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Abstract

The main contribution of this paper is to propose and theoretically justify bootstrap methods
for factor-augmented regressions where some of the regressors are factors estimated from a large
panel of data. We consider a residual-based bootstrap method where in a first step bootstrap panel
observations are generated by adding the estimated common components to bootstrap residuals.
Similarly, in a second step, we generate the bootstrap observations on the dependent variable by
adding the estimated regression mean and the bootstrap regression residuals. To mimic the fact
that in the original regression model the true factors are latent and need to be estimated, we regress
the bootstrap dependent variable on the bootstrap estimated factors (the remaining regressors are
kept fixed). This produces a bootstrap OLS estimator whose distribution can be used to compute
the quantiles of the distribution of the OLS estimator.

We first provide a set of high level conditions on the bootstrap residuals and on the idiosyncratic
errors such that the bootstrap distribution is consistent. We subsequently verify these conditions
for a simple wild bootstrap residual-based procedure. Although this method generates bootstrap
idiosyncratic errors that are independent (but possibly heteroskedastic) in both dimensions, its
validity holds under the general approximate factor model of Bai and Ng (2006) provided

√
T/N →

0. Our Monte Carlo simulation results confirm the superior finite sample properies of the wild
bootstrap over the normal approximation even when there is serial dependence in the idiosyncratic
error term.

1 Introduction

Factor-augmented regressions where some of the regressors, called factors, are estimated from a large

set of data are increasingly popular in empirical work. Inference in these models is complicated by the

problem of generated regressors analyzed by Pagan (1984). Recently, Bai and Ng (2006) derive the

asymptotic distribution of the OLS estimator in this case under a set of standard regularity conditions.

In particular, they show that the asymptotic covariance matrix is unaffected by the estimation of the

factors when
√
T/N → 0, where N and T are the cross-sectional and the time series dimensions

respectively. While their simulation study does not consider inference on the coefficients themselves

(they look at the conditional mean), they report noticeable size distortions in some situations.

∗We would like to thank Nikolay Gospodinov and Serena Ng for very useful discussions and comments. Gonçalves
acknowledges financial support from the NSERC and MITACS whereas Perron acknowledges financial support from the
SSHRCC and MITACS.
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The main contribution of this paper is to propose and theoretically justify bootstrap methods for

inference in the context of the factor-augmented regression model. Recent empirical applications of the

bootstrap in this context include Ludvigson and Ng (2007, 2009a,b) and Gospodinov and Ng (2010),

where the bootstrap has been used in the context of predictability tests based on factor-augmented

regressions without theoretical justification. Here we establish the first order asymptotic validity of

the bootstrap for factor-augmented regression models under a set of regularity conditions similar to

those used by Bai and Ng (2006).

The bootstrap method we propose is made up of two main steps. In a first step, we obtain a

bootstrap panel data set from which we estimate the bootstrap factors by principal components.

The bootstrap panel observations are generated by adding the estimated common components from

the original panel and bootstrap idiosyncratic residuals. In a second step, we generate a bootstrap

version of the response variable by again relying on a residual-based bootstrap where the bootstrap

observations of the dependent variable are obtained by summing the estimated regression mean and a

bootstrap regression residual. To mimic the fact that in the original regression model the true factors

are latent and need to be estimated, we regress the bootstrap response variable on the estimated

bootstrap factors. This produces a bootstrap OLS estimator whose bootstrap distribution can be used

to replicate the distribution of the OLS estimator.

A crucial result in proving the first order asymptotic validity of the bootstrap in this context is the

consistency of the bootstrap principal component estimator. Given our residual-based bootstrap, the

“latent” factors underlying the bootstrap data generating process (DGP) are given by the estimated

factors. Nevertheless, these are not identified by the bootstrap principal component estimator due to

the well-known identification problem of factor models. By relying on results of Bai and Ng (2010) (see

also Stock and Watson (2002)), we show that the bootstrap estimated factors identify the estimated

factors up to a change of sign. Contrary to the rotation indeterminacy problem that affects the

principal component estimator, this sign indetermination is easily resolved in the bootstrap world,

where the bootstrap rotation matrix depends on bootstrap population values that are functions of

the original data. As a consequence, to bootstrap the distribution of t-statistics, we should center the

bootstrap OLS regression estimates around the sign-adjusted estimated regression coefficients.

We provide a set of high level conditions on the bootstrap residuals and idiosyncratic errors such

that the bootstrap principal components have the appropriate rate of convergence. These high level

conditions essentially require that the bootstrap idiosyncratic errors be weakly dependent across indi-

viduals and over time (so that the bootstrap factor estimation error is appropriately controlled), and

that the bootstrap regression scores satisfy a central limit theorem. We show that these high level

conditions are satisfied for a residual-based wild bootstrap scheme, where the wild bootstrap is used

to generate the bootstrap idiosyncratic error term in the first step, and also in the second step when

generating the regression residuals. The two steps are performed independently of each other.

Although the wild bootstrap idiosyncratic errors are independent over time and across individuals
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by construction (but are heteroskedastic), the first order asymptotic validity of the wild residual-

based bootstrap method holds under the general conditions of Bai and Ng (2006), which allow for

weak time series and cross sectional dependence in the idiosyncratic error term. The main reason is

that we maintain the condition that
√
T/N → 0 so that the asymptotic covariance matrix of the OLS

estimator does not depend to first order on the dependence structure of the idiosyncratic errors. The

main motivation for using the wild bootstrap in the second step of our residual-based bootstrap is

that we follow Bai and Ng (2006) and assume that the regression errors are a possibly heteroskedastic

martingale difference sequence. Under a more general dependence assumption, the wild bootstrap

would not be appropriate and we should instead consider a block bootstrap. We do not pursue this

possibility here but note that our bootstrap high level conditions would be useful in establishing the

validity of the block bootstrap in this context as well.

The rest of the paper is organized as follows. In Section 2, we describe the setup and review the

assumptions and the asymptotic theory derived in Bai and Ng (2006). In Section 3, we introduce

the residual-based bootstrap method and characterize a set of high level conditions under which the

bootstrap distribution consistency follows. Section 4 proposes a wild bootstrap implementation of the

residual-based bootstrap and proves its consistency. Section 5 discusses the Monte Carlo results and

Section 6 concludes. Three mathematical appendices are included. Appendix A contains the proofs of

the results in Section 3. Appendix B provides a set of high level conditions on the bootstrap residuals

and idiosyncratic error terms such that the bootstrap factor estimation error satisfies the appropriate

rates of convergence. These high level conditions can be verified for any residual-based bootstrap

method. Appendix C verifies them for the wild bootstrap method we consider in Section 4.

A word on notation. As usual in the bootstrap literature, we use P ∗ to denote the bootstrap

probability measure, conditional on a given sample. For any bootstrap statistic T ∗
NT , we write

T ∗
NT = oP ∗ (1), in probability, or T ∗

NT →P ∗
0, in probability, when for any δ > 0, P ∗ (|T ∗

NT | > δ) =

oP (1). We write T ∗
NT = OP ∗ (1), in probability, when for all δ > 0 there exists Mδ < ∞ such that

limN,T→∞ P [P ∗ (|T ∗
NT | > Mδ) > δ] = 0. Finally, we write T ∗

NT →d∗ D, in probability, if conditional on

a sample with probability that converges to one, T ∗
NT weakly converges to the distribution D under

P ∗, i.e. E∗ (f (T ∗
NT )) →P E (f (D)) for all bounded and uniformly continuous functions f .

2 Setup, assumptions and estimation

2.1 Setup

We consider the following regression model

yt+h = α′Ft + β′Wt + εt+h, t = 1, . . . , T − h, (1)

where h ≥ 0. This model is known in the literature as a factor-augmented regression model due to the

presence of Ft, which is a vector containing r latent common factors. The observable regressors are
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contained in Wt. The unobserved regressors Ft are the common factors in the following panel factor

model,

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2)

where the r × 1 vector λi contains the factor loadings and eit is an idiosyncratic error term. None

of {λi} , {Ft} and {eit} are observed, but they can be estimated from the observed panel data set

{Xit : i = 1, . . . , N, t = 1, . . . , T}. In particular, we can obtain estimated factors F̃t and run a standard

regression of yt+h on F̃t andWt to estimate α and β. We will review in more detail below the estimation

methods proposed in this context.

The factor-augmented regression model described in (1) and (2) has recently attracted a lot of

attention in econometrics. One of the attractive features of this model is the fact that a large amount

of information (the Xit’s) can be summarized in a few estimated factors (the F̃t). By including the

estimated factors as regressors in an otherwise standard regression model, we can effectively take into

account a large number of predictors without running into the curse of dimensionality that would arise

if we tried to include them all in the first place. One of the first papers to discuss this model in the

forecasting context was Stock and Watson (2002), who studied the consistency of feasible forecasts of

yT+h based on the estimated conditional mean of (1) when Ft is replaced with an estimate F̃t. Bai and

Ng (2006) derived an asymptotic distribution theory for the estimated regression parameters of (1) as

well as for the feasible forecasts based on these parameters and the estimated factors. Recent empirical

applications include Ludvigson and Ng (2007, 2009a,b) and Gospodinov and Ng (2010). Ludvigson

and Ng (2007) consider predictive regressions of excess stock returns and augment the usual set of

predictors by including estimated factors from a large panel of macro and financial variables. Ludvigson

and Ng (2009a,b) consider this approach in the context of predictive regressions of bond excess returns.

Gospodinov and Ng (2010) study predictive regressions for inflation using principal components from

a panel of commodity convenience yields, while Eichengreen, Mody, Nedeljkovic, and Sarno (2009) use

common factors extracted from credit default swap (CDS) spreads during the recent financial crisis to

look at spillovers across banks.

2.2 Assumptions

We follow Bai and Ng (2006) (see also Bai and Ng (2002) and Bai (2003)) and rely on the following

set of assumptions. Throughout, M is a generic finite constant.

Assumption A (common factors) E ‖Ft‖4 ≤ M and 1
T

∑T
t=1 FtF

′
t →P ΣF > 0, where ΣF is a

non-random r × r matrix.

Assumption B (heterogeneous factor loadings) The loadings λi are either deterministic such

that ‖λi‖ ≤M , or stochastic such that E ‖λi‖4 ≤ M. In either case, Λ′Λ/N →P ΣΛ > 0, where

ΣΛ is a non-random matrix.
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Assumption C (time and cross-section weak dependence and heteroskedasticity)

1. E (eit) = 0, E |eit|8 ≤M.

2. E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τ ts for all (i, j) such that

1

N

N∑
i,j=1

σ̄ij ≤M,
1

T

T∑
t,s=1

τ ts ≤M , and
1

NT

∑
t,s,i,j

|σij,ts| ≤M.

3. For every (t, s), E
∣∣∣N−1/2

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤M.

Assumption D {λi} , {Ft} , and {eit} are three mutually independent groups. Dependence within

each group is allowed.

Assumption E For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 Fs (eiteis − E (eiteis))

∥∥∥2 ≤M.

Assumption A imposes the assumption that factors are non-degenerate. Assumption B ensures

that each factor contributes non-trivially to the variance of Xt, i.e. the factors are pervasive and affect

all cross sectional units. These assumptions ensure that there are r identifiable factors in the model.

Recently, Onatski (2009b) considers a class of “weak” factor models, where the factor loadings are

modeled as local to zero. Under this assumption, the estimated factors are no longer consistent for

the unobserved (rotated) factors. In this paper, we do not consider this possibility.

Assumption C imposes weak cross-sectional and serial dependence conditions in the idiosyncratic

error term eit. In particular, we allow for the possibility that eit is dependent across individual units

and over time, but we require that the degree of dependence decreases as the time and the cross

sectional distance (regardless of how it is defined) between observations increases. This assumption is

compatible with the approximate factor model of Chamberlain and Rothschild (1983) and Connor and

Korajczyk (1986, 1993), in which cross section units are weakly correlated. Assumption C allows for

heteroskedasticity in both dimensions and requires the idiosyncratic error term to have finite eighth

moments.

