt),

πt = exp(−
∫ t
0 r

f
s ds)Dt, be the state-price deflator, where (rft ) is the risk-free rate and (Dt)

is the Radon-Nykodym derivative of the equivalent martingale measure with respect to the
true probability. Under no arbitrage condition, we have E(dP π

t |Ft) = E(d(πtPt)|Ft) = 0,
i.e.,

E
(
dπt
πt

∣∣∣∣Ft

)
+ E

(
dPt

Pt

∣∣∣∣Ft

)
+ E

(
dπt
πt

dPt

Pt

∣∣∣∣Ft

)
= 0,

and therefore, it follows from E((dπt/πt)|Ft) = −rft dt that

dPt

Pt
− rft = −E

(
dπt
πt

dPt

Pt

∣∣∣∣Ft

)
+ dUt,

where (Ut) is a martingale.6 Both the asset price and the state-price deflator processes are
conventionally specified as Ito processes, in which case −E((dπt/πt)(dPt/Pt)|Ft) yields the
dt term in (2) with µ(Xt, θ0) given by the product of the volatility functions of (dPt/Pt)
and (dπt/πt), if they are parametrized by θ ∈ Θ with the true value θ0.

7

It is easy to see that our model (2) includes as a special case with dYt = dXt the diffusion
model given by

dXt = µtdt+ σtdWt, (5)

where µt and σt are referred respectively to as drift and diffusion terms. If we set µt =
µ(Xt, θ0) using some known function µ and unknown parameter θ0 ∈ Θ, the diffusion model
in (5) clearly reduces to our model in (2). The specification of diffusion term is totally
unrestricted and left to be completely general. The most commonly used specification
of drift term is a linear drift, which is given by µ(Xt, θ) = β(α − Xt) for α ∈ R and
β ∈ R++. Respectively for the specifications of diffusion term as σt = σ for σ ∈ R++

and σt = ω
√
Xt for ω ∈ R++, we have Ornstein-Uhlenbeck process and Feller’s square-

root process. The diffusion term is often specified also as σt = ω|Xt|ρ for ω ∈ R++ and

6Following the convention used in finance and financial economics literature, we denote by (dπtdPt) the
differential of quadratic covariation between (πt) and (Pt).

7In general, the volatility functions of (dPt/Pt) and (dπt/πt) are not directly observable and we have to
use their proxies or estimates. Later we will explain in detail how we accommodate the use of proxies and
estimates for covariates in our methodology.
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Figure 1: Sample Paths and Quadratic Variations with Time Changes
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ρ ∈ R+, which is referred to as the constant elasticity of variance (CEV) diffusion. Our
methodology developed subsequently in the paper allows us to estimate the drift function
without specifying the functional form for the diffusion term.8

2.2 Time Change

We define a time change, i.e., a non-decreasing collection of stopping times, (Tt) by

Tt = inf
s>0

{[U ]s > t},

where ([U ]t) is the quadratic variation of (Ut). Then, as is well known, we have

UTt = Vt or Ut = V[U ]t ,

where (Vt) is the standard Brownian motion, which is commonly called the DDS (Dambis,
Dubins-Schwarz) Brownian motion of (Ut). This result, which is often referred to as the

8There is a clear advantage of our approach here. As shown in Jeong and Park (2010), the MLE’s for
the drift term and diffusion term parameters are asymptotically independent for a wide class of diffusion
models, both stationary and nonstationary, and there will be no efficiency gain in joint estimation.
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DDS theorem, plays the central role in the subsequent development of our methodology
and theory. See Revuz and Yor (1994) for more details.

Roughly put, the DDS theorem implies that all continuous martingales are essentially
Brownian motion with differences only in their quadratic variations, and all continuous
martingales become Brownian motion if their sample paths are read using a clock running
at the speed set inversely to the rate of increase in their quadratic variations. This idea was
explored earlier by Park and Vasudev (2006) to develop a test for martingale in continuous
time. In Figure 1, we will present two illustrative examples to show how we may define the
time change (Tt) to convert general continuous martingales to Brownian motion. There we
consider two continuous martingales, the compensated squared Brownian motion given by
Ut = W 2

t − t and the exponential Brownian motion given by Ut = exp(Wt − t/2), where
(Wt) is the standard Brownian motion.

The time change (Tt) is very useful for the estimation of and testing on the martingale
regression (2). With the time change (Tt), we have

dYTt = µ(XTt , θ0)dTt + dUTt = µ(XTt , θ0)dTt + dVt. (6)

Note that the error process (Vt) in the model with time change (Tt) is the standard Brownian
motion. This is in contrast with our original model, where the error process (Ut) is a general
martingale process. The parameter θ0 ∈ Θ is identified in the time-changed martingale
regression (6) by the condition

Vt(θ) = (YTt − Y0)−
∫ Tt

0
µ(Xs, θ)ds (7)

is the standard Brownian motion if and only if θ = θ0 ∈ Θ. Recall that θ = θ0 ∈ Θ
is assumed to be the only parameter value for which (Ut(θ)), defined in (3), becomes a
martingale.

2.3 Martingale Estimator

Now we introduce our estimator, which will be called the martingale estimator (MGE), for
the unknown parameter θ ∈ Θ in (2). We fix ∆ > 0 and define

Zi(θ) = ∆−1/2

(
YTi∆

− YT(i−1)∆
−
∫ Ti∆

T(i−1)∆

µ(Xt, θ)dt

)
(8)

for i = 1, . . . , N . Note that (Zi(θ)) are the normalized increments of the error process
(Vt(θ)) from the time-changed martingale regression defined in (7), which are collected at
time intervals of length ∆, where ∆ > 0 is some constant. Or equivalently, we may see
that (Zi(θ)) are defined to be the normalized increments of the error process (Ut(θ)) of our
model in (3), collected at random time intervals given by (Ti∆). The choice of ∆ will be
discussed below.

To introduce our estimator, we let id denote the d-dimensional vector index running
from i, and define Zid(θ) = (Zi(θ), . . . , Zi−d+1(θ))

′. Moreover, assuming that (Zi(θ)) is
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strictly stationary, we signify for each θ ∈ Θ by Π(·, θ) and ΠN (·, θ) respectively the joint
distribution function and empirical distribution function of (Zid). Consequently, we have

ΠN (z, θ) =
1

N

N∑
i=1

1{Zid(θ) ≤ z} =
1

N

N∑
i=1

1{Zi(θ) ≤ z1} · · · 1{Zi−d+1(θ) ≤ zd} (9)

for z = (zj) ∈ Rd. Here and elsewhere indicator functions with vector arguments are defined
as the product of indicators with their scalar components. Note that Π(·, θ0), which we will
also write as Π0(·), reduces to the d-dimensional multivariate standard normal distribution
function. Therefore, we have

Π(z, θ0) ≡ Π0(z) = Φ(z1) · · ·Φ(zd),

where Φ(·) is the standard normal distribution function.
Our estimator θ̂N , the d-dimensional MGE, of the parameter θ ∈ Θ is defined as

θ̂N = argmin
θ∈Θ

QN (θ),

where

QN (θ) =

∫
[ΠN (z, θ)−Π(z, θ0)]

2ϖ(dz) (10)

with any bounded measure ϖ(·) on Rd. This type of minimum distance estimator was
defined earlier by Manski (1983). The objective function QN (θ) in (10) becomes

Q(θ) =

∫
[Π(z, θ)−Π(z, θ0)]

2ϖ(dz)

in the limit as N → ∞.
The natural choice of ϖ is the measure given by the distribution function Π(·, θ0). In

this case, we do not need any numerical integration to obtain the MGE θ̂N . Indeed, the
objective function QN (θ) can be readily evaluated using simple algebraic computational
procedures for each θ ∈ Θ. To show this more explicitly, fix θ ∈ Θ and let (z(i)) be the
observed values of (Zi(θ)) arranged in the ascending order, i.e., z(1) < · · · < z(N), and define
wi = Φ(z(i)), where Φ is the standard normal distribution function as defined earlier. Then
the value of the objective function QN is given by

QN =
1

N

N∑
i=1

(
2i− 1

2N
− wi

)2

+
1

12N2

for the 1-dimensional MGE, and

QN =
1

N2

N∑
i,j=2

(1− wi ∨ wj)(1− wi−1 ∨ wj−1)−
1

2N

N∑
k=2

(1− w2
k)(1− w2

k−1) +
1

9

for the 2-dimensional MGE, where p ∨ q = max(p, q).
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We may check the adequacy of specification for our model using

τN = NQN (θ̂N ) (11)

as a test statistic. Under the correct specification, it follows that θ̂N ≈ θ0 and ΠN (·, θ̂N ) ≈
Π(·, θ0), and therefore, QN (θ̂N ) ≈ 0 for large N . Indeed, as we show later in the paper,
we have Q(θ̂N ) = Op(N

−1) and the statistic τN has a proper limit distribution as N → ∞
under the correct specification. Of course, this would not be so, if the underlying model is
misspecified. If there is no value of θ ∈ Θ for which the error process (Ut(θ)) in (3) is a
martingale, then the time changed error process (Vt(θ)) in (7) does not become a Brownian
motion for any value of θ ∈ Θ. It therefore follows that the limit of QN (θ) does not vanish
for any value of θ ∈ Θ, so we would have in particular that QN (θ̂N ) 9p 0. Consequently, we
would have τN →p ∞ under misspecification, and the test becomes consistent if we reject
the null of correct specification when τN takes large values.

Both the finite sample performance and the limit distribution of the MGE depend on
the choice of ∆. Note that both ΠN (·, θ) and Π(·, θ) depend on ∆ though we suppress it for
the sake of notational brevity. Moreover, for a given T , the choice of ∆ determines the size
N of the normalized increments of the error process (Zi(θ)), which affects the behavior of
the MGE directly. In general, we may expect that the distribution Π(·, θ) of (Zi(θ)) departs
more sharply from standard normal as θ takes values away from θ0 for larger values of ∆.
This is because the conditional mean component µ(Xt, θ0)dt becomes more important than
the error component dUt in our model (2) as ∆ increases. Therefore, all other things being
equal, the MGE would have a smaller variance for a larger value of ∆. On the other hand,
the marginal effect of ∆ via the size N of the normalized increments of the error process
is the opposite. For a fixed T , N decreases as ∆ increases, which would make the variance
of the MGE larger. Indeed, we may find an optimal choice of ∆ for some simple cases, as
will be discussed in more detail later. However, we assume at the moment that ∆ is just a
constant fixed a priori.

