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1 Introduction

We propose a likelihood based Bayesian method to estimate any dynamic game with par-

tially observed state that has a Markovian representation of the dynamics and an algorithm

to solve the game including those with serially correlated, endogenous, heterogeneous, state

variables. The method uses sequential importance sampling (particle filter) to compute an

unbiased estimate of the likelihood within a Metropolis chain (MCMC chain). Unbiasedness

guarantees that the stationary density of the chain is the exact posterior, not an approxi-

mation. The remarkable feature of this approach is that the number of particles required

is both small and easily determined. The key idea, which directly contradicts most current

practice, is that at each repetition of the MCMC chain the initial seed that determines all

random draws within the filter is proposed along with the parameter values. An interesting

side effect is that the jagged likelihood of a discrete choice game appears smoother to the

MCMC algorithm than it would if the seed were fixed thereby making the likelihood easier

to explore.

An important class of games to which our methods apply are oligopolistic entry games

where costs or other state variables are serially correlated, unobserved, and endogenous. In

dynamic, oligopolistic, entry games, the spillover effect that either experience gained due to

entering a market (generic pharmaceuticals) or a capacity constraint caused by entering a

market (patent law) has on subsequent performance in the market for a similar product is of

interest. Entry decisions of firms in a forward looking dynamic environment are drastically

different from those in a static competitive environment. A firm might enter a particular

product market even if the current opportunity is not profitable as long as the spillovers from

entry sufficiently improve the discounted stream of cumulative future profits. Models can

incorporate dynamic spillover due to entry by allowing for serially correlated, firm-specific

costs that evolve endogenously based on past entry decisions. Endogeneity of costs to past

entry decisions induces heterogeneity among firms even if they are identical ex ante. The

examples used in our simulation exercise are dynamic, oligopolistic, entry games of this sort

and we focus on the spillover effect in the assessment of the estimator that we propose.

Empirical models of static and dynamic games are differentiated by their information
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structures. In our examples we focus on complete information games in which all information

is publicly available to all firms and individual firms do not have privately observed profit

shocks. The complete information assumption allows substantial unobserved heterogeneity

at the level of the firms. These games typically require the use of a combinatorial algorithm

to search for an equilibrium instead of the continuous fixed point mapping used in incomplete

information models to compute equilibria.

While static games of complete information have been estimated by, e.g., Bresnahan

and Reiss (1991a), Berry (1992), Tamer (2003), Ciliberto and Tamer (2009) and Bajari,

Hong, and Ryan (2010), to our knowledge, Gallant, Hong, and Khwaja (2010) is the first to

estimate a dynamic game of complete information. The second is Chen (2010) who applied

a sequential Monte Carlo algorithm to the game and data of Gallant, Hong, and Khwaja

(2010), arriving at substantially the same results. The present paper marks the third. In

contrast to Gallant, Hong, and Khwaja (2010), the models used in the simulation studies

in the current paper allow for heterogeneity between the evolution of the unobserved and

observed components of the cost variables. The current paper also investigates the statistical

properties of the particle filter and estimator. The statistical properties of the estimators are

not studied rigorously in the previous two papers. We establish the unbiasedness property

of an estimate of the likelihood function obtained through particle filtering simulation in a

model that allows for endogenous feedback from the observed measurements to the dynamic

state variables. Endogenous feedback is the feature that distinguishes this paper from the

bulk of the particle filter literature. We establish our results by means of a recursive setup and

an inductive argument that avoids the complexity of ancestor tracing during the resampling

steps. This approach allows elegant, compact proofs.

The paper is organized as follows. We begin by discussing the related literature in Sec-

tion 2. Section 3 describes the general model and the suite of models used in the simulation

exercise. The method used to solve the models in the suite is of some independent interest

and is discussed in Section 4. An algorithm for unbiased estimation of a likelihood is proposed

and unbiasedness is proved in Section 5. The MCMC estimation algorithm is presented in

Section 6. Simulation results are reported in Section 7. Section 8 concludes.
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2 Related Literature

There is a growing literature on the estimation of games. Static games under the incomplete

information assumption have been studied by, e.g., Bjorn and Vuong (1997), Bresnahan and

Reiss (1991b), Bresnahan and Reiss (1991c), Haile, Hortaçsu, and Kosenok (2008), Aradillas-

Lopez (2010), Ho (2009), Ishii (2005), Pakes, Porter, Ho, and Ishii (2005), Augereau, Green-

stein, and Rysman (2006), Seim (2006), Sweeting (2006), Tamer (2003), Rysman (2004),

Gowrisankaran and Stavins (2004), Ellickson and Misra (2008) and Bajari, Hong, Krainer,

and Nekipelov (2006). Dynamic games of incomplete information have been studied by, e.g.,

Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and

Berry (2007), Ryan (2005), Collard-Wexler (2010), and Bajari, Chernozhukov, Hong, and

Nekipelov (2007). The literature on estimating games of incomplete information has mostly

relied on a two step estimation strategy building on the conditional choice probability esti-

mator of Hotz and Miller (1993).