According to Assumption D, the factor loadings, the factors and the idiosyncratic error terms are

three mutually independent groups of random variables. This assumption is standard in classic factor

analysis. Bai (2003) relaxes the independence assumption between factors and idiosyncratic errors by

allowing for weak dependence between the two sets. For simplicity, we will maintain the independence

assumption throughout. When factors and idiosyncratic errors are independent, Assumption E is

implied by the following more primitive condition

1

NT 2

T∑
t,s,l,u=1

N∑
i,j=1

|Cov (eiteis, ejleju)| ≤M,

which holds under suitable weak dependence conditions in {eit} across i and over t. Bai (2009) relies on

this condition (part 1 of his Assumption C.4) to establish the asymptotic properties of the interactive
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effects estimator.

Our next assumption is a high level assumption on the regressors zt = (F ′
t ,W

′
t )

′, the error term

εt+h, and the scores ztεt+h of the regression model (1). Bai and Ng (2006) rely on this assumption

to derive the asymptotic distribution of the ordinary least squares estimator of the parameters in (1).

See also Stock and Watson (2002) for a similar set of assumptions.

Assumption F Let zt = (F ′
t ,W

′
t)

′.

1. E ‖zt‖4 ≤M.

2. E (εt+h|yt, zt, yt−1, zt−1, . . .) = 0, for any h ≥ 0, and zt and εt are independent of eis for all

(i, s, t) .

3. 1
T

∑T
t=1 ztz

′
t →P Σzz > 0.

4. 1√
T

∑T−h
t=1 ztεt+h →d N (0,Σzz.ε), where Σzz.ε ≡ E

(
ztz

′
tε

2
t+h

)
= p lim 1

T

∑T−h
t=1 ztz

′
tε

2
t+h > 0.

Assumption F.1 requires the existence of finite fourth moments for the elements of zt. Assumption

F.2 imposes a martingale difference condition on the regression errors εt+h. Under this condition, εt+h

is serially uncorrelated but possibly heteroskedastic. Assumption F.2 also imposes an independence

condition between (zt, εt) and the idiosyncratic errors eis. In particular, εt is independent of eis for

all (i, s, t). Assumption F.3 is the standard absence of multicollinearity condition and ensures that

the regression coefficients are well identified. Assumption F.4 is a high level central limit theorem

condition on the scores of the regression model. Under the martingale difference condition F.2, the

scores are serially uncorrelated but possibly heteroskedastic. The form of the asymptotic covariance

matrix Σzz.ε ≡ E
(
ztz

′
tε

2
t+h

)
reflects this assumption.

2.3 Estimation

The factor-augmented regression model (1) cannot be directly estimated because the common factors

Ft are not observed. Given the factor panel model (2), the idea is to first use the panel {Xit} to

estimate Ft, and then run a regression of yt+h on the estimated factors F̃t and Wt.

In matrix form, we can write (2) as

X = FΛ′ + e,

where X is a T ×N matrix of stationary data, F = (F1, . . . , FT )
′ is T × r, r is the number of common

factors, Λ = (λ1, . . . , λN )′ is N × r, and e is T ×N. We assume throughout that the number of factors,

r, is known. One could proceed by estimating the number of factors using the information criteria of

Bai and Ng (2002), Groen and Kapetanios (2009), or the test of Onatski (2009a).
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Given X, we estimate F and Λ with the method of principal components. The objective function

that we wish to minimize is given by

V (F,Λ) =
1

TN

N∑
i=1

T∑
t=1

(
Xit − λ′iFt

)2
=

1

TN

N∑
i=1

(Xi − Fλi)
′ (Xi − Fλi) ,

where Xi = (Xi1, . . . ,XiT )
′ is T × 1. Some normalization has to be imposed. The two most common

is that either F ′F
T = Ir or

Λ′Λ
N = Ir. In the case where the normalization F ′F

T = Ir is used, the solution

is the T × r matrix F̃ =
(
F̃1 . . . F̃T

)′
composed of

√
T times the eigenvectors corresponding to

the r largest eigenvalues of of XX ′/TN (arranged in decreasing order). The matrix containing the

estimated loadings is then Λ̃ =
(
λ̃1, . . . , λ̃N

)′
= X ′F̃

(
F̃ ′F̃

)−1
= X ′F̃ /T.

A distinctive feature of factor models is that F and Λ are not separately identified. For any

invertible matrix A, we can write FΛ′ = FAA−1Λ′ ≡ GΓ′, implying thatX = FΛ′+e is observationally

equivalent to X = GΓ′ + e. For this reason, F̃ can only consistently estimate the space spanned by

F . In particular, under Assumptions A-D, Bai and Ng (2002) show that

1

T

T∑
t=1

∥∥∥F̃t −HF̃t

∥∥∥2 = OP

(
δ−2
NT

)
, (3)

where δNT = min
(√

N,
√
T
)
. The matrix H is defined as

H = Ṽ −1 F̃
′F
T

Λ′Λ
N

, (4)

where Ṽ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of

XX ′/NT , in decreasing order.

Consider now the factor-augmented regression of yt+h on ẑt =
(
F̃ ′
t ,W

′
t

)′
. Given (1), adding and

subtracting appropriately yields

yt+h =
(
α′H−1 β′

)︸ ︷︷ ︸
=δ′

(
F̃t

Wt

)
︸ ︷︷ ︸

=ẑt

+ α′H−1
(
HFt − F̃t

)
+ εt+h,

or, equivalently,

yt+h = ẑ′tδ + α′H−1
(
HFt − F̃t

)
+ εt+h. (5)

The least squares estimator of δ is

δ̂ ≡
(
α̂

β̂

)
=

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h.

Bai and Ng (2006) derived the asymptotic distribution of δ̂ under Assumptions A-F and the condition

that
√
T/N → 0. Their Theorem 1 shows that

√
T
(
δ̂ − δ

)
→d N (0,Σδ) ,
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where

Σδ = Φ′−1
0 Σ−1

zz Σzz.εΣ
−1
zz Φ

−1
0

where Σzz.ε is defined in Assumption F.4 and Φ0 = p lim

[
H 0
0 I

]
.

A consistent estimator of Σδ is

Σ̂δ =

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1(
1

T

T−h∑
t=1

ẑtẑ
′
tε̂

2
t+h

)(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1

, (6)

where ε̂t+h = yt+h − ẑ′tδ̂ are the regression residuals in (5). This is equation (3) in Bai and Ng (2006).

Some comments are in order. First, because the factor model is unidentified, the least squares

estimator δ̂ is consistent for δ =
(
α′H−1, β′

)′
, and not for

(
α′, β′

)′
. In particular, the OLS regression

coefficients associated with F̃t are consistent only for a rotation of the true parameters α, where

the rotation is determined by the matrix H defined above. Thus, the estimated parameters do not

necessarily have a structural interpretation. An exception is when α = 0, in which case δ =
(
0, β′)′ =(

α′, β′)′. Another exception is when the data generating process (DGP) is such that we can identify

H. This has been recently studied by Bai and Ng (2010), who provide sufficient conditions for H to

be asymptotically equal to a diagonal matrix with ±1 in the main diagonal. For instance, this will be

true if the DGP happens to satisfy the normalization conditions F ′F/T = Ir and Λ′Λ happens to be

equal to a diagonal matrix. See Bai and Ng (2010) for two other identification schemes.

The second comment is that if
√
T/N → 0, estimation of the true factors does not impact the

estimation of the asymptotic covariance matrix of δ̂. In particular, the covariance matrix estimator

Σ̂δ given in (6) is exactly the same we would compute if the true factors were observed. There is no

need to adjust the standard errors to take into account the presence of generated regressors. This

is in contrast to the usual results (see Pagan (1984)) that show that in a standard regression model

the asymptotic variance of the OLS estimator changes when we replace unobserved regressors by a

first-step estimated version of these. In the factor-augmented regression model, Bai and Ng (2006)

show that there is no such effect as long as
√
T/N → 0.

3 A general residual-based bootstrap

In this section we consider a general residual-based bootstrap for factor-augmented regressions and

provide high level conditions under which this method is first order asymptotically valid.

Suppose the bootstrap DGP generates
(
y∗t+h,X

∗
t

)
using an estimated version of the factor model

representation (1) and (2) given by

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h, t = 1, . . . , T − h; (7)

X∗
t = Λ̃F̃t + e∗t , t = 1, . . . , T, (8)

where
{
ε∗t+h

}
is a bootstrap sample generated from the regression residuals

{
ε̂t+h = yt+h − α̂′F̃t − β̂

′
Wt

}
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and
{
e∗t = (e∗1t, . . . , e∗Nt)

′} is a bootstrap sample from
{
êt = Xt − Λ̃F̃t

}
. Here, Xt = (X1t, . . . ,XNt)

′

and X∗
t = (X∗

1t, . . . ,X
∗
Nt)

′. At this point, we are not specific about which bootstrap methods we

use to generate these residuals and idiosyncratic error terms. Instead, our goal is to provide a set of

high level conditions under which any bootstrap scheme generated according to (7) and (8) will be

asymptotically valid.

Estimation proceeds in two stages. First, we estimate the factors by the method of principal com-

ponents using the bootstrap panel data set {X∗
t }. Second, we run a regression of y∗t+h on the bootstrap

estimated factors and the fixed observed regressors Wt. Under Bai and Ng’s (2006) assumptions, a

simple residual-based bootstrap method that does not take into account the factor estimation uncer-

tainty in the bootstrap samples (i.e. a bootstrap method based only on the second step of our proposed

method) is asymptotically valid. We do not consider this possibility here because factor estimation

uncertainty has an impact in finite samples and therefore estimating the factors in the bootstrap world

is important to improve finite sample accuracy. Yamamoto (2009) compares bootstrap methods with

and without factor estimation for the factor-augmented vector autoregression (FAVAR) model. He

concludes that the latter is worse than the first in terms of finite sample accuracy.

Given {X∗
t }, we estimate the bootstrap factor loadings and the bootstrap factors by minimizing

the bootstrap objective function

V ∗ (F,Λ) =
1

TN

T∑
t=1

N∑
i=1

(
X∗

it − λ′iFt

)2
subject to the normalization constraint that F ′F/T = Ir. The T × r matrix containing the estimated

bootstrap factors is denoted by F̃ ∗ =
(
F̃ ∗
1 , . . . , F̃

∗
T

)′
and it is equal to the r eigenvectors of X∗X∗′/NT

(multiplied by
√
T ) corresponding to the r largest eigenvalues. TheN×r matrix of estimated bootstrap

loadings is given by Λ̃∗ =
(
λ̃
∗
1, . . . , λ̃

∗
N

)′
= X∗′F̃ ∗/T .

According to (8), the common factors underlying the bootstrap panel data {X∗
t } are given by F̃t

(with Λ̃ as factor loadings). Nevertheless, and as noted in the previous section, the factor model is

unidentified and therefore the estimated bootstrap factors F̃ ∗
t do not identify F̃t. Instead, F̃

∗
t estimates

H∗F̃t, where H
∗ is the bootstrap analogue of the rotation matrix H defined in (4), i.e.

H∗ = Ṽ ∗−1 F̃
∗′F̃
T

Λ̃′Λ̃
N

, (9)

where Ṽ ∗ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of

X∗X∗′/NT , in decreasing order.

Contrary to H, H∗ does not depend on population values and can be computed. Hence, the

rotation indeterminacy problem is not as acute in the bootstrap world. In particular, because the

bootstrap factor model (8) satisfies the constraints that F̃ ′F̃ /T = Ir and Λ̃′Λ̃ is a diagonal matrix, it

turns out that H∗ is asymptotically (as N,T → ∞) a diagonal matrix with diagonal elements equal
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to ±1. Specifically, we can show that

H∗ = H∗
0 +OP ∗

(
δ−2
NT

)
,

in probability, where H∗
0 = diag (±1), by relying on the arguments of Bai and Ng (2010) (see also

Stock and Watson (2002)). Therefore, the bootstrap factors are identified up to a change of sign.

