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Correlated Risks vs Contagion in Stochastic Transition Models

Abstract

There is a growing literature on the possibility to identify correlation and contagion in qual-

itative risk analysis. Our paper considers this question by means of a model describing the joint

dynamics of a set of individual binary processes. The two admissible values correspond to bad and

good risk states of an individual. The risk correlation and its time dependence are captured by in-

troducing a dynamic frailty, whereas the contagion passes through the effect of the lagged number

of individuals in the bad risk state. We study carefully the dynamic properties of the joint dynamic

process. Then, we focus on the limiting case of large populations (portfolios) and reconcile the

microscopic and macroscopic dynamic views of the risk. The difficulty to identify in finite sample

risk correlation and contagion is illustrated by means of Monte-Carlo simulations.

Keywords: Risk Dependence, Frailty, Systematic Risk, Contagion, Count Process, INAR Model,

Compound Autoregressive Process, Affine Model, Credit Risk, Granularity Adjustment.

JEL classification: G12, C23.
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1 Introduction

It has been recognized rather recently that large portfolios of individual risks, such as mortgages,

credit default swaps, or life insurance contracts, cannot be fully diversified. This is due to the de-

pendence between individual risks, which arises from exposure to common exogenous risk factors,

called systematic risk (or frailty), but also from contagion phenomena. Let us discuss in this re-

spect the literature for default risk 1, even if the literature on common risk factors and contagion is

older [see Freund (1961), Oakes (1989)]. This literature distinguishes structural approaches, based

on Merton’s model for default risk [see e.g. Vasicek (1997), Hull, White (2001)], and reduced

form approaches, which involve either copulas, or stochastic default intensities 2. Similarly, we

distinguish structural and reduced form modelling of contagion. The structural models will for

instance consider the guarantees introduced in the credit contracts [Ebert, Luetkebohmert (2010),

Gourieroux, Monfort (2010)], the structure of the debt of the borrowers [Rochet, Tirole (1996),

Bolton, Scharfstein (1996), Bris, Welch (2005)], the liquidity shortages [Allen, Gale (2000)], or

the counterparty risk [Jarrow, Yu (2001), Walker (2005), Egloff, Leippold, Vanini (2007), Brigo,

Pallavicini (2007), Jorion, Zhang (2009)]. Such structural approaches require a detailed microeco-

nomic knowledge of the debt structure. Since the interrelations between borrowers and lenders are

complicated, this type of structural analysis can be applied to a small number of individual risks

only. The reduced form models for contagion try to capture how the defaults of some individuals

influence the default intensities of the individuals, who are still alive. They are either i) dynamic

models written in continuous time, at the individual level 3 [see Azizpour, Giesecke (2008), a,b,

Lando, Nielsen (2009)], based on the notion of mutually exciting point processes introduced by

Hawkes (1971) a,b, Hawkes, Oakes (1974) or ii) based on the epidemic model introduced by Bai-

ley (1953, 1957), Kendall (1956) [see the so-called infectious model used in a static framework

by Davis, Lo (2001) a,b, Sakata, Isakado, Mori (2007), and its dynamic extension by Rulliere,

1Such a literature has also been developed for application in health insurance [see e.g. Gschlossl, Czado (2006)].
2See Li (2000), Schonbucher, Schubert (2002), Frey, McNeil (2003), Giesecke (2004) for reduced form models

with copulas, and Duffie, Singleton (1999), Delloy, Fermanian, Shai (2005), Koopman, Lucas, Monteiro (2005), Das,

Duffie, Kapadia, Saita (2007), Duffie, Eckner, Horel, Saita (2009) for stochastic intensity models.
3These models have to be distinguished from dynamic macroscopic models introduced to capture the volatility

transmission [Gallo, Otranto (2007)], or the jump transmission [Ait-Sahalia, Cacho-Diaz, Laeven (2010)] between

markets, even if they share common features with the microscopic models introduced for individual risks.
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Dorobantu, Cousin (2010), for the application to credit risk]. However, it is still difficult to specify

tractable models taking into account both systematic factor and contagion, and able to disentangle

these two effects.

In our paper, we consider this problem for a transition model in discrete time, at a semi-

aggregate level with respect to time and individual. Instead of following the dynamic of individual

risks, we follow the dynamic of counts of individuals in the different classes of risk. Therefore,

we introduce dynamic models for count processes, with both systematic factor and contagion. The

analysis at a semi-aggregate level has two advantages. First, it is less demanding in terms of data

confidentiality. Second, it allows for a modelling by means of affine processes, which are tractable

for prediction purposes.

We consider in Section 2 an homogenous population of individuals with an endogenous di-

chotomous characteristic following a same homogenous Markov chain. We introduce the counting

process defining the number of individuals in state 1 at each date, and show that this is a Markov

process with a binomial autoregressive (BinAR) dynamics of order 1. For large population size, al-

ternative limiting processes can be derived, depending whether we apply the Gaussian, or Poisson

approximation of the binomial distribution. This leads to a Gaussian autoregressive [resp. Integer

Autoregressive (INAR)] approximation. Section 3 explains how correlated risks and contagion

can be introduced in a BinAR model, and in its two limiting counterparts. In Section 4 we present

the results of some simulation experiments for a logistic model with frailty and contagion, and an

INAR model with stochastic intensity. Section 5 concludes. Proofs are gathered in Appendices.

2 From the homogenous Markov chain to the Gaussian AR(1)

and INAR (1) processes

2.1 Time-homogenous Markov chain

Let us denote by (yt, t ∈ N) a time-homogenous Markov chain with two states 0 and 1. The

transition of this chain is characterized by the 2× 2 matrix:
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P =


 p00 p01

p10 p11


 , (2.1)

where pij = P [yt = i|yt−1 = j], for i, j = 0, 1. The transition probabilities are such that pij ≥ 0,

for any i, j, and p0j + p1j = 1, for j = 0, 1. The transition matrix admits the eigenvalues 1 and

ρ = p00 + p11 − 1. Parameter ρ measures the within state stability of the chain. The stationary

distribution of the chain (1 − µ, µ)′, say, is an eigenvector of transition matrix P associated with

the unitary eigenvalue. Parameter µ is given by:

µ =
p10

p10 + p01

,

and is also equal to the probability to be in state 1 after a change of state.

The transition matrix can be equivalently written either in terms of the transition probabilities,

or by means of the two parameters ρ and µ. Indeed, we have:

P =


 1− µ 1− µ

µ µ


 + ρ


 µ −(1− µ)

−µ 1− µ


 . (2.2)

The transition matrix of the chain at horizon h is:

P h =


 1− µ 1− µ

µ µ


 + ρh


 µ −(1− µ)

−µ 1− µ


 . (2.3)

This highlights alternative interpretations of parameters µ and ρ, when |ρ| < 1. Parameter µ (or

equivalently the stationary distribution) is a long run parameter since limh→∞ P h =


 1− µ 1− µ

µ µ


,

whereas ρ provides the speed of adjustment towards this long run equilibrium. These parameters

can be fixed independently: µ (resp. ρ) is constrained to be between 0 and 1 (resp. between −1

and 1).

2.2 The binomial autoregressive (BinAR) process

Let us now consider an homogenous population of individuals indexed by i, for i = 1, . . . , n. We

assume that the individual state histories (yi,t), i = 1, . . . , n are independent time-homogeneous

Markov chains with the same two-state transition matrix P . According to the type of application,
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states 0 and 1 can have the following interpretations: low risk / high risk (for insured people),

investment rating / speculative rating (for corporate bonds), holder of an insurance contract / not

holder (for customers), ill/not ill (for individuals), low liquidity / high liquidity level [for banks,

see e.g. Giesecke, Weber (2006)]. At each date t, we compute the count Nt of individuals in state

1 (resp. n−Nt in state 0), and follow the structure of this homogenous population over time.

To analyse the transition distribution of process Nt, we can note that Nt = N1t+N0t, where N1t

(resp., N0t) is the number of individuals in state 1 at date t− 1 and staying in this state at t (resp.,

in state 0 at date t − 1 and changing of state between t − 1 and t). Conditional on past individual

histories, variables N1t and N0t are independent, with conditional binomial distributions:

N1t ∼ B(Nt−1, p11), N0t ∼ B(n−Nt−1, p10),

respectively. We deduce the proposition below.

Proposition 1: Under the assumption of individual independent identically distributed Markov

chains, the process (Nt) is a Markov process, with values on {0, 1, . . . , n} and transition distribu-

tion:

B(Nt−1, p11) ∗ B(n−Nt−1, p10),

where ∗ denotes the convolution operator.

