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Abstract

This study considers three alternative sources of information about volatil-
ity potentially useful in predicting daily asset returns: past daily returns, past
intraday returns, and a volatility index based on observed option prices. For
each source of information the study begins with several alternative models,
and then works from the premise that all of these models are false to construct
a single improved predictive distribution for daily S&P 500 index returns. The
criterion for improvement is the log predictive score, equivalent to the average
probability ascribed ex ante to observed returns. The first implication of the
premise is that conventional models within each class can be improved. The
paper accomplishes this by introducing flexibility in the conditional distribu-
tion of returns, in volatility dynamics, and in the relationship between observed
and latent volatility. The second implication of the premise is that model pool-
ing will provide prediction superior to the best of the improved models. The
paper accomplishes this by constructing ex ante optimal pools, which place a
premium on diversification in much the same way as optimal portfolios. All
procedures are strictly out-of-sample, recapitulating one-step-ahead predictive
distributions that could have been constructed for daily returns beginning Jan-
uary 2, 1992, and ending March 31, 2010. The prediction probabilities of the
optimal pool exceed those of the conventional models by as much as 7.75%.
The optimal pools place substantial weight on models using each of the three
sources of information about volatility.
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1 Introduction

Prediction of financial asset prices is important in a variety of private and public

sector policy contexts. Examples include the pricing of options by private traders; the

measurement of risk in mortgage pools by banks and Federal agencies; and assessment

of systemic risk by regulatory agencies and macroeconomic policy makers. In all of

these decision-making activities formal prediction models for asset prices are essential

tools, and the academic literature has responded with a wide variety of candidates.

Yet, those with responsibilities for such decisions recognize that all of these models

are incomplete descriptions of reality. How should a decision-maker proceed, knowing

that all the models at her disposal are false?

The academic literature provides little practical guidance on this point. The or-

thodox rational expectations framework is not designed for this purpose. It avoids the

issue by assuming that reality is fully described by a parametric model that is known

to economic agents and policy makers. When this approach is extended to the situa-

tion where economic agents and policy makers must learn about reality, it is typically

in the context of a correctly specified parametric model with unknown parameters.

The mainstream econometric literature is also unhelpful for the decision-maker con-

fronted with an array of alternative model-based predictive distributions for asset

prices. Non-Bayesian econometrics emphasizes specification testing. But when all

the available models are false, passing a battery of tests is an indicator of insufficient

sample size and test power rather than evidence that a particular model is true and

others are false. With sample sizes sufficiently large and tests sufficiently powerful, all

models will be rejected, leaving the prediction question unresolved. Bayesian econo-

metrics provides an elegant operational theory of model combination, but because

it is founded on the explicit condition that one of the models under consideration is

a literal description of reality it shares the limitations of the rational expectations

literature.

This paper looks at several different classes of models that generate predictive

distributions for asset prices by making use of alternative sources of information

(daily returns only, high-frequency intraday returns, and option-implied volatility),

and uses the method of optimal prediction pooling developed in Geweke and Amisano

(2010) to construct predictive densities that outperform any of the individual models.

The situation is typical in that each class of models provides a window into the
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underlying reality, but we do not believe any of them to be literally true. The optimal

pooling idea makes explicit allowance for the possibility that all of the models under

consideration are false and reflects the observed behavior of decision-makers, who are

likely to consult several different models when making policy, even models that have

been rejected by formal statistical tests. While such behavior seems paradoxical, it

is supported by the finding that pools are typically able to outperform even the best

of the individual models they encompass, sometimes by a large margin, while placing

significant weight on models that are easily rejected by conventional tests.

The study proceeds in two steps. First, we construct the collection of individual

models. We look at a total of 42 models categorized into three groups based on the

source of information used to forecast volatility. The models allow for flexibility in the

shape of the predictive distribution, the way this shape changes over time, and the

relationship between observed and latent volatility, building on methods introduced

in Durham (2007). The second step involves building on this extended collection

of asset price prediction models, constructively using the premise that none of the

models are true to generate improved predictive distributions using the method of

optimal prediction pooling. The application uses daily S&P 500 index returns from

the first trading day of 1990 through the end of March 2010.

The models are described in Section 2. The first group uses the history of daily re-

turns only and comprises six models: two stochastic volatility (SV) models with lever-

age and four exponential generalized autoregressive heteroscedasticity (EGARCH)

models. In the second group, consisting of 18 models, the indicator of daily volatil-

ity is the sum of squared 5-minute S&P 500 index returns from previous trading

days. The third group, also consisting of 18 models, uses the Chicago Board Options

Exchange Market Volatility Index (VIX), which is a model-free indicator of daily

volatility constructed from options prices.

In each group of models, we begin with a simple base model and elaborate on it in

several directions. In all groups the daily return shock is either Gaussian or a mixture

of two normal distributions. In all models except the stochastic volatility models the

volatility component is either a single factor (the conventional treatment) or the

sum of two independent factors with different autocorrelation properties. Permitting

more than one volatility factor introduces flexibility into the autocorrelation of the

latent volatility state, allowing the models to generate, for example, long memory-

like behavior. In the high-frequency and options groups there is a third dimension
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of flexibility related to the form of the mapping from the volatility state to spot

volatility (the scaling factor for daily returns).

Turning to the second step, Section 3 reviews the essentials of optimal prediction

pools. Each model generates a predictive density rule (PDR), which is a mapping

from the information set at time t− 1 to a predictive density for the return at time t.

While there are many ways that one could construct a prediction rule from a given

model, we use a maximum likelihood plug-in rule. That is, given a model, for each

time t in the sample we calculate the maximum likelihood estimator (MLE) over

historical data available at time t − 1 (expanding samples) and use the predictive

density obtained from the model with that value for the parameter vector. This must

be repeated for each model and each time t in the sample (42 models and nearly

5000 observations in our application), necessitating computationally efficient means

of estimating the models. For the SV models, we integrate across uncertainty in the

volatility states. For the other models, the volatility state is a deterministic function

of the model parameters and history of observables. The theory does not rely upon

the precise manner in which the PDR is formed. Rather than MLE, one could use,

for example, a generalized method of moments (GMM) plug-in rule or take a fully

Bayesian approach where the PDR is formed by integrating across both parameter

and state uncertainty.

Any linear combination of prediction rules, subject to the constraints that the

weights are nonnegative and sum to one, is itself a prediction rule referred to as a

prediction pool. Geweke and Amisano (2010) describe the construction of an optimal

prediction rule, which uses weights obtained by optimizing over historical perfor-

mance. Performance is assessed using a log score criterion. Although other scoring

criteria are possible, the log score has attractive optimality conditions and is anal-

ogous to model assessments based on log likelihood or marginal likelihood in the

conventional frequentist or Bayesian settings, respectively. The critical point is that

the analysis is entirely out-of-sample. That is, the individual model PDRs as well

as the pool weights depend only on data available in real-time. Since assessment is

always based on out-of-sample performance, there is no need to attempt the usual

adjustments penalizing model complexity.