Given the estimated bootstrap factors F̃ ∗
t , the second estimation stage is to regress y∗t+h on ẑ∗t ≡(

F̃ ∗′
t ,W

′
t

)′
. Because the bootstrap scheme used to generate y∗t+h is residual-based, we fix the observed

regressors Wt in the bootstrap regression. We replace F̃t with F̃
∗
t to mimic the fact that in the original

regression model (1) the factors Ft are latent and need to be estimated with F̃t. This yields the

bootstrap OLS estimator

δ̂
∗ ≡

(
α̂∗

β̂
∗
)

=

(
T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−h∑
t=1

ẑ∗t y
∗
t+h. (10)

From (7), by adding and subtracting appropriately, we have that

y∗t+h =
(
α̂′H∗−1 β̂

′ )︸ ︷︷ ︸
=δ∗′

(
F̃ ∗
t

Wt

)
︸ ︷︷ ︸

=ẑ∗t

+ α̂′H∗−1
(
H∗F̃t − F̃ ∗

t

)
+ ε∗t+h. (11)

Here, δ∗ is the set of “parameters” that the bootstrap OLS estimator δ̂
∗
identifies provided we appro-

priately control the bootstrap factor estimation uncertainty (as captured by the second term). The

following condition provides a set of high level conditions under which this is the case.

Condition A* Let δNT = min
(√

N,
√
T
)
and suppose the following conditions hold in probability,

as N,T → ∞,

1. 1
T

∑T
t=1

∥∥∥F̃ ∗
t −H∗F̃t

∥∥∥2 = OP ∗
(
δ−2
NT

)
;

2. 1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ′t = OP ∗

(
δ−2
NT

)
, where ẑt =

(
F̃ ′
t ,W

′
t

)′
;

3. 1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ∗′t = OP ∗

(
δ−2
NT

)
, where ẑ∗t =

(
F̃ ∗′
t ,W

′
t

)′
;

4. 1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)
ε∗t+h = OP ∗

(
δ−2
NT

)
; and

5. 1√
T

∑T
t=1 ẑtε

∗
t+h →d∗ N (0,Φ0Σzz.εΦ

′
0) , where Φ0 = diag (p limH, I) and Σzz.ε = E

(
ztz

′
tε

2
t+h

)
.

With Condition A∗, we can show the validity of the residual-based bootstrap. Appendix B contains

primitive conditions on the bootstrap residuals
{
ε∗t+h

}
and on the bootstrap idiosyncratic error terms

{e∗it} such that (the first four parts of) Condition A∗ hold. In the next section we will propose a wild

bootstrap method for generating
{
ε∗t+h

}
and {e∗it} such that Condition A∗ is verified.
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Theorem 3.1 Assume Assumptions A-F hold and suppose we generate bootstrap data
{
y∗t+h,X

∗
t

}
according to the residual-based bootstrap DGP (7) and (8) by relying on bootstrap residuals

{
ε∗t+h

}
and

{e∗t } such that Condition A* is satisfied. Then, as N,T → ∞ with
√
T/N → 0,

a) With probability approaching one,

√
T
(
δ̂
∗ − δ∗

)
→d∗ N (0,Σ∗

δ) ,

where δ∗ = Φ∗′−1δ̂, with Φ∗ = diag (H∗, I), and Σ∗
δ = (Φ∗′

0 )
−1 Σδ (Φ

∗
0)

−1 , where Φ∗
0 is a diagonal

matrix with ±1 as main diagonal elements.

b) For each individual element j,

sup
x∈R

∣∣∣P ∗
(√

T
(
δ̂
∗
j − δ∗j

)
≤ x

)
− P

(√
T
(
δ̂j − δj

)
≤ x

)∣∣∣ P→ 0.

Part a) of Theorem 3.1 shows that the bootstrap asymptotic distribution of
√
T
(
δ̂
∗ − δ∗

)
is

N (0,Σ∗
δ) provided the bootstrap samples

{
ε∗t+h

}
and {e∗it} are such that Condition A* is satisfied and

Bai and Ng’s (2006) conditions hold.

The first feature to notice is that the bootstrap estimated coefficients δ̂
∗
are centered around

δ∗ = Φ∗′−1δ̂,

where Φ∗ = diag (H∗, I), and not around δ̂. Because H∗ is asymptotically equal to a diagonal matrix

with ±1 on the main diagonal, δ∗ is asymptotically equal to δ̂, up to a sign change, i.e.

δ∗ = δ∗0 +OP ∗
(
δ−2
NT

)
,

where δ∗0 ≡ Φ∗′−1
0 δ̂ and Φ∗

0 = diag(diag (±1) , I) is a diagonal matrix where the first r main diagonal

elements are ±1. Thus, δ̂
∗
only identifies the sign-adjusted coefficients associated with the estimated

factors. Stock and Watson (2002) and Bai and Ng (2010) also discuss the sign indeterminacy.

The second feature to notice is that the asymptotic bootstrap covariance matrix of δ̂
∗
is Σ∗

δ =

(Φ∗′
0 )

−1Σδ (Φ
∗
0)

−1 . For first order asymptotic bootstrap validity, we need Σ∗
δ = Σδ, where Σδ is the

asymptotic covariance matrix of δ̂ (as shown by Bai and Ng (2006)). Since Φ∗
0 = diag(diag (±1) , I),

this equality does not hold and therefore the residual-based bootstrap does not consistently estimate

the distribution of the vector
√
T
(
δ̂ − δ

)
. Nevertheless, because Φ∗

0 is a diagonal matrix with ±1 as

the first r main diagonal elements (and +1 for the remaining ones), the main diagonal elements of Σ∗
δ

are the same as the main diagonal elements of Σδ. This implies that the bootstrap variances of each

individual element of δ̂
∗
j coincide asymptotically with the variances of δ̂j. Consequently, under the

conditions of Theorem 3.1 the bootstrap distribution of
√
T
(
δ̂
∗
j − δ∗j

)
is consistent for the distribution

of
√
T
(
δ̂j − δj

)
. This is the content of part b), which justifies using the residual-based bootstrap for

constructing bootstrap percentile-type confidence intervals for the individual elements of δ.

When interest focuses on inference involving the entire vector δ (or a subvector containing more

11



than one of the coefficients associated with the estimated factors), we need to modify the bootstrap

procedure described above to ensure that the asymptotic bootstrap covariance matrix is equal to Σδ.

One easy modification is to consider the bootstrap distribution of a sign-adjusted vector of bootstrap

estimates given by

δ̃
∗
= Φ∗′

0 δ̂
∗
.

The asymptotic bootstrap covariance matrix of δ̃
∗
is equal to

V ar∗
(√

T δ̃
∗)

= Φ∗′
0 V ar

∗
(√

T δ̂
∗)

Φ∗
0 = Φ∗′

0

(
Φ∗′
0

)−1
Σδ (Φ

∗
0)

−1 Φ∗
0 = Σδ.

Sign-adjusting the OLS bootstrap estimates δ̂
∗
not only delivers the correct asymptotic covariance

matrix for δ̃
∗
but also implies that we can center δ̃

∗
around δ̂ (instead of δ∗). Notice that sign-adjusting

δ̂
∗
is exactly equivalent to sign-adjusting the factors F̃ ∗, i.e. δ̃

∗
is equal to the OLS estimator from

the regression of y∗t+h on H∗
0 F̃

∗
t and Wt.

The following result provides the consistency of the bootstrap distribution of
√
T
(
δ̃
∗ − δ̂

)
as an

estimator of the distribution of
√
T
(
δ̂ − δ

)
.

Corollary 3.1 Under the assumptions of Theorem 3.1, as N,T → ∞,

a) With probability approaching one,

√
T
(
δ̃
∗ − δ̂

)
→d∗ N (0,Σδ) .

b)

sup
x∈Rdim(δ)

∣∣∣P ∗
(√

T
(
δ̃
∗ − δ̂

)
≤ x

)
− P

(√
T
(
δ̂ − δ

)
≤ x

)∣∣∣ P→ 0.

4 A residual-based wild bootstrap

Both Theorem 3.1 and Corollary 3.1 justify the use of a residual-based bootstrap method for construct-

ing bootstrap percentile confidence intervals for the elements of δ provided we choose the bootstrap

innovations
{
ε∗t+h

}
and {e∗it} such that Condition A∗ holds.

In this section we propose a particular bootstrap method for generating
{
ε∗t+h

}
and {e∗it} and show

its first-order asymptotic validity under a set of primitive conditions.

Bootstrap algorithm

1. For t = 1, . . . , T , let

X∗
t = Λ̃F̃t + e∗t ,

where {e∗t = (e∗1t, . . . , e
∗
Nt)} is such that

e∗it = ẽitηit,

12



is a resampled version of
{
ẽit = Xit − λ̃

′
iF̃t

}
obtained with the wild bootstrap. The external

random variables ηit are i.i.d. across (i, t) and have mean zero and variance one.

2. Estimate the bootstrap factors F̃ ∗ and the bootstrap loadings Λ̃∗ using X∗.

3. For t = 1, . . . , T − h, let

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h,

where the regressors are kept fixed and the error term ε∗t+h is a wild bootstrap resampled version

of ε̂t+h, i.e.

ε∗t+h = ε̂t+hvt+h,

where the external random variable vt+h is i.i.d. (0, 1) and is independent of ηit.

4. Regress y∗t+h generated in 3. on the fixed regressors Wt and on the estimated bootstrap factors

F̃ ∗
t . This yields the bootstrap OLS estimators

δ̂
∗
=

(
T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−h∑
t=1

ẑ∗t y
∗
t+h,

where ẑ∗t =
(
F̃ ∗′
t ,W

′
t

)′
.

Given Theorem 3.1 and Corollary 3.1, the wild residual-based bootstrap method is first order

asymptotically valid provided it satisfies Condition A∗. The following assumption (together with

Assumptions A-F) ensures that this is the case.

Assumption WB For some q > 1,

1. λi are either deterministic such that ‖λi‖ ≤M <∞, or stochastic such that E ‖λi‖4q ≤M <∞
for all i.

2. E |eit|8q ≤M <∞, for all (i, t) .

3. E ‖zt‖4q ≤M <∞, for all t, where zt = (F ′
t ,W

′
t )

′ .

4. E |yt+h|4q ≤M <∞, for all t, h.

Assumption WB.1 strengthens Assumption B when the factor loadings are stochastic by requiring

that λi have uniformly bounded moments of order slightly larger than 4. Similarly, Assumptions

WB.2 and WB.3 slightly strengthen the moment conditions of Assumptions C.1 and E.1, respectively.

Assumption WB.4 is new; together with Assumption WB.3 it ensures that E |εt+h|4q ≤M <∞.

The following auxiliary result shows that Condition A∗ is satisfied under Assumptions A-F and

WB.
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Lemma 4.1 Under Assumptions A-F and WB, Condition A∗ holds for the wild bootstrap provided

E∗ |ηit|4 < C and E∗ |vt+h|4q < C, for some q > 1.

Our main result is as follows.

Theorem 4.1 Suppose Assumptions A-F and WB hold. Then the conclusions of Theorem 3.1 and

Corollary 3.1 hold for the wild bootstrap provided
√
T/N → 0 and E∗ |ηit|4 < C for all (i, t) and

E∗ |vt+h|4q < C for all t, for some q > 1.

Although the wild bootstrap idiosyncratic errors {e∗it = êitηit} are independent (but possibly het-

eroskedastic) along both dimensions, the wild bootstrap residual-based method is asymptotically valid

under Assumptions A-F and WB. These conditions allow for weak dependence across (i, t). The valid-

ity of the wild bootstrap in the first step depends crucially on the assumption that
√
T/N → 0 since

under this assumption the covariance matrix of δ̂ does not depend on the dependence structure of eit.

The main motivation for using the wild bootstrap to generate ε∗t+h in the second step is that

under Assumption F.2, εt+h is a possibly heteroskedastic martingale difference sequence, so the wild

bootstrap applied to the regression residuals is a natural choice. Under more general dependence

conditions on εt+h that would induce serially correlated scores, a wild bootstrap would not be valid.

In this case, block bootstrap methods would be appropriate. Condition A∗ could still be used to

establish the validity of the block bootstrap although we do not pursue this possibility here.