In the probabilistic literature, this property is usually written by means of the binomial thinning

operator [see Steutel, Van Harn (1979)], defined by

p ◦N =
N∑

i=1

ui,

where ui, for i = 1, . . . , n, is a sequence of i.i.d. random variables admitting a Bernoulli distribu-

tion with parameter p, and N ∈ N. With this notation, we have:

Nt = p11 ◦Nt−1 + p10 ◦ (n−Nt−1),

where the two components of the sum are independent conditional on Nt−1.
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The conditional Laplace transform of count Nt is given by:

ψ1(u) = Et−1[exp(−uNt)]

= [1− p11 + p11 exp(−u)]Nt−1 [1− p10 + p10 exp(−u)]n−Nt−1

= exp

{
n log[1− p10 + p10 exp(−u)] + Nt−1 log

[
1− p11 + p11 exp(−u)

1− p10 + p10 exp(−u)

]}
, (2.4)

where Et−1 denotes the conditional expectation given the past individual histories. It is defined for

u ≥ 0 and characterizes the transition of the nonnegative process (Nt) [see Feller (1968)]. The

conditional Laplace transform is an exponential affine function of lagged count value Nt−1. Thus,

process (Nt) is a compound autoregressive process of order 1 [CaR(1), see Darolles, Gourieroux,

Jasiak (2005)]. 4

The transition of process (Nt) at horizon h is B(Nt−1, p
(h)
11 )∗B(n−Nt−1, p

(h)
10 ), where p

(h)
ij is the

(i, j) element of matrix P h. From equation (2.3), these elements are given by p
(h)
11 = µ+ρh(1−µ)

and p
(h)
10 = µ(1− ρh). In particular, the stationary distribution of (Nt) obtained for h →∞, is the

binomial distribution B(n, µ).

To summarize, count process (Nt) is such that the conditional distributions of both components

N1t and N0t are binomial, and its unconditional (stationary) distribution is binomial too. This

justifies the terminology binomial autoregressive [BinAR(1)] process of order 1. However, the

transition of the BinAR(1) process is not binomial itself.

2.3 The limiting Gaussian AR(1) process

When the population size is large and the transition probabilities are fixed, the binomial distribution

can be approximated by a Gaussian distribution. Equivalently, in terms of processes, the binomial

autoregressive process can be approximated by a Gaussian process.

Proposition 2: Let n →∞ and transition matrix P be fixed. Then, the process Xn,t =
√

n(Nt/n−
µ), for t ∈ N, converges in distribution to the Gaussian autoregressive process of order 1, denoted

(ξt), such that:

ξt = ρξt−1 + ηεt, (2.5)

4The CaR processes are called affine processes in the continuous time literature, since the conditional log-Laplace

transform is an affine function of the lagged value of the process [see e.g. Duffie, Filipovic, Schachermayer (2003)].
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where εt ∼ IIN(0, 1) and η2 = (1− µ)p10(1− p10) + µp11(1− p11) = µ(1− µ)(1− ρ2).

Proof: See Appendix 1.

The autoregressive coefficient is equal to the speed of adjustment of the BinAR(1) process. The

innovation variance is such that the unconditional distribution of (ξt) is N [0, µ(1− µ)].

2.4 The limiting INAR(1) process

The integer valued autoregressive process (INAR) has been initially introduced in Mc Kenzie

(1985) and Al-Osh, Azaid (1987) [see also Mc Kenzie (1988) and Azaid, Al-Osh (1990)]. We

derive it below as a limiting case of a binomial autoregressive process, when p01 is fixed, but

p10 tends to zero when the population size n tends to infinity, such that np10 ∼ λ, say, where

λ > 0. Under these conditions, we get p11 ∼ ρ and nµ ∼ λ/(1 − ρ), and we can use the Poisson

approximation of some binomial distributions. In particular, the stationary distribution of Nt is

P [λ/(1 − ρ)]. It does not explode with n; thus, n − Nt−1 tends to infinity at speed n and the

binomial distribution B(n − Nt−1, p10) is approximately Poisson P(λ), too. We deduce that the

limiting process is the INAR(1) process defined below.

Proposition 3: Let n → ∞ and the transition probabilities be such that np01 → λ, for λ > 0,

and p11 is fixed. Then, the limiting process is an integer valued autoregressive process of order

1 [INAR(1)]. Conditionally on the past, N1t and N0t are independent with distributions N1t ∼
B(Nt−1, ρ) and N0t ∼ P(λ), respectively. The stationary distribution of (Nt) is P [λ/(1− ρ)].

The conditional Laplace transform of count Nt at horizon 1 is:

ψ1(u) = exp{−λ[1− exp(−u)] + Nt−1 log[1− ρ + ρ exp(−u)]}. (2.6)

The INAR(1) process is another example of CaR (affine) process of order 1 [Darolles, Gourieroux,

Jasiak (2006)].
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3 Correlated risks versus contagion

The basic models considered in Sections 2.2-2.4 assume a double homogeneity with respect to

both individual and time. In this section, we still assume individual homogeneity, but consider

time heterogenous Markov chains, i.e., chains with time dependent transition matrix Pt, say. We

specify Pt in order to clearly disentangle correlated risks and contagion.

3.1 Modelling the correlation vs modelling the contagion

To illustrate the discussion below, let us interpret the states as not ill/ill. Then, p10 is the probability

to get the disease for an individual currently in good health, whereas p01 is the probability to

recover. We focus on a time dependent transition probability p10t
5. Thus, we get:

Pt =


 p00t p01

p10t p11


 .

i) The dependence between individual risks to get the disease is generally introduced by consid-

ering a common stochastic intensity p10t, or equivalently, by assuming that p10t = p10(Ft), where

Ft is an unobservable factor 6 [see e.g. Duffie, Singleton (1999), Schonbucher (2000), Delloy,

Fermanian, Sbai (2005), Duffie, Eckner, Horel, Saita (2009) for credit risk applications]. This un-

observable common factor is called common dynamic frailty in the credit risk literature by analogy

with the terminology introduced by Vaupel, Manton, Stallard (1979) for application in demography
7.

5In other applications, such as low liquidity / high liquidity, both p10 and p01 can depend on time t [see e.g.

Giesecke, Weber (2006)].
6For a homogenous population, any dependence structure can always be represented by means of such a factor

representation [de Finetti (1931), Hewitt, Savage (1955)] with possibly an infinite dimensional factor. In particular,

the copula based approach [see e.g. Li (2000), Schonbucher, Schubert (2002)] can be rewritten in this way.
7The terminology frailty has to be used carefully. In a general framework the transition probability p10,i,t can

dependent on both individual i and time t, and different unobservable factors can be introduced, that are a pure

individual effect Fi, a pure time effect Ft, or a joint unobservable effect Fit. The standard frailty terminology concerns

models with independent individual effects Fi [see Greenwood, Yule (1920) for the first introduction of unobserved

individual heterogeneity in the literature]. The aim is to account for omitted individual variables and explain the bias

due to the fact that less fragile individuals will recover earlier. Joint individual and time effects have been introduced

in the microeconometric literature to represent the effort to diminish risk by individuals and capture the moral hazard
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ii) In a homogenous population the contagion effect explains how the number of ill people

influences the probability to become sick for individuals currently in good health. This corresponds

to a dependence of the type p10t = p10(Nt−1), where p10 is a deterministic function. This is a

multivariate extension of Freund model for an homogenous population [Freund (1961)].

In the analysis of social effects, the literature distinguishes in a similar vein between endoge-

nous effects, corresponding to contagion (also called peer effects, neighbourhood effects, herd

behaviour, ...), and correlated effects, corresponding to the frailty [see Manski (1993)]. A dynamic

binomial model with both risk correlation and contagion is defined by the following assumptions:

Assumption A.1: The individual risk variables yit, i = 1, . . . , n at date t are independent con-

ditional on the past individual histories yi,t−1, i = 1, . . . , n, and on the current and past factor

values Ft.

Assumption A.2: The conditional distribution of yi,t depends on individual histories by means of

yi,t−1 and Nt−1 only, and on the factor path by means of Ft only. The corresponding transition

matrix, conditional on Ft and yi,t−1, i = 1, . . . , n, is:

Pt =




1− p10(Ft, Nt−1) p01

p10(Ft, Nt−1) p11


 .

Assumption A.3: The conditional distribution of Ft given Ft−1, yi,t−1, i = 1, . . . , n, depends on

Ft−1 only, and admits the transition pdf g(ft|ft−1).

Thus, the common factor has an exogenous Markovian dynamics and represents the external

shocks influencing the probability to get the disease, such as environmental conditions, whereas

contagion is an endogenous phenomenon.

In the model above, we have implicitly assumed that contagion arises with one lag. This recur-

phenomenon [see Gourieroux, Jasiak (2001) for an application to bonus-malus in motor insurance contracts]. In

the framework above, similar to the standard one encountered in the credit risk literature, a stochastic time effect is

introduced, that is, all individuals have at a given date the same degree of fragility. This explains the more precise

terminology ”common dynamic frailty” used in our framework [see also Duffie, Eckner, Horel, Saita (2009), p2096].
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sive approach avoids the question of simultaneous contagion arising in discrete time models with

p10(Ft, Nt) [see Manski (1993)] and in continuous time models [see e.g. Jarrow, Yu (2001)], as

well as the associated identification problem, often called the reflection problem [Manksi (1993)].