The formation of optimal prediction pools has interesting parallels to optimal

portfolio construction. Given a collection of assets, suppose the objective is to con-

struct the portfolio which optimizes some criterion function, perhaps Sharpe ratio.

4



The optimal portfolio will typically include a mix of assets rather than placing all

weight on the single asset with the highest Sharpe ratio. Even though a particular

asset may not perform well on its own, it can improve the performance of the portfolio

(diversification). The optimal portfolio will typically have better performance than

any of the individual assets alone.

These same points also hold true for prediction pools. Given a collection of mod-

els, the goal is to optimize some criterion function (e.g., log score). The optimal pool

typically includes a mix of models rather than placing all weight on a single model.

Even though a particular model may do poorly on its own, it can improve the per-

formance of the pool. The pool will generally have better performance than any of

the models it comprises.

As with optimal portfolio construction, optimal pooling tends to reward diversi-

fication, with several models (potentially all) having positive weights. It does so for

similar reasons: just as an asset can enter a portfolio despite a comparatively low re-

turn when it is negatively correlated with the market return, a prediction model that

produces an inferior predictive likelihood on average can enter an optimal prediction

pool with positive weight if it occasionally but regularly outperforms the other pre-

diction models. In either case the weights have well-defined almost sure limits given

a particular choice of criterion function and stationary data-generating processes.

These features of optimal prediction pools are fundamentally different from Bayesian

model averaging. In a stationary environment the posterior probability of the model

with the highest average predictive likelihood, and therefore its weight in model av-

eraging, tends to one as sample size increases. This feature arises precisely because

Bayesian model averaging conditions on the truth of one of the n models. Given this

condition, the true model is distinguished by having the highest expected predictive

likelihood under the data generating process, and as sample size increases the evidence

bearing on which model enjoys this distinction becomes overwhelming. In the more

realistic case where none of the models is the data-generating process, all weight de-

volves onto the model closest to it in Kullback-Leibler distance. Non-Bayesian model

selection methods have similar properties, identifying the model closest to the data

generating process in Kullback-Leibler distance asymptotically.

Thus whereas a conventional econometric approach to model combination leads

to a horse race with a single ultimate winner, an optimal pool typically consists of

several models, each contributing a strength that balances some weakness in the other
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models entering the optimal pool. Under the log scoring rule the optimal pool proves

superior to the model winning the horse race in the conventional approach.

Empirical results are reported in Section 4. For the simplest models in each group

there are very substantial differences in log scores across the three classes (Section

4.1), with the basic daily model outperforming the basic options model which in turn

outperforms the basic high-frequency model. The various model extensions described

in Section 2 eliminate the bulk of the differences in log scores among the best models

in each group, with the best daily model followed by the best high-frequency model

followed by the best options model.

Yet these differences are still large. Conventional model combination procedures,

motivated by Bayesian model averaging and described in Section 4.2, amount to

“winner takes all”: on most trading days predictions are based almost entirely on one

group of models, but there are sharp fluctuations between groups. Daily models are

most often chosen, followed by options models; high-frequency models never domi-

nate. The performance of this model averaging procedure is poor, both in comparison

with the best of our extended models and with some simple benchmark predictive

density combinations.

Optimal prediction pools, constructed in Section 4.3, behave very differently. Fol-

lowing initial fluctuations, weights in the optimal pools stabilize several years into

the sample. The sum of weights on the daily models is somewhat less than one-half.

The sum of weights on the high-frequency models is about the same as for the options

models. A related measure of model value indicates that in the latter years of the

sample the values of the daily and high-frequency groups are nearly equal and about

three times as great as the value of the options models. The optimal pools substan-

tially outperform all of the individual models in log score, and they also outperform

the simple benchmark predictive density combinations.

This study concentrates on the specific problem of extending and combining mod-

els that use alternative sources of information about volatility for the purpose of

improving the one-step-ahead prediction of an index of asset prices. For sake of

transparency we do not introduce notation or techniques more general than required

to address this particular task. Yet the methodology in the study can be extended

to a much wider set of similar problems. Some of these extensions are quite mod-

est while others require addressing additional technical issues. Section 5 summarizes

the findings of this study and then briefly discusses a much larger set of prediction
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problems amenable to similar treatment and the work involved.

2 Models and estimation techniques

We look at several classes of models, corresponding to different sources of information

about volatility: daily returns, high-frequency, and options. For all of the models,

returns are of the form

yt = µY + σtεt, (1)

where yt is the daily log return, σt is the volatility scaling factor and εt is a mixture of

normals standardized to have mean zero and variance 1. The model classes differ in

the information used to estimate σt. In each class, we examine a hierarchy of models

with varying amounts of flexibility in several relevant dimensions. All models are

estimated by maximum likelihood. Predictive densities are then formed by replacing

unknown parameters with their point estimates. In all cases, predictive densities for

the time t return are constructed using only information available at time t− 1.

Our objective is not just to obtain forecasts that match the observed data in, say,

first or second moments. Rather, the object of interest is the full predictive density,

with assessment using a likelihood-based metric closely related to Kullback-Leibler

distance. Thus it is important for the models to have sufficient flexibility to generate

realistic distributions, motivating the use of the mixture models. Mixtures of normals

have nice properties. Given enough components they are able to fit any distribution

arbitrarily closely (McLachlan and Peel, 2000). For distributions encountered in

applications similar to the one in this paper, good fits are typically obtained with a

small number of components.

These mixture models are closely related to the jump models commonly used in

this literature. But, we do not take a stand on the nature of the intradaily price

movements: what part is diffusive, what part is due to jumps, and what the charac-

teristics of those jumps are. We are only interested in the shape of the daily return

distributions. The mixture distributions are useful for this purpose. See Durham

(2007) for additional detail.

We examined mixtures of up to three components. The three-component models

perform well in the later part of the sample but have difficulty in the early part,
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where the quantity of available data is more limited. In full Bayesian estimation, the

problems in the early part of the sample could be alleviated by using an appropriate

prior. With the maximum likelihood approach used in this paper, an analagous effect

could be achieved by adding curvature to the likelihood surface in an ad hoc manner.

However, for the application in this paper we restrict attention to models with a

maximum of two mixture components.

Some of the models include multiple volatility factors, providing flexibility in

the autocorrelation characteristics of the latent volatility state. In models with two

factors, for example, one captures a persistent long-term trend in the level of volatility,

while the other captures short-term fluctuations around it. Such models are capable

of generating long memory-like behavior (Bollerslev and Mikkelsen, 1996).