5 Monte Carlo results

In this section, we report results from a simulation experiment that documents the properties of our

bootstrap procedures in factor-augmented regressions.

The DGP follows Bai and Ng (2006) closely. The dependent variable is generated as

yt = β + α1f1,t + α2f2,t + εt, (12)

where εt is independent over time but possibly heteroskedastic. The factors are generated as

fj,t = .8jfj,t−1 +
(
1− .82j

) 1
2 vj,t, (13)

where vt =

(
v1,t
v2,t

)
∼ i.i.d. N (0, I2) .

The (T ×N) matrix of panel variables X is generated as

X = FΛ′ + e, (14)

where

F
(T×2)

=

⎛
⎜⎝ f1,1 f2,1

...
...

f1,T f2,T

⎞
⎟⎠ , Λ

(n×2)
=

⎛
⎜⎝ λ1,1 λ1,2

...
...

fn,1 λn,2

⎞
⎟⎠ .
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The loadings are drawn from U [0, 1] once and for all. We consider three values for N (50, 100, and

200) and two values for T (50 and 100). We also consider two values for the coefficients on the factors,

either α = (0, 0)′ or α = (1, 1)′ . The constant β is set to unity throughout.

We consider three scenarios for the two error terms:

DGP εt eit

1 (homo-homo) N (0, 1) N (0, 1)
2 (hetero-hetero) N

(
0, f21t

)
N
(
0, σ2i

)
3 (hetero-AR) N

(
0, f21t

)
AR(1)+N

(
0, σ2i

)
DGP 1 is the simplest case where all the errors are independent in both dimensions and identi-

cally distributed. DGP 2 introduces heteroskedasticity in both error terms, while DGP 3 adds serial

correlation to the idiosyncratic errors. In DGP 3, the autoregressive parameter is set to 0.5. When

eit is heteroskedastic (DGP 2 and 3), its variance is drawn from U [.5, 1.5] .

We concentrate on inference about the parameters in (12) . For this purpose, we use the heteroskedasticity-

robust version of the covariance matrix of δ̂ =
(
α̂′, β̂

′)′
which is equation (6).

We consider the wild residual-based bootstrap described in Section 4. The two external variables

ηit and vt are both i.i.d. N (0, 1) . Since the properties of the idiosyncratic errors do not enter the

asymptotic distribution of δ̂ to first-order, we also consider the i.i.d. bootstrap of the idiosyncratic

errors. We have not verified Condition A∗ for this case, but it is clear that it will hold under an

appropriate set of assumptions similar to those used for the wild bootstrap. For the first DGP (which

assumes homoskedastic regression errors), we also consider the i.i.d. bootstrap for the regression error

εt.

We consider two types of confidence intervals, symmetric percentile-t and symmetric percentile,

although our theory only covers the percentile case. The nominal level is 95%. We report experiments

based on 1000 replications with B = 399 bootstrap repetitions.

The results are in Tables 1-3. Each cell has three columns corresponding to the constant, the first

(dominant) factor, and the second factor, respectively. Each bootstrap method has two lines, the first

one is the coverage rate for the percentile interval, while the second one is for the percentile-t interval.

The performance of asymptotic theory depends heavily on the true value of the parameters. When

the two coefficients on the factors are 0, asymptotic theory is generally reliable in all three designs,

although some mild size distortions appear for the smaller sample sizes. For non-zero values of α,

however, there are large size distortions for the factor coefficients, especially for the first one. These

distortions are reduced as N increases, but they remain important even with N = 200. Behavior for

the constant is very good for all configurations. The undercoverage for non-zero coefficients are worst

in DGP 3 with serial correlation in the idiosyncratic error where it is as low as 47% and 49.9% for

N = T = 50.

To understand the source of these large distortions when the coefficients are not 0, notice that we
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can rewrite δ̂ (properly centered and scaled) as

√
T
(
δ̂ − δ

)
=

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1
1√
T

T−h∑
t=1

ẑtεt+h +R1,NT , (15)

where

R1,NT ≡
√
T

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1
1

T

T−h∑
t=1

ẑt

(
HFt − F̃t

)′ (
α′H−1

)′
reflects the factors estimation uncertainty. When the true value of the coefficients is 0, this remainder

is identically 0, and the resulting asymptotic distribution is a good approximation to the finite-sample

distribution of the first term in expression (15) . When α 	= 0, however, the remainder is not 0, and

while it disappears asymptotically under
√
T/N → 0 and Assumptions A-F, it plays a large role in

finite samples. In particular, our simulations revealed that it increases the variance of the estimator

in finite samples. In other words, the asymptotic distribution has too small a variance relative to the

actual behavior of the estimator, leading to confidence intervals that are too narrow relative to those

that would be need to obtain correct coverage. See Ludvigson and Ng (2009b) for more on the impact

of relaxing the condition that
√
T/N → 0.

Our wild residual-based bootstrap is quite successful in correcting these distortions. For example,

when N = 50 and T = 50, the coverage rate of the confidence intervals in DGP 1 (where both errors

are homoskedastic) go from 77.2 and 86.3% to 93.1 and 97.4%. In general, we do have a coverage

rate for the second factor that is higher than 95%, but overall, the bootstrap seems to perform well

in providing reliable inference for the first two designs. Percentile-t intervals have slightly higher

coverage rates than the percentile intervals and this exacerbates the over-coverage problem for the

second factor. For the third design, while the bootstrap does correct some of the large distortions, it is

not completely accurate. For example with N = 50 and T = 100, the coverage rate of the asymptotic

intervals is 51.8% and 81.4% respectively. The wild bootstrap improves these numbers to 80.5% and

91.0%.

If we compare the bootstrap methods, there is little to choose from between the iid and the wild

bootstrap of the idiosyncratic errors. If anything, the iid bootstrap performs slightly better in a few

cases. There is more of a difference for DGP 1 where both sets of errors are indeed iid. In that case,

using the iid bootstrap in both steps improves the coverage rate of the confidence intervals.

6 Conclusion

In this paper, we have given conditions under which a bootstrap scheme is valid in factor-augmented

regressions under similar regularity conditions as Bai and Ng (2006). We have suggested a scheme

that satisfies these conditions based on the wild bootstrap and documented the performance of this

algorithm in a simulation experiment.

Extension of the present work to cases where the panel dimensions are not well-approximated by
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the condition
√
T/N → 0 (longer and narrower panels) seems important. Large distortions appeared

in cases characterized by a non-negligible contribution of the remainder of (15) which is important

when this condition is not satisfied.

A second important extension is the case of factor-augmented vector autoregressions (FAVAR)

first suggested by Boivin and Bernanke (2002). This case has recently been analyzed by Yamamoto

(2009), who proposes a bootstrap scheme that exploits the VAR structure in the factors and the panel

variables.

A Appendix A. Proofs of results in Section 3

Proof of Theorem 3.1. Part a). From (11), we can write

√
T
(
δ̂
∗ − δ∗

)
=

(
1

T

T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1
1√
T

T−h∑
t=1

ẑ∗t ε
∗
t+h +R∗

1,NT ,

where

R∗
1,NT ≡

√
T

(
1

T

T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1
1

T

T−h∑
t=1

ẑ∗t
(
H∗F̃t − F̃ ∗

t

)′ (
α̂′H∗−1

)′
reflects the contribution of factor estimation uncertainty to the stochastic expansion of the bootstrap

OLS estimator. By Condition A∗3., R∗
1,NT = OP ∗

(√
T/N

)
= oP ∗ (1), in probability, if

√
T/N → 0.

Similarly, we can write

1√
T

T−h∑
t=1

ẑ∗t ε
∗
t+h = Φ∗ 1√

T

T−h∑
t=1

ẑtε
∗
t+h +R∗

2,NT ,

where

Φ∗ ≡
(
H∗ 0
0 I

)
= Φ∗

0 +OP ∗
(
δ−2
NT

)
,

in probability, where Φ∗
0 = diag (±1), and where

R∗
2,NT ≡

√
T
1

T

T−h∑
t=1

(
F̃ ∗
t −H∗F ∗

t

0

)
ε∗t+h.

By Condition A∗4, we can show that R∗
2,NT = OP ∗

(√
T/N

)
= oP ∗ (1) if

√
T/N → 0. By Condition

A∗5, 1√
T

∑T−h
t=1 ẑtε

∗
t+h is normally distributed, and so it must be OP ∗ (1), which implies that

1√
T

T−h∑
t=1

ẑ∗t ε
∗
t+h = Φ∗

0

1√
T

T−h∑
t=1

ẑtε
∗
t+h + oP ∗ (1) ,

under our assumptions. Similarly, by adding and subtracting appropriately and using Condition A∗1

and A∗2, we can show that

1

T

T∑
t=1

ẑ∗t ẑ
∗′
t = Φ∗

0

(
1

T

T∑
t=1

ẑtẑ
′
t

)
Φ∗′
0 + oP ∗ (1) = Φ∗

0

(
Φ0ΣzzΦ

′
0

)
Φ∗′
0 + oP ∗ (1) ,

17



where p lim 1
T

∑T
t=1 ẑtẑ

′
t = Φ0ΣzzΦ

′
0 > 0 given Assumptions A-F. It follows that with probability

approaching one,

√
T
(
δ̂
∗ − δ∗

)
= Φ∗′−1

0

(
Φ0ΣzzΦ

′
0

)−1
Φ∗−1
0 Φ∗

0
1√
T

T−h∑
t=1

ẑtε
∗
t+h + oP ∗ (1)

= Φ∗′−1
0

(
Φ0ΣzzΦ

′
0

)−1 (
Φ0Σzz.εΦ

′
0

)1/2 (
Φ0Σzz.εΦ

′
0

)−1/2 1√
T

T−h∑
t=1

ẑtε
∗
t+h︸ ︷︷ ︸

→d∗N(0,I) by Condition A∗5.︸ ︷︷ ︸
→d∗N(0,Φ∗′−1

0 ΣδΦ
∗−1
0 )

+ oP ∗ (1) ,

where Σδ ≡ (Φ0ΣzzΦ
′
0)

−1 (Φ0Σzz.εΦ
′
0) (Φ0ΣzzΦ

′
0)

−1 = Φ′−1
0 Σ−1

zz Σzz.εΣ
−1
zz Φ

−1
0 .

Part b) follows by noting that the main diagonal elements of Σ∗
δ coincide with those of Σδ. An

application of Polya’s theorem provides the uniform convergence result.

Proof of Corollary 3.1. We only prove part a) since part b) follows trivially. Since δ∗ = δ∗0 +

OP ∗
(
δ−2
NT

)
, where δ∗0 ≡ Φ∗′−1

0 δ̂, we have that

√
T
(
δ̂
∗ − δ∗

)
=

√
T
(
δ̂
∗ − δ∗0

)
+

√
T (δ∗ − δ∗0) ,

where the second term is of order OP ∗
(√

T/N
)
= oP ∗ (1) under our assumptions. The result then

follows from Theorem 3.1 by pre-multiplying
√
T
(
δ̂
∗ − δ∗0

)
by Φ∗′

0 and noting that Φ∗′
0 δ

∗
0 = δ̂.

B Appendix B. Bootstrap factor estimation results

In this Appendix, we give a set of high level conditions on {e∗it} and
{
ε∗t+h

}
that can be used to

appropriately control the error incurred in estimating the bootstrap factors F̃ ∗
t . In particular, these

conditions will imply the first four parts of Condition A∗ given in Section 3. In Appendix C we will

verify these conditions for the wild bootstrap algorithm proposed in Section 4.

Let

X∗
t = Λ̃F̃t + e∗t ,

where e∗t = (e∗1t, . . . , e∗Nt)
′ satisfies the following conditions.

Condition B1. 1
T

∑T
t=1

∑T
s=1 |γ∗st|2 = OP (1), where γ∗st = E∗

(
1
N

∑N
i=1 e

∗
ite

∗
is

)
.

Condition B2. 1
T 2

∑T
t=1

∑T
s=1E

∗
∣∣∣ 1√

N

∑N
i=1 (e

∗
ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1) .