The two step estimation strategy requires the assumption that there is no market or firm

level unobserved heterogeneity other than a random shock that is independent and iden-

tically distributed across both time and players. This assumption is restrictive because it

rules out unobserved dynamics in the latent state variables. It also rules out any private

information that a player might have about competing firms that the researcher does not

have. Arcidiacono and Miller (2008) have extended the literature on two step conditional

choice estimation of dynamic discrete models to allow for discrete forms of unobserved het-

erogeneity using the EM algorithm. In contrast, our method is applicable even when the

unobserved variable is continuous. Moreover, while two step methods can be computation-

ally attractive, we think that a likelihood based method, as the one we are employing, has

advantages when the model is misspecified. In this case, the likelihood based approach still

minimizes a well defined Kullback-Leibler distance between the model and the data whereas

two step methods do not.

In the single agent dynamic framework, there is a considerable amount of research that

allows for time invariant unobserved heterogeneity, e.g., Keane and Wolpin (1997). How-

ever there is very little work that allows for serially correlated unobserved endogenous state
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variables. In the context of a finite horizon dynamic discrete choice model, Khwaja (2001)

developed a simulation based method to integrate out such state variables from the likelihood

exploiting the discrete nature and Markovian dynamic structure of the variables. Bayesian

approaches for single agent dynamic discrete choice models with unobserved state variables

that are serially correlated over time have been developed by Imai, Jain, and Ching (2009)

and Norets (2009). These papers use MCMC for integrating out the unobserved state vari-

ables. In contrast, we use sequential importance sampling to integrate out the unobserved

state variables. In addition we are the first to apply this method for the estimation of a

dynamic game whereas the previous literature has focused on single agent models.

Fernandez-Villaverde and Rubio-Ramirez (2005) used sequential importance sampling

methods for estimating macroeconomic dynamic stochastic general equilibrium models. The

structure of dynamic stochastic general equilibrium models is closely related to that of dy-

namic discrete choice models. Blevins (2009) used sequential Monte Carlo to allow for serially

correlated unobservable state variables in estimating dynamic single agent models, and dy-

namic games of incomplete information in a revealed preference framework. In a continuous

time setting, Nekipelov (2007) developed a flexible indirect inference estimator for contin-

uous time dynamic games in the context of eBay auctions without requiring the complete

solution of the dynamic game. This is a novel approach that has potential applications in

dynamic oligopolistic competition models. Ackerberg (2009) has developed a method for

using importance sampling coupled with a change of variables technique to provide compu-

tational gains in estimating certain game theoretic and dynamic discrete choice models that

admit a random coefficient presentation.

The purely methodological papers most closely related to the econometric approach used

here are Pitt (2010) and Flury and Shephard (2010).

3 Model

In this section we describe the game and introduce some examples.

There are I players, i = 1, . . . , I, who can choose action ait at each time period t. Let

at = (a1t, a2t, . . . , aIt). In an entry game with firms as players, if firm i enters at time

t, ait = 1; if not, ait = 0. While our examples are entry games, we do not require ait, or
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any other variable for that matter, to be discrete. All variables in the game can be either

discrete or continuous. To reduce the notational burden, we require each variable to be one

or the other so that marginal distributions either put mass on a discrete set of points or on

a continuum. Again for notational convenience, we will assume that continuous variables

do not have atoms. The game is stationary. Time runs from −∞ to ∞. For the observed

data time runs from −T0 to T . The state vector is xt = (x1t, x2t). The state vector is

observable by all players. We observe the second component x2t only. The game is indexed

by a parameter vector θ that is known to the players but not to us. If the state is xt, then

players choose actions at according to the probability density function p(at|xt, θ). Note that

this formulation permits randomized strategies. It also includes the case where players are

not, in the end, able to follow through and implement the optimal strategy because, e.g., the

necessary regulatory approval was not obtained, which would reverse a decision to enter, or

a competing firm was acquired, which could reverse a decision not to enter. The transition

density p(xt|at−1, xt−1, θ) governs the evolution of the state vector. We observe at.

The methods we develop to estimate the game are generally applicable to dynamic games

for which there exists a Markovian representation of the latent dynamics and an algorithm

to solve the game. The solution method we use for our examples relies on Bellman equations

and a sieve representation of the value function and should, therefore, be broadly applicable.

As the analysis is Bayesian, one has some flexibility in handling nonexistence of equilibria.

Because data are at hand, one can presume that at an equilibrium must exist to give rise

to the data. Therefore one can impose a prior that assigns zero support to any pairing of

history and parameters for which the model being estimated does not have an equilibrium. If

MCMC is used to estimate the model, as here, imposing this prior is quite easy: one rejects

a pair for which an equilibrium does not exist so that it does not get added to the chain.

3.1 A Suite of Entry Games

In the following we will introduce a sequence of oligopolistic entry game models, each more

realistic than its predecessor. We will use a separate notation for the games in the suite

because the map from the game’s notation to the generic notation is not the same for each

game in the suite. Toward the end of the discussion of each game within the suite we provide
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the map. Within the suite, we follow the convention that a lower case quantity denotes the

logarithm of an upper case quantity, e.g., cit = log(Cit).