We have also assumed that the influences of different sick people are the same. It would be possi-

ble to extend the model by assuming that contagion can arise with a limited number of neighbours

[see e.g. Giesecke, Weber (2006)], or depend on individual characteristics of sick people.

The conditional distribution of Nt given Ft, Nt−1 becomes:

B(Nt−1, p11) ∗ B(n−Nt−1, p10(Ft, Nt−1)), (3.1)

and the joint process (Ft, Nt) is Markovian. The conditional distribution of Nt given Nt−1 only is

derived by integrating out the unobservable factor path. More precisely, this conditional probability

is given by:

P [Nt = nt|Nt−1 = nt−1, F0 = f0] =

∫
· · ·

∫ t∏
τ=1

p[nτ |nτ−1, fτ ]
t∏

τ=1

[g(fτ |fτ−1)dfτ ]

∫
. . .

∫ t−1∏
τ=1

p[nτ |nτ−1, fτ )
t−1∏
τ=1

[g(fτ |fτ−1)dfτ ]

, (3.2)

where p(nt|nt−1, ft) denotes the elementary probability of the conditional distribution (3.1). The

factor integration creates a contemporaneous dependence between individual risks, but also an

increase of the memory for count process (Nt), which is no longer Markovian.

Formula (3.2) shows that the effect of lagged counts Nt−1 on the distribution of current count

Nt has three origins: i) the dependence of Nt on Nt−1 in the basic binomial autoregressive process;

ii) the contagion effect, that is, the dependence of p10t with respect to Nt−1; iii) the unobservability

of the common dynamic frailty, which introduces the effect of Nt−1 by means of the filtering distri-

bution of Ft given Nt−1. These different effects of Nt−1 corresponding to the transition model, the

contagion and the frailty filtering 8, respectively, can only be identified for special parameterized

models.

Finally, in finite populations the affine property of process (Nt), and even of joint process

(Nt, Ft), is not fulfilled in general. We describe below two limiting cases in which the affine

property is (partially) recovered. They correspond to the limiting Gaussian AR(1) and INAR(1)

processes, respectively.
8See e.g. Collin-Dufresne, Goldstein, Helwege (2003) for a discussion of the effect of the updating of beliefs.
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3.2 The limiting models

The introduction of correlated risks and contagion in the limiting Gaussian autoregressive and

INAR models is deduced by considering a large population and cross aggregating over the popula-

tion. Thus, the limiting models explain how to pass from a microscopic analysis to a macroscopic

one [Fournier, Meleard (2004)].

i) Limiting Gaussian autoregressive model

(*) Let us first consider a model with contagion effect only, that is, p10,t = p10(Nt−1/n), say,

where p10(.) is a given function. The conditional moments of Nt/n are:

Et−1(Nt/n) = p11Nt−1/n + (1−Nt−1/n)p10(Nt−1/n),

Vt−1(Nt/n) =
1

n

{
p11(1− p11)Nt−1/n + p10(Nt−1/n)[1− p10(Nt−1/n)](1−Nt−1/n)

}
.

The conditional variance tends to 0, when n tends to infinity. This suggests that the variable Nt/n

converges in quadratic mean to an equilibrium value µ, say, solution of the equation:

µ = p11µ + (1− µ)p10(µ), (3.3)

whenever p10(.) is a continuous function. Moreover, if p10(.) is first-order differentiable, we get:

p10(Nt−1/n) ' p10(µ) +
dp10(µ)

dµ
(Nt−1/n− µ)

= p10(µ) +
1√
n

dp10(µ)

dµ
Xn,t−1.

This expansion modifies the basic limiting result in Proposition 2 [see Appendix 1]. We get the

following result:

Corollary 1: Let us consider a pure contagion model with p10t = p10(Nt−1/n) and define Xn,t =
√

n(Nt/n−µ), where µ is the solution of equation (3.3). When n →∞, the process Xn,t converges

in distribution to a process ξ∗t such that:

ξ∗t = ρ∗ξ∗t−1 + η∗ε∗t ,

where ε∗t ∼ IIN(0, 1) and:

η∗2 = µp11(1− p11) + (1− µ)p10(µ)[1− p10(µ)],

ρ∗ = p11 − p10(µ) + (1− µ)
dp10(µ)

dµ
.
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Let us denote Ψ0(µ) = p11µ + (1− µ)p10(µ). Thus, the equilibrium value µ is a fixed point of

function Ψ0, whereas the limiting autoregressive parameter ρ∗ =
dΨ0(µ)

dµ
is the slope of function

Ψ0 at this point. Intuitively, the Gaussian limiting process is stationary if the fixed point is stable.

(**) In the general case with both correlated risks and contagion, we have p10t = p10(Ft, Nt−1/n).

By the same arguments as above, Nt−1/n tends to a limit µt−1 when n tends to infinity, where µt

satisfies the recursive equation:

µt = p11µt−1 + (1− µt−1)p10(Ft, µt−1), (3.4)

which is the analogue of equation (3.3). Due to common factor Ft, the long run equilibrium at date

t is now a dynamic stochastic equilibrium, which depends on the complete factor history. Corollary

1 becomes:

Corollary 2: Let us consider a model such that p10,t = p10(Ft, Nt−1/n) and define Xn,t =
√

n(Nt/n− µt), where the stochastic process (µt) of long run equilibria satisfies recursive equa-

tion (3.4). When n →∞, the process (Xn,t) converges in distribution to a process ξ∗t such that:

ξ∗t = ρ∗t ξ
∗
t−1 + η∗t ε

∗
t , (3.5)

where ε∗t ∼ IIN(0, 1) and:

η∗2t = µt−1p11(1− p11) + (1− µt−1)p10(Ft, µt−1)[1− p10(Ft, µt−1)],

ρ∗t = p11 − p10(Ft, µt−1) + (1− µt−1)
∂p10

∂µ
(Ft, µt−1).

We get a 3-dimensional nonlinear state space model, with state vector (ξ∗t , µt, Ft). It is inter-

esting to understand why the initial 2-dimensional state space (Nt, Ft) of the extended dynamic

binomial process has been transformed into a 3-dimensional state space in the limiting case. In

fact, we have:

Nt/n = µt +
1√
n

ξ∗t + o(1/
√

n). (3.6)

Processes µt and ξ∗t are providing the two first terms in the expansion of Nt/n in a neighbourhood

of an infinite size n. They correspond to the cross-sectionally asymptotic (CSA) and granularity

adjustment (GA) components, respectively, in the granularity approach developed in Basel 2 [see

e.g. Gordy (2004), Gagliardini, Gourieroux, Monfort (2010)]. As noted before, µt provides the
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dated long run equilibrium computed from a crystallized homogenous Markov chain with time

independent transition matrix fixed at its current value. As seen from recursive equation (3.4), µt

is a deterministic function of the current and lagged factor values. In particular, the sequence (µt) is

stochastic, affected at each date by new shocks and does not converge when t tends to infinity. The

cross-sectional limiting analysis shows that the sequence of granularity adjustments (ξ∗t , t ∈ N)

has a simplified dynamics, which is linear Gaussian given the current and lagged values of Ft, µt.

Different specifications of probability function p10 can be introduced. For instance, we can

consider a standard probit function with both frailty and lagged count as explanatory variables.

This specification arises in the extension of the value of the firm model to contagion effects [see

Rosch, Winterfeld (2008) for such an extension in a static framework]. A specification of p10 based

on a logit function is analysed by means of simulation experiments in Section 4. Here we focus on

two examples with pure contagion, and pure frailty effects, respectively.

Example 1: Logistic contagion

As an illustration, let us consider a pure contagion model with logistic contagion scheme:

p10t = p10(Nt−1/n) =
1

1 + exp(−aNt−1/n− b)
. (3.7)

This logistic scheme is for instance considered for credit risk analysis in PortfolioView by Mc

Kinsey. The long run equilibrium value [see (3.3)] is solution of the equation:

1− µ

µ

1

1 + exp(−aµ− b)
= 1− p11. (3.8)

We prove in Appendix 2 that this solution µ = µ(a, b, p11) exists, is unique and increasing with

respect to parameters a, b, p11. We also prove that the autoregressive coefficient ρ∗ = ρ∗(a, b, p11)

in Corollary 1 is such that |ρ∗| < 1 for any values of a ≥ 0, b > 0 and p11 ∈ (0, 1). Hence the limit

process (ξ∗t ) is stationary for any such parameter choice.

In Figure 1 we display the equilibrium value µ and the autoregressive coefficient ρ∗ as functions

of parameter a, for different values of parameters p11 and b.

[Insert Figure 1: Equilibrium value and autoregressive coefficient in the logistic model.]