3. Statistical Procedure and Asymptotic Theory

3.1 Estimation of Time Change

To implement our methodology, we need to estimate the time change (Tt). Suppose that
we have M -observations on (Yt) and (Xt) with sampling interval δ > 0, which are denoted
by

(Xδ, Yδ), . . . , (Xjδ, Yjδ), . . . , (XMδ, YMδ) (12)

with the initial value (X0, Y0). Throughout the paper, we let T = Mδ denote the sampling
horizon. Note that the conditional mean component µ(Xt, θ0)dt in our model (2) is of
bounded variation, whose quadratic variation vanishes at all t ≥ 0. Therefore, we have
[U ]t = [Y ]t for all t ≥ 0, which can be estimated by

[Y ]δt =
∑
jδ≤t

(Yjδ − Y(j−1)δ)
2,
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i.e., the realized variance of (Yt) over time interval [0, t]. For the hypothesis testing, we
may also impose the null value θ0 of θ ∈ Θ, so that [U ]δt =

∑
jδ≤t(Ujδ − U(j−1)δ)

2 can be
obtained directly under the null hypothesis.

In the subsequent development of our theory, we require δ → 0 fast enough so that
([Y ]δt ) becomes a consistent estimate for ([U ]t) over the entire sampling horizon. Below
we provide some simple sufficient conditions for the uniform consistency of both ([U ]δt )
and ([Y ]δt ). For the expositional brevity, we assume throughout that the observations are
made over equi-spaced sampling interval. The extension to allow for irregular and random
sampling is possible, as long as the modulus of the sampling interval is small and decreases
down to zero.

Assumption 3.1 For all 0 ≤ s ≤ t ≤ T ,

aT (t− s) ≤ [U ]t − [U ]s ≤ bT (t− s),

where aT , bT > 0 are some constants depending only upon T .

Assumption 3.1 is satisfied for a large class of continuous martingales. For the Brownian
motion, we may easily deduce that the condition holds with aT = bT = 1. More generally,
the condition holds for any martingale (Ut), defined as dUt = σtdWt for some volatility
process (σt) and Brownian motion (Wt), if we have

aT ≤ inf
0≤t≤T

σ2
t and sup

0≤t≤T
σ2
t ≤ bT .

Many diffusion processes satisfy this condition.

Lemma 3.1 Under Assumptions 2.2 and 3.1, we have

E

(
sup

0≤t≤T

∣∣∣[U ]δt − [U ]t

∣∣∣)2

= O
(
δTb2T

)
with bT introduced in Assumption 3.1.

Therefore, the estimated quadratic variation ([U ]δt ) obtained from the discrete samples is
uniformly consistent for the true quadratic variation ([U ]t), as long as b2T (δT ) → 0. Note
that the longer horizon the data spans (i.e., as T becomes larger), we need to observe
them more frequently (i.e., δ should be smaller) to ensure the uniform consistency of the
estimated quadratic variation over an expanded time interval [0, T ]. This is more so, if the
quadratic variation increases more sharply (i.e., bT increases faster).

Assumption 3.2 We assume that

E

(
sup

0≤t≤T
sup
θ∈Θ

|µ(Xt, θ)|

)4

= O(c2T )
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for all large T .

Assumption 3.2 specifies the maximal growth rate of (µ(Xt, θ)) over t ∈ [0, T ] and θ ∈ Θ. If
the instantaneous conditional mean function µ is bounded, then Assumption 3.2 is trivially
satisfied with cT = 1. More generally, we let (a) supθ∈Θ |µ(x, θ)| ≤ c∥x∥p for some constants
c > 0 and p ≥ 0, and let (b) E

(
sup0≤t≤T ∥Xt∥

)r
= O(T q) for some r ≥ 4p and q ≥ 0. Then

we have

E

(
sup

0≤t≤T
sup
θ∈Θ

|µ(Xt, θ)|

)4

≤ c4E

(
sup

0≤t≤T
∥Xt∥

)4p

≤ c4

[
E

(
sup

0≤t≤T
∥Xt∥

)r]4p/r
= O(T 4pq/r),

and therefore, Assumption 3.2 holds with cT = T 2pq/r.
Condition (a) is not stringent and met for virtually all instantaneous conditional mean

functions used in empirical applications. Condition (b) is also not restrictive and satisfied
by all stochastic processes commonly used in practice. Many processes that are used in
practical applications, such as interest rates, certain growth rates and various financial
ratios, have natural boundaries, and consequently, the condition holds with q = 0 for any
value of r ≥ 0. In this case, we would therefore have cT = 1 in Assumption 3.2 for all
values of p. Stationary Gaussian processes satisfy the condition with any q > 0 for any
choice of r ≥ 4p if some mild additional requirements are met. The reader is referred to
Berman (1992) for more details. For instance, it is well known that the running maximum
sup0≤t≤T |Xt| of Ornstein-Uhlenbeck process has any integral moments and grows at the

rate of (log T )1/2. Therefore, Assumption 3.2 is satisfied with cT = T ε for any ε > 0,
regardless of the value of p. Finally, the condition holds for Brownian motion (Wt) with
q = r/2, since

T−1/2 sup
0≤t≤T

|Wt| = sup
0≤t≤1

T−1/2|WTt| =d sup
0≤t≤1

|Wt|

due to the scaling property of Brownian motion. Note that sup0≤t≤1 |Wt| is distributed as
the modulus of standard normal, and therefore, has the infinite number of moments. See,
e.g., Revuz and Yor (1991, p.19). As a result, Assumption 3.2 holds with cT = T p. It can
be readily seen that the condition is also satisfied for Brownian motion with drift if we set
q = r, which yields Assumption 3.2 with cT = T 2p.

Lemma 3.2 Under Assumptions 2.2 and 3.1 - 3.2, we have

E

(
sup

0≤t≤T

∣∣∣[Y ]δt − [U ]δt

∣∣∣)2

= O
(
(δT )2c2T

)
+O

(
δT 2(bT cT )

)
with bT and cT introduced in Assumptions 3.1 and 3.2.

As in Lemma 3.1, we require in Lemma 3.2 that δ → 0 as T → ∞. Lemma 3.2, together
with Lemma 3.1, establishes the uniform consistency of ([Y ]δt ) for ([U ]t). In particular, it
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allows us to use ([Y ]δt ) to estimate the time change (Tt). In general, the required condition
in Lemma 3.2 is more stringent than the one in Lemma 3.1. This is because (Yt) has the
conditional mean component and we need to ensure that its contribution to the estimation
of quadratic variation is asymptotically negligible.9

Now we define
Rδ,T = sup

0≤t≤T

∣∣∣[Y ]δt − [U ]t

∣∣∣ . (13)

Then it follows that

ER2
δ,T = O

(
δTb2T

)
+O

(
(δT )2c2T

)
+O

(
δT 2(bT cT )

)
(14)

from Lemmas 3.1 and 3.2. If we let S = [U ]T , we may readily deduce that

Corollary 3.3 Under Assumptions 2.2 and 3.1 - 3.2, we have

E

(
sup

0≤t≤S

∣∣∣T δ
t − Tt

∣∣∣)2

= O

(
δT

b2T
a2T

)
+O

(
(δT )2

c2T
a2T

)
+O

(
δT 2 bT cT

a2T

)
,

with aT , bT and cT introduced in Assumptions 3.1 and 3.2.

The time change based on realized variance of (Yt) may therefore be used instead of the
required theoretical time change, if δ → 0 sufficiently faster than T → ∞.

3.2 Feasible Martingale Estimator

In place of (Zi(θ)) introduced earlier in (8), the feasible MGE is based on (Zi(θ)
δ), which

is defined for i = 1, . . . , N by

Zδ
i (θ) = ∆−1/2

YT δ
i∆

− YT δ
(i−1)∆

−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

 (15)

with δMi = T δ
i∆. We may easily see that

Mi∑
j=Mi−1+1

δµ(Xjδ, θ) ≈
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt (16)

for small δ > 0, if (µ(X·, θ)) is Riemann integrable on the interval [T δ
(i−1)∆, T

δ
i∆].

Note that we construct the samples (Zi(θ)
δ) of size N in (15), from the observations

(Xjδ, Yjδ) of size M on the underlying stochastic processes (X,Y ) given in (12), to estimate

9We may use the fitted residuals Ûjδ − Û(j−1)δ = (Yjδ −Y(j−1)δ)−µ(X(j−1)δ, θ̂)δ, j = 1, . . . ,M , obtained

using any consistent estimator θ̂ of θ0 to estimate the quadratic variation of (Ut). Our subsequent results
would then hold under less stringent conditions. From the empirical perspective, however, such a two step
procedure does not seem to be very meaningful. For the typical models that we may apply our methodology,
the conditional mean components are of order significantly smaller than their martingale components.
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the parameter θ in the model. Throughout the paper, we call (Xjδ, Yjδ) and (Zi(θ)
δ),

respectively, the original and estimation samples to avoid confusion. Of course, we have
M > N , and we use a fewer number of estimation samples collected from the original
samples. In general, this does not incur any loss in efficiency. First, for the implementation
of our martingale procedure we use all observations to compute the quadratic variation of
the error process and to obtain the integral value of the conditional mean function. Second,
even if the observations are available continuously in time, we would not use them all in
our methodology for the estimation of conditional mean function. As discussed earlier, it
is expected that the optimal value of ∆ exists and is strictly positive for a wide class of
models.

Given our results in the previous subsection, we may well expect that the estimation
samples (Zi(θ)

δ) get close to (Zi(θ)) as δ → 0 for each i = 1, . . . , N . Furthermore, they
are expected to be close to each other uniformly in i = 1, . . . , N , if δ → 0 sufficiently fast
relative to T → ∞. Below we present the exact condition that we need to require to make
the error in approximating (Zi(θ)) by (Zi(θ)

δ) uniformly negligible for i = 1, . . . , N for all
large N .

Assumption 3.3 We assume that

E

(
sup

0≤s≤t≤T
sup
θ∈Θ

∣∣∣µ(Xt, θ)− µ(Xs, θ)
∣∣∣)2

≤ dT (t− s)

for some constant dT depending only upon T .

The condition in Assumption 3.3 is sufficient to make the approximation in (16) valid. The
required uniform continuity in expectation is expected to hold for a wide class of diffusion
type processes (Xt) if µ(·, θ) is Lipshcitz continuous uniformly in θ ∈ Θ. If (Xt) is generated
as a diffusion given by dXt = νtdt+ ωtdWt with standard Brownian motion (Wt), then we
have

E

(
sup

0≤s≤t≤T

∣∣Xt −Xs

∣∣)2

≤ 2

[
(t− s)2

(
E sup

0≤t≤T
ν2t

)
+ (t− s)

(
E sup

0≤t≤T
ω2
t

)]
.

Consequently, if we have supθ∈Θ |µ(x, θ)− µ(y, θ)| ≤ c|x− y| for some constant c > 0, then
the condition is satisfied for all |t−s| ≤ 1 with dT = c2

[(
E sup0≤t≤T ν2t

)
∨
(
E sup0≤t≤T ω2

t

)]
,

where we use the notation p ∨ q = max(p, q).

Assumption 3.4 We assume that bT /cT = O(T ), cT /(a
2
T bT ) = O(T ), dT /(a

2
T b

2
T cT ) =

O(T 3), and

δ = O

(
1

T 4+εb3T cT

)
for some ε > 0.