Condition B3. 1
T

∑T
t=1E

∗
∥∥∥ Λ̃′e∗t√

N

∥∥∥2 = OP (1) .

Under Conditions B1-B3, we can prove the following result.
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Lemma B.1 Suppose X∗
t = Λ̃F̃t + e∗t , where {e∗it} satisfies Conditions B1, B2, B3. It follows that

1

T

T∑
t=1

∥∥∥F̃ ∗
t −H∗F̃t

∥∥∥2 = OP ∗
(
δ−2
NT

)
,

in probability, where δNT = min
(√

N,
√
T
)
.

Lemma B.1 is the bootstrap analogue of Lemma A.1.(i) of Bai and Ng (2006).

To prove the next result, we need the following additional conditions.

Condition B4. 1
T

∑T
t=1E

∗
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 F̃s (e

∗
ite

∗
is − E∗ (e∗ite

∗
is))
∥∥∥2 = OP (1) .

Condition B4 is the bootstrap analogue of Assumption F1 in Bai (2003).

Condition B5. 1
T

∑T
t=1

∑T
s=1 F̃sẑ

′
tγ

∗
st = OP (1) , where ẑt =

(
F̃ ′
t ,W

′
t

)′
.

Condition B6. E∗
∥∥∥ 1√

T

∑T
t=1

Λ̃′e∗t√
N
ẑ′t
∥∥∥2 = OP (1) .

Condition B6 is the bootstrap analogue of Assumption F2 in Bai (2003).

Lemma B.2 Suppose X∗
t = Λ̃F̃t + e∗t , where {e∗it} satisfies Conditions B1-B6. It follows that

a) 1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ′t = OP ∗

(
δ−2
NT

)
, in probability, where ẑt =

(
F̃ ′
t ,W

′
t

)′
.

b) 1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ∗′t = OP ∗

(
δ−2
NT

)
, in probability, where ẑ∗t =

(
F̃ ∗′
t ,W

′
t

)′
.

Lemma B.2 is the bootstrap analogue of Lemma A.1.(ii) and (iii) of Bai and Ng (2006).

Our next result controls the order of magnitude of 1
T

∑T−h
t=1

(
F̃ ∗
t −H∗F̃t

)
ε∗t+h, where

{
ε∗t+h

}
is a

bootstrap sample from {ε̂t+h} .
The following three additional conditions suffice to prove the result.

Condition B7. 1
T

∑T−h
t=1

∑T
s=1 F̃sε

∗
t+hγ

∗
st = O∗

P (1), in probability.

Condition B8. E∗
∥∥∥ 1√

T

∑T−h
t=1

Λ̃′e∗t√
N
ε∗t+h

∥∥∥2 = OP (1) .

Condition B9. 1
T

∑T−h
t=1 E∗ ∣∣ε∗t+h

∣∣2 = OP (1) .

Lemma B.3 Suppose X∗
t = Λ̃F̃t + e∗t , where {e∗it} satisfies Conditions B1-B9. Suppose in addition

that
{
ε∗t+h : t = 1, . . . , T − h

}
is a bootstrap sample obtained independently of {e∗t } such that Conditions

B7-B9 are verified. It follows that

1

T

T−h∑
t=1

(
F̃ ∗
t −H∗F̃t

)
ε∗t+h = OP ∗

(
δ−2
NT

)
,

in probability.
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Lemma B.3 is the bootstrap analogue of Lemma A.1.(iv) of Bai and Ng (2006). The proof of this

result follows exactly the proof of Lemma B.2, using the additional conditions, and therefore its proof

is omitted.

Proof of Lemma B.1. The proof is based on the following identity:

F̃ ∗
t −H∗F̃t = Ṽ ∗−1

(
1

T

T∑
s=1

F̃ ∗
s γ

∗
st +

1

T

T∑
s=1

F̃ ∗
s ζ

∗
st +

1

T

T∑
s=1

F̃ ∗
s η

∗
st +

1

T

T∑
s=1

F̃ ∗
s ξ

∗
st

)
,

where

γ∗st = E∗
(

1

N

N∑
i=1

e∗ise
∗
it

)
, ζ∗st =

1

N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it)) ,

η∗st =
1

N

N∑
i=1

λ̃
′
iF̃se

∗
it = F̃ ′

s

Λ̃′e∗t
N

and ξ∗st =
1

N

N∑
i=1

λ̃
′
iF̃te

∗
is = η∗ts.

Ignoring Ṽ ∗−1 (which is OP ∗ (1)), it follows that

1

T

T∑
t=1

∥∥∥F̃ ∗
t −H∗F̃t

∥∥∥2 ≤ 1

T

T∑
t=1

(at + bt + ct + dt) ,

where

at = T−2

∥∥∥∥∥
T∑

s=1

F̃ ∗
s γ

∗
st

∥∥∥∥∥
2

, bt = T−2

∥∥∥∥∥
T∑

s=1

F̃ ∗
s ζ

∗
st

∥∥∥∥∥
2

, ct = T−2

∥∥∥∥∥
T∑

s=1

F̃ ∗
s η

∗
st

∥∥∥∥∥
2

, dt = T−2

∥∥∥∥∥
T∑

s=1

F̃ ∗
s ξ

∗
st

∥∥∥∥∥
2

.

By the Cauchy-Schwartz inequality,
∥∥∥∑T

s=1 F̃
∗
s γ

∗
st

∥∥∥2 ≤ (∑T
s=1

∥∥∥F̃ ∗
s

∥∥∥2)(∑T
s=1 γ

∗2
st

)
, implying that

1

T

T∑
t=1

at ≤ 1

T

(
1

T

T∑
s=1

∥∥∥F̃ ∗
s

∥∥∥2
)

︸ ︷︷ ︸
=
‖F̃∗‖2

T
=r because F̃∗′F̃∗

T
=Ir

(
1

T

T∑
t=1

T∑
s=1

γ∗2st

)
︸ ︷︷ ︸

=OP (1) by Condition B1

= OP

(
1

T

)
.

For the second term, we have that

1

T

T∑
t=1

bt ≤
(

1

T

T∑
s=1

∥∥∥F̃ ∗
s

∥∥∥2
)

︸ ︷︷ ︸
=r

(
1

T 2

T∑
t=1

T∑
s=1

|ζ∗st|2
)

︸ ︷︷ ︸
OP∗( 1

N )

= OP ∗

(
1

N

)
.

In particular, by Condition B2, we can show that

1

T 2

T∑
t=1

T∑
s=1

E∗ |ζ∗st|2 =
1

T 2

T∑
t=1

T∑
s=1

E∗
∣∣∣∣∣ 1N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it))

∣∣∣∣∣
2

=
1

N

1

T 2

T∑
t=1

T∑
s=1

E∗
∣∣∣∣∣ 1√
N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it))

∣∣∣∣∣
2

= OP

(
1

N

)
,

which explains why the second term is OP ∗
(
1
N

)
.
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For the third term,

1

T

T∑
t=1

ct =
1

T

T∑
t=1

T−2

∥∥∥∥∥
T∑

s=1

F̃ ∗
s F̃

′
s

Λ̃′e∗t
N

∥∥∥∥∥
2

=
1

T

T∑
t=1

∥∥∥∥∥ Λ̃
′e∗t
N

∥∥∥∥∥
2 ∥∥∥∥∥T−1

T∑
s=1

F̃ ∗
s F̃

′
s

∥∥∥∥∥
2

.

We have that ∥∥∥∥∥T−1
T∑

s=1

F̃ ∗
s F̃

′
s

∥∥∥∥∥
2

≤
(
T−1

T∑
s=1

∥∥∥F̃ ∗
s

∥∥∥2
)

︸ ︷︷ ︸
=r

(
T−1

T∑
s=1

∥∥∥F̃s

∥∥∥2
)

︸ ︷︷ ︸
=r

= r2 = OP (1) ,

whereas by Condition B3 and Markov’s inequality,

1

T

T∑
t=1

∥∥∥∥∥ Λ̃
′e∗t
N

∥∥∥∥∥
2

= OP ∗

(
1

N

)
.

The fourth term in dt follows by the same arguments, using Condition B3.

Proof of Lemma B.2. Proof of part a). Using the above identity, we have that

1

T

T∑
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ′t = Ṽ ∗−1 (I + II + III + IV ) ,

where

I =
1

T 2

T∑
t=1

T∑
s=1

F̃ ∗
s γ

∗
stẑ

′
t, II =

1

T 2

T∑
t=1

T∑
s=1

F̃ ∗
s ζ

∗
stẑ

′
t,

III =
1

T 2

T∑
t=1

T∑
s=1

F̃ ∗
s η

∗
stẑ

′
t, and IV =

1

T 2

T∑
t=1

T∑
s=1

F̃ ∗
s ξ

∗
stẑ

′
t.

Start with I. We can write

I =
1

T 2

T∑
t=1

T∑
s=1

(
F̃ ∗
s −H∗F̃s

)
γ∗stẑ

′
t +H∗ 1

T 2

T∑
t=1

T∑
s=1

F̃sẑ
′
tγ

∗
st ≡ I1 + I2.

I2 = OP

(
1
T

)
by Condition B3. For I1, repeated application of the Cauchy-Schwartz inequality implies

that

I1 =
1

T

T∑
s=1

(
F̃ ∗
s −H∗F̃s

)( 1

T

T∑
t=1

γ∗stẑ
′
t

)
≤
(

1

T

T∑
s=1

∥∥∥F̃ ∗
s −H∗F̃s

∥∥∥2
)1/2

⎛
⎝ 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑
t=1

γ∗stẑ
′
t

∥∥∥∥∥
2
⎞
⎠1/2

≤ 1√
T

⎛
⎜⎜⎜⎜⎜⎝

1

T

T∑
s=1

∥∥∥F̃ ∗
s −H∗F̃s

∥∥∥2︸ ︷︷ ︸
OP∗(δ−2

NT )

⎞
⎟⎟⎟⎟⎟⎠

1/2⎛
⎜⎜⎜⎜⎝

1

T

T∑
s=1

T∑
t=1

|γ∗st|2︸ ︷︷ ︸
OP (1) by Condition B1

⎛
⎜⎜⎜⎜⎝

1

T

T∑
t=1

‖ẑt‖2︸ ︷︷ ︸
OP (1)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

1/2

= OP ∗

(
1√
TδNT

)
,

provided 1
T

∑T
t=1 ‖ẑt‖2 = OP (1), which follows under Bai and Ng’s (2006) assumptions. In particular,
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given that ẑt =
(
F̃ ′
t ,W

′
t

)′
,

1

T

T∑
t=1

‖ẑt‖2 = 1

T

T∑
t=1

∥∥∥F̃t

∥∥∥2 + 1

T

T∑
t=1

‖Wt‖2 = OP (1) ,

if E ‖Wt‖2 = O (1), since 1
T

∑T
t=1

∥∥∥F̃t

∥∥∥2 = r. Thus, I = OP ∗
(

1√
TδNT

)
+ OP

(
1
T

)
= OP ∗

(
δ−2
NT

)
, in

probability. Next, consider II. We have that

II =
1

T 2

T∑
t=1

T∑
s=1

(
F̃ ∗
s −H∗F̃s

)
ζ∗stẑ

′
t +H∗ 1

T 2

T∑
t=1

T∑
s=1

F̃sζ
∗
stẑ

′
t ≡ II1 + II2.

We can show that

II1 ≤
(

1

T

T∑
s=1

∥∥∥F̃ ∗
s −H∗F̃s

∥∥∥2
)1/2

︸ ︷︷ ︸
OP∗(δ−1

NT )

⎛
⎝ 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑
t=1

ζ∗stẑ
′
t

∥∥∥∥∥
2
⎞
⎠1/2

︸ ︷︷ ︸
OP∗

(
1√
NT

)

= OP ∗

(
1√

NTδNT

)
.