The equilibrium value µ features an increasing pattern w.r.t. parameter a and approaches the max-

imum value 1/(2− p11) when a gets large. The pattern of the autoregressive coefficient ρ∗ can be
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non-monotone w.r.t. parameter a, and ρ∗ becomes negative for large a. The intuition for negative

autoregressive coefficients is the following: For given values of p11 and b, when parameter a is suf-

ficiently large the contagion probability π10(µ) is such that π10(µ) > p11. Then, at equilibrium the

contagion probability is larger than the probability to remain sick. Suppose now we move Nt−1/n

upward from equilibrium such that Nt−1/n > µ. Then, the probability of contagion π10(Nt−1/n)

increases, but the proportion of individuals 1−Nt−1/n that can be contaged decreases. If the latter

effect dominates, on average the proportion of sick individuals will be below the equilibrium, that

is, Nt/n < µ. Hence, a positive shock on Xn,t−1 is followed by a negative shock on Xn,t, which

explains the negative autocorrelation coefficient.

Example 2: Pure frailty model

Let us consider the limiting model with frailty only. We have p10(Ft, µt−1) = p10(Ft) ≡ F ∗
t ,

where the transformed factor process F ∗
t admits values in (0, 1). The dynamic equation defining

the sequence of equilibria becomes:

µt = p11µt−1 + (1− µt−1)F
∗
t

= (p11 − F ∗
t )µt−1 + F ∗

t . (3.9)

In particular, if factor (F ∗
t ) is a strong white noise, the sequence of dynamic equilibria satisfies a

bilinear model of order 1 [see Granger and Andersen (1978), Pham, Tran (1981)]. 9 By recursive

substitution, we get:

µt = F ∗
t +

∞∑

h=1

[
h−1∏

k=0

(p11 − F ∗
t−k)

]
F ∗

t−h, (3.10)

whenever the series in the right hand side exists.

Let us assume that process (F ∗
t ) in (0, 1) is strictly stationary and ergodic. Then, the stationarity

conditions for process (µt) can be derived from the results in Brandt (1986) [see also Pham, Tran

(1981) and Bougerol, Picard (1992) when (F ∗
t ) is a strong white noise]. Specifically, process (µt)

defined in (3.10) is the unique strictly stationary solution of the stochastic recursive equation (3.9)

9Process (µt) defined in (3.9) slightly differ from the definition of bilinear process of order 1 adopted in Pham,

Tran (1981) since the shock in the stochastic autoregressive coefficient p11 − F ∗t is equal to the innovation F ∗t , and

not to its lagged value.
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if:

E [log |p11 − F ∗
t |] < 0. (3.11)

The latter condition is satisfied for any p11 ∈ [0, 1]. Moreover, when p11 < 1, we have µt < 1

a.s. and equation (3.9) can be solved for F ∗
t to get F ∗

t =
µt − p11µt−1

1− µt−1

. Hence, process (µt) is

invertible and the information sets associated with the factor process (F ∗
t ) and the sequence of

dynamic equilibria (µt) are the same.

ii) INAR model with correlated risks and contagion

When np10t is equivalent to λt = λ(Ft, Nt−1), as n tends to infinity, we get a limiting INAR

model with stochastic intensity. This type of model is especially simple if the stochastic intensity

λt is an affine function of both Ft and Nt−1, and moreover (Ft) is itself an affine process. More

precisely, let us assume:

Assumption A.4: λt = c0 + c1Ft + c2Nt−1, with c0 > 0, c1 ≥ 0 and c2 ≥ 0.

Assumption A.5: The factor process is a positive compound autoregressive process with condi-

tional Laplace transform:

ψ1t(u) = E[exp(−uFt+1)|Ft, Nt] = exp[−α(u)Ft − β(u)], (3.12)

for some positive functions α and β.

Since the conditional Laplace transform depends on Ft only, the factor features an exogenous

dynamics.

Proposition 4: Under Assumptions A.4-A.5, the INAR process with stochastic intensity is such that

the bivariate process (Nt, Ft) is a CaR(1) process with conditional Laplace transform:

ψ1t(u, v) = E[exp(−uNt+1 − vFt+1)|Nt, Ft]

= exp
{
− c0[1− exp(−u)]− β

(
v + c1[1− exp(−u)]

)

−Nt

(
c2[1− exp(−u)]− log[1− ρ + ρ exp(−u)]

)− Ft α
(
v + c1[1− exp(−u)]

) }
.

Proof: See Appendix 3.
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The advantage of the specification above is the simple characterization of the case with corre-

lated risks only (resp. contagion only), which corresponds to the restriction c2 = 0 (resp. c1 = 0).

These hypotheses can be easily tested in practice once a parametric specification is chosen for the

factor dynamics. For instance, it can be assumed that the factor is an autoregressive Gamma pro-

cess (ARG) of order 1 [Gourieroux, Jasiak (2006)], that is, a time discretized Cox, Ingersoll, Ross

process [Cox, Ingersoll, Ross (1985)]. The corresponding conditional Laplace transform is given

by:

E[exp(−uFt+1)|Ft] =
1

(1 + ηu)δ
exp

(
− γu

1 + ηu
Ft

)
, (3.13)

that is,

α(u) =
γu

1 + ηu
, β(u) = δ log(1 + ηu), (3.14)

where γ ≥ 0 and δ, η > 0. The unconditional distribution of Ft is a gamma distribution and

the component N0t follows a Poisson distribution with gamma heterogeneity, that is, a negative

binomial distribution. Thus, by introducing an ARG factor, we transform the initial process based

on Poisson distributions in a process based on negative binomial distributions [see e.g. Bockenholt

(1999)] and solve the standard overdispersion problem in a dynamic framework [Greenwood, Yule

(1920)]. The sensitivity parameter c1 in the intensity and the scale parameter η of the factor Ft

cannot be identified separately. For instance, we can set parameter η such that E[Ft] = 1. Since

E[F ] = δη/(1− γ) [see Gourieroux, Jasiak (2006)], we can assume η = (1− γ)/δ.

The advantage of a CaR process is to provide easily nonlinear predictions at any horizon. More

precisely, the conditional Laplace transform at horizon h is:

ψh,t(u, v) = E[exp(−uNt+h − vFt+h)|Nt, Ft]

= exp[−a1,h(u, v)Nt − a2,h(u, v)Ft − bh(u, v)],

where a1,h, a2,h and ch are computed by recursion

a1,h(u, v) = c2[1− exp(−a1,h−1(u, v))]− log[1− ρ + ρ exp(−a1,h−1(u, v))]

a2,h(u, v) = α
{
a2,h−1(u, v) + c1[1− exp(−a1,h−1(u, v))]

}
,

bh(u, v) = bh−1(u, v) + c0[1− exp(−a1,h−1(u, v))] + β
{
a2,h−1(u, v) + c1[1− exp(−a1,h−1(u, v))]

}
,
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where:

a1,1(u, v) = c2[1− exp(−u)]− log[1− ρ + ρ exp(−u)], a2,1(u, v) = α
(
v + c1[1− exp(−u)]

)
,

b1(u, v) = c0[1− exp(−u)] + β
(
v + c1[1− exp(−u)]

)
.

Moreover, by considering the behaviour of functions a1,1(u, v) and a2,1(u, v) in a neighbourhood

of u = v = 0, the stationarity conditions of the joint process (Nt, Ft) are directly deduced [see

Darolles, Gourieroux, Jasiak (2006), Proposition 6.2]. More precisely, the joint process (Nt, Ft) is

strictly stationary if and only if the modulus of the eigenvalues of the matrix:



∂a1,1

∂u
(0, 0)

∂a1,1

∂v
(0, 0)

∂a2,1

∂u
(0, 0)

∂a2,1

∂v
(0, 0)


 =


 c2 + ρ 0

γc1 γ


 , (3.15)

are strictly smaller than 1. We get the stationarity conditions:

c2 + ρ < 1, γ < 1. (3.16)

The condition γ < 1 is the stationarity condition for the ARG process [see Gourieroux, Jasiak

(2006)], while the condition c2 + ρ < 1 involves the autoregressive parameter ρ of the INAR

process and the parameter c2 that describes the contagion effect in the stochastic intensity.

The first- and second-order moments of the stationary distribution of (Nt, Ft) are given in the

next proposition, proved in Appendix 3.

Proposition 5: When η = (1 − γ)/δ, the unconditional means, variances and covariances of

process (Nt, Ft) are given by:

E[Nt] =
c0 + c1

1− (c2 + ρ)
, E[Ft] = 1,

V [Nt] =
c0 + c1

1− (c2 + ρ)

[
1− ρ2

1− (c2 + ρ)2

]
+

c2
1

δ

1

1− (c2 + ρ)2

[
1 + γ(c2 + ρ)

1− γ(c2 + ρ)

]
, V [Ft] =

1

δ
,

and:

Cov(Ft, Nt) =
c1

δ

1

1− γ(c2 + ρ)
.