Assumption 3.4 introduces some conditions on the relative magnitudes of aT , bT , cT and dT
and specifies how fast δ should decrease as T gets large. In usual applications, it appears
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that all of aT , bT , cT and dT either remain constant or grow very slowly. Consequently,
the conditions we impose on their relative magnitudes are likely to hold widely. In fact,
they are not essential and mostly expositional. They are introduced merely to simplify the
required condition for δ. For the validity of our methodology and subsequent theory, it is
necessary that we have at least δ = o(T−4). The condition may look stringent. However, for
many economic and financial time series, observations are made and available at all levels of
frequencies and we may even choose their frequencies to meet our needs. It is therefore not
very restrictive. As discussed earlier, the required rate would be reduced if we may assume
to know the value of θ0 as in the case of hypothesis testing or use any iterated procedure
based on a preliminary estimate for θ0.

Lemma 3.4 Under Assumptions 2.2 and 3.1 - 3.4, we have

E max
1≤i≤N

sup
θ∈Θ

∣∣∣Zδ
i (θ)− Zi(θ)

∣∣∣ = o(N−1/2)

for all large N .

Lemma 3.4 allows us to use the approximated sample (Zδ
i (θ)) instead of the unobservable

estimation sample (Zi(θ)). Indeed, we will show subsequently that the resulting approxi-
mation error would not affect the asymptotic theory of our methodology.

Using the estimation samples (Zδ
i (θ)) in (15), we now define

Πδ
N (z, θ) =

1

N

N∑
i=1

1{Zδ
id
(θ) ≤ z} =

1

N

N∑
i=1

1{Zδ
i (θ) ≤ z1} · · · 1{Zδ

i−d+1(θ) ≤ zd}. (17)

Clearly Πδ
N in (17) corresponds to ΠN introduced in (9).

Assumption 3.5 We assume that the conditional distribution of Zi(θ) on (Zδ
i (θ)−Zi(θ))

is absolutely continuous respect to Lebesgue measure having density bounded uniformly in
1 ≤ i ≤ N and θ ∈ Θ.

Lemma 3.5 Under Assumptions 2.2 and 3.1 - 3.5 we have

E sup
z∈Rd

sup
θ∈Θ

∣∣∣Πδ
N (z, θ)−ΠN (z, θ)

∣∣∣ = o(N−1/2)

for all large N .

The result in Lemma 3.5 follows immediately from Lemma 3.4 under Assumption 3.5.
Though it is difficult to check, the condition in Assumption 3.5 does not seem to be overly
stringent.

The feasible MGE is given by

θ̂δN = argmin
θ∈Θ

Qδ
N (θ),
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where

Qδ
N (θ) =

∫
[Πδ

N (z, θ)−Π(z, θ0)]
2ϖ(dz), (18)

which is defined correspondingly with QN in (10). It is well expected from Lemma 3.5 that
the feasible MGE would behave similarly as θ̂N in asymptotics under suitable regularity
conditions. We will show below that this is indeed true.

3.3 Asymptotic Theory for Martingale Estimator

The following are a set of sufficient conditions we impose to obtain the limit distribution of
our martingale estimator θ̂N .

Assumption 3.6 We assume that
(a) For all θ ∈ Θ, (Zi(θ)) is strictly stationary and α-mixing with the mixing coefficient
α(k) = O(k−c) for some c > (2d+ 1)(4d− 1).
(b) For all θ ∈ Θ near θ0, we have |µ(x, θ) − µ(x, θ0)| ≤ ν(x)∥θ − θ0∥ for a measurable
real-valued function ν. Moreover, we let

Zi = UTi∆
− UT(i−1)∆

and Wi =

∫ Ti∆

T(i−1)∆

ν(Xt)dt,

and assume that the conditional distribution of Zi on Wi is absolutely continuous with re-
spect to Lebesgue measure having density bounded uniformly in i ≥ 1, and that supi≥1 EW 2

i <
∞.

We have

Lemma 3.6 Under Assumption 3.6, we have

√
N [ΠN (z, θ)−Π(z, θ)]

is stochastically equicontinuous at θ0 ∈ Θ with respect to the Euclidean metric on Θ ⊂ Rm

for all z ∈ Rd.

Assumption 3.7 We assume that
(a) The parameter space Θ is compact, and θ0 is an interior point of Θ.
(b) The function Π(·, θ) of θ is differentiable at θ0 in L2(ϖ), i.e., there exists Π̇ ∈ L2(ϖ)
such that ∫ (

Π(z, θ)−Π(z, θ0)− (θ − θ0)
′Π̇(z)

∥θ − θ0∥

)2

ϖ(dz) → 0

as ∥θ − θ0∥ → 0, where L2(ϖ) denotes the Hilbert space of functions that are square
integrable with respect to measure ϖ.
(c) The function Q has a positive second derivative matrix Q̈ at θ0.
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Under Assumptions 2.1 - 2.2 and 3.6 - 3.7, we will establish that

√
N(θ̂N − θ0) = −2Q̈(θ0)

−1
√
N

∫
Π̇(z)[ΠN (z, θ0)−Π(z, θ0)]ϖ(dz) + op(1) (19)

for all large N . Moreover, by the functional central limit theory given by, e.g., Deo (1978),
we have √

N [ΠN (·, θ0)−Π(·, θ0)] →d Λ(·) (20)

as N → ∞, where Λ is the Gaussian process with covariance kernel Σ(x, y) = EΛ(x)Λ(y).
Note that ΠN (·, θ0) is the empirical process defined from d-dimensional multivariate normal
samples that are (d− 1)-dependent.

To define Σ(x, y) more explicitly, we let x = (xj) ∈ Rd and y = (yj) ∈ Rd, and define
for |k| ≤ d− 1

Γk(x, y) = E[1{Zid ≤ x} −Π0(x)][1{Z(i−k)d ≤ y} −Π0(y)]

with Zid = Zid(θ0). The covariance kernel of the Gaussian process Λ is then given by

Σ(x, y) =
∑

|k|≤d−1

Γk(x, y)

for x, y ∈ Rd. We may easily see that

Γ0(x, y) = Φ(x1 ∧ y1) · · ·Φ(xd ∧ yd)− Φ(x1) · · ·Φ(xd)Φ(y1) · · ·Φ(yd)

and, for 1 ≤ k ≤ d− 1,

Γk(x, y) =Φ(x1) · · ·Φ(xk)
[
Φ(xk+1 ∧ y1) · · ·Φ(xd ∧ yd−k)

− Φ(xk+1) · · ·Φ(xd)Φ(y1)Φ(yd−k)
]
Φ(yd−k+1) · · ·Φ(yd),

where we use the notation p ∧ q = min(p, q). Furthermore, it follows that Γ−k(x, y) =
Γk(y, x).

It is easy to deduce from (19) and (20) that

Theorem 3.7 Under Assumptions 2.1 - 2.2 and 3.1 - 3.7, we have

θ̂δN = θ̂N + op(N
−1/2)

for all large N , and √
N(θ̂N − θ0) →d N(0, 4Ω),

where Ω = Q̈(θ0)
−1PQ̈(θ0)

−1 with

P =

∫ ∫
Π̇(x)Σ(x, y)Π̇(y)′ϖ(dx)ϖ(dy)

as N → ∞.
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The MGE is consistent with the convergence rate
√
N , which we would normally expect to

be identical to
√
T .10 As is well known, this is the convergence rate of the MLE for the

drift term parameter in a fully specified stationary diffusion model.11 Therefore, the MGE
has the same rate of convergence as the MLE in this case. Moreover, the MGE has limit
normal distribution. The proof of the asymptotic normality relies on the results in Andrews
and Pollard (1994), Wegkamp (1999) and Brown and Wegkamp (2002). If Π(z, ·) is twice
differentiable, then we may expect to have

Q̈(θ0) = 2

∫
Π̇(z)Π̇(z)′ϖ(dz)

under suitable conditions required to interchange the order of differentiation and integration.
In general, the asymptotic variance Ω can be estimated by the usual resampling methods
such as sub-sampling and bootstrapping.

The usual subsampling procedure with various existing methods to select the subsample
size can be applied for our model to estimate the asymptotic variance Ω. For the boot-
strap method, the most natural way to implement it in our framework is to use a block
bootstrap and resample from the pairs (Xjδ, Yjδ), say, (X

∗
jδ, Y

∗
jδ) for j = 1, . . . ,M . It is

important to resample the pairs to preserve the dependency between X and Y . Of course,
we need to introduce some additional conditions on (X,Y ), such as stationarity and strong
geometric mixing conditions, to make the block bootstrap valid. See, e.g., Horowitz (2001).
Those conditions are not very stringent, since all stationary diffusion processes are strongly
geometrically mixing. Under the required extra conditions for the validity of the block boot-
strap, we may expect the block bootstrap to be consistent. If we denote by θ̂δ∗N the MGE
obtained from the bootstrap samples, then we may indeed follow Brown and Wegkamp
(2002) to show that the conditional distribution of

√
N(θ̂δ∗N − θ̂δN ) consistently estimates the

distribution of
√
N(θ̂δN − θ0) in probability.12 We may therefore use the bootstrap sample

variance of
√
N(θ̂δ∗N − θ̂δN ) as a consistent estimate for the asymptotic variance Ω.

Subsampling or bootstrapping entire samples can be computationally burdensome. It
is unnecessary, if the conditional mean model is linear in parameter and given by µ(x, θ) =
θ′0ν(x). In this case, we may directly resample(

YT δ
i∆

− YT δ
(i−1)∆

,

∫ T δ
i∆

T δ
(i−1)∆

ν(Xt)dt

)

using the subsampling or block bootstrap method. The dimension of the resampling is
now significantly reduced from M to N . Moreover, the steps to obtain the MGE using
the subsamples or bootstrap samples become greatly simplified. In particular, it is not
necessary to re-estimate the time change and collect the samples at the random intervals

10More precisely, this would be the case if we have a−1
T = O(1) in Assumption 3.1 since [U ]T = N∆ ≥ TaT .

11In particular, the convergence rate is determined by the sampling span T , and not by the sample size,
which is given by M in our notation.

12They consider only i.i.d. case under simpler conditions. However, their main arguments for the bootstrap
consistency readily extends to our framework given the validity of block bootstrap and all our previous results
in the paper.
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given by the time change. The computational burden of bootstrap is therefore minimal in
this case. We use this approach in our simulation reported in the next section.

As is well expected, the statistic

τ δN = NQδ
N (θ̂δN )

has the same limit distribution as its continuous version τN introduced in (11) under the null
hypothesis of correct specification. Moreover, their limit distribution can be represented
as a functional of the Gaussian process Λ defined in (20). This is shown in the following
corollary.

Corollary 3.8 Under Assumptions 2.1 - 2.2 and 3.1 - 3.7, we have

τ δN = τN + op(1)

for all large N , and

τN →d

∫
Λ2(z)ϖ(dz)− 2

∫ ∫
Λ(x)Λ(y)

[
Π̇(x)′Q̈(θ0)

−1Π̇(y)
]
ϖ(dx)ϖ(dy)

as N → ∞.