The class of daily models consists of two stochastic volatility (SV) and four ex-

ponential generalized autoregressive heteroscedasticity (EGARCH) models. The SV

models are of the form

yt = µY + σY exp (vt−1/2) εt (2)

vt = φvt−1 + σV ηt,

where yt is the log return and vt is the unobserved volatility state. The volatility

innovations are of form ηt = ρεt + (1− ρ2)
1/2
ut, where ut ∼ N (0, 1) is uncorrelated

with εt. Thus E (ηt) = 0, var (ηt) = 1 and corr (ηt, εt) = ρ, but because εt is non-

Gaussian so is ηt. Negative values for ρ capture a leverage effect, whereby negative

returns are associated with increased volatility on subsequent days. The nature of the

relationship between εt and ηt implies that extreme price changes will tend to generate

large changes in volatility as well. Estimation is done using the simulated maximum

likelihood algorithm and EIS sampler of Richard and Liesenfeld (2006). Predictive

densities are formed by integrating across uncertainty in the volatility state. We look

at two partcular cases of the SV model: sv 1 uses a Gaussian distribution for εt, and

sv 2 uses a mixture of two normal distributions.

The EGARCH models are of form

yt = µY + σY exp

(
k∑

i=1

vit/2

)
εt (3)

vi,t+1 = αivit + βi

(
|εt| − (2/π)1/2

)
+ γiεt (i = 1, . . . , k) .
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The model egarch kj includes k volatility factors vit and the normal mixture has j

components (k = 1, 2; j = 1, 2).

The high-frequency models use a volatility signal extracted from five-minute in-

traday S&P 500 returns. Following Andersen et al. (2001), Andersen et al. (2003)

and Barndorff-Nielsen and Shephard (2002), daily realized volatility was calculated

by summing over squared intraday returns for each day t,

RV
(∆)
t =

1/∆∑
j=1

(
yt−1+j∆ − yt−1+(j−1)∆

)2
, (4)

where ∆ is the sampling interval for the intraday data. In the application ∆ corre-

sponds to five-minute intervals. In (4) t − 1 denotes the opening of the market on

day t and t denotes the close (so intraday volatility does not include the return from

market close on one day to market open on the following day).

In principle, high-frequency returns are capable of providing very precise informa-

tion about the latent volatility state. In practice, there is measurement error related

to, for example, market microstructure effects and non-synchronous trading, which

the use of five-minute returns is intended to help alleviate (longer sampling intervals

decrease the measurement error but at the cost of greater discretization error). Per-

haps more critically, we are using the realized volatility observed on day t as a basis

for forecasting day t + 1 returns. Consistent with the literature, we also ignore the

overnight return. So there is little reason to expect the realized volatility to be either

an efficient or unbiased estimator for the variance of the next day’s return.

We address these issues in two steps. First, we apply a filter to extract estimates

of the latent volatility state from the realized volatility observations. We tried several

different filters with up to three factors for the volatility state: exponential weighting;

heterogeneous autoregressive model (Corsi, 2009); and Kalman filter. We also tried

using the raw unfiltered data directly as an estimate of the volatility state. Among

the various filtering schemes, there was not much difference; all improved predictions

substantially. In all cases, the multifactor models performed much better in forecast-

ing realized volatility, but the single-factor models were slightly better at forecasting

returns (the objective of this paper). The results reported in the application use one-
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or two-factor Kalman filters,

logRVt = µRV +
k∑

i=1

vit + ωt

vi,t+1 = φivit + νit (i = 1, . . . , k).

We decided to proceed with the Kalman filter rather than any of the alternative filters

that perform about as well, because it is well-motivated as a basis for extracting a

signal from noisy observations.

The second step is a mapping from the volatility state extracted in the previous

step to σt, the scaling factor for daily returns:

ψ : log R̂V t −→ log σt.

Since this mapping is of unknown form, we estimate it using flexible parametric meth-

ods. Polynomial expansions of sufficiently high degree are capable of approximating

any smooth function to arbitrary accuracy on compact sets, and so are useful for

this purpose. We looked at Legendre polynomials up to order three (the volatility

states were first scaled and translated to mean zero and unit variance), but found

no improvements beyond order two. The parameters of the mapping are estimated

simultaneously with the parameters of (1), conditioning on the point estimates for

the volatility state.

The model hifreq kjp uses k independent latent volatility factors, j normal com-

ponents in the mixture for εt, and a polynomial of order p in the mapping. We consider

the cases (k = 0, 1, 2; j = 1, 2; p = 0, 1, 2) for a total of 18 high-frequency models. For

the case k = 0, no filtering is done (that is, the observed RVt is mapped directly into

σt). The case p = 0 refers to a linear polynomial where the constant is estimated and

the slope coefficient is one.

The options models have the same structure as the high-frequency models except

that they substitute a measure of option-implied volatility IVt in place of the high-

frequency measure RVt. We use the VIX index, a model-free measure of volatility

implied by options prices (Britten-Jones and Neuberger, 2000). There is some mea-

surement error involved when using the VIX index as a signal about the volatility

state due to, for example, truncation and discreteness effects (Jiang and Tian, 2007).

The measure is also biased due to the existence of risk-premia. Thus, similar consid-
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erations to those discussed in the context of the high-frequency models apply here as

well.

The model vix kjp uses k independent latent volatility factors, j normal compo-

nents in the mixture for εt, and a polynomial of order p in the mapping. We consider

the cases (k = 0, 1, 2; j = 1, 2; p = 0, 1, 2) for a total of 18 options models.

3 Pooling

Each of the 42 models just described provides a predictive density rule. A predictive

density rule is an operator mapping information sets into predictive densities. For the

asset return yt on day t conditional on information available at the close of trading on

day t− 1, the predictive density takes the form pt
(
yt | Y o

t−1, X
o
t−1,θAi

, Ai

)
, where the

superscript “o” denotes the observed value (data) as distinguished from the ex ante

random variable or argument of the density function and Ai indicates the particular

model. The symbols Yt−1 and Xt−1 indicate the sets of historical daily asset returns

and covariates, respectively, available at the end of day t− 1. In the high-frequency

models Xt−1 consists of the five-minute intraday returns on days s < t; for the options

models it consists of the VIX index on days s < t; and for the daily models Xt−1 = ∅.
This section uses this generic notation throughout.

The decision-making context requires a single predictive density pt
(
yt;Y

o
t−1, X

o
t−1

)
at the end of trading day t − 1. Broadly speaking these contexts include any situ-

ation in which normative behavior presumes a subjective distribution for relevant

unknown magnitudes, including conventional expected utility maximization. Special

cases are conventional theories of asset derivative pricing and optimal macroeconomic

policy. A decision-maker could choose among the alternative predictive densities

pt
(
yt;Y

o
t−1, X

o
t−1, Ai

)
or combine them.