Indeed, by Cauchy-Schwartz inequality,

1

T

T∑
s=1

E∗
∥∥∥∥∥ 1T

T∑
t=1

ζ∗stẑ
′
t

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

E∗
{(

1

T

T∑
t=1

|ζ∗st|2
)(

1

T

T∑
t=1

‖ẑt‖2
)}

=
1

T

(
1

T

T∑
s=1

T∑
t=1

E∗ |ζ∗st|2
)

︸ ︷︷ ︸
OP (1) by Condition B2

(
1

T

T∑
t=1

‖ẑt‖2
)

︸ ︷︷ ︸
OP (1)

= OP

(
1

T

)
.

For II2, ignoring H
∗ (which is OP ∗ (1) since H∗ = H∗

0 +OP ∗
(
δ−2
NT

)
, where H∗

0 = diag (±1)), we have

that

II2 =
1

T 2

T∑
t=1

T∑
s=1

F̃sζ
∗
stẑ

′
t =

1√
TN

1

T

T∑
t=1

(
1√
TN

T∑
s=1

N∑
i=1

F̃s (e
∗
ite

∗
is − E∗ (e∗ite

∗
is))

)
︸ ︷︷ ︸

≡m∗
t

ẑ′t ≡
1√
TN

1

T

T∑
t=1

m∗
t ẑ

′
t.

We can show that 1
T

∑T
t=1m

∗
t ẑ

′
t = OP ∗ (1) , implying that II2 = OP ∗

(
1√
NT

)
in probability. By

Cauchy-Schwartz inequality, we have that

1

T

T∑
t=1

m∗
t ẑ

′
t ≤

(
1

T

T∑
t=1

‖m∗
t ‖2
)1/2(

1

T

T∑
t=1

‖ẑt‖2
)1/2

= OP ∗ (1) ,

provided 1
T

∑T
t=1 ‖m∗

t ‖2 = OP ∗ (1), or 1
T

∑T
t=1E

∗ ‖m∗
t‖2 = OP (1), by Markov’s inequality. But

1

T

T∑
t=1

E∗ ‖m∗
t ‖2 =

1

T

T∑
t=1

E∗
∥∥∥∥∥ 1√

TN

T∑
s=1

N∑
i=1

F̃s (e
∗
ite

∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

= OP (1)

by Condition B4.
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Next, consider

III =
1

T 2

T∑
t=1

T∑
s=1

F̃ ∗
s η

∗
stẑ

′
t =

1

T 2

T∑
t=1

T∑
s=1

(
F̃ ∗
s −H∗F̃s

)
η∗stẑ

′
t +H∗ 1

T 2

T∑
t=1

T∑
s=1

F̃sη
∗
stẑ

′
t ≡ III1 + III2.

Starting with III1, we have that

III1 ≤
(

1

T

T∑
s=1

∥∥∥F̃ ∗
s −H∗F̃s

∥∥∥2
)1/2

︸ ︷︷ ︸
OP∗(δ−1

NT )

⎛
⎝ 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑
t=1

η∗stẑ
′
t

∥∥∥∥∥
2
⎞
⎠1/2

︸ ︷︷ ︸
OP∗

(
1√
N

)

,

since

1

T

T∑
s=1

E∗
∥∥∥∥∥ 1T

T∑
t=1

η∗stẑ
′
t

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

E∗
(

1

T

T∑
t=1

η∗2st

)(
1

T

T∑
t=1

‖ẑt‖2
)

=
1

T 2

T∑
s=1

T∑
t=1

E∗ (η∗2st )×OP (1) ,

and we can show that under Condition B3 1
T 2

∑T
s=1

∑T
t=1E

∗ (η∗2st ) = OP

(
1
N

)
. Indeed,

1

T 2

T∑
s=1

T∑
t=1

η∗2st =
1

T 2

T∑
s=1

T∑
t=1

∥∥∥∥∥F̃ ′
s

Λ̃′e∗t
N

∥∥∥∥∥
2

=
1

T 2

T∑
s=1

T∑
t=1

∥∥∥F̃s

∥∥∥2
∥∥∥∥∥ Λ̃

′e∗t
N

∥∥∥∥∥
2

=

(
1

T

T∑
s=1

∥∥∥F̃s

∥∥∥2
)⎛⎝ 1

T

T∑
t=1

∥∥∥∥∥ Λ̃
′e∗t√
N

∥∥∥∥∥
2
⎞
⎠ 1

N
= OP ∗

(
1

N

)
,

given Condition B3.

Ignoring again H∗ and replacing η∗st with its definition, we have that

III2 =
1

T 2

T∑
t=1

T∑
s=1

F̃sη
∗
stẑ

′
t =

1

T 2

T∑
t=1

T∑
s=1

F̃s

(
F̃ ′
s

Λ̃′e∗t
N

)
ẑ′t =

(
1

T

T∑
s=1

F̃sF̃
′
s

)
︸ ︷︷ ︸

OP (1)

(
1

T

T∑
t=1

Λ̃′e∗t
N

ẑ′t

)
.

For the second factor, we can write

1

T

T∑
t=1

Λ̃′e∗t
N

ẑ′t =
1√
TN

(
1√
TN

N∑
t=1

Λ̃′e∗t ẑ
′
t

)
,

and use Condition B6 to show that 1√
TN

∑N
t=1 Λ̃

′e∗t ẑ′t = OP ∗ (1). This implies that III2 = OP ∗
(

1√
NT

)
.

For IV, write

IV =
1

T 2

T∑
t=1

T∑
s=1

(
F̃ ∗
s −H∗F̃s

)
ξ∗stẑ

′
t +H∗ 1

T 2

T∑
t=1

T∑
s=1

F̃sξ
∗
stẑ

′
t ≡ IV1 + IV2,

and note that ξ∗st = η∗ts. It follows that IV1 = OP ∗
(

1
δNT

√
N

)
by the exact same arguments as we used
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for III1. For IV2, we have that

IV2 =
1

T 2

T∑
t=1

T∑
s=1

F̃sξ
∗
stẑ

′
t =

1

T 2

T∑
t=1

T∑
s=1

F̃sη
∗
tsẑ

′
t =

1

T 2

T∑
t=1

T∑
s=1

F̃s

(
F̃ ′
t

Λ̃′e∗s
N

)
ẑ′t

=
1

T 2

T∑
t=1

T∑
s=1

F̃s

(
e∗′s Λ̃
N

F̃t

)
ẑ′t =

(
1

T

T∑
s=1

F̃s
e∗′s Λ̃
N

)(
1

T

T∑
t=1

F̃tẑ
′
t

)
= OP ∗

(
1√
NT

)
×OP (1) ,

given that Condition B6 can be used to show that 1
T

∑T
s=1 F̃s

e∗′s Λ̃
N = OP ∗

(
1√
NT

)
.

Proof of part b). Let ẑ∗t =
(
F̃ ∗′
t ,W

′
t

)′
, and write ẑ∗t = ẑ∗t − z̄∗t + z̄∗t , where

z̄∗t =

(
H∗F̃t

Wt

)
=

(
H∗ 0
0 I

)(
F̃t

Wt

)
≡ Φ∗ẑt.

It follows that

1

T

T∑
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ∗′t =

1

T

T∑
t=1

(
F̃ ∗
t −H∗F̃t

)
(ẑ∗t − z̄∗t )

′ +
1

T

T∑
t=1

(
F̃ ∗
t −H∗F̃t

)
z̄∗′t ≡ A∗ +B∗.

Note that

ẑ∗t − z̄∗t =

(
F̃ ∗
t −H∗F̃t

Wt −Wt

)
=

(
F̃ ∗
t −H∗F̃t

0

)
,

which implies that

A∗ =
(

1
T

∑T
t=1

(
F̃ ∗
t −H∗F̃t

)(
F̃ ∗
t −H∗F̃t

)′
0
)
=
(
OP ∗

(
δ−2
NT

)
0
)
= OP ∗

(
δ−2
NT

)
,

given that 1
T

∑T
t=1

∥∥∥F̃ ∗
t −H∗F̃t

∥∥∥2 = OP ∗
(
δ−2
NT

)
.

For B∗, we have that

B∗ =
1

T

T∑
t=1

(
F̃ ∗
t −H∗F̃t

)
ẑ′tΦ

∗′ = OP ∗
(
δ−2
NT

)×OP ∗ (1) = OP ∗
(
δ−2
NT

)
,

given part a) and the fact that H∗ = OP ∗ (1).

C Appendix C. Proofs of results in Section 4

First, we state an auxiliary result and its proof. Then we prove Lemma 4.1 and Theorem 4.1.

Lemma C.1 Suppose Assumptions A-F hold. If, in addition, for some p ≥ 2, E |eit|2p ≤ M < ∞,

E ‖λi‖p ≤M <∞ and E ‖Ft‖p ≤M <∞, it follows that

(i) 1
T

∑T
t=1

∥∥∥F̃t −HFt

∥∥∥p = OP (1) ;

(ii) 1
N

∑N
i=1

∥∥∥λ̃i −H−1′λi
∥∥∥p = OP (1) ;

(iii) 1
TN

∑T
t=1

∑N
i=1 ẽ

p
it = OP (1) .
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Proof of Lemma C.1.

Proof of (i). We rely on the following identity (see Bai and Ng (2002), proof of Theorem 1):

F̃t −HFt = Ṽ −1

(
1

T

T∑
s=1

F̃sψst +
1

T

T∑
s=1

F̃sηst +
1

T

T∑
s=1

F̃sξst

)
,

where

ψst =
1

N

N∑
i=1

eiseit; ηst =
1

N

N∑
i=1

λ′iFseit; and ξst = ηts.

It follows that by the c− r inequality,

1

T

T∑
t=1

∥∥∥F̃t −HFt

∥∥∥p ≤ 3p−1
∥∥∥Ṽ −1

∥∥∥p
(

1

T

T∑
t=1

at +
1

T

T∑
t=1

bt +
1

T

T∑
t=1

ct

)
,

where

at =
1

T p

∥∥∥∥∥
T∑

s=1

F̃sψst

∥∥∥∥∥
p

; bt =
1

T p

∥∥∥∥∥
T∑

s=1

F̃sηst

∥∥∥∥∥
p

; and ct =
1

T p

∥∥∥∥∥
T∑

s=1

F̃sξst

∥∥∥∥∥
p

.

Let χst denote either ψst, ηst or ξst. We can write∥∥∥∥∥
T∑

s=1

F̃sχst

∥∥∥∥∥
p

=

⎛
⎝∥∥∥∥∥

T∑
s=1

F̃sχst

∥∥∥∥∥
2
⎞
⎠p/2

≤
(

T∑
s=1

∥∥∥F̃s

∥∥∥2 T∑
s=1

|χst|2
)p/2

,

where the inequality follows by Cauchy-Schwartz. It follows that

1

T

T∑
t=1

1

T p

∥∥∥∥∥
T∑

s=1

F̃sχst

∥∥∥∥∥
p

≤ 1

T

T∑
t=1

⎛
⎜⎜⎜⎝ 1

T

T∑
s=1

∥∥∥F̃s

∥∥∥2︸ ︷︷ ︸
=r

⎞
⎟⎟⎟⎠

p/2(
1

T

T∑
s=1

|χst|2
)p/2

≤ rp/2
1

T

T∑
t=1

(
1

T

T∑
s=1

|χst|2
)p/2

≤ rp/2
1

T 2

T∑
t=1

T∑
s=1

|χst|p ,

where the last inequality follows again by the c− r inequality. Thus it suffices to show that E |χst|p ≤
M <∞ to prove that the above term is OP (1). Starting with χst = ψst,

E |ψst|p = E

∣∣∣∣∣ 1N
N∑
i=1

eiteis

∣∣∣∣∣
p

≤ 1

N

N∑
i=1

E |eiteis|p ≤ 1

N

N∑
i=1

(
E |eit|2p

)1/2 (
E |eis|2p

)1/2 ≤M <∞,

given that we assume E |eit|2p ≤M <∞. When χst = ηst, we have that

E |ηst|p = E

∣∣∣∣∣ 1N
N∑
i=1

λ′iFseit

∣∣∣∣∣
p

≤ 1

N

N∑
i=1

E
∣∣λ′iFseit

∣∣p = 1

N

N∑
i=1

E ‖λi‖pE ‖Fs‖pE |eit|p ≤M3,

where we have used the independence between the three groups of random variables {λi}, {Fs} and

{eit} in obtaining the first equality, and the assumptions that E ‖λi‖p ≤ M , E ‖Fs‖p ≤ M , and

E |eit|2p ≤ M in obtaining the last inequality. The term that depends on χst = ξst can be dealt with

similarly.
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Proof of (ii). Note that Λ̃ = X′F̃
T , which implies that Λ̃′ = F̃ ′X

T . Since X = FΛ′ + e, it follows that

Λ̃′ =
F̃ ′F
T

Λ′ +
F̃ ′e
T
,

thus implying that λ̃i =
F̃ ′F
T λi +

F̃ ′ei
T , where ei = (ei1, . . . , eiT )

′. We can write

F̃ ′FH
T

′
=
F̃ ′F̃
T

−
F̃ ′
(
F̃ − FH ′

)
T

= Ir −
F̃ ′
(
F̃ − FH ′

)
T

,

from which it follows that

λ̃i =
F̃ ′FH ′

T
H ′−1λi +

F̃ ′ei
T

= H ′−1λi − T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi + T−1

(
F̃ − FH ′

)′
ei + T−1

(
FH ′)′ ei.