Therefore, we may use the statistic τ δN to test for the correct specification of the martin-
gale regression. The critical values of the test τ δN can be obtained by the subsampling or
bootstrap method discussed above.

3.4 Other Issues in Implementation

3.4.1 Jumps

Obviously, our results here are not applicable if the error process has jumps. The DDS
theorem holds only for continuous martingales, and therefore, our methodology relying on
the theorem breaks down. Note that we may allow jumps in (X,Y ) as long as they are
synchronized and do not disturb the relationship between X and Y in any discrete fashion,
since we only require the continuity of sample paths for the error process. To deal with
the problem of discontinuity in the error process, we suggest to detect the presence of
jumps using the test by Lee and Mykland (2008) as a preliminary step. Once we identify
the locations of jumps, we may simply discard the observations corresponding to (dYt)
and (µ(Xt, θ)dt) before we implement the martingale methodology. If jumps are generated
exogenously, as is the case for virtually all economic and financial models used in practical
applications, they do not include any information on the unknown parameters in the model
and can be regarded as pure noise. In our approach, we do not attempt to extract useful
information from the observations contaminated with noisy jumps, since it would necessarily
require a rather complete and tight specification of the jump process in the model.

If we test for jumps and delete them in a preliminary step, the subsequent analysis of
course will be made conditional on the preliminary jump test. This may result in increased
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variances for estimators and size distortions in tests, as in the case of other statistical pro-
cedures based on preliminary tests. To minimize the problem resulting from the reliance
on a preliminary jump test, we recommend to use samples collected at relatively lower fre-
quency such as daily rather than intra-day observations at ultra-high frequencies. It is well
observed in many economic and financial time series that jumps are rare for samples at
the frequencies of daily or lower, though they are frequently observed for many intra-day
samples. Moreover, jumps tend to be more indistinguishable from continuous realizations
as the frequency increases. The negative impact of relying on a preliminary test for jumps
would certainly be larger if jumps are more frequent and have sizes not distinguishable from
the realizations of the continuous part of the underlying model. If we use daily observa-
tions, the impact of a preliminary jump test appears to be insubstantial for models used in
practical applications, where we expect that relatively large jumps occur intermittently.

3.4.2 Choice of ∆

Our result in Theorem 3.7 allows us to find an asymptotic optimal choice of ∆, if the
distribution of (X,Y ) is known and (X,Y ) is continuously observed. Indeed, for the simplest
case of Ornstein-Uhlenbeck diffusion dXt = κ(µ − Xt)dt + σdWt, the value of ∆ which
minimizes the variance of θ̂N can be found analytically and is given by ∆∗ = 2.15σ2/κ,
and the corresponding size of the estimation sample becomes N∗ = κT/2.15, if the sample
path of the process is continuously observable.13 With the choice of optimal ∆∗ or N∗,
we may readily show that the MGE has the asymptotic standard deviation 1.54

√
2κ. As

is well known, the MLE of κ has the asymptotic standard deviation
√
2κ, and therefore,

the MGE has the asymptotic standard deviation that is 1.54 times bigger than the MLE.
This, of course, does not imply that the finite sample behavior of the MLE is necessarily
better than that of the MGE. Indeed, as we clearly show in our simulations, the MGE often
performs significantly better than the MLE in finite samples. Therefore, there is a strong
incentive to use the MGE even in the case that we have a fully specified likelihood function
and the MLE is available.

It seems very difficult to find the optimal value of ∆ or N in more general models.
Furthermore, if we consider θ̂δN based on the discrete observations on (X,Y ), it would be
impossible to obtain the analytical solution for an optimal choice of ∆. In this case, we may
also take into consideration the errors in approximating the required time change (Ti∆) by its
estimate (T δ

i∆). Clearly, the relative magnitude of the error incurred in this approximation
becomes smaller as ∆ gets large, since we have a greater number of observations in the
original sample for each interval [T δ

(i−1)∆, T
δ
i∆]. Of course, we may try various values of ∆

and find an optimal choice numerically. It will be explained in detail how we may do this in a
later section. In case we need to compare our methodology with other competing approaches
based on the fixed sampling schemes, we may also set ∆ comparably to them so that they
have the same number of observations. This can be done by dividing the realized variance
[Y ]δT of (Yt) over the entire sampling period by a fixed value of N to find the corresponding

13The optimal value of ∆ for the Ornstein-Uhlenbeck process reported here is made available by Minchul
Shin, to whom I am very grateful.
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level of ∆. For instance, setting N to be the number of months in the sampling horizon, we
may obtain ∆ = (1/N)[Y ]δT corresponding to the monthly observations.

3.4.3 Unobserved Covariates

In many continuous time conditional mean models used in economics and finance, some of
the explanatory variables are not directly observable at any discrete time intervals and we
necessarily have to use either their proxies or their estimates. In fact, it is quite common
that the volatility processes representing the market and macroeconomic risks appear as
covariates in continuous time asset pricing models derived from no arbitrage condition, and
they are not directly observable unless their generating processes are observed in continuous
time. Obviously, however, we may use the proxies or estimates (X̄t) for the covariate (Xt)
in our approach, as long as they are close enough each other. In what follows, we let (Z̄δ

i (θ))
be defined from (X̄t) correspondingly as (Zδ

i (θ)) in (15).

Assumption 3.8 We assume that

(a) |µ(x, θ)− µ(y, θ)| ≤ ν(x)∥x− y∥ and sup
0≤t≤T

ν(Xt) = O(eT ) with some constant eT

depending only upon T .

(b) E

(
sup

0≤t≤T
|Xt − X̄t|

)2

= O(δpT q) with δ = o
(
(a2T /bT e

2
T )

1/2pT−(2q+1)/2p
)
for some con-

stants p > 0 and q ≥ 0.

Lemma 3.9 Under Assumptions 2.2, 3.1 - 3.2 and 3.8, we have

E max
1≤i≤N

sup
θ∈Θ

∣∣∣Z̄δ
i (θ)− Zδ

i (θ)
∣∣∣ = o(N−1/2),

for all large N .

Lemma 3.9 implies that our methodology and its asymptotic theory remain to be valid if
in particular Assumption 3.8 is satisfied.

The conditions in Assumption 3.8 are not stringent. Clearly, condition (a) is expected
to be widely met, as long as the instantaneous conditional mean function µ(x, θ) is differ-
entiable with respect to x. In particular, it is trivially satisfied with eT = 1, if µ(x, θ) is
linear and given by µ(x, θ) = θ′x. We may also readily see that condition (b) holds for a
broad class of continuous time models in economics and finance. In many cases, a more
precise estimate or a better proxy for (Xt) becomes available as δ → 0, and therefore, it is
reasonable to assume that the discrepancy between (Xt) and (X̄t) decreases at the rate of δ

p

with some p > 0. For example, as shown by Barndorff-Nielsen and Shephard (2002, 2004),
Aı̈t-Sahalia, Mykland and Zhang (2005) and Bandi and Russel (2008), we may estimate
the unobserved integrated volatilities of general continuous time processes at the rate of
Op(δ

1/2) over any fixed interval, if their generating processes are observed at time intervals
of length δ. In general, the discrepancy between (Xt) and (X̄t) over the time interval [0, T ]
would increase as T → ∞, the rate of which we assume to be given by T q for some q ≥ 0.
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Once again, we only require that δ > 0 be small relative to T here. Moreover, though
we do not make it explicit in the paper for the simplicity and clarity of our exposition,
it is quite obvious that our theory can be easily extended to accommodate the possibility
that Y and X are observed at different sampling frequencies. In particular, we may readily
allow for the proxies and estimates of (Xt) to be observed at lower frequencies than (Yt).
The only essential requirement is that the sampling interval should be sufficiently small in
comparison with the time span of sample. For instance, we may even use macroeconomic
time series observed at monthly or quarterly intervals to obtain measures of macroeconomic
fluctuations and study their effects on asset prices, which are observed much more frequently,
if the sampling horizon for macroeconomic time series is long enough.

4. Illustrations and Simulations

In this section, we provide some empirical illustrations on how to implement our method-
ology in practical applications, and present some simulation results to evaluate the finite
sample performance of our estimator. For our purpose, we consider two continuous time
models. The first model, Model I, is the Feller’s square-root process given by

dXt = (α+ βXt)dt+ γ
√

XtdWt, (21)

which has been widely used to fit interest rate models since the influential work by Cox,
Ingersol and Ross (1985). As discussed, the model can be regarded as a special case of our
model with dYt = dXt and dUt = γ

√
XtdWt. The second model, Model II, is specified as

dYt = (α+ βXt)dt+
√

XtdWt (22)

with
dXt = (µ+ νXt)dt+ ω

√
XtdZt,

where (Wt) and (Zt) are Brownian motions with dWtdZt = ρdt. It is commonly referred
to as the Heston model, since it was used earlier by Heston (1993) to model stochastic
volatility. The MGE is employed to estimate the parameters α and β of Models I and II in
(21) and (22).

For comparison, we also consider the estimators based on the ML approach for Models
I and II. For Model I, we employ the exact MLE method to obtain the estimates for the
parameters α and β. In contrast, for Model II, we use the approximation MLE method
proposed recently by Aı̈t-Sahalia and Kimmel (2007). In what follows, however, we do not
distinguish the two methods and simply call both of the resulting estimators the MLE’s.
Needless to say, the MLE’s are expected to perform better for our simulation models, since
they use more information. In both Models I and II, the MLE uses information on the
precise structure of the process generating stochastic volatility, whereas the MGE ignores
any structural information on stochastic volatility and only treats it nonparametrically.
Of course, the MLE is subject to the potential problem of misspecification of volatility
process.14 This problem, however, will not be investigated in the paper, since our objective

14Through simulations we find that the effect of misspecification can be substantial, especially when the
underlying model is nearly nonstationary.
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is to evaluate the performance of the MGE, compared with the MLE applied to the correctly
specified model.

To study the effect of preliminary jump test on the performance of the MGE, we consider
the model defined as

dYt = dXt + dJt, (23)

where (Xt) is the Feller’s square-root process introduced above in (21) and (Jt) is a jump
process independent of (Xt). We specify the jump process (Jt) as a compound Poisson
process which is given by

Jt =

Nt∑
k=1

Dk,

where (Nt) is a Poisson process with intensity λ > 0 and (Dk) is a sequence of independent
and identically distributed uniform random variables that is independent of (Nt). In what
follows, (23) will be referred to as Model III. For Model III, we apply the MGE after we
identify and discard observations contaminated with jumps using the test developed by
Lee and Mykland (2008). In our simulation, the performance of the MGE for Model III
implemented with the preliminary test for jumps is evaluated against that of the MGE for
Model I with no jumps.