3.1 Assessing the performance of predictive densities

Choosing among the possibilities requires a criterion. The decision-maker can use

the observed values of past returns and covariates available at time t − 1 to assess

the performance of any stipulated predictive density rule, just as an investor can use

the history of returns in creating an optimal portfolio. This set of primitives — the

history
(
Y o
t−1, X

o
t−1

)
and a predictive density rule — is the one typically used in the
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few studies that have addressed these questions (e.g., Diebold et al., 1998, p. 879). As

Gneiting et al. (2007, p. 244) notes, the assessment of a predictive distribution on this

basis is consistent with the prequential principle of Dawid (1984). These assessment

procedures are widely known as scoring rules.

This study uses the log scoring rule

LS
(
Y o
t−1;Xo

t−1, Ai

)
=

t−1∑
s=1

log ps
(
yos ;Y

o
s−1, X

o
s−1, Ai

)
. (5)

to assess the prediction performance of a model Ai over the sample period up to time

t− 1. This rule is easy to interpret, grounded in the literature, and has a significant

axiomatic justification. With regard to interpretation, there is a simple relationship

between (5) and the performance of alternative prediction rules. For alternative rules

A1 and A2,

∆ (A1, A2) = exp
{[
LS
(
Y o
t−1;Xo

t−1, A1

)
− LS

(
Y o
t−1;Xo

t−1, A2

)]
/ (t− 1)

}
(6)

is the geometric average of the ratio of probability densities assigned to the observed

returns yo1, . . . , y
o
t−1. This justifies the colloquial interpretation, “observed returns

were 100 · [∆ (A1, A2)− 1] percent more probable under predictive density A1 than

they were under A2.”

With reference to the econometrics literature, for the specific case of Bayesian

predictive densities LS
(
Y o
t−1;Xo

t−1, Ai

)
is the log predictive likelihood. In the even

more specific case in which the sample begins at time t = 1 and sample size is T ,

LS (Y o
T ;Xo

T , Ai) is the log marginal likelihood, which in turn is the foundation of

the Bayesian approach to the model combination issue addressed in this study. (On

predictive and marginal likelihoods see Geweke, 2005, Section 2.6.) The predictive

densities employed in the work described here are not Bayesian, but Section 4.2 uses

this relationship in drawing contrasts between model pooling and conventional model

averaging procedures.

There is a superficial resemblance between (5) and the log likelihood function

logL(θi;Y
o
T , X

o
T , Ai) =

T∑
s=1

log ps
(
yos | Y o

s−1, X
o
s−1,θi, Ai

)
where T is sample size and the parameter vector θi is the argument of the likelihood
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function in model Ai. The resemblance is incomplete and potentially misleading. It

is incomplete because the candidate values for θi are estimates that are functions of

the entire sample, whereas only data from periods s and earlier enter ps in (5). As a

consequence over-fitting issues are critical in maximum likelihood estimation, leading

to corrections like the familiar AIC and SBIC criteria. These issues do not arise in

this study because all measures of performance are strictly out-of-sample.

With reference to the finance literature, the rule (5) parallels a time separable

utility function in which the quantity of the single good consumed in period s is

ps
(
yos ;Y

o
s−1, X

o
s−1

)
and instantaneous utility is logarithmic. In the prototypical situa-

tion, consumption is return on wealth and the motivating problem is optimal portfolio

allocation. Higher ps
(
yos ;Y

o
s−1, X

o
s−1

)
is better than lower just as more consumption

is preferred to less. Like all analogies, this one is incomplete. A major distinction

that works to practical advantage in this study is that while the class of regular in-

stantaneous utility functions is quite broad, the logarithmic form has the following

axiomatic foundation.

Suppose a decision-maker asks her technical staff to provide predictive densities

and announces a scoring rule she will use to assess these densities. Suppose further

that each staff member reports the predictive density that maximizes the expected

value of the announced scoring rule, the expectations being taken with respect to

the staff member’s private predictive density function. The scoring rule is said to be

proper if, in such a situation, it induces each staff member to report truthfully his

private density rather than some different predictive density with a higher expected

score. The term “proper” was coined by Winkler and Murphy (1968) but the general

idea dates back at least to Brier (1950) and Good (1952). An economist might say that

the scoring rule provides an incentive for truthful revelation. If the scoring rule de-

pends on
(
Y o
t−1, X

o
t−1

)
and ps (ys;Ys−1, Xs−1) (s < t) only through ps

(
yos ;Y

o
s−1, X

o
s−1

)
(s < t) then it is said to be local (Bernardo, 1979).

The only proper local scoring rule is (5) and (trivially) monotone increasing linear

transformations of (5). This was shown by Shuford et al. (1966) for the case in which

the support of yt is a finite set of at least three discrete points; for further discussion

see Winkler (1969, p. 1075). The result was extended to continuous distributions by

Bernardo (1979); for further discussion see Gneiting and Raftery (2007, p. 366).
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3.2 Combining predictive densities

From the available collection of rules ps (ys;Ys−1, Xs−1, Ai) (s ≤ t; i = 1, . . . , n)

and data (Y 0
t−1, X

o
t−1) the decision-maker creates pt

(
yt;Y

o
t−1, X

o
t−1

)
. We refer to this

mapping as a prediction pool, motivated by the more general descriptor opinion

pool for a combination of subjective probability distributions originating with Stone

(1961). There are endless ways in which the n predictive densities could be combined;

see Genest et al. 1984) for a review and axiomatic approach. Restricting consideration

to linear combinations leads to computations that are simple, both absolutely and in

comparison with alternatives.1 At the close of trading day t−1 the predictive density

of a linear pool for the next trading day’s return is

p
(
yt;X

o
t−1, Y

o
t−1,wt−1

)
=

n∑
i=1

wt−1,ipt
(
yt;Y

o
t−1, X

o
t−1, Ai

)
(7)

where wt−1 = (wt−1,1, . . . , wt−1,n)′ is a weight vector satisfying

n∑
i=1

wt−1,i = 1; wt−1,i ≥ 0 (i = 1, . . . , n) . (8)

These restrictions are sufficient to ensure that (7) is a density function. Applying

the log scoring rule, this linear prediction pool is scored using

ft−1 (wt−1) =
t−1∑
s=1

log

[
n∑

i=1

wt−1,ips
(
yos ;Y

o
s−1, X

o
s−1, Ai

)]
(9)

and therefore the optimal weight vector w∗t−1 is chosen to maximize (9). The optimal

weight vector is updated at the close of trading each day, reflecting the performance

of the models in predicting that day’s return. Geweke and Amisano (2010) shows

that ft (wt) is at least weakly concave, and for t ≥ n ft (wt) is in general strictly

concave. Maximization of ft is therefore a regular convex programming problem and

the optimal weights can be computed using conventional software.2 Typically the

vector w∗t−1 has several positive elements; that is, several models in fact enter the

1When prediction addresses vector yt rather than scalar as is the case here, only linear combina-
tions of predictive densities satisfy some basic conditions of internal consistency, as first shown by
McConway (1981).