Thus,

1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi
∥∥∥p ≤ 3p−1

⎛
⎜⎝

1
N

∑N
i=1

∥∥∥T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi

∥∥∥p
+ 1

N

∑N
i=1

∥∥∥∥T−1
(
F̃ − FH ′

)′
ei

∥∥∥∥p + 1
N

∑N
i=1

∥∥T−1 (FH ′)′ ei
∥∥p
⎞
⎟⎠ .

For the first term, we have that

1

N

N∑
i=1

∥∥∥T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi

∥∥∥p ≤ ∥∥∥T−1/2F̃
∥∥∥p ∥∥∥T−1/2

(
F̃ − FH ′

)∥∥∥p ∥∥H ′−1
∥∥p 1

N

N∑
i=1

‖λi‖p .

Now, ∥∥∥T−1/2F̃
∥∥∥p = (T−1

∥∥∥F̃∥∥∥2)p/2

=

(
T−1

T∑
t=1

∥∥∥F̃t

∥∥∥2
)p/2

= rp/2,

given that F̃ ′F̃ /T = Ir. Similarly, under Assumptions A-F,

∥∥∥T−1/2
(
F̃ − FH ′

)∥∥∥p =
(
T−1

T∑
t=1

∥∥∥F̃t −HFt

∥∥∥2
)p/2

= OP

(
δ−p
NT

)
= OP (1) .

Since
∥∥H ′−1

∥∥p = OP (1), it follows that the first term is OP (1) provided E ‖λi‖p ≤ M < ∞, which

holds by assumption.

For the second term,

1

N

N∑
t=1

∥∥∥∥T−1
(
F̃ − FH ′

)′
ei

∥∥∥∥p = ∥∥∥T−1/2
(
F̃ − FH ′

)∥∥∥p 1

N

N∑
t=1

∥∥∥T−1/2ei

∥∥∥p ,
where the first factor is OP (1) and the second factor is dominated by

1

N

N∑
i=1

(∥∥∥T−1/2ei

∥∥∥2)p/2

=
1

N

N∑
t=1

(
T−1e′iei

)p/2
=

1

N

N∑
t=1

(
T−1

T∑
t=1

e2it

)p/2

≤ 1

NT

N∑
t=1

T∑
t=1

epit,

which is OP (1) given the assumption that E |eit|p ≤ M. The third term can be bounded similarly

using in particular the fact that E ‖Ft‖2 ≤M <∞.
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Proof of (iii). We can write

ẽit = eit − λ′iH
−1
(
F̃t −HFt

)
−
(
λ̃i −H−1′λi

)′
F̃t,

which implies that

1

NT

T∑
t=1

N∑
i=1

|ẽit|p ≤ 3p−1 1

NT

T∑
t=1

N∑
i=1

|eit|p + 3p−1 1

N

N∑
i=1

‖λi‖p
∥∥H−1

∥∥p 1

T

T∑
t=1

∥∥∥F̃t −HFt

∥∥∥p

+3p−1 1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi
∥∥∥p 1

T

T∑
t=1

∥∥∥F̃t

∥∥∥p .
The first term is OP (1) given that E |eit|p = O (1); the second term is OP (1) since E ‖λi‖p = O (1)

and given part (i); and the third term is OP (1) given parts (ii) and (iii), since in particular

1

T

T∑
t=1

∥∥∥F̃t

∥∥∥p ≤ 1

T

T∑
t=1

∥∥∥HFt +
(
F̃t −HFt

)∥∥∥p ≤ 2p−1

(
‖H‖p 1

T

T∑
t=1

‖Ft‖p + 1

T

T∑
t=1

∥∥∥F̃t −HFt

∥∥∥p
)

= OP (1) .

Proof of Lemma 4.1. To verify the first four parts of Condition A∗, we apply Lemmas B.1, B.2

and B.3 in Appendix B. This entails checking that Conditions B1-B9 in Appendix B hold for the

factor-augmented wild bootstrap. We start with Condition B1. For the wild bootstrap, we have that

γ∗st = E∗
(

1

N

N∑
i=1

e∗ite
∗
is

)
=

1

N

N∑
i=1

E∗ (e∗ite
∗
is) =

1

N

N∑
i=1

ẽitẽis1 (t = s) .

Thus, condition B1 becomes

1

T

T∑
t=1

(
1

N

N∑
i=1

ẽ2it

)2

= OP (1) .

This expression is bounded by 1
T

∑T
t=1

1
N

∑N
i=1 ẽ

4
it, which is OP (1) under our assumptions by an

application of Lemma C.1 (iii) with p = 4.

For Condition B2, note that for any (t, s),

E∗
∣∣∣∣∣ 1√
N

N∑
i=1

(e∗ite
∗
is −E∗ (e∗ite

∗
is))

∣∣∣∣∣
2

=
1

N

N∑
i=1

N∑
j=1

E∗ ((e∗ite∗is − E∗ (e∗ite
∗
is))

(
e∗jte

∗
js − E∗ (e∗jte∗js)))

=
1

N

N∑
i=1

N∑
j=1

Cov∗
(
e∗ite

∗
is, e

∗
jte

∗
js

)
.

For the wild bootstrap where e∗it = ẽitηit, with ηit i.i.d. across (i, t),

Cov∗
(
e∗ite

∗
is, e

∗
jte

∗
js

)
= ẽitẽisẽjtẽjsCov

(
ηitηis, ηjtηjs

)
=

{
ẽ2itẽ

2
isV ar (ηitηis) if i = j

0 if i 	= j
,

which implies that

E∗
∣∣∣∣∣ 1√
N

N∑
i=1

(e∗ite
∗
is − E∗ (e∗ite

∗
is))

∣∣∣∣∣
2

=
1

N

N∑
i=1

ẽ2itẽ
2
isV ar (ηitηis) .

27



Thus, condition B2 becomes

1

T 2

T∑
t=1

T∑
s=1

1

N

N∑
i=1

ẽ2itẽ
2
isV ar (ηitηis)︸ ︷︷ ︸

≤η̄

≤ η̄
1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2it

)2

≤ η̄C
1

N

1

T

N∑
i=1

T∑
t=1

ẽ4it = OP (1) ,

for some constants η̄ and C.

For Condition B3, we have that

E∗
∥∥∥∥∥ Λ̃

′e∗t√
N

∥∥∥∥∥
2

= E∗
∥∥∥∥∥ 1√

N

N∑
i=1

λ̃ie
∗
it

∥∥∥∥∥
2

=
1

N

N∑
i=1

N∑
j=1

λ̃
′
iλ̃jE

∗ (e∗ite∗jt)︸ ︷︷ ︸
=0 for i �=j

=
1

N

N∑
i=1

λ̃
′
iλ̃iẽ

2
it,

since Cov
(
ηit, ηjt

)
= 0 and V ar (ηit) = 1. Thus, Condition B3 becomes

1

T

T∑
t=1

E∗
∥∥∥∥∥ Λ̃

′e∗t√
N

∥∥∥∥∥
2

=
1

T

T∑
t=1

1

N

N∑
i=1

λ̃
′
iλ̃iẽ

2
it =

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
(

1

T

T∑
t=1

ẽ2it

)

≤
(

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥4
)1/2

⎛
⎝ 1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2it

)2
⎞
⎠1/2

≤
(

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥4
)1/2(

1

N

N∑
i=1

1

T

T∑
t=1

ẽ4it

)1/2

= OP (1) ,

under our assumptions, by an application of Lemma C.1. In particular, note that

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥4 ≤ 23

(
1

N

N∑
i=1

∥∥∥H−1′λi

∥∥∥4 + 1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi
∥∥∥4
)

and use Lemma C.1 (ii) with p = 4 to bound the second term. The first term is bounded by the

assumptions on {λi}.
For Condition B4, we have that

1

T

T∑
t=1

E∗
∥∥∥∥∥ 1√

TN

T∑
s=1

N∑
i=1

F̃s (e
∗
ite

∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

=
1

T

T∑
t=1

1

T
E∗
∥∥∥∥∥

T∑
s=1

F̃s

[
1√
N

N∑
i=1

(e∗ite
∗
is − E∗ (e∗ite

∗
is))

]∥∥∥∥∥
2

=
1

T

T∑
t=1

1

T

T∑
s=1

T∑
l=1

F̃ ′
sF̃lE

∗

⎛
⎝ 1√

N

N∑
i=1

(e∗ite
∗
is − E∗ (e∗ite

∗
is))

1√
N

N∑
j=1

(
e∗jte

∗
jl − E∗ (e∗jte∗jl))

⎞
⎠ ,

where

E∗

⎛
⎝ 1√

N

N∑
i=1

(e∗ite
∗
is − E∗ (e∗ite

∗
is))

1√
N

N∑
j=1

(
e∗jte

∗
jl −E∗ (e∗jte∗jl))

⎞
⎠

=
1

N

N∑
i=1

N∑
j=1

E∗ [(e∗ite∗is − E∗ (e∗ite
∗
is))

(
e∗jte

∗
jl − E∗ (e∗jte∗jl))] = 1

N

N∑
i=1

N∑
j=1

Cov∗
(
e∗ite

∗
is, e

∗
jte

∗
jl

)
.

Using the properties of the wild bootstrap, in particular the bootstrap cross sectional independence,

we can show that

Cov∗
(
e∗ite

∗
is, e

∗
jte

∗
jl

)
= 0 when i 	= j for any t, s, l.
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When i = j,

Cov∗
(
e∗ite

∗
is, e

∗
jte

∗
jl

)
= Cov∗ (e∗ite

∗
is, e

∗
ite

∗
il) =

{
0 if s 	= l

V ar∗ (e∗ite
∗
is) = ẽ2itẽ

2
isV ar

∗ (ηitηis) if s = l.

It follows that

1

T

T∑
t=1

E∗
∥∥∥∥∥ 1√

TN

T∑
s=1

N∑
i=1

F̃s (e
∗
ite

∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

=
1

T

T∑
t=1

1

T

T∑
s=1

F̃ ′
sF̃s

1

N

N∑
i=1

ẽ2itẽ
2
isV ar

∗ (ηitηis) ≤ η̄
1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2it

)(
1

T

T∑
s=1

F̃ ′
sF̃sẽ

2
is

)

= η̄
1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2it

)(
1

T

T∑
s=1

∥∥∥F̃s

∥∥∥2 ẽ2is
)

≤ η̄

⎡
⎣ 1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2it

)2
⎤
⎦1/2 ⎡⎣ 1

N

N∑
i=1

(
1

T

T∑
s=1

∥∥∥F̃s

∥∥∥2 ẽ2is
)2
⎤
⎦1/2

≤ η̄

[
1

N

1

T

N∑
i=1

T∑
t=1

ẽ4it

]1/2 [
1

T

T∑
s=1

∥∥∥F̃s

∥∥∥4 1

N

1

T

N∑
i=1

T∑
s=1

ẽ4is

]1/2
.