The stationary distribution of the count variable Nt features overdispersion, that is, V [Nt] > E[Nt],

when either c1 > 0, or c2 > 0 (or both). In the first case, overdispersion is due to the frailty effect,
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while in the second case it is due to the contagion effect. The processes (Nt) and (Ft) feature a

positive contemporaneous unconditional correlation when c1 > 0.

Proposition 6 provides the autocorrelogram of the count process (Nt).

Proposition 6: The autocorrelogram of process (Nt) is such that:

Corr(Nt+h, Nt) = (1− ω)(c2 + ρ)h + ωγh, h ≥ 0,

where ω =
c1γ

γ − (c2 + ρ)

Cov(Nt, Ft)

V (Nt)
, if γ 6= c2 + ρ, and:

Corr(Nt+h, Nt) = (1 + ω̃h)γh, h ≥ 0,

where ω̃ = c1
Cov(Nt, Ft)

V (Nt)
, if γ = c2 + ρ.

Proof: See Appendix 3.

The autocorrelogram of process (Nt) decays geometrically w.r.t. the lag. Indeed, as a conse-

quence of the CaR(1) property of the joint process (Nt, Ft) in Proposition 4, the conditional mean

of (Nt, Ft)
′ given the past (Nt−1, Ft−1) is a linear function of the lag (Nt−1, Ft−1)

′, as in a bivari-

ate VAR process (see Lemma A.1 in Appendix 3). The associated matrix of the autoregressive

coefficients is the transposed of the matrix in equation (3.15), whose eigenvalues are c2 + ρ and

γ. Hence, when the eigenvalues c2 + ρ and γ are distinct, the autocorrelogram of (Nt) is a linear

combination of the autocorrelogram (c2 + ρ)h, h ∈ N, of the INAR process with pure contagion,

and autocorrelogram γh, h ∈ N, of the ARG process (Ft). When the two eigenvalues c2 + ρ and γ

are equal, the autocorrelogram of (Nt) involves also a multiplicative term that is linear in the lag.

Example 3: Pure correlated risks

When only correlated risks λt = c0+c1Ft are introduced, we get a recursive system in which the

factor dynamics is fixed exogenously, then driving the dynamics of the count process. This allows

for computing nonlinear predictions in two steps, first by considering the conditional distribution
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of Nt+h given Ft+h, Nt, then by reintegrating out the future factor path given Ft, Nt. We have:

E[exp(−uNt+h)|Ft+h, Nt]

= exp
{
− (λt+h + ρλt+h−1 + . . . + ρh−1λt+1)[1− exp(−u)] + Nt log[1− ρh + ρh exp(−u)]

}

= exp

{
−

[
c0

1− ρh

1− ρ
+ c1(Ft+h + ρFt+h−1 + . . . + ρh−1Ft+1)

]
[1− exp(−u)]

+Nt log[1− ρh + ρh exp(−u)]
}

.

We deduce that:

E[exp(−uNt+h)|Ft, Nt] = exp

{
−c0

1− ρh

1− ρ
[1− exp(−u)] + Nt log[1− ρh + ρh exp(−u)]

}

E
[
exp

{−c1(Ft+h + ρFt+h−1 + . . . + ρh−1Ft+1)[1− exp(−u)]
} |Ft

]
.

To conclude this computation, we have to explain how to compute recursively the nonlinear pre-

diction of the smoothed future path Ft+h + ρFt+h−1 + . . . + ρh−1Ft+1. It is easily checked that :

E{exp[−v(Ft+h + ρFt+h−1 + . . . + ρh−1Ft+1)]|Ft} = exp[−ah(v)Ft − bh(v)],

where ah and ch satisfy the recursive equations:

ah(v) = α[ah−1(v) + vρh−1], bh(v) = bh−1(v) + β[ah−1(v) + vρh−1],

with initial conditions

a1(v) = α(v), b1(v) = β(v).

Thus, we get:

E[exp(−uNt+h)|Ft, Nt] = exp

{
−c0

1− ρh

1− ρ
[1− exp(−u)] + Nt log[1− ρh + ρh exp(−u)]

−Ft ah (c1[1− exp(−u)])− bh (c1[1− exp(−u)])
}

.

4 Simulation experiments

In this Section we report the results of simulation experiments in two dynamic models with both

contagion and correlated risks. The first model is a logistic specification admitting a limit Gaussian

approximation. The second model is the INAR process with stochastic intensity.
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4.1 Logistic model with contagion and correlated risks

The contagion probability admits a logistic specification:

p10(Ft, Nt−1/n) =
1

1 + exp(−aNt−1/n− b− cFt)
, (4.1)

where the parameters are a = 5, b = − log(9) and c = 2. The probability of staying in state 1 is

p11 = 0.5. The factor Ft follows a Gaussian autoregressive process:

Ft = γFt−1 +
√

1− γ2εt, (4.2)

where εt ∼ IIN(0, 1). The factor process is standardized to have unconditional mean 0 and

unconditional variance 1. The autoregressive coefficient is γ = 0.5. The number of individuals is

n = 100.

In Figure 2 we display simulated paths for the factor Ft, the proportion Nt/n of individuals in

state 1 and the stochastic equilibrium µt.

[Insert Figure 2: Simulated paths of factor, count and stochastic equilibrium in the logistic

model with contagion and correlated risks.]

The path of Nt/n is close to that of the stochastic equilibrium µt, that is, the CSA approximation,

although the path of µt is smoother. The dynamics of the equilibrium µt features regimes that are

driven by factor Ft. When the values of factor Ft are close to zero, the equilibrium µt is close to

0.6. When the factor Ft features negative shocks, the equilibrium µt decreases sharply. Positive

shocks on Ft are associated with rather small increases in µt. Hence, the reaction of the dynamic

equilibrium µt to positive and negative shocks in Ft is asymmetric.

Figure 3 displays simulated paths for the standardized deviation from the equilibrium Xn,t =
√

n(Nt/n− µt), the autoregressive coefficient ρ∗t and the volatility η∗t of the Gaussian approxima-

tion.

[Insert Figure 3: Simulated paths of deviation from equilibrium, autoregressive coefficient and

volatility of the Gaussian approximation for the logistic model with contagion and correlated risks.]

The path of Xn,t features regimes in persistency, with both periods of positive autocorrelation

and periods of negative autocorrelation. This is reflected in the dynamics of the autoregressive
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coefficient ρ∗t of the Gaussian approximation, that admits both values slightly above 1 and negative

values. The path of volatility η∗t is more stable than that of the autoregressive coefficient ρ∗t , and

features some sharp downward movements associated with the negative shocks on the factor Ft.

In order to assess the accuracy of the approximation (3.6), let us consider the standardized

residuals:

ε̃∗t =
Xn,t − ρ∗t Xn,t−1

η∗t
, t varying,

that are the residuals for the autoregressive process in (3.5) computed from process Xn,t. If the

approximation (3.6) is accurate, process ε̃∗t is close to a Gaussian white noise. We display some

summary statistics for the unconditional distribution as well as some autocorrelation coefficients

for process ε̃∗t in Table 1. They are computed by Monte-Carlo on a long simulated path of the

process.

[Insert Table 1: Summary statistics and autocorrelogram of process ε̃∗t .]

We consider different population sizes, that are n = 25, n = 100 and n = 1000. From Table 1

it is seen that process ε̃∗t gets closer to a white noise when n increases, which confirms that the

accuracy of approximation (3.6) improves with the population size.

4.2 INAR model with stochastic intensity

Let us now consider an INAR model with stochastic intensity as in Assumptions A.4-A.5. The

exogenous factor Ft follows an ARG process with autocorrelation parameter γ = 0.5 and shape

parameter δ = 2. The scale parameter η is set equal to η = (1 − γ)/δ = 0.25 to get E[Ft] = 1

[see Section 3.2 ii)]. The autoregressive parameter ρ of the INAR process is ρ = 0.2. Moreover,

we consider four parameter sets for the intensity specification:

A) c0 = 2.4, c1 = 0, c2 = 0,

B) c0 = 1.4, c1 = 1, c2 = 0,

C) c0 = 1.2, c1 = 0, c2 = 0.4,

D) c0 = 0.2, c1 = 1, c2 = 0.4.
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Parameters c1 and c2 are selected such that models A, B, C, and D correspond to specifications

with constant intensity, pure frailty effect, pure contagion effect, and both frailty and contagion

effects, respectively. The parameter c0 is selected to have the same unconditional mean for count

Nt across all specifications, which is equal to E[Nt] =
c0 + c1

1− (ρ + c2)
= 3.

i) Simulated paths

Let us first compare simulated paths of the process (Nt) for the different parameter sets A-

D. For this purpose, it is useful to rewrite the model in the nonlinear autoregressive stochastic

representation:

Nt = inf

{
m ∈ N,m ≤ Nt−1 :

m∑
j=0

π
(1)
j,t ≥ U1,t

}
+ inf

{
m ∈ N :

m∑
j=0

π
(2)
j,t ≥ U2,t

}
≡ a(Nt−1, Ft, Ut),

where π
(1)
j,t =

Nt−1!
j!(Nt−1 − j)!