4.1 Empirical Illustrations

To estimate Model I, we use the annualized three-months T-bill rates in the secondary
market for (Xt). The data are collected at the daily frequency from January 4, 1954 to
December 31, 2009, with the sample size M = 13, 989. The observed rates were zero on
December 10, 18 and 24, 2008, which were discarded since they are not compatible with the
model. Furthermore, we delete the observations that are believed to be contaminated by
jumps and cannot be generated by our model. To detect for jumps, we use the test by Lee
and Mykland (2008). The test results are somewhat dependent upon the size of window, so
we tried various lengths of window ranging from 8 to 96 days.15 For the 5% level test, the
numbers of jumps that the test detect are 335, 113, 77, 73, 76, 74 and 69 corresponding to
the window sizes 8, 16, 32, 48, 64, 80 and 96. In our empirical analysis, we set the window
size to be 48, and after deleting the observations corresponding to the detected jumps the
actual number of daily observations we use to estimate the model is 13,913.

For Model II, we use the log of S&P 500 Index (SPX) and the squares of the Chicago
Board Options Exchange (CBOE) Volatility Index (VIX) respectively for (Yt) and (Xt),
following Aı̈t-Sahalia and Kimmel (2007) which uses the VIX as a proxy for the latent
volatility process.16 The daily observations from January 2, 1990 to December 31, 2009
are initially downloaded for our estimation. However, the VIX is not available on March 1,

15Lee and Mykland (2008) suggest to use the window size 16 for daily observations. We try various window
lengths here to check the sensitivity of our empirical results with respect to the window size. In fact, the
choice of window size has virtually no effect on our estimates for both the MLE and MGE.

16The deleterious effect on the parameter estimation of using the VIX as a proxy for the latent factor
representing the volatility state is beyond the scope of our paper, and will not be investigated in our empirical
analysis.
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1991, January 31, 1997 and November 26, 1997, and the corresponding observations of the
SPX are also deleted leaving the daily observations of size M = 5, 040. Once again, we use
the test by Lee and Mykland (2008) with size 5% to detect the jumps. The test detects 38,
20, 12, 9, 11, 12 and 12 jumps for the SPX, and 76, 51, 45, 44, 45, 50 and 52 for the squared
VIX, respectively for the selection of window size 8, 16, 32, 48, 64, 80 and 96. We choose
the window size 32, for which we detect 49 jumps. Some of the jumps in the SPX and VIX
are overlapped. Once we delete all observations associated with the detected jumps, there
are 4,991 observations that we use to estimate the model.

The actual sequence (T δ
i∆) of required time change is obtained by

T δ
i∆ = δ argmin

k>Mi−1

∣∣∣∣∣∣
k∑

j=Mi−1+1

(Yjδ − Y(j−1)δ)
2 −∆

∣∣∣∣∣∣
with Mi−1 = δ−1T δ

(i−1)∆, sequentially for i = 1, . . . , N with any fixed ∆ > 0. Furthermore,
we define the estimation sample by

Zδ
i (θ) = ∆

−1/2
i

YT δ
i∆

− YT δ
(i−1)∆

−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

 ,

where ∆i =
∑Mi

j=Mi−1+1(Yjδ − Y(j−1)δ)
2. Note that the estimation sample defined here is

normalized by the actual realized variance, rather than the target level of increment in
quadratic variation. Obviously, our actual definitions of time change and estimation sample
here would not have any effect on the development of our asymptotic theory. It seems,
however, that the performance of the MGE improves slightly in finite samples.

The value of ∆ is chosen so that the standard error of the MGE of β is minimized.
To estimate the standard error, we use the block bootstrap with the block size N1/3, as
suggested by Horowitz (2001), and 1,000 bootstrap iterations are made. The search for
the optimal ∆ is made for the range of N ≥ 20 and ∆ ≥ (20/M)[Y ]δT . This is to avoid
having too small values of N and ∆. If N is too small, the size of the estimation sample
becomes too small and we expect that the estimate is unstable and the bootstrap procedure
to compute the standard error of the estimate is unlikely to perform well. On the other
hand, if ∆ is too small, there are not enough number of original samples in each of the
interval from which we collect the estimation sample. Then the time change will not be
very effective. In fact, we will end up using all the observations nullifying the effect of time
change if we set ∆ sufficiently small. For Model I, we find that ∆ = 8.76× 10−5 minimizes
the standard error of the MGE for β, which gives us N = 143. This is true for both the
1-dimensional and 2-dimensional MGE’s. For Model II, the optimal values of ∆ are given
by ∆ = 3.16 × 10−2 and ∆ = 2.21 × 10−2, which yields N = 20 and N = 29, respectively
for the 1-dimensional and 2-dimensional MGE’s.17

17For both models, the standard errors of the estimates vary somewhat irregularly as we change the values
of ∆. In particular, we do not have the U-shaped standard errors with the unique minimum at some optimal
value of ∆.
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Table 1: Estimation Results for Models I and II

Model I Model II

MLE MGE MLE MGE
1D 2D 1D 2D

α 0.0021 0.0048 0.0040 α –0.4758 0.0809 0.1221
N/A (0.0036) (0.0028) (0.0608) (0.0762) (0.0673)

β –0.0339 –0.0720 –0.0612 β 11.1217 –0.6297 –1.5127
N/A (0.0861) (0.0905) (1.6311) (1.0334) (1.0491)

In parenthesis are the estimated standard errors for the estimates. For the MGE, 1D and
2D refer to the 1-dimensional and 2-dimensional MGE’s respectively.

In Table 1, we report the estimates of the parameters α and β in Models I and II with
their estimated standard errors. For comparison, we also present the MLE’s as well as the
MGE’s.18 For Model I, the MLE and MGE yield roughly comparable estimates for both
parameters α and β. In particular, we do not observe any significant differences between
their estimates. Moreover, the discrepancies in the estimates based on the 1-dimensional
and 2-dimensional MGE’s are small and seem to be statistically insignificant. We cannot
report the standard errors of the MLE’s, because their values are negative and nonsensical.
For Model II, the two estimates given by the MLE and MGE are quite distinctive. The
MLE’s seem insensible, and we expect α to be in opposite sign and β to be smaller. In
contrast, the MGE’s appears to be in reasonable ranges for both parameters α and β. The
reader is referred to Aı̈t-Sahalia and Kimmel (2007) for more discussions on the model and
what these parameters represent. The MLE and MGE yield the estimated standard errors
that are largely of the same magnitude.

4.2 Monte Carlo Simulations

For the benchmark model we use in our simulations of Model I, we set the parameter values
(α, β, γ2) = (α0, β0, γ

2
0) with α0 = 0.01579, β0 = −0.219 and γ20 = 0.066652, which were

obtained earlier by Aı̈t-Sahalia (1999) using the exact MLE for the three-months T-bill
rates. Other parameter values are also considered to see how sensitive our results are to the
choice of parameter values. In particular, we report the results from the variant models with
parameter values (α, β, γ2) = (α0/10, β0/10, γ

2
0/10) and (α, β, γ2) = (10α0, 10β0, 10γ

2
0), as

well as our benchmark model. As is well known, the Feller’s square-root process introduced
in (21) has time-invariant marginal distribution that is given by Gamma with parameters
2α/γ2 and −2β/γ2, if 2α/γ2 ≥ 1 and β < 0. Therefore, our variant models have the same
time-invariant marginal distributions as the benchmark model. However, they generate

18We employ the simplex method provided by the fminsearch function of Matlab to find the MLE’s and
MGE’s reported in the table, using as the initial values the exact MLE obtained by Aı̈t-Sahalia (1999) for
Model I, and the parameter values used in the simulation model of Aı̈t-Sahalia and Kimmel (2007) for Model
II.
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Figure 2: Optimal Selection of ∆

The figure shows the plot of standard deviation of the MGE for the parameter β as a
function of ∆. The 1-dimensional and 2-dimensional MGE’s are considered for the second
variant version of Model I and the benchmark version of Model II.

processes with differing levels of persistency, as they have distinctive values for the mean-
reversion parameter β. The first variant model generates a more persistent process, while
the second variant model generates a less persistent process, than the benchmark model.

To simulate Model II, we use for our benchmark model the same parameter values as
those used by Aı̈t-Sahalia and Kimmel (2007) in their simulations of the model, which are
given by (α, β, ρ) = (0.025, 0.94,−0.8) and (µ, ν, ω2) = (µ0, ν0, ω

2
0) with µ0 = 0.3, ν0 = −3

and ω2
0 = 0.252. Note that our model satisfies the required conditions 2µ/ω2 ≥ 1 and

ν < 0 for the stationarity of volatility process. As in our simulations of Model I, we
also consider the variant models defined with the same values of (α, β, ρ), and (µ, ν, ω2) =
(µ0/10, ν0/10, ω

2
0/10) and (µ, ν, ω2) = (10µ0, 10ν0, 10ω

2
0). The volatility processes in our

variant models for Model II defined in (22) therefore have the same time-invariant marginal
distributions as the benchmark model. However, they are more and less persistent, respec-
tively for the first and second variant models, than for the benchmark model. Though we
also look at the models with different values of parameter β in our simulations, we do not
report the details of their results since they are qualitatively the same. The performances
of both the MLE and MGE do not depend much on the value of parameter β in Model II.

As in our empirical illustrations, we numerically search the optimal ∆ for each of the
benchmark and variant models. The actual search is made over the 100 equi-spaced grid
points in the interval, the left and right end points of which are given respectively by the
expected values of the 20 days of quadratic variation and one-twentieth of the total quadratic
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variation of the error process. The values of the end points are obtained analytically using
the parameter values of our simulation models. Consequently, on average, each sampling
interval for the estimation samples has at least 20 observations, and the size of the estimation
samples is no less than 20. In some cases, the optimal ∆ is nicely and uniquely defined
within the interval. For the purpose of illustration, we present some of these cases in Figure
2, which plots the standard deviation of the MGE of the parameter β as a function of ∆
for the second variant model of Model I and the benchmark model of Model II. In other
cases, it is either less conspicuous or given at one of the end points of the interval. Roughly
speaking, the optimal ∆ tends to be more clearly defined as the sampling horizon gets larger
and as the underlying process becomes more stationary.

The simulation results are provided in Tables 2 and 3, respectively, for Models I and
II. In the tables, we report the bias, standard deviation (Std) and root mean squared error
(RMSE) of the MLE and MGE of the parameter β. The reported results are based on
5,000 iterations.19 For Model I, the simulation samples are generated as 1, 260, 5, 040 and
12, 600 daily observations, corresponding respectively to 5, 20 and 50 years of sampling
horizon, using the exact transition starting from the initial stationary distribution. The
exact transition of the process generated by Model II is unknown. Therefore, we follow
Aı̈t-Sahalia and Kimmel (2007) and use the Euler discretization to generate 30 intra-day
samples per day starting from the initial values of 0.1 and ln 100, and collect the required
daily observations of sizes 1, 260, 5, 040, and 12, 600 again for each of the sampling horizons,
5, 20 and 50 years, after discarding the initial 500 daily observations.