2Results reported in Section 4 all use the Matlab function fmincon.
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Figure 1: Constructed example illustrating optimal pooling.

pool. That turns out to be the case here, in Section 4, and it is also the case in the

example provided in Geweke and Amisano (2010).

The intuition behind optimal pooling under a log scoring rule is similar to that of

portfolio optimization under the constraint of no short positions. Model A1 may have

a log score that substantially exceeds that of model A2, just as one asset may have an

average return substantially higher than another. But it may also be the case that

from time to time pt
(
yot ;Y

o
t−1, X

o
t−1, A1

)
/ pt

(
yot ;Y

o
t−1, X

o
t−1, A2

)
is small, much closer

to zero than one, just as the asset with lower average return may from time to time

substantially outperform the other. Given the concavity of the log score function,

the optimal pool can (and often does) assign positive weight to both models, just as

given risk aversion both assets may have positive weights in an optimal portfolio.

Figure 1 illustrates this situation for optimal pooling: Model 1 closely tracks the

data generating process, except for the negative lobe that is reflected in realizations

about one observation in twenty. The log score of Model 2 is much lower than that

of Model 1, which will be assigned quite negligible posterior probability in a formal

Bayesian approach and be rejected in favor of Model 1 in a formal sampling-theoretic

test. Yet it receives positive weight in the pool, which has a substantially higher

log score than Model 1, because relative to Model 1 the pool provides a very large
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increase in the log predictive density when realizations from the left lobe occur.

This construction of an optimal prediction pool does not invoke either the weak

assumption that there exists a data generating process D generating the observed

returns yot , or the much stronger assumption that one of the models (unknown to us)

is the data generating process so that D = Ai for some i = 1, . . . , n. Suppose that

we grant the weak assumption with D giving rise to the time-invariant probability

density function pt (yt;Yt−1, Xt−1, D) (t = 1, 2, . . .). It is well understood that given

further weak regularity conditions t−1
∑t

s=1 log p
(
yos ;Y

o
s−1, X

o
s−1, Ai

)
tends to an al-

most sure limit. Geweke and Amisano (2010) shows that under these conditions both

the function t−1ft (wt) and the sequence of optimal weight vectors {w∗t } have well-

defined almost sure pointwise limits. In general several components of the limiting

weight vector are positive. An exception is the hypothetical case D = Ai, for which

w∗ti has limiting value one (Geweke and Amisano, 2010, Theorems 1 and 2). Thus

several of the competing models enter the optimal pool even in large samples, and

this occurs precisely because all of the models under consideration are false.

3.3 Alternatives to pooling

This behavior contrasts markedly with virtually all conventional econometric proce-

dures that pool the prediction models Ai. The essentials were presented fully for the

first time in the econometrics literature by Gourieroux and Monfort (1989). Continu-

ing to invoke the weak assumption, the estimate of the parameter vector θi in model

Ai has an almost sure limit that we may denote θ∗i and is known as the pseudo-true

value of θi. In general the pseudo-true value is the same for all likelihood based meth-

ods, both Bayesian and non-Bayesian. It follows that t−1
∑t

s=1 log ps
(
yos ;Y

o
s−1, X

o
s−1, Ai

)
and t−1

∑t
s=1 log ps

(
yos ;Y

o
s−1, X

o
s−1,θ

∗
i , Ai

)
have the same almost sure limit, which we

henceforth denote L (Ai, D)

Now introduce the stronger assumption that reality corresponds to one of the

models: thus D = Ai for some (unknown) i = 1, . . . , n. Bayesian econometrics, which

provides a logically complete theory of model combination, makes this assumption

explicitly. It is implicit in non-Bayesian approaches, for example those based on

model-fitting criteria like AIC and SBIC. In the Bayesian approach, for any pair of
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models Ai and Aj,

log

(
πti

πtj

)
= log

(
ρi
ρj

)
+

t∑
s=1

log p
(
yos ;Y

o
s−1, X

o
s−1, Ai

)
−

t∑
s=1

log p
(
yos ;Y

o
s−1, X

o
s−1, Aj

)
,

where ρi and ρj are the model prior probabilities and πti and πtj are the model

posterior probabilities. It follows that t−1 log (πti/πtj) has the almost sure limit

L (Ai, D) − L (Aj, D). Unless this limit is zero — a fortuitous case — log (πti/πtj)

tends either to +∞ or −∞ as t → ∞. In general there is one model Ai for which

log (πti/πtj)→ +∞ (i 6= j). In the Bayesian model averaging pool the weight on the

predictive densities of model Ai tends to 1 and the weights on the predictive densities

of all other models tend to 0 as t→∞.

The intuition behind this result is straightforward. Granted the assumption that

there exists a data generating process corresponding exactly to one of the models Ai,

as evidence accumulates that a particular model Ai is superior to all the others, one

is driven to the conclusion that Ai = D and predictions should be based on that

model alone. That is what happens with Bayesian model averaging, as well as with

non-Bayesian procedures working from the same assumptions. Optimal pooling does

not make this assumption, to very different effect: the limiting positive weights on

several models reflect the accumulated evidence that some models perform well in

prediction when others perform poorly, and vice versa, as reflected in increments to

their log scores.

The manifestly false assumption that one of the available models is literally true,

inherent in conventional econometric procedures, leads to a zero-sum game in which

one model must dominate all the others. This “winner take all” implication dominates

academic discourse from time to time. The more realistic and humble assumption

that all models are false, which underlies optimal pooling, leads to a procedure that

trades off the strengths and weaknesses of the models available. It seems to us that

this condition characterizes the situation of actual decision-makers, who typically

consult several models even in the face of conventional econometric interpretations

of the evidence implying that all but one model should be discarded. In the case

studied here, it turns out (Section 4) that pooling indeed leads to predictions that

are markedly superior to those of any of the 42 models at hand.
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4 Results

The application uses S&P 500 Index (SPX) log returns from January 2, 1990 through

March 31, 2010. Models based on option-implied volatility use the VIX index. SPX

and VIX data were obtained directly from the Chicago Board Options Exchange

(CBOE). The high-frequency models use a volatility signal extracted from five-minute

intraday SPX returns, obtained from TickData.com.