ρj(1 − ρ)Nt−1−j and π
(2)
j,t = e−λt

λj
t

j!
, with λt = c0 + c1Ft + c2Nt−1,

are the probability weights for the conditional binomial and Poisson distributions B(Nt−1, ρ) and

P(λt) given Nt−1 and Ft, respectively, and variables Ut = (U1,t, U2,t) are i.i.d. such that U1,t

and U2,t are independent with uniform distribution U [0, 1]. The distribution of the factor (Ft)

and shocks (Ut) is independent of intensity parameters c0, c1 and c2. This allows us to compare

the simulated paths of process (Nt) obtained from a same path of (Ft, Ut) and different intensity

parameters c0, c1, c2 as in sets A-D above.

The simulated path of (Nt) for parameter sets A-B and C-D are displayed in Figures 4 and 5,

respectively.

[Insert Figure 4: Simulated paths of the INAR process with stochastic intensity (parameter sets

A and B)]

[Insert Figure 5: Simulated paths of the INAR process with stochastic intensity (parameter sets

C and D)]

ii) Conditional expectation
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In Figure 6 we display the conditional expectation of Nt given Nt−1 = nt−1 as a function of

lagged value nt−1 for parameter sets A-D.

[Insert Figure 6: Conditional expectation of Nt given Nt−1 in the INAR process with stochastic

intensity]

The conditional expectation is linear E[Nt|Nt−1] = c0 + (ρ + c2)Nt−1 = E[Nt] + (ρ + c2)(Nt−1−
E[Nt]) for models with constant intensity, or pure contagion effects (parameter sets A and C). For

models including frailty effects (parameter sets B and D), we compute the conditional expectation

E[Nt|Nt−1] by Monte-Carlo on a long simulated path of process (Nt). From Figure 6 it is seen that

the conditional expectation is close to linear also for parameter sets B and D. Moreover, models

A, B, C and D are ranked in order of increasing (linear, first-order) persistency. However, model C

with pure contagion cannot be distinguished from a model with constant intensity and autoregres-

sive INAR parameter ρ̃ = ρ+ c2 based on the conditional expectation at lag one. Figure 6 suggests

that this is hardly possible also for models B and D including frailty effects.

iii) Autocorrelogram

From Proposition 6 the autocorrelogram of (Nt) is a mixture of two power functions of γ and

c2 + ρ, respectively. Thus, we expect to better identify contagion and frailty effects from the ACF,

at least when parameters γ and c2 + ρ are both non-zero and sufficiently different. More precisely,

the log ACF is non linear if, and only if, c1 > 0 and γ > 0, that is, there is a dynamic frailty effect.

The nonlinearity is weak when the autocorrelation coefficient of the frailty γ is close to c2 + ρ.

There is no nonlinearity at all when the frailty is static.

In Figure 7 we display the autocorrelogram {Corr(Nt+h, Nt), h ∈ N} of process (Nt) for

parameter sets A-D.

[Insert Figure 7: Autocorrelogram of the INAR process (Nt) with stochastic intensity]

For experiments A and C with no frailty effect, the log ACF is linear. At the opposite, some

curvature of the log ACF is observed for experiment B with pure frailty, where c2 + ρ = 0.2 and

γ = 0.5. The log ACF is almost linear for experiment D with both frailty and contagion, where
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c2 + ρ = 0.6 and γ = 0.5.

iv) Conditional dispersion

Let us now investigate whether the analysis of higher-order moments of the conditional distri-

bution of Nt+1 given Nt can be useful for the purpose of identifying contagion vs frailty effects.

The dispersion of the conditional distribution of Nt+1 given Nt is defined as the ratio between

conditional variance V [Nt+1|Nt] and conditional mean E[Nt+1|Nt]. In Appendix 3 we show that:

V [Nt+1|Nt] = E[Nt+1|Nt]− ρ2Nt + c2
1

(
γ2V [Ft|Nt] + 2

γ(1− γ)

δ
E[Ft|Nt] +

(1− γ)2

δ

)
, (4.3)

where:

E[Nt+1|Nt] = E[Nt] + (c2 + ρ)(Nt − E[Nt]) + c1γ(E[Ft|Nt]− 1).

Hence, a model without frailty effect (c1 = 0) features conditional underdispersion. The contri-

bution of frailty to conditional dispersion is positive. It involves the conditional mean E[Ft|Nt]

and variance V [Ft|Nt] of the unobservable factor F given the observable count Nt, as well as the

unconditional variance V [Ft] = 1/δ of the factor and its autocorrelation parameter γ. When the

sensitivity parameter c1 is large enough, the positive frailty effect can dominate and yield condi-

tional overdispersion (at least for some lag Nt).

In Figure 8 we display the conditional dispersion of Nt+1 given Nt as a function of lagged

value Nt for parameter sets A-D.

[Insert Figure 8: Conditional dispersion of Nt+1 given Nt in the INAR process with stochastic

intensity]

5 Conclusions

In this paper we analyze frailty correlated risks and contagion effects in large homogeneous popula-

tions. We consider a microscopic dynamic model in which individual risks can take two states (high

and low), and the individual transition probabilities between states are time varying and stochas-

tic. The frailty effect is modeled by means of a common unobservable factor Ft that impacts the
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individual transition probabilities. The contagion effect is modeled through the dependence of the

individual transition probabilities on the lagged count Nt−1 of individuals in the high risk state. We

derive macroscopic models for the count Nt as the limit of the microscopic model when the popu-

lation size n tends to infinity. Different macroscopic dynamics are obtained according to whether

the transition probabilities are assumed fixed w.r.t. n (Gaussian approximation), or the transition

probability to the high risk state converges to zero when n increases (Poisson approximation). In

the first setting, we derive an approximation for the dynamics of the proportion Nt/n in terms of

a dynamic stochastic equilibrium driven by factor Ft plus a correction at order 1/
√

n involving a

conditionally Gaussian autoregressive process. In the second setting, we carefully study the prop-

erties of the INAR process for count Nt with stochastic intensity driven by factor Ft and lagged

count Nt−1.

An interesting question is to which extent it is possible to identify frailty and contagion effects

from the macroscopic dynamics only. The analysis of the INAR model with stochastic intensity

suggests that the identification of these two effects can be rather difficult when relying solely on

summaries that capture linear dynamics, such as the conditional mean function or the autocorrelo-

gram of process (Nt). Instead, nonlinear features of the conditional distribution of Nt given Nt−1,

such as the conditional dispersion function, can be very useful to disentangle frailty and contagion

effects.
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Figure 1: Equilibrium value and autoregressive coefficient in the logistic model.
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The left panel displays the equilibrium value µ as a function of parameter a, while the right panel displays the autore-

gressive coefficient ρ∗ as a function of a. In each panel, the three curves correspond to different values of parameter

p11, that are p11 = 1/10 (solid line), p11 = 1/2 (dashed line) and p11 = 9/10 (dotted line). Parameter b is equal to

b = − log(9).
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Figure 2: Simulated paths of factor, count and stochastic equilibrium in the logistic model with

contagion and correlated risks.
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This Figure displays simulated paths for the logistic model with contagion and correlated risks (4.1)-(4.2). The pa-

rameter values are a = 5, b = − log(9), c = 2, p11 = 0.5 and γ = 0.5. The number of individuals is n = 100. The

upper Panel displays the path of the factor Ft, the middle Panel displays the path of the fraction Nt/n of individuals

in state 1, and the lower Panel displays the path of the stochastic equilibrium µt.
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Figure 3: Simulated paths of deviation from equilibrium, autoregressive coefficient and volatility

of the Gaussian approximation for the logistic model with contagion and correlated risks.
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This Figure displays simulated paths for the logistic model with contagion and correlated risks (4.1)-(4.2). The pa-

rameter values are a = 5, b = − log(9), c = 2, p11 = 0.5 and γ = 0.5. The number of individuals is n = 100.