The overall performance of the MGE is at least comparable to that of the MLE for
all models considered in our simulations. In particular, the ML approach which fully uses
the structure of the model does not provide any noticeable improvement in finite samples.
We may notice some tendency that the MLE does relatively better than the MGE as the
sampling horizon increases. However, for the normal range of sampling horizons that we
encounter in most practical applications, it is not likely that we see any evidence of the
relative efficiency of the MLE in asymptotic theory. As is well known, the MLE is subject
to some severe bias. The bias of the MLE is unacceptably huge especially when the sampling
horizon is small or only moderately large. The problem mitigates as the sampling horizon
increases, yet the magnitude of bias is far away from being negligible even when the sampling
horizon is as large as 50 years, longer than the most of empirical studies in the literature.
In sharp contrast, the bias of the MGE is generally quite small and becomes truly negligible
in many cases. This is so, even when the sampling horizon is as small as 5 years.

At least for the models we consider in our simulations, we cannot find any evidence
that the 2-dimensional MGE does better than the 1-dimensional MGE. They are largely
comparable across all models and all sampling horizons used in our simulations. We may
see some evidence that the performance of the 2-dimensional MGE tends to be better than
that of the 1-dimensional MGE in terms of RMSE, as the sampling horizon increases. This
is well expected, since the asymptotic variance of the 2-dimensional MGE is smaller than
that of the 1-dimensional MGE. However, the relative advantage of the 2-dimensional MGE

19As for the estimation results in Table 1, we employ the simplex method provided by the fminsearch of
Matlab for both the MLE and MGE using the true parameter values as the initial values.
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over the 1-dimensional MGE does not seem to be significant in any realistic setup. Finally,
for both the MLE and MGE, the performances of estimators improve more fastly as the
sampling horizon increases as the underlying models become more nonstationary. For the
first variant models of both Models I and II, we consistently have faster improvements
of the finite sample performances as the sampling horizon increases, compared with the
corresponding second variant models. Recall that the formers generate processes that are
less mean-reverting in mean and volatility than the latters.

We also examine the finite sample performance of the MGE in the presence of jumps.
For our simulation, we set the jump intensity and the distribution of jump size to be largely
comparable to our results from the jump test for the daily T-bill rates that we use to fit
Model I. For the jump intensity, we let λ = 1 and 1.5, which correspond respectively to the
estimated intensities from the 10% and 1% jump tests.20 Likewise, we let the distribution
of jump size be uniform and symmetrical around the origin taking values between the 25th
and 100th percentiles in modulus of the daily differentials of T-bill rates tested positive for
jumps, net of their fitted drifts.21 As expected, the performance of the MGE deteriorates
as we include jumps in our model. However, as we may see clearly in Table 4, the impact
of jumps on the performance of the MGE is insignificant at least for the jumps we normally
encounter in daily observations. The performance of the MGE tends to depend upon that
of the jump test used in the preliminary step, which is in turn determined by the size and
intensity of jumps. In general, the 1-dimensional MGE is more robust to the presence of
jumps, compared to the 2-dimensional MGE.

5. Conclusion

In the paper, we consider the general conditional mean model in continuous time and
develop a methodology for the statistical inference to analyze the model. Our framework is
quite flexible and accommodates a wide class of continuous time conditional mean models,
including general continuous time asset pricing models derived from no arbitrage condition
and diffusion models as special cases. In particular, we do not impose any restriction on the
error process, allowing for arbitrage forms of stochastic volatilities that are endogenous and
persistent. For the identification and estimation of our model, we only use the condition that
the error process is a martingale. No other conditions, such as the orthogonality conditions
used commonly in conventional approach, are not required. The estimator derived from
our approach, the MGE, is consistent and asymptotically normal under general regularity
conditions. Overall, it performs quite well in finite samples, at least comparably with the
MLE which uses full information on the model, and it greatly improves upon the MLE in
terms of finite sample bias. Unlike the MLE, the bias of the MGE is quite acceptable even
when the sampling horizon is small.

As discussed, we do not consider and utilize any orthogonality conditions implied by our

20Note that λ denotes the expected number of jumps in one year.
21In specifying the distribution of jump size, we exclude the daily differentials of the jump contaminated

T-bill rates net of their fitted drifts up to their 25th percentile in modulus, since they appear to be indistin-
guishable from the realizations of the continuous diffusion term in our model.
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model. It would certainly be possible to combine our martingale condition with any available
orthogonality conditions, whenever we have proper instruments. There are several ways to
jointly implement the orthogonality conditions together with the martingale condition. One
obvious way is to jointly consider the two conditions with appropriate relative weights. It
is also possible that we may derive some moment conditions implied by our martingale
condition, and implement them jointly with other moment conditions given by available
orthogonality conditions. For instance, the estimation samples obtained after time change
in the same way as in the paper have zero mean and unit standard deviation, which can be
added as additional moment conditions to other existing moment conditions. This approach,
which relies exclusively on moment conditions, does not fully utilize all the aspects of the
martingale condition. However, it has some obvious advantages, since it does not require
the error process to be continuous martingale and permits the presence of jumps. Some of
the researches along this line are underway.

Mathematical Appendix

Proof of Lemma 3.1 For any s ≤ t, we have

(Ut − Us)
2 − [U ]s,t = 2

∫ t

s
(Ur − Us)dUr (24)

due to Ito’s formula, and therefore,

E
(
(Ut − Us)

2 − [U ]s,t
)2

= 4E
∫ t

s
(Ur − Us)

2d[U ]r. (25)

Moreover, we have

E
∫ t

s
(Ur − Us)

2d[U ]r ≤ bTE
∫ t

s
(Ur − Us)

2dr

= bT

∫ t

s

(
EU2

r − EU2
s

)
dr

= bT

∫ t

s
(E[U ]r − E[U ]s) dr

≤ b2T

∫ t

s
(r − s)dr

≤ 1

2
b2T (t− s)2, (26)

due to Assumption 3.1, and the fact that EU2
t = E[U ]t for all t ≥ 0. Consequently, we may

easily deduce from (25) and (26) that

E
(
(Ut − Us)

2 − [U ]s,t
)2 ≤ 2b2T (t− s)2 (27)

for all 0 ≤ s ≤ t ≤ T .
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We consider

[U ]t − [U ]δt = [U ]t −
j−1∑
k=1

(Ukδ − U(k−1)δ)
2

=
(
[U ]t − [U ](j−1)δ

)
−

(
j−1∑
k=1

(
(Ukδ − U(k−1)δ)

2 − [U ](k−1)δ,kδ

))
(28)

for (j − 1)δ ≤ t < jδ, j = 1, . . . ,M . We have

max
1≤j≤M

sup
(j−1)δ≤t<jδ

∣∣∣[U ]t − [U ](j−1)δ

∣∣∣ ≤ δbT (29)

due to Assumption 3.1. Moreover,

(Ujδ − U(j−1)δ)
2 − [U ](j−1)δ,jδ = 2

∫ jδ

(j−1)δ
(Ut − U(j−1)δ)dUt,

and
j∑

k=1

(
(Ukδ − U(k−1)δ)

2 − [U ](k−1)δ,kδ

)
is a discrete time martingale, as a sequence in j, with respect to the filtration (Fjδ). There-
fore, we may use Doob’s Lp-inequality [see, e.g., Revuz and Yor (1994, p.52)] and (27) to
have

E
(

max
1≤j≤M

j−1∑
k=1

(
(Ukδ − U(k−1)δ)

2 − [U ](k−1)δ,kδ

))2

≤ 4E

 M∑
j=1

(
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)2

= 4
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E
(
(Ujδ − U(j−1)δ)

2 − [U ](j−1)δ,jδ

)2
≤ 4M

(
2δ2b2T

)
= O

(
δTb2T

)
. (30)

Consequently, it follows from (28), (29) and (30) that

E

(
sup

0≤t≤T

∣∣∣[U ]δt − [U ]t

∣∣∣)2

= O
(
δ2b2T

)
+O

(
δTb2T

)
= O

(
δTb2T

)
,

as was to be shown. �
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Proof of Lemma 3.2 Write

[Y ]δt = [U ]δt +At + 2Bt, (31)

where

At =
∑
jδ≤t

(∫ jδ

(j−1)δ
µ(Xt, θ)dt

)2

Bt =
∑
jδ≤t
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)
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We have
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A2
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2
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(
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)4

(Mδ2)2,

and therefore,

E

(
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)2

= O
(
(δT )2c2T

)
, (32)

due to Assumption 3.2.
On the other hand, it follows from Cauchy-Schwarz inequality that
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Therefore, we have
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from which it follows immediately that

E

(
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|Bt|

)2

= O
(
δT 2(bT cT )

)
. (33)

Note that [U ]δT ≤ bTT , due to Assumption 3.1.
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Now we have from (31), (32) and (33) that

E
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,

and the proof is complete. �

Proof of Corollary 3.3 Let Rδ,T be defined as in (13). Then we have

Tt−Rδ,T
≤ T δ

t ≤ Tt+Rδ,T
,

and therefore, ∣∣∣T δ
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∣∣∣ ≤ ∣∣Tt+Rδ,T
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∣∣ (34)

for all 0 ≤ t ≤ S, since (Tt) is monotonic increasing in t > 0.
However, it follows from Assumption 3.1 that
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for all 0 ≤ s ≤ t ≤ S, and that
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for all 0 ≤ s ≤ t ≤ S. Consequently, we may easily deduce from (34) and (35) that
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E

(
sup

0≤t≤S

∣∣∣T δ
t − Tt

∣∣∣)2

≤
4ER2

δ,T

a2T
,

from which the stated result follows immediately. �

Proof of Lemma 3.4 Let
Kδ,T = δT 2(bT cT ).

We have bT /cT = O(T ) and δ = o(T−4c−1
T ) under Assumption 3.4, from which it follows

that

δTb2T = O
(
δT 2(bT cT )

)
= O(Kδ,T ), (δT )2c2T = o

(
δT 2(bT cT )

)
= o(Kδ,T ).