Since the VIX begins with the first trading day of 1990, estimation samples for

all of our models begin with t corresponding to the second trading day of 1990.

For each model Ai we evaluate predictive densities p
(
yot ;Y

o
t−1, X

o
t−1, Ai

)
recursively,

beginning with t = 1 corresponding to the first trading day of 1992 and ending with

t = T = 4596 corresponding to March 31, 2010. This requires re-estimation of each

model for each t as Yo
t−1 expands. Since there are 4596 days in the recursion and 42

models, the result is a 4596×42 matrix P of predictive densities. These computations

are relatively time consuming.3 All of our findings derive from P.

4.1 Model performance and comparison

Table 1 provides the (full sample) log predictive score (5) of each model, LS (Y o
T ;Xo

T , Ai)

(i = 1, . . . , n). For legibility we subtract the log predictive score of the hifreq 010

model, which is 14,783.55, from the log scores reported here and throughout Sec-

tion 4. Differences in log scores, not their levels, matter. From (6), the difference

∆ (Ai, Aj) = exp {[LS (Y o
T ;Xo

T , Ai)− LS (Y o
T ;Xo

T , Aj)] /T} corresponds to a geomet-

ric average proportional difference in predictive densities. For example in the case of

hifreq 122 and hifreq 010 this difference is exp (310.24/4596) = 1.0698. That is,

the predictive densities from model hifreq 122 render observed events on average

almost 7% more probable than do the predictive densities from model hifreq 010.

More generally, a difference of 45.73 in log scores corresponds to a 1% increment in

probability, a difference of 4.59 to a 0.1% increment.

In interpreting the results, it is essential to recall that the log predictive score is an

out-of-sample criterion. Unlike in-sample criteria, out-of-sample criteria inherently

penalize overfitting. If model Ai is nested in model Aj, the predictive likelihood of

3The stochastic volatility models required the most time, about 12 CPU days for the one-factor
model and 4 CPU weeks for the 2-factor model. Models with two-factor Kalman filters took about
5 CPU hours. The other models required about 15 minutes on average. In each case the time stated
is the total over all 4596 samples.
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Daily models
sv 1 sv 2 egarch 11 egarch 12 egarch 21 egarch 22

276.24 297.60 215.77 286.50 256.10 323.38
High frequency models (hifreq kjp)
j = 1 j = 2

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2
k = 0 0.00 117.91 145.50 143.01 198.30 219.35
k = 1 255.57 254.24 261.27 306.18 303.52 310.24
k = 2 249.25 250.73 259.73 305.78 299.11 308.45

Options models (vix kjp)
j = 1 j = 2

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2
k = 0 216.19 239.52 235.17 271.21 298.00 297.40
k = 1 209.74 239.17 234.90 266.31 298.08 297.57
k = 2 205.95 234.26 229.75 263.77 294.56 293.78

Table 1: Log scores of models relative to egarch010. Boldface indicates the highest
log score in each of the three groups of model. See Section 2 for complete model
definitions.

model Ai can exceed that of model Aj; in contrast, the maximized log-likelihood

(an in-sample criterion) can never be higher for the nested model. In Table 1 notice

that the vix 121 model is nested in the vix 222 model and has the higher log score;

similarly hifreq 112 and hifreq 212.

As noted in Section 3, had our method of inference been formally Bayesian, then

the log scores would coincide with marginalized likelihoods in which the prior dis-

tribution for each model includes the 1990-1991 data as a training sample. That is

not the case here, but differences in log scores can be regarded as of the same order

of magnitude as log ratios of posterior probabilities. For example, given equal prior

probablilities for the models, the posterior probability odds ratio in favor of sv 2 over

sv 1 is on the order of 109.

This interpretation reveals the high return to the various elaborations on the daily,

high-frequency and options models detailed in Section 2. The roughly 20-point im-

provement for the stochastic volatility model, resulting entirely from using a mixture

of normals rather than Gaussian distribution for εt, has just been noted. Returns for

other model classes are higher. Among the EGARCH models, egarch 22 improves

over the conventional model, egarch 11, by over 100 points with the introduction

of a second volatility factor and use of a mixture distribution for the shocks. The

19



improvement is most dramatic for the high-frequency models, where the increase of

over 300 points in log score relative to the simplest model is due primarily to the

incorporation of a filtration (k > 0) that allows current latent volatility to depend

flexibly on lagged realized volatilities and secondarily to the use of a mixture distribu-

tion for the return shocks (j = 2). For the options models the elaborations described

in Section 2 lead to an increase of over 80 points in log score, accounted for primarily

by the mixture of normals distribution for conditional returns and secondarily by the

incorporation of additional flexibility in the link between IVt and σt (p = 1 versus

p = 0).

4.2 Conventional predictive density combination

Arguably the simplest rule for density combinations is the equally-weighted pool A∗,

which has wi,t−1 = n−1 (t = 1, . . . , T ; i = 1, . . . , n) and log score LS (Y o
T ;Xo

T , A
∗).

From Jensen’s inequality LS (Y o
T ;Xo

T , A
∗) must exceed the mean log predictive score

in Table 1. Indeed it can exceed the maximum of the log predictive scores, and that

is what happens here: LS (Y o
T ;Xo

T , A
∗) = 339.77.

A modest elaboration on this procedure is first to distribute weight equally on

each group of models and then equally across models within each group. Thus in this

application each group has weight 1/3, so that each daily model has weight 1/18 and

each of the high-frequency and options models has weight 1/54. The log score of the

resulting pool is 343.32.

Equally-weighted pools provide useful benchmarks for comparisons with alterna-

tive predictive density rules. The idea is similar to the use of the market portfolio or

1/n rules as benchmarks for portfolio performance. Many stock pickers believe that

they can reliably beat the market. Far fewer succeed. The analogy holds for model

selection as well.

The egarch 22 model dominates the other models available, with a log score

over 13 points greater than the next best model. Pursuing the informal Bayesian

interpretation of the results discussed above, this suggests posterior probability ratios

in favor of egarch 22 relative to any other model on the order of at least 5× 105 and

in most cases much more. An econometrician using conventional model selection rules

would place all, or nearly all, weight on this model to the exclusion of all alternatives.

But even the simplest equally-weighted pool beats egarch 22 by nearly 16 points in
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log score.

The reality for the model picker is even worse than this. Here, we have assumed a

prescient model picker who is able to choose the individual model that performs best

over the entire sample. In practice, the model picker must choose the best model in

real time using available information.

Bayesian model averaging (BMA) is often put forward as an appealing approach to

model combination. The prescient model averager, putting weight on each model in

proportion to its full-sample log score, would put essentially all weight on egarch 22,

yielding results that are virtually indistinguishable from the econometrician that is

forced to pick a single model. But it is instructive to consider the idea of constructing

real-time pools using BMA in order to examine the implications for choices amongst

the 42 individual models and for contrasting these implications with optimal pooling

subsequently.