The upper Panel displays the path of the standardized deviation from equilibrium Xn,t =
√

n(Nt/n−µt), the middle

Panel displays the path of the autocorrelation coefficient ρ∗t of the Gaussian approximation ξ∗t in Corollary 3, and the

lower Panel displays the path of its volatility parameter η∗t .
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Figure 4: Simulated paths of the INAR process with stochastic intensity (parameter sets A and B).
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This Figure displays simulated paths for the INAR process with stochastic intensity as in Assumptions A.4-A.5. The

factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of

the INAR model is ρ = 0.2. The upper panel displays the factor path. The middle and lower panels display the paths

of the count Nt for models with intensity parameters c0, c1 and c2 as in sets A and B, respectively.
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Figure 5: Simulated paths of the INAR process with stochastic intensity (parameter sets C and D).
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This Figure displays simulated paths for the INAR process with stochastic intensity as in Assumptions A.4-A.5. The

factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of

the INAR model is ρ = 0.2. The upper panel displays the factor path. The middle and lower panels display the paths

of the count Nt for models with intensity parameters c0, c1 and c2 as in sets C and D, respectively.
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Figure 6: Conditional expectation of Nt given Nt−1 in the INAR process with stochastic intensity.
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Conditional expectation

This Figure displays the conditional expectation of Nt given Nt−1 for the INAR process with stochastic intensity as

in Assumptions A.4-A.5. The factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The

autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles, squares, stars and diamonds correspond to intensity

parameters c0, c1 and c2 as in sets A, B, C and D, respectively.
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Figure 7: Autocorrelogram of the INAR process (Nt) with stochastic intensity.
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This Figure displays the autocorrelogram (left panel) and the log autocorrelogram (right panel) of the INAR process

(Nt) with stochastic intensity as in Assumptions A.4-A.5. The factor Ft follows an ARG process with parameters

γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles, squares, stars

and diamonds correspond to intensity parameters c0, c1 and c2 as in sets A, B, C and D, respectively.
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Figure 8: Conditional dispersion function of the INAR process (Nt) with stochastic intensity.
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Conditional dispersion

This Figure displays the pattern of the conditional dispersion of Nt+1 given Nt, as a funtion of Nt, for the INAR pro-

cess (Nt) with stochastic intensity as in Assumptions A.4-A.5. The factor Ft follows an ARG process with parameters

γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles, squares, stars

and diamonds correspond to intensity parameters c0, c1 and c2 as in sets A, B, C and D, respectively.
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Table 1: Summary statistics and autocorrelogram of process ε̃∗t .

n = 25 n = 100 n = 1000

Mean −0.068 −0.035 −0.011

Median −0.076 −0.041 −0.012

Std. deviation 1.001 1.001 1.000

Skewness 0.015 0.025 0.013

Kurtosis 3.156 3.042 3.000

AC(1) 0.016 0.006 0.000

AC(2) 0.002 0.002 0.001

AC(3) 0.002 −0.000 0.001

AC(4) 0.001 0.001 0.000

AC(5) 0.000 0.000 0.000

This Table displays summary statistics and the autocorrelogram of pro-

cess ε̃∗t = Xn,t−ρ∗t Xn,t−1
η∗t

for the logistic model with contagion and cor-

related risks (4.1)-(4.2). The parameter values are a = 5, b = − log(9),

c = 2, p11 = 0.5 and γ = 0.5. We consider different popula-

tion sizes that are n = 25, n = 100 and n = 1000. Statistic

AC(h) = Corr(ε̃∗t , ε̃∗t−h) denotes the autocorrelation of ε̃∗t of order

h.
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APPENDIX 1: Proofs of Proposition 2 and Corollary 1

From equation (2.4), the conditional log-Laplace transform of Xn,t =
√

n(Nt/n− µ) is:

log Et−1[exp(−uXn,t)]

= Nt−1 log[p11 exp(−u/
√

n) + 1− p11] + (n−Nt−1) log[p10 exp(−u/
√

n) + 1− p10]

+
√

nuµ.

By a Taylor expansion when n →∞, we get :

log[p11 exp(−u/
√

n) + 1− p11] = log[1− p11u/
√

n + p11u
2/(2n) + o(1/n)]

= −p11u/
√

n + p11(1− p11)u
2/2n + o(1/n),

and similarly:

log Et−1[exp(−uXn,t)]

= (µn +
√

nXn,t−1)[−p11u/
√

n + p11(1− p11)u
2/(2n)]

+[(1− µ)n−√nXn,t−1][−p10u/
√

n + p10(1− p10)u
2/(2n)] +

√
nuµ + o(1/n)

= u
√

n[−p10(1− µ)− p11µ + µ]

−uXn,t−1(p11 − p10) + (u2/2)[µp11(1− p11)] + (1− µ)p10(1− p10)] + o(1).

The first term of the right hand side is equal to 0 by definition of the long run parameter. The sum

of the second and third terms is the log-Laplace transform of a Gaussian distribution with mean

(p11−p10)Xn,t−1 = ρXn,t−1, and variance µp11(1−p11)+(1−µ)p10(1−p10) = µ(1−µ)(1−ρ2).

This proves Proposition 2.

Finally, if p10 is replaced by p10t = p10(Nt−1/n) ' p10(µ) +
1√
n

dp10(µ)

dµ
Xn,t−1, we get the

additional term −uXn,t−1(1− µ)
dp10(µ)

dµ
+ o(1) in the expansion. This provides the modification

involved in Corollary 1.

43



APPENDIX 2: Gaussian model with logistic contagion

i) Let us first show that the solution µ = µ(a, b, p11) ∈ (0, 1) of equation (3.8) exists and is unique.

Define the function:

ψ(µ) =
1/µ− 1

1 + exp(−aµ− b)
, µ ∈ (0, 1).

Since ψ(0) = ∞, ψ(1) = 0, the equation ψ(µ) = 1 − p11 for p11 ∈ (0, 1) admits a solution

µ ∈ (0, 1). The solution is unique, if function ψ is monotonically decreasing. The first-order

derivative is given by:

dψ(µ)

dµ
=

− 1
µ2 (1 + e−aµ−b) + (1/µ− 1)(−a)e−aµ−b

(1 + e−aµ−b)2

= − e−aµ−b

µ2(1 + e−aµ−b)2
[eaµ+b − (aµ2 − aµ− 1)].

Since aµ2 − aµ − 1 < 0 for µ ∈ [0, 1], we get
dψ(µ)

dµ
< 0 for µ ∈ (1, 1), and the conclusion

follows.

ii) Let us now study the dependence of equilibrium µ on parameters a, b, p11. We make explicit the

dependence of function ψ on parameters a and b by writing ψ(µ) = ψ(µ; a, b). Then:

∂µ

∂a
= −∂ψ/∂a

∂ψ/∂µ
= µ

µ(1− µ)

eaµ+b − (aµ2 − aµ− 1)
> 0,

∂µ

∂b
= − ∂ψ/∂b

∂ψ/∂µ
=

µ(1− µ)

eaµ+b − (aµ2 − aµ− 1)
> 0,

∂µ

∂p11

= − 1

∂ψ/∂µ
=

µ2(1 + eaµ+b)(1 + e−aµ−b)

eaµ+b − (aµ2 − aµ− 1)
> 0.

iii) Let us finally show that ρ∗ = ρ∗(a, b, p11) is such that |ρ∗| < 1. We have from Corollary 1:

ρ∗ = p11 − p10(µ) + a(1− µ)p10(µ)[1− p10(µ)],

where µ = µ(a, b, p11) is the equilibrium value. Then ρ∗ > −π10(µ) ≥ −1. Moreover, by using

that µ = µ(a, b, p11) solves equation (3.8), we get:

ρ∗ = p11 − p10(µ) + aµ(1− p11)[1− p10(µ)] < 1

⇔ (1− p11){aµ[1− p10(µ)]− 1} < p10(µ)

⇔ aµ[1− p10(µ)]− 1 <
µ

1− µ

⇔ aµ(1− µ)[1− p10(µ)] < 1. (A.1)
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Now, by using that 1− p10(µ) = e−aµ−b/(1 + e−aµ−b) and aµe−aµ < 1 for aµ ≥ 0, we deduce that

the latter inequality in (A.1) is satisfied for any values of the parameters.
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APPENDIX 3: INAR model with correlated risks and contagion

A.3.1 Proof of Proposition 4

We have:

ψ1t(u, v) = E[exp(−uNt+1 − vFt+1)|Nt, Ft]

= E
{

E[exp(−uNt+1 − vFt+1)|Nt, Ft+1]|Nt, Ft

}

= E [exp(−vFt+1) exp {−(c0 + c1Ft+1 + c2Nt)[1− exp(−u)]

+Nt log[1− ρ + ρ exp(−u)]} |Nt, Ft

]
,

by applying equation (2.6) and Assumption A.1. Therefore we get:

ψ1t(u, v) = exp
{−c0[1− exp(−u)]−Nt

(
c2[1− exp(−u)]− log[1− ρ + ρ exp(−u)]

)}

E [exp {−Ft+1(v + c1[1− exp(−u)])} |Ft]

= exp
{−c0[1− exp(−u)]− β

(
v + c1[1− exp(−u)]

)

−Nt

(
c2[1− exp(−u)]− log[1− ρ + ρ exp(−u)]

)

−Ft α
(
v + c1[1− exp(−u)]

)}
.

A.3.2 Proof of Proposition 5

We use the following Lemma, which is proved at the end of this Appendix.