This expression is OP (1) under our assumptions. For Condition B5, under the wild bootstrap, in

particular the bootstrap time series independence, we have that

1

T

T∑
t=1

T∑
s=1

F̃sẑ
′
tγ

∗
st =

1

T

T∑
t=1

F̃tẑ
′
tγ

∗
tt =

1

T

T∑
t=1

F̃tẑ
′
t

(
1

N

N∑
i=1

ẽ2it

)

≤
(

1

T

T∑
t=1

∥∥∥F̃tẑ
′
t

∥∥∥2
)1/2

⎡
⎣ 1

T

T∑
t=1

(
1

N

N∑
i=1

ẽ2it

)2
⎤
⎦1/2

≤
(

1

T

T∑
t=1

∥∥∥F̃t

∥∥∥4 1

T

T∑
t=1

‖ẑt‖4
)1/4 [

1

T

1

N

T∑
t=1

N∑
i=1

ẽ4it

]1/2
,

which is OP (1) under our assumptions. Next consider Condition B6. We have that

E∗
∥∥∥∥∥ 1√

T

T∑
t=1

Λ̃′e∗t√
N
ẑ′t

∥∥∥∥∥
2

=
1

TN
E∗
∥∥∥∥∥

T∑
t=1

(
N∑
i=1

λ̃ie
∗
it

)
ẑ′t

∥∥∥∥∥
2

=
1

TN
E∗

⎧⎨
⎩tr

⎛
⎝ T∑

t=1

T∑
s=1

ẑt

(
N∑
i=1

λ̃
′
ie

∗
it

)⎛⎝ N∑
j=1

λ̃je
∗
js

⎞
⎠ ẑ′s

⎞
⎠
⎫⎬
⎭

=
1

TN
tr

⎛
⎝ T∑

t=1

T∑
s=1

ẑt

⎛
⎝ N∑

i=1

N∑
j=1

λ̃
′
iλ̃jE

∗ (e∗ite∗js)
⎞
⎠ ẑ′s

⎞
⎠

=
1

TN
tr

(
T∑
t=1

ẑt

(
N∑
i=1

λ̃
′
iλ̃iE

∗ (e∗2it )
)
ẑ′t

)
=

1

TN

T∑
t=1

ẑ′tẑt

(
N∑
i=1

λ̃
′
iλ̃iẽ

2
it

)

=
1

T

T∑
t=1

‖ẑt‖2 1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2 ẽ2it ≤
(

1

T

T∑
t=1

‖ẑt‖4
)

︸ ︷︷ ︸
=OP (1) under our assumptions

1/2
⎛
⎝ 1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2 ẽ2it
)2
⎞
⎠1/2

.
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But by Cauchy-Schwartz,

1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2 ẽ2it
)2

≤ 1
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=OP (1)

= OP (1) ,

under our conditions. For Condition B7, for t = 1, . . . , T−h, let ε∗t+h = ε̂t+hvt+h, where vt+h ∼i.i.d.(0, 1).

Because γ∗st = 0 for t 	= s and by repeated application of Cauchy-Schwartz inequality, we have that
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,

under our assumptions, provided in particular that 1
T

∑T−h
t=1 ε∗4t+h = OP ∗ (1) in probability. For this,

it suffices that 1
T

∑T−h
t=1 E∗ (ε∗4t+h

)
= OP (1) . But by the properties of the wild bootstrap on ε∗t+h, we

have that
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which is verified under our conditions. Next, we verify Condition B8. We have that
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By the independence between {e∗it} and {ε∗s}, we have that
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under our assumptions and using the same arguments used above to show condition B6. Finally. we

verify Condition B9. We have that

1
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T−h∑
t=1
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under our assumptions.

To conclude the proof, we only need to verify that the bootstrap CLT result (part 5 of Condition

A∗) holds for the wild bootstrap. By the Cramer-Wold device, it suffices to show that
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in probability for any � such that �′� = 1. Note that w∗
t is an heterogeneous array of independent

random variables (given that ε∗t+h is conditionally independent but heteroskedastic). Thus, we apply

a CLT for heterogeneous independent arrays. Note that E∗ (w∗
t ) = 0 and
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Under our assumptions, Bai and Ng (2006) showed that
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Thus, it suffices to verify Lyapunov’s condition, i.e. for some r > 1,
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by an application of Lemma C.1.

Proof of Theorem 4.1. The proof follows from Lemma 4.1, given Theorem 3.1 and Corollary 3.1.
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alpha = (0,0)'

Asymptotic 93.2 91.2 91.6 94.5 94.5 93.9 94.5 91.7 92.2 94.7 92.8 94.7 93.3 90.2 91.8 93.6 92.7 92.8

wild, wild 95.9 95.0 99.8 96.7 97.1 99.6 96.6 95.5 98.2 97.3 95.9 99.0 96.5 93.3 97.2 96.2 96.3 96.3
96.9 96.0 99.9 97.1 97.9 99.9 97.5 97.2 99.5 97.3 96.7 99.3 97.3 95.1 99.5 96.4 97.3 98.9

iid, wild 96.1 94.7 99.7 96.2 97.8 99.8 96.6 95.8 98.3 97.4 95.4 98.6 96.1 93.6 96.8 96.3 96.1 96.5
96.9 95.8 100.0 97.1 98.1 99.9 97.6 97.5 99.7 97.7 96.2 99.3 97.0 95.4 99.4 96.4 96.8 98.9

iid,iid 96.6 96.0 99.8 96.7 97.7 99.8 96.7 95.8 98.4 96.9 96.7 99.0 96.7 95.0 97.7 96.2 96.0 97.3
97.5 96.9 100.0 97.1 98.2 99.9 98.2 97.9 99.6 98.0 97.2 99.3 97.6 96.4 99.5 96.6 97.9 98.5

alpha = (1,1)'

Asymptotic 92.3 77.2 86.3 94.0 73.7 91.6 93.2 82.1 88.4 93.5 86.7 93.6 92.7 87.9 91.3 94.4 89.9 93.7

wild, wild 95.0 93.1 97.4 97.3 94.3 98.8 96.1 93.7 92.6 95.9 95.3 98.8 95.2 94.9 96.7 97.5 96.5 97.6
95.5 94.8 97.5 97.9 96.1 98.9 96.8 96.2 97.4 96.0 95.7 99.0 95.6 96.4 98.8 97.2 97.3 98.7

iid, wild 95.6 93.5 97.5 96.8 94.1 98.8 96.3 93.8 92.9 96.2 95.6 98.5 95.4 95.2 96.4 97.3 96.7 97.7
95.5 95.6 97.5 97.7 96.5 99.1 97.0 96.3 97.3 96.2 96.3 98.8 95.7 96.3 99.2 97.6 97.3 98.8

iid,iid 95.6 93.8 97.5 97.3 94.1 98.6 96.7 94.4 94.2 96.1 95.4 99.2 95.8 95.6 97.3 97.4 96.9 97.8
96.2 95.5 97.8 97.6 96.0 99.0 97.7 96.5 98.0 96.2 96.2 99.1 96.8 97.3 99.1 97.8 97.7 99.1

Note:  The table reports the coverage rate of 95% confidence intervals for the constant and the coefficients on the two factors in the factor‐
augmented regression (12) with the factors replaced by their sample estimates. The first boostrap method is for the idiosyncratic errors, 
while the second one is for the regression errors.  The two rows for each method are for a symmetric percentile interval and a symmetric 
percentile‐t interval respectively.

N = 200
T = 50 T = 100

Table 1. Coverage rate of confidence intervals, DGP 1 (homo ‐ homo)

N = 50 N = 100
T = 50 T = 100 T = 50 T = 100



alpha = (0,0)'

Asymptotic 93.1 91.3 91.2 94.5 94.5 91.7 95.1 91.0 89.8 95.6 92.9 93.2 92.4 90.7 90.8 93.6 92.9 91.3

wild, wild 96.4 96.7 99.9 96.5 97.6 99.7 97.6 94.3 98.4 97.1 96.5 99.5 96.0 93.8 96.1 96.2 96.0 96.3
96.4 97.6 100.0 96.6 98.7 99.9 97.8 96.9 99.9 97.5 97.6 99.9 96.7 96.8 99.5 96.5 96.5 99.5

iid, wild 96.8 95.8 99.6 96.6 97.8 99.6 98.1 94.7 98.2 97.5 96.1 99.3 96.2 93.3 95.4 96.7 95.2 96.5
96.7 97.5 100.0 97.0 98.6 100.0 98.4 97.3 99.9 97.5 97.5 99.8 96.1 96.3 99.6 96.9 96.9 98.9

alpha = (1,1)'

Asymptotic 93.8 73.8 83.1 94.1 70.8 88.0 91.3 84.2 89.9 93.3 83.1 90.5 94.0 87.4 89.9 94.3 91.3 92.6

wild, wild 96.6 91.8 94.9 97.7 91.7 97.5 95.6 92.7 96.5 96.7 96.1 95.8 96.5 94.1 95.9 97.2 96.7 96.6
97.5 94.9 96.2 97.4 95.3 98.5 95.8 96.8 99.0 96.3 97.1 97.4 96.6 96.9 99.4 97.1 97.6 98.5

iid, wild 97.0 91.5 93.6 97.8 92.0 96.5 95.8 93.4 95.7 96.6 95.7 95.4 97.1 93.7 95.4 97.6 95.7 96.2
96.9 94.7 95.1 97.1 95.0 98.2 95.8 96.4 98.6 96.5 96.7 96.8 97.2 97.1 99.2 97.3 97.3 98.9

Note:  See table 1.

T = 100

Table 2. Coverage rate of confidence intervals, DGP 2 (hetero ‐ hetero)

N = 50 N = 100 N = 200
T = 50 T = 100 T = 50 T = 100 T = 50



alpha = (0,0)'

Asymptotic 93.5 91.4 92.4 93.5 93.0 93.2 92.6 92.0 91.0 94.1 91.8 92.0 92.8 91.3 91.7 93.1 92.8 92.9

wild, wild 96.4 95.7 99.8 96.7 96.8 100.0 96.2 94.5 97.7 96.6 95.1 98.7 97.0 95.1 96.3 96.2 95.2 96.7
97.0 96.8 100.0 97.2 97.7 100.0 97.0 97.3 99.7 96.4 96.1 99.4 97.0 97.7 99.6 96.1 96.5 99.3

iid, wild 96.6 95.7 99.9 97.0 97.3 100.0 96.3 95.2 98.1 96.5 95.1 99.3 96.6 94.7 95.9 96.4 94.7 96.5
97.2 97.2 100.0 96.9 97.8 100.0 97.4 97.6 99.9 96.8 96.3 99.7 97.5 97.4 99.4 95.9 96.4 99.1

alpha = (1,1)'

Asymptotic 89.3 47 49.9 89.5 51.8 81.4 91.5 63.4 59.4 93.6 69.3 77.6 91.7 69.6 84.2 92.7 79.3 89.3

wild, wild 95.5 67.6 59.0 96.0 80.5 91.0 96.1 81.1 63.5 96.9 86.7 84.2 95.7 83.3 88.1 96.4 88.4 92.6
95 3 75 5 60 7 95 1 85 9 91 8 96 2 87 5 70 2 96 6 90 5 86 1 95 8 89 6 92 3 95 9 91 6 97 0

T = 100

Table 3. Coverage rate of confidence intervals, DGP 3 (hetero ‐ AR)

N = 50 N = 100 N = 200
T = 50 T = 100 T = 50 T = 100 T = 50

95.3 75.5 60.7 95.1 85.9 91.8 96.2 87.5 70.2 96.6 90.5 86.1 95.8 89.6 92.3 95.9 91.6 97.0

iid, wild 95.1 69.5 60.1 95.6 81.9 91.8 95.5 81.7 63.8 96.7 87 85.2 96.0 83.9 88.4 96.4 88.9 93
94.3 76.2 61.8 94.4 87.1 92.5 95.1 88 71.3 95.9 91.5 87.2 96.8 89.2 92.7 96.1 92 96.8

Note:  See table 1.
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