Identifying p
(
yot ;Y

o
t−1, X

o
t−1, Ai

)
with the Bayesian predictive likelihood, the ana-

logue of marginal likelihood for model Ai based on the sample from periods 1 through

t is

MLit =
t∏

s=1

p
(
yos ;Y

o
s−1, X

o
s−1, Ai

)
= exp [LS (Y o

t ;Xo
t , Ai)] .

Given equal model prior probabilities, the posterior probability of model i based

on this sample is ωit = MLit/
∑n

j=1MLjt. Under the Bayesian model averaging

paradigm, the predictive density for yt+1 is

p (yt+1;Y o
t , X

o
t , B

∗) =
n∑

i=1

ωitp (yt+1;Y o
t , X

o
t , Ai) . (10)

The procedure just described constitutes a valid prediction model, which we de-

note B∗ in (10). Its log predictive score LS (Y o
T ;Xo

T , B
∗) can be evaluated directly

using the 4596× 42 matrix P of predictive likelihoods described at the beginning of

this section.

Two features of this model averaging exercise are important for this study. First,

consider the weights ωit. Rather than report weights for all of the models individually,

at each time period t we sum the weights within each of the three groups of models

(daily, high-frequency and options). These are displayed in Figure 2. For most of

the sample the preponderance of the weight is on the daily model group. There

are reversals within the sample, as well: for example early in 1995 weight is almost
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Figure 2: Bayesian model averaging weights, updated each trading day: sum of
weights for daily models (black), high frequency models (red), and options models
(blue).

entirely concentrated on the options group of models, corresponding to near certainty

(a posteriori) that none of the daily or high-frequency models are true. On the other

hand from 2005 onward the weights concentrate virtually entirely on the daily group

of models, corresponding to near certainty that none of the high-frequency or options

models are true. The latter behavior is typical of Bayesian model averaging, noted

nearly two decades ago in Diebold (1991). This vacillation between near-certainties,

in a procedure that starts with the premise that one of the models corresponds to

the data generating process, challenges the credibility of the premise.

Second, consider the log scores. The log score of the Bayesian model averaging

prediction rule is LS (Y o
T ;Xo

T , B
∗) = 316.37. This is slightly better than the modeler

who places all weight on a single model in real time, though slightly worse than the

prescient model picker or model averager. But any of these fall well short of either

benchmark equally-weighted pool. Thus the performance of this procedure motivated

by Bayesian model averaging is poor just as its premise is not credible.
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Figure 3: Optimal prediction pool weights, updated each trading day: sum of weights
for daily models (black), high frequency models (red), and options models (blue).

4.3 Optimal pooling

The optimal pooling procedure implemented here reconstructs what an econometri-

cian could have accomplished in real time. For each date t beginning with t = 1,

which indicates the first trading day of 1992, and ending with t = 4596 (March

31, 2010) suppose that the econometrician has at her disposal predictive densities

ps(ys;Y
o
s−1, X

0
s−1, Ai) (s = 1, . . . , t; i = 1, . . . , n) and has evaluated these densities us-

ing realized returns, ps(y
o
s ;Y

o
s−1, X

0
s−1, Ai). Thus, on day t, the optimizer is using the

first t rows of the 4596× 42 matrix P. Using this information, she finds the optimal

pooling weights w∗t = arg maxwt ft (wt) where ft (wt) is defined in (9).

Figure 3 displays the optimal pool weights w∗it in the same way that Figure 2 did

for the Bayesian model averaging weights. Initially the optimal pool consists entirely

of daily models. Options models enter the optimal pool mid-way through the first

year and high-frequency models enter later that year. The gradual entry of models

at the start of the exercise is characteristic of optimal prediction pools: notice from

the calculus of optimization of a concave function on the unit simplex in (7)-(8) that

at most t models will have positive weight in an optimal pool when t < n. As the

number of predictions over which the optimal pool weights are evaluated continues to
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increase, optimal weights stabilize. From midway through the exercise (2001) forward

the distribution of weights across the groups of models does not change substantially.

At the end of the exercise, which is the close of trading on March 31, 2010, the total

weight on the group of daily models is 0.4435, all arising from the egarch 22 model.

The total weight on the high-frequency models is 0.2974, comprised of the sum of the

weights on highfreq 020 (0.0349), highfreq 110 (0.1790), highfreq 112 (0.0106),

and highfreq 122 (0.0729). The options models garner the remaining weight of

0.2591, allocated among vix 022 (0.0470), vix 111 (0.1075) and vix 121 (0.1046).

Consulting Table 1, note that the eight models with positive weights include those

with the largest log score in each group, and those three weights sum to 0.621. On

the other hand fully half the models (21) have log scores exceeding that of vix 111

but have no weight in the optimal pool

Whether or not a model enters the pool with positive weight depends on its record

in providing a higher density to observed returns when other models with positive

weights provide lower densities. These conditions are analogous to those that prevail

when an asset enters a portfolio under a constraint of no short positions, and arise for

essentially the same reason. The pooling rule places a premium on diversity of models,

even if some of those included have relatively low scores. For the high-frequency and

options models, the number of components in the mixture distributions appears to

be key. Consulting Table 1 once again, there is at least one representative from j = 1

and j = 2 in both cases, and the representatives include the model with the highest

log score in each case, with the minor exception of vix 111 whose log score is 0.35

points lower than vix 011.

Having computed the optimal weight vector w∗t at the end of trading day t, based

on rows 1 through t of P = [pti], our hypothetical econometrician uses the optimal

pool as the predictive density for yt+1. Evaluating this density at the realized return

yot+1 provides the log score

T−1∑
t=0

log

[
n∑

i=1

w∗itp
(
yot+1;Y o

t , X
o
t

)]
=

T∑
t=1

log

(
n∑

i=1

w∗i,t−1pti

)
, (11)

which may be compared directly with the entries in Table 1. The log score of the

optimal pool is 346.48, about 23 points higher than the best of the constituent models,

egarch 22. The improvement is even greater relative to the either the BMA pooling

24



1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
−35

−30

−25

−20

−15

−10

−5

0

5

10

 

 

Optimal pool (real−time)

BMA (full−sample)

BMA (real−time)

Model picker (real−time)

Figure 4: Log scores, differences relative to equally-weighted pool.

rule or the econometrician forced to place all weight on a single model using real-

time information. It also exceeds the two equally-weighted benchmarks described in

Section 4.2.