Lemma A.1: The conditional moments of order 1 and 2 of the joint process (Nt, Ft) are given by:

Et


 Nt+1

Ft+1


 =


 c0 + δηc1

δη


 +


 c2 + ρ γc1

0 γ





 Nt

Ft




and:

Vt


 Nt+1

Ft+1


 =


 c0 + δηc1(1 + ηc1) + [c2 + ρ(1− ρ)] Nt + (c1γ + 2c2

1ηγ) Ft δη2c1 + 2ηγc1Ft

δη2c1 + 2ηγc1Ft δη2 + 2ηγFt


 .

where Et and Vt denote conditional expectation and variance given the past (Nt, Ft) of the joint

process.

46



The conditional means, variances and covariances are linear functions of Nt and Ft since the joint

process (Nt, Ft) is CaR(1) (see Proposition 4).

Let us now prove Proposition 5. The unconditional moments of process (Nt, Ft) are derived

from the conditional moments in Lemma A.1 by applying the Law of Iterated Expectation and the

variance decomposition formula. Specifically, from Lemma A.1 and the Law of Iterated Expecta-

tion we get:

E[Ft+1] = E [Et(Ft+1)] = δη + γE[Ft].

By stationarity we have E[Ft+1] = E[Ft], and we get:

E[Ft] =
δη

1− γ
, (A.2)

[see also Gourieroux, Jasiak (2006) for the unconditional moments of the ARG process]. When

η = (1− γ)/δ, we get E[Ft] = 1. Then, from Lemma A.1 and δη = 1− γ:

E[Nt+1] = E[Et[Nt+1]] = c0 + δηc1 + E[Nt](c2 + ρ) + γc1E[Ft] = c0 + c1 + E[Nt](c2 + ρ),

which yields:

E[Nt] =
c0 + c1

1− (c2 + ρ)
.

Let us now consider the unconditional variance of Ft. From Lemma A.1 and the variance decom-

position formula, we get:

V [Ft+1] = V [Et(Ft+1)] + E [Vt(Ft)] = V [δη + γFt] + E[δη2 + 2ηγFt]

= γ2V [Ft] + δη2 + 2
δη2γ

1− γ
= γ2V [Ft] + δη2 1 + γ

1− γ
,

which yields:

V [Ft] =
1

1− γ2
δη2 1 + γ

1− γ
=

δη2

(1− γ)2
=

1

δ
. (A.3)

Let us now consider the unconditional covariance between Ft and Nt. We have:

Cov(Ft+1, Nt+1) = E [Covt(Ft+1, Nt+1)] + Cov (Et[Ft+1], Et[Nt+1])

= E
[
δη2c1 + 2ηγc1Ft

]
+ Cov (δη + γFt, c0 + δηc1 + Nt(c2 + ρ) + γc1Ft)

= δη2c1
1 + γ

1− γ
+ γ2c1V [Ft] + γ(c2 + ρ)Cov(Ft, Nt)

=
c1

δ
+ γ(c2 + ρ)Cov(Ft, Nt),
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which yields:

Cov(Ft, Nt) =
c1

δ

1

1− γ(c2 + ρ)
. (A.4)

Finally, let us consider the unconditional variance of Nt. We have:

V [Nt+1] = E [Vt(Nt+1)] + V [Et(Nt+1)]

= E
[
c0 + δηc1(1 + ηc1) + Nt(c2 + ρ(1− ρ)) + Ft(c1γ + 2c2

1ηγ)]

+V [c0 + δηc1 + Nt(c2 + ρ) + γc1Ft]

= c0 + δηc1(1 + ηc1) +
c2 + ρ(1− ρ)

1− (c2 + ρ)
(c0 + c1) + c1γ + 2c2

1ηγ

+(c2 + ρ)2V [Nt] + γ2c2
1V [Ft] + 2(c2 + ρ)c1γCov(Nt, Ft)

= c0 + δηc1(1 + ηc1) +
c2 + ρ(1− ρ)

1− (c2 + ρ)
(c0 + c1) + c1γ + 2c2

1ηγ

+(c2 + ρ)2V [Nt] +
γc2

1

δ

[
γ +

2(c2 + ρ)

1− γ(c2 + ρ)

]
.

We deduce:

V [Nt] =
1

1− (c2 + ρ)2

{
c0 + δηc1(1 + ηc1) +

c2 + ρ(1− ρ)

1− (c2 + ρ)
(c0 + c1) + c1γ + 2c2

1ηγ

+
γc2

1

δ

[
γ +

2(c2 + ρ)

1− γ(c2 + ρ)

]}
.

By using η = (1− γ)/δ and rearranging terms, we get the formula for V [Nt] given in Proposition

5.

A.3.3 Proof of Proposition 6

Let Zt = (Nt, Ft)
′. Then, from Lemma A.1 we get Cov(Zt+h, Zt) = AhV (Zt), for h ≥ 0,

where the matrix A is given by :

A =


 c2 + ρ γc1

0 γ


 .

Now, for a generic triangular (2, 2) matrix we have:

 a b

0 c




h

=


 ah b

(
ah−1 + cah−2 + ... + ch−2a + ch−1

)

0 ch


 .

Thus, we get:

Ah =


 (c2 + ρ)h b(h)

0 γh


 ,
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where:

b(h) = γc1

[
(c2 + ρ)h−1 + γ(c2 + ρ)h−2 + ... + γh−2(c2 + ρ) + γh−1

]
.

When γ = 0, we have b(h) = 0, which implies Cov(Nt+h, Nt) = (c2 + ρ)hV (Nt) and thus

Corr(Nt+h, Nt) = (c2 + ρ)h. Let us now consider the case γ > 0. Then:

b(h) = c1γ
h

[
1 +

c2 + ρ

γ
+

(
c2 + ρ

γ

)2

+ ... +

(
c2 + ρ

γ

)h−1
]

= c1γ
h
1−

(
c2+ρ

γ

)h

1− c2+ρ
γ

= c1γ
γh − (c2 + ρ)h

γ − (c2 + ρ)
,

if γ 6= c2 + ρ, and:

b(h) = c1hγh,

if γ = c2 + ρ. It follows:

Cov(Nt+h, Nt) = (c2 + ρ)hV (Nt) + b(h)Cov(Nt, Ft),

and:

Corr(Nt+h, Nt) = (c2 + ρ)h + b(h)
Cov(Nt, Ft)

V (Nt)
.

The conclusion follows.

A.3.4 Conditional dispersion

From the Law of Iterated Expectation and the variance decomposition formula we have:

E[Nt+1|Nt] = E[E(Nt+1|Nt, Ft)|Nt],

V [Nt+1|Nt] = E[V (Nt+1|Nt, Ft)|Nt] + V [E(Nt+1|Nt, Ft)|Nt].

From Lemma A.1, we get:

E[Nt+1|Nt] = c0 + δηc1 + (c2 + ρ)Nt + γc1E[Ft|Nt],

and:

V [Nt+1|Nt] = c0 + δηc1(1+ ηc1)+ [c2 + ρ(1− ρ)] Nt +
(
c1γ + 2c2

1ηγ
)
E[Ft|Nt]+γ2c2

1V [Ft|Nt].

By using η = (1− γ)/δ, equation (4.3) follows.
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A.3.5 Proof of Lemma A.1

The conditional moments are derived from the expansion of the log conditional Laplace trans-

form in Proposition 4 around u = v = 0. At second order in u, v, we have:

log ψ1t(u, v) = −c0[1− exp(−u)]− β
(
v + c1[1− exp(−u)]

)

−Nt

(
c2[1− exp(−u)]− log[1− ρ + ρ exp(−u)]

)− Ft α
(
v + c1[1− exp(−u)]

)

' −c0(u− u2/2)− β
(
v + c1[u− u2/2]

)

−Nt

(
c2[u− u2/2]− log[1− ρu + ρu2/2]

)− Ft α
(
v + c1[u− u2/2]

)

' −c0(u− u2/2)− β
(
v + c1[u− u2/2]

)

−Nt

(
c2[u− u2/2] + ρu− ρ(1− ρ)u2/2

)− Ft α
(
v + c1[u− u2/2]

)
. (A.5)

By using the expansions at second order of functions α and β:

α(u) =
γu

1 + ηu
' γu− γηu2, β(u) = δ log (1 + ηu) ' δηu− 1

2
δη2u2,

we get:

α
(
v + c1[u− u2/2]

) ' γ(v + c1u− c1u
2/2)− γη(v + c1u)2,

β
(
v + c1[u− u2/2]

) ' δη
(
v + c1u− c1u

2/2
)− 1

2
δη2 (v + c1u)2 . (A.6)

By replacing expansions (A.6) into expansion (A.5), and gathering the terms proportional to u, v,

u2, v2 and uv, we get:

log ψ1t(u, v) ' − [c0 + δηc1 + Nt(c2 + ρ) + γc1Ft] u− [δη + γFt] v

+
1

2

[
c0 + δηc1(1 + ηc1) + Nt(c2 + ρ(1− ρ)) + Ft(c1γ + 2c2

1ηγ)
]
u2

+
1

2

[
δη2 + 2ηγFt]v

2 +
[
δη2c1 + 2Ftηγc1]uv.

The conclusion follows.
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