For R2
δ,T defined in (13), we therefore have

ER2
δ,T = O

(
δT 2(bT cT )

)
= O(Kδ,T ). (36)
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It also follows from the conditions cT /(a
2
T bT ) = O(T ) and δ = o(T−4b−3

T c−1
T ) in Assumption

3.4 that

c
1/2
T

aT

(
ER2

δ,T

)1/2
= O

(
c
1/2
T

aT

(
δT 2(bT cT )

)1/2)
= o

((
δT 2(bT cT )

)1/4)
= o(K

1/4
δ,T ). (37)

Moreover, since dT /(a
2
T b

2
T cT ) = O(T 3) and δ = o(T−4b−3

T c−1
T ) as given in Assumption 3.4,

we may easily deduce that

δ1/2d
1/2
T

aT
= o

((
δT 2(bT cT )

)1/4)
= o(K

1/4
δ,T ). (38)

Finally, if δ = O(T−4−εb−3
T c−1

T ) for some ε > 0 as assumed in Assumption 3.4, then we have

K
1/4−ε
δ,T = o

(
(TbT )

−1/2
)
= o(N−1/2) (39)

for some small enough ε > 0. Note that N∆ ≤ TbT and ∆ is fixed.
We have

√
∆
∣∣∣Zδ

i (θ)− Zi(θ)
∣∣∣ ≤ ∣∣∣(YT δ

i∆
− YT δ

(i−1)∆

)
−
(
YTi∆

− YT(i−1)∆

)∣∣∣
+

∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
∫ Ti∆

T(i−1)∆

µ(Xt, θ)dt

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

∣∣∣∣∣∣ . (40)

Subsequently, we consider each of the three terms in (40) separately. First, we establish

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
∫ Ti∆

T(i−1)∆

µ(Xt, θ)dt

∣∣∣∣∣ = o(N−1/2). (41)

To prove (41), it suffices to show that

E sup
0≤t≤S

sup
θ∈Θ

∣∣∣∣∣
∫ T δ

t

0
µ(Xs, θ)ds−

∫ Tt

0
µ(Xs, θ)ds

∣∣∣∣∣ = o(N−1/2), (42)

since ∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
∫ Ti∆

T(i−1)∆

µ(Xt, θ)dt

∣∣∣∣∣
≤ 2 max

1≤i≤N

∣∣∣∣∣
∫ T δ

i∆

0
µ(Xt, θ)dt−

∫ Ti∆

0
µ(Xt, θ)dt

∣∣∣∣∣
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for all 1 ≤ i ≤ N and θ ∈ Θ. Note that∣∣∣∣∣
∫ T δ

t

0
µ(Xs, θ)ds−

∫ Tt

0
µ(Xs, θ)ds

∣∣∣∣∣ ≤
(

sup
0≤t≤T

sup
θ∈Θ

|µ(Xt, θ)|

)(
sup

0≤t≤S

∣∣∣T δ
t − Tt

∣∣∣) ,

which holds for all 0 ≤ t ≤ S and θ ∈ Θ. Therefore, it follows that

E sup
0≤t≤S

sup
θ∈Θ

∣∣∣∣∣
∫ T δ

t

0
µ(Xs, θ)ds−

∫ Tt

0
µ(Xs, θ)ds

∣∣∣∣∣
≤

E( sup
0≤t≤T

sup
θ∈Θ

|µ(Xt, θ)|

)2
1/2 E( sup

0≤t≤S

∣∣∣T δ
t − Tt

∣∣∣)2
1/2

≤ O(c
1/2
T )

(
ER2

δ,T

)1/2
aT

= o(K
1/4
δ,T ), (43)

from Cauchy-Schwarz inequality, Assumption 3.2, Corollary 3.3 and (37). Now we may
easily deduce (42) from (43) and (39).

Second, we show that

E max
1≤i≤N

∣∣∣(YT δ
i∆

− YT δ
(i−1)∆

)
−
(
YTi∆

− YT(i−1)∆

)∣∣∣ = o(N−1/2), (44)

for which it suffices to prove that

E sup
0≤t≤S

∣∣∣YT δ
t
− YTt

∣∣∣ = o(N−1/2), (45)

since ∣∣∣(YT δ
i∆

− YT δ
(i−1)∆

)
−
(
YTi∆

− YT(i−1)∆

)∣∣∣ ≤ 2 max
1≤i≤N

∣∣∣YT δ
i∆

− YTi∆

∣∣∣
for all 1 ≤ i ≤ N . To establish (45), we note that∣∣∣YT δ

t
− YTt

∣∣∣ ≤ ∣∣∣∣∣
∫ T δ

t

0
µ(Xs, θ0)ds−

∫ Tt

0
µ(Xs, θ0)ds

∣∣∣∣∣+ ∣∣∣UT δ
t
− UTt

∣∣∣
for all 0 ≤ t ≤ S. Since it follows immediately from (42) that

E sup
0≤t≤S

∣∣∣∣∣
∫ T δ

t

0
µ(Xs, θ0)ds−

∫ Tt

0
µ(Xs, θ0)ds

∣∣∣∣∣ = o(N−1/2), (46)

we only need to prove

E sup
0≤t≤S

∣∣∣UT δ
t
− UTt

∣∣∣ = o(N−1/2) (47)

to establish (45).
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Note that
inf

Tt−Rδ,T
≤t≤Tt+Rδ,T

Ut ≤ UT δ
t
≤ sup

Tt−Rδ,T
≤t≤Tt+Rδ,T

Ut,

i.e.,
inf

|s−t|≤Rδ,T

Vs ≤ UT δ
t
≤ sup

|s−t|≤Rδ,T

Vs

for all 0 ≤ t ≤ S. It follows that∣∣∣UT δ
t
− UTt

∣∣∣ ≤ sup
|s−t|≤Rδ,T

|Vt − Vs|

for all 0 ≤ t ≤ S. Therefore, we may deduce that

sup
0≤t≤S

∣∣∣UT δ
t
− UTt

∣∣∣ ≤ sup
0≤t≤S

sup
|s−t|≤Rδ,T

|Vt − Vs| ≤
(
2Rδ,T

)1/2−ε

for any ε > 0, due to the Lévy’s modulus of continuity of Brownian motion [see, for instance,
Karatzas and Shreve (1988, p.114) and Kanaya (2008)]. Consequently, it follows from (36)
that

E sup
0≤t≤S

∣∣∣UT δ
t
− UTt

∣∣∣ ≤ E
(
2Rδ,T

)1/2−ε
= O

((
ER2

δ,T

)(1−ε)/4
)
= O(K

1/4−ε
δ,T )

for any ε > 0, from which and (39) we may readily establish (47). As explained above, (45)
follows immediately from (46) and (47).

Finally, we show that

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

∣∣∣∣∣∣ = o(N−1/2). (48)

Note that we have

max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

∣∣∣∣∣∣
≤ max

1≤i≤N

Mi∑
j=Mi−1+1

∫ jδ

(j−1)δ
sup
θ∈Θ

∣∣∣µ(Xt, θ)− µ(Xjδ, θ)
∣∣∣dt

≤ δ

(
max
1≤i≤N

|Mi −Mi−1|
) sup

|t−s|≤δ

0≤s,t≤T

sup
θ∈Θ

∣∣∣µ(Xt, θ)− µ(Xs, θ)
∣∣∣


=

(
max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)
 sup

|t−s|≤δ

0≤s,t≤T

sup
θ∈Θ

∣∣∣µ(Xt, θ)− µ(Xs, θ)
∣∣∣
 ,
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and therefore,

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

∣∣∣∣∣∣
≤

[
E
(

max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)2]1/2
E
 sup

|t−s|≤δ

0≤s,t≤T

sup
θ∈Θ

∣∣∣µ(Xt, θ)− µ(Xs, θ)
∣∣∣


2
1/2

≤ δ1/2d
1/2
T

[
E
(

max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)2]1/2 , (49)

due in particular to Assumption 3.3. However, we have

max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣ ≤ max
1≤i≤N

∣∣Ti∆ − T(i−1)∆

∣∣+ 2 max
1≤i≤N

∣∣∣T δ
i∆ − Ti∆

∣∣∣ ,
and therefore,

E
(

max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)2 = O

(
1

a2T

)
+O

(
ER2

δ,T

a2T

)
= O

(
1

a2T

)
. (50)

Consequently, it follows from (49) and (50) that

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
∫ T δ

i∆

T δ
(i−1)∆

µ(Xt, θ)dt−
Mi∑

j=Mi−1+1

δµ(Xjδ, θ)

∣∣∣∣∣∣ = O

(
δ1/2

d
1/2
T

aT

)
,

and we have (48) from (38) and (39). The stated result now follows immediately from (41),
(44) and (48), and the proof is complete. �

Proof of Lemma 3.5 We have∣∣∣Πδ
N (z, θ)−ΠN (z, θ)

∣∣∣ ≤ 1

N

N∑
i=1

∣∣∣1{Zδ
id
(θ) ≤ z} − 1{Zid(θ) ≤ z}

∣∣∣
and ∣∣∣1{Zδ

id
(θ) ≤ z} − 1{Zid(θ) ≤ z}

∣∣∣
≤
∣∣∣1{Zδ

i (θ) ≤ z1} · · · 1{Zδ
i−d+1(θ) ≤ zd} − 1{Zi(θ) ≤ z1} · · · 1{Zi−d+1(θ) ≤ zd}

∣∣∣
≤

d∑
j=1

∣∣∣1{Zδ
i−j+1(θ) ≤ zj} − 1{Zi−j+1(θ) ≤ zj}

∣∣∣ .
Moreover, it follows that∣∣∣1{Zδ

i−j+1(θ) ≤ zj} − 1{Zi−j+1(θ) ≤ zj}
∣∣∣ ≤ 1{|Zi−j+1(θ)− zj | ≤ |Zδ

i−j+1(θ)− Zi−j+1(θ)|}.
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However, it follows from Assumption 3.5 that

P{|Zi−j+1(θ)− zj | ≤ |Zδ
i−j+1(θ)− Zi−j+1(θ)|} ≤ KE|Zδ

i−j+1(θ)− Zi−j+1(θ)|,

where K is a constant independent of i, j ≥ 1 and θ ∈ Θ. Finally, note that

E|Zδ
i−j+1(θ)− Zi−j+1(θ)| = o(N−1/2).

and the proof is complete. �

Proof of Lemma 3.6 We define a pseudometric r on Rd as

r(z1, z2) = max
1≤j≤d

[Φ(z1j ∨ z2j)− Φ(z1j ∧ z2j)],

where z1 = (z1j) and z2 = (z2j), and subsequently, introduce a pseudometric ρ on Rd × Θ
given by

ρ((z1, θ1), (z2, θ2)) = r(z1, z2) ∨ ∥θ1 − θ2∥. (51)

Moreover, we let F be a class of random functions

f(z, θ) = 1
{
Zid(θ) ≤ z

}
(52)

indexed by (z, θ) ∈ Rd×Θ. Our proof heavily relies on Andrews and Pollard (1994) applied
with the pseudometric ρ and the class of functions defined in (51) and (52).