Figure 4 shows log scores relative to the equally-weighted pool at each date t in the

sample period for the optimal pool, BMA pool using weights computed using the full-

sample information (prescient modeler), BMA pool using real-time weights, and the

pool comprised of the single model chosen in real-time by the model picker. Whereas

the conventional model averager and model picker both substantially underperform

the equally-weighted benchmark, the optimal pool outperforms it.

The sums of model weights across groups exhibited in Figure 3 provide one in-

dication of the contribution of each group to the optimal pool. An indication more

directly related to performance can be constructed as follows. First evaluate the real-

time log score (11) at the end of each period t, yielding the sequence of real-time log

scores

λt =
t−1∑
s=0

log

[
n∑

i=1

w∗isp
(
yos+1;Xo

s , Y
o
s

)]
=

t∑
s=1

log

(
n∑

i=1

w∗i,s−1psi

)
(t = 1, . . . , T ) .

Now repeat the optimization exercise, but omitting all of the daily models, and denote
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Figure 5: Values of the group of daily models (black), high frequency models (red),
and options models (blue).

the resulting sequence of log scores
{
λ

(1)
t

}
. Because of the real-time nature of the

exercise it is not necessarily the case that λ
(1)
t ≤ λt, and both prior considerations

and the weights displayed in Figure 3 suggest that this condition is more likely to

be violated for smaller than for larger t. We refer to λt − λ
(1)
t as the value of the

daily model group at time t. Similarly form the sequence of values
{
λt − λ(2)

t

}
for

the group of high-frequency models and
{
λt − λ(3)

t

}
for the group of options models.

Unlike sums of weights within groups, group values will tend to drift with time. For

any group with a limiting positive sum of weights, the drift will be upward.

Figure 5 shows the group values constructed in this way. The value of the group

of daily models is nonnegative throughout the sample period. The options models

exhibit some negative values in the first four years and are positive thereafter. The

high-frequency models have negative or negligibly positive value until early 2000,

and remain positive thereafter. The latter model group increases in value in striking

fashion during September and October, 2008, the height of the global financial crisis,

and remains the most valuable group until early 2010. At the end of the sample period

(March 31, 2010) the value of the daily model group is 9.976, the high-frequency model

group 9.721, and the options group 3.207.
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5 Conclusion

This study took up the practical problem of constructing predictive densities for S&P

500 returns from a collection of models, all of which are false. The constituents of

the collection were chosen with respect to alternative information sets for predictions

of future volatility: daily returns, observed intraday volatility, and the VIX index

obtained from options prices. The metric of evaluation was the log scoring rule,

equivalent to the geometric average probability assigned to observed returns. This

and all comparisons made in the study are strictly out of sample, arising from real-

time procedures that could have been employed in prediction at the start of each

trading day from January 2, 1992, through March 31, 2010.

Beginning with conventional base models within each of the three groups, we

took several steps to improve predictions: replacing conditional Gaussian distribu-

tions with normal mixture distributions provided predictive distributions with more

credible shapes; including multiple volatility factors provided increased flexibility in

how the history of realized returns impacted estimates of the latent volatility state;

and in the case of the high frequency and options models we used a flexible mapping

from the extracted volatility state to spot volatility (the scaling factor for daily re-

turns). This led to two stochastic volatility (SV) models, four EGARCH models, 18

high frequency models and 18 options prices, for a total of 42 models.

Quantitatively this was the most important step in improving predictive densities

for the S&P 500 return series from 1992 through the first quarter of 2010, as indicated

in Table 2. The Improved model column compares the base model in each group

(e.g. highfreq 010) with the best model in each group (e.g. highfreq 122) using

the entries from Table 1 and the metric shown in (6). As discussed in Section 4.1

differences across model groups arise more from disparity among base models than

among the best models in each group.

Next we considered pools of all 42 models. The simple step of forming an equally-

weighted pool of models led to the improvements in the Equal weight pool column

of Table 2. Since the pool is the same for all model groups, differences across model

groups in this column are due entirely to differences in the log predictive scores of

the best model in each group. If it were not the case that all models are false—that

is, some one of the 42 models in our collection corresponded to the data generating

process for returns—then the expected incremental change in this column would be
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Incremental changes in prediction probability (percent)
Model group Improved model Equal weight pool Optimal pool Total
Daily (SV) 0.466 0.916 0.077 1.470
Daily (EGARCH) 2.369 0.357 0.077 2.814
High frequency 6.983 0.645 0.077 7.756
Options prices 1.798 0.911 0.077 2.725

Table 2: Improvements in the geometric mean average probability assigned to ob-
served returns, moving from left to right in each row.

negative for the group containing the true model. That is far from the case. The

optimal pool provides further increases in prediction probability.

Conventional econometric model combination procedures, most highly developed

in the Bayesian literature, work from the condition that one of the models is true.

As an alternative to optimal pooling we examined Bayesian model averaging (BMA).

Whereas optimal pools lead to stable positive weights on all three groups of models,

BMA weights tend to eliminate all models but one. Furthermore, the model so

identified as being almost certainly true changes from time to time over the sample

period. The log score of the BMA pool was lower even than that of the simple

equally-weighted pool. Prediction probabilities were on average 0.588% lower for the

BMA pool than for the optimal pool. The poor performance of BMA complements

the incredibility of the assumption that truth resides somewhere in the collection of

models.

All dimensions of the study bear out the importance of the fact that no matter

what the collection of models, they are all false. Therefore improved models exist, and

in this study improvement of individual models yielded the greatest returns. But even

with a set of improved models, the fact that all still remain false indicates a further

improvement from model pooling (Geweke and Amisano, 2010, Theorems 1 and 2).

That potential was borne out in this study. This latter improvement significantly

recasts model comparison from a horse race in which there is typically little role for

any but the winning model to a more cooperative situation in which many models

have relative strengths and weaknesses leading to important roles for several models

in improving predictive performance. In this setting an optimal pool bears strong

resemblance to optimal portfolio allocation with a restriction of no short positions

and the familiar gains from diversification in that setting.

Our study addressed one-step-ahead predictions of a single return, the S&P 500
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index return, which in turn is the most thoroughly addressed prediction problem in

financial econometrics. In contrast the most important prediction problems involve

multiple returns and prediction horizons of several steps. The fundamental principles

in this work, log scoring and optimal pooling, apply directly to these extensions. The

case of multiple returns is straightforward, e.g. O’Doherty et al. (2010). Moreover

for multivariate prediction there are compelling axiomatic arguments requiring pools

to be linear (McConway, 1981) as they were in this study. Predicting several steps

into the future is more demanding to the extent that covariates (in thus study, Xt−1,

the indicators of volatility in the high frequency and options models) must also be

predicted. In econometric terms these covariates are then no longer exogenous but

instead must themselves be modelled. There are no fundamental difficulties, here,

just the significant work of creating and improving credible models. We plan to

address these issues in future research.
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