Let ε > 0 be given, and consider a rectangle given by R = [z, z] =
∏d

j=1[zj , zj ] ⊂ Rd

with r(z, z) ≤ ε2 and a neighborhood N = {θ ∈ Θ|∥θ − θ0∥ ≤ ε} of θ0 ∈ Θ. Then we may
deduce that [

E sup
x,y∈R,θ∈N

(
1{Zid(θ) ≤ x} − 1{Zid(θ0) ≤ y}

)2]1/2
≤ Kε (53)

as shown below, where and elsewhere in the proof K denotes the generic constant whose
actual value may vary from line to line. To show (53), we note that∣∣∣1{Zid(θ) ≤ x} − 1{Zid(θ0) ≤ y}

∣∣∣
≤
∣∣∣1{Zid(θ) ≤ x} − 1{Zid(θ0) ≤ x}

∣∣∣+ ∣∣∣1{Zid(θ0) ≤ x} − 1{Zid(θ0) ≤ y}
∣∣∣

≤
d∑

j=1

∣∣∣1{Zi−j+1(θ) ≤ xj} − 1{Zi−j+1(θ0) ≤ xj}
∣∣∣

+
d∑

j=1

∣∣∣1{Zi+j−1(θ0) ≤ xj} − 1{Zi−j+1(θ0) ≤ yj}
∣∣∣, (54)
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and that we have∣∣∣1{Zi−j+1(θ) ≤ xj} − 1{Zi−j+1(θ0) ≤ xj}
∣∣∣

≤ 1
{
|Zi−j+1(θ0)− xj | ≤ |Zi−j+1(θ)− Zi−j+1(θ0)|

}
≤ 1

{
|Zi−j+1(θ0)− xj | ≤ ∥θ − θ0∥

∫ T(i−j+1)∆

T(i−j)∆

ν(Xt)dt

}

≤ Kε

∫ T(i−j+1)∆

T(i−j)∆

ν(Xt)dt, (55)

and ∣∣∣1{Zi−j+1(θ0) ≤ xj} − 1{Zi−j+1(θ0) ≤ yj}
∣∣∣ ≤ 1

{
zj ≤ Zi−j+1(θ0) ≤ zj

}
(56)

for j = 1, . . . , d. Consequently, due to (55) and (56), it follows immediately from (54) that

E sup
x,y∈R,θ∈N

(
1{Zid(θ) ≤ x} − 1{Zid(θ0) ≤ y}

)2
≤ Kε2

E(∫ T(i−j+1)∆

T(i−j)∆

ν(Xt)dt

)2

+ 1


from which we may easily deduce (53), by redefining constant K appropriately.

Now we define N(x,F) to be the bracketing number for the set Rd ×N using the class
of functions introduced in (51). It is obvious that we may cover the entire Rd by a set of
O(ε−2d) many rectangles of r-length ε2. Therefore, we have

N(x,F) = x−2d.

To employ the result by Andrews and Pollard (1994, Theorem 2.2), we need to show that
for α(k) = k−c and N(x,F) = x−2d

∞∑
k=1

ka−2α(k)b/(a+b) < ∞ and

∫ 1

0
x−b/(2+b)N(x,F)1/adx < ∞ (57)

hold with some even integers a ≥ 2 and b > 0. Note that the conditions in (57) are satisfied
if and only if

(a− 2)− cb

a+ b
< −1, −d

a
− b

2 + b
> −1,

which hold if and only if
a(a− 1)

c− (a− 1)
< b <

a

d
− 2.

Therefore, the required a and b exist if and only if

a

2d
> 1

and

c >

(a− 1)

[(
1

d
+ 1

)
a− 2

]
2
( a

2d
− 1
) .
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In particular, if we set
a = 4d

and
c > (2d+ 1)(4d− 1),

the required conditions are all met. The proof is therefore complete. �

Proof of Theorem 3.7 We first derive the asymptotic distribution of θ̂N . Given Lemma
3.6, our proof of Theorem 3.7 is largely identical to that of Theorem 5 in Brown and
Wegkamp (2002), which in turn heavily relies on Theorem 3.2 in Wegkamp (1998). Since
our setup and notation are slightly different from theirs, we include a brief sketch of the
proof here. The inclusion of the proof would also make straightforward the proof for the
asymptotic equivalence of θ̂δN and θ̂N , which will be given later.

Note that

QN (θ)−Q(θ) =

∫
[ΠN (z, θ)−Π(z, θ)]2ϖ(dz)

+ 2

∫
[Π(z, θ)−Π(z, θ0)][ΠN (z, θ)−Π(z, θ)]ϖ(dz) (58)

However, due to Lemma 3.6,
√
N [ΠN (z, θ)−Π(z, θ)] is stochastically equicontinuous at θ0

with respect to the Euclidean metric on Θ for all z ∈ Rd, i.e.,
√
N [ΠN (z, θ)−Π(z, θ)]−

√
N [ΠN (z, θ0)−Π(z, θ0)] →p 0 (59)

uniformly in z ∈ Rd, as θ → θ0. Moreover, it follows from Assumption 3.7(b) that

Π(z, θ)−Π(z, θ0) = (θ − θ0)
′Π̇(z, θ0) +R(z, θ), (60)

where
∫
R(z, θ)2ϖ(dz) = o(∥θ − θ0∥2) near θ0.

It follows from (59) and (60) that∫
[ΠN (z, θ)−Π(z, θ)]2ϖ(dz) =

∫
[ΠN (z, θ0)−Π(z, θ0)]

2ϖ(dz) + op(N
−1)

and ∫
[Π(z, θ)−Π(z, θ0)][ΠN (z, θ)−Π(z, θ)]ϖ(dz)

= (θ − θ0)
′
∫

Π̇(z, θ0)[ΠN (z, θ0)−Π(z, θ0)]ϖ(dz) + op

(
N−1/2∥θ − θ0∥

)
near θ0. Therefore, we may easily deduce from (58) that

QN (θ)−Q(θ) =

∫
[ΠN (z, θ0)−Π(z, θ0)]

2ϖ(dz)

+ 2(θ − θ0)
′
∫

Π̇(z, θ0)[ΠN (z, θ0)−Π(z, θ0)]ϖ(dz)

+ op(N
−1) + op

(
N−1/2∥θ − θ0∥

)
(61)
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near θ0.
However, due to the second-order differentiability of Q, it follows that

Q(θ) = Q(θ0) + Q̇(θ0)(θ − θ0) +
1

2
(θ − θ0)

′Q̈(θ0)(θ − θ0) + o(∥θ − θ0∥2)

=
1

2
(θ − θ0)

′Q̈(θ0)(θ − θ0) + o(∥θ − θ0∥2) (62)

near θ0, where Q̇ and Q̈ are respectively the first-order and second-order derivatives of Q.
Note that Q(θ0) = Q̇(θ0) = 0. Consequently, we have from (61) and (62) that

QN (θ) =

∫
[ΠN (z, θ0)−Π(z, θ0)]

2ϖ(dz)

+ 2(θ − θ0)
′
∫

Π̇(z, θ0)[ΠN (z, θ0)−Π(z, θ0)]ϖ(dz)

+
1

2
(θ − θ0)

′Q̈(θ0)(θ − θ0)

+ op(N
−1) + op

(
N−1/2∥θ − θ0∥

)
+ o(∥θ − θ0∥2) (63)

near θ0. Given Assumption 3.7(c) it can therefore be deduced that

√
N(θ̂N − θ0) = −2Q̈(θ0)

−1
√
N

∫
Π̇(z, θ0)[ΠN (z, θ0)−Π(z, θ0)]ϖ(dz) + op(1) (64)

for large N , as in the proof of Theorem 3.2 in Wegkamp (1998). The asymptotic distribution
of θ̂N may be easily derived from (64) as explained in the discussion prior to Theorem 3.7.

Now we show the asymptotic equivalence between θ̂N and θ̂δN . To do so, we write

Qδ
N (θ)−QN (θ) =

∫
[Πδ

N (z, θ)−ΠN (z, θ)]2ϖ(dz)

+ 2

∫
[Πδ

N (z, θ)−ΠN (z, θ)][ΠN (z, θ)−Π(z, θ0)]ϖ(dz). (65)

It follows from Lemma 3.5 that∫
[Πδ

N (z, θ)−ΠN (z, θ)]2ϖ(dz) = o(N−1) (66)

uniformly in θ ∈ Θ. Moreover, we have∣∣∣∣∫ [Πδ
N (z, θ)−ΠN (z, θ)][ΠN (z, θ)−Π(z, θ0)]ϖ(dz)

∣∣∣∣
≤
(∫

[Πδ
N (z, θ)−ΠN (z, θ)]2ϖ(dz)

)1/2(∫
[ΠN (z, θ)−Π(z, θ0)]

2ϖ(dz)

)1/2
= op(N

−1) (67)

near θ0. Therefore, we may deduce from (65), (66) and (67) that∣∣∣Qδ
N (θ)−QN (θ)

∣∣∣ = op(N
−1) (68)

near θ0. The asymptotic equivalence between θ̂N and θ̂δN can therefore be seen easily from
(63), and the proof is complete. �
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Proof of Corollary 3.8 We note that∣∣∣Qδ
N (θ̂δN )−QN (θ̂N )

∣∣∣ ≤ ∣∣∣Qδ
N (θ̂δN )−QN (θ̂δN )

∣∣∣
+
∣∣∣QN (θ̂δN )−QN (θ0)

∣∣∣+ ∣∣∣QN (θ̂N )−QN (θ0)
∣∣∣ ,

and that ∣∣∣QN (θ̂δN )−QN (θ0)
∣∣∣ , ∣∣∣QN (θ̂N )−QN (θ0)

∣∣∣ = op(N
−1)

due to (63), and ∣∣∣Qδ
N (θ̂δN )−QN (θ̂δN )

∣∣∣ = op(N
−1)

due to (68), from which the first part follows immediately. The second part can also be
deduced straightforwardly from (63) and (64). �

Proof of Lemma 3.9 To prove the stated result, it suffices to show that

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
Mi∑

j=Mi−1+1

δµ(Xjδ, θ) −
Mi∑

j=Mi−1+1

δµ(X̄jδ, θ)

∣∣∣∣∣∣ = o(N−1/2) (69)

with δMi = T δ
i∆. To establish (69), we note that∣∣∣∣∣∣

Mi∑
j=Mi−1+1

δµ(Xjδ, θ) −
Mi∑

j=Mi−1+1

δµ(X̄jδ, θ)

∣∣∣∣∣∣ ≤ δ

Mi∑
j=Mi−1+1

∣∣µ(Xjδ, θ)− µ(X̄jδ, θ)
∣∣

≤ δ

(
sup

0≤t≤T
ν(Xt)

)
Mi∑

j=Mi−1+1

∣∣Xjδ − X̄jδ

∣∣
≤ O(eT )

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣( sup
0≤t≤T

∣∣Xt − X̄t

∣∣) ,

from which it follows that

max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
Mi∑

j=Mi−1+1

δµ(Xjδ, θ) −
Mi∑

j=Mi−1+1

δµ(X̄jδ, θ)

∣∣∣∣∣∣
≤ O(eT )

(
max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)( sup
0≤t≤T

∣∣Xt − X̄t

∣∣) .
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Therefore, by Cauchy-Schwarz, we may easily deduce that

E max
1≤i≤N

sup
θ∈Θ

∣∣∣∣∣∣
Mi∑

j=Mi−1+1

δµ(Xjδ, θ) −
Mi∑

j=Mi−1+1

δµ(X̄jδ, θ)

∣∣∣∣∣∣
≤ O(eT )

[
E
(

max
1≤i≤N

∣∣∣T δ
i∆ − T δ

(i−1)∆

∣∣∣)2
]1/2 E( sup

0≤t≤T

∣∣Xt − X̄t

∣∣)2
1/2

= O(eT )O

(
1

aT

)
O(δpT q) = O

(
eT
aT

δpT q

)
,

due, in particular, to (50). The stated result now readily follows upon noticing that

eT
aT

δpT q = o
(
(TbT )

−1/2
)

under the given condition for δ, and that N∆ ≤ TbT and ∆ is fixed. �
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