In all games within the suite, firms maximize profits over an infinite horizon. Each time

the market opens counts as one time increment. A market opening is defined to be an entry

opportunity that becomes available to firms. Since a time period uniquely identifies a market

opening, in what follows t is used interchangeably to denote a market opening or the time

period associated with it. One could also think of the dynamics arising from evolution of

demand, revenues and costs for a particular product as it diffuses through the market over

time (see e.g., Ching (2010)). This would lead to two time indices, one for the sequence

of product markets opening over time and the other for profits over time within a product

market. For simplicity, we abstract from the latter and assume that once a firm enters a

market it realizes all the payoffs associated with that product market as a lump sum at the

date of entry. We also assume that within the model market time rather than calendar time

is what is relevant to discount factors and serial correlation.

The actions available to firm i when market t opens are to enter, Ait = 1, or not enter

Ait = 0. There are I firms in total so that the number of entrants in market t is given by

Nt =
I
∑

i=1

Ait (1)

The primary source of dynamics is through costs. The evolution of current costs Cit for

firm i is determined by past entry decisions and random shocks. Entry can increase the

cost of an entry next period by, e.g., constraining capacity or it can reduce cost through,

e.g., learning. All firms observe each others’ costs and hence this is a game of complete

information. Log cost is the sum of two components

ci,t = cu,i,t + ck,i,t. (2)

We assume throughout that cu,i,t, cannot be observed; our assumption regarding ck,i,t varies

with the model. The first component follows a stationary autoregressive process of order
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one; the second accumulates the consequences of past entry decisions:

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (3)

ck,i,t = ρa ck,i,t−1 + κaAi,t−1 (4)

=
∞
∑

j=0

ρj
aκaAi,t−j−1.

In the above, eit is a normally distributed shock with mean zero and unit variance, σc is a

scale parameter, κa is the immediate impact on cost at market t if there was entry in market

t− 1, µc is a location parameter that represents the unconditional mean of the unobservable

portion of log cost; ρc and ρa are autoregressive parameters that determine persistence. We

assume that all firms are ex ante identical, with the effects of current decisions on future costs

creating heterogeneity between firms. Hence, none of these parameters are firm specific, i.e.,

indexed by i. Stated differently, heterogeneity arises endogenously in the model depending

on the past actions of the firms.

The total (lump sum) revenue to be divided among firms who enter a market at time t

is Rt = exp(rt) given by

rt = µr + σreI+1,t , (5)

where the eI+1,t are normally and independently distributed with mean zero and unit vari-

ance. In (5), µr is a location parameter that reflects the average total revenue for all the

firms across all market opportunities, and σr is a scale parameter. A firm’s total discounted

profit at time t is
∞
∑

j=0

βjAi,t+j (Rt+j/Nt+j − Ci,t+j) , (6)

where β is the discount factor, 0 < β < 1. A firm’s objective is to maximize the present

discounted value of its profit at each time period t taking as given the equilibrium action

profiles of other firms.

In the following we first describe a baseline model in which the entry decisions of the

firms are perfectly predicted by the firms. This model, while theoretically appealing, is not

particularly amenable to econometric specification and estimation. This is because of the

discrete nature of the likelihood and the observed entry actions. The likelihood function will

be identically zero when the profile of firm entry actions does not coincide with the predicted
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equilibrium profile of entry decisions at the given parameter values. Therefore, the likelihood

function is only nondegenerate when the predicted outcome profile matches perfectly with

the observed actions. Running this model through a nonlinear filter to obtain the likelihood

of the observed variables can run into a degeneracy issue where all particles are killed.

It is possible to introduce a measurement equation that compounds the predicted out-

comes with a misclassification error. However, we argue that a priori such a model does not

appear to be suitable for empirical interpretation. We will present two alternative models

that avoid this degeneracy issue, after the base model is presented. One has computational

advantages while the other has more theoretical appeal.

Throughout we follow the standard convention of suppressing subscripts to indicate

grouping, e.g.,

ci,t = (cu,i,t, ck,i,t)

ct = (c1t, c2t, . . . , cI,t).

When these groupings are to be interpreted as vectors, we follow the convention that the

leftmost index varies fastest, e.g.

ct = (cu,1,t, ck,1,t, cu,2,t, ck,2,t, . . . , cu,I,t, ck,I,t).

3.2 Baseline Model

In this model, the firms can perfectly predict the observed entry profiles in equilibrium but

the econometrician observes the profiles with error.

The Bellman equation for the choice specific value function, Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt),

for firm i′s dynamic problem at time t is

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) (7)

= Ait (Rt/Nt − Cit)

+ β E
[

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]

,

where, as is conventional, −i represents the other players. The choice specific value function

represents the sum of current and future payoffs to firm i from a choice Ai,t at time t

explicitly conditioning on the choices that would be made by other firms A−i,t at time t and
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with the expectation that firm i and the other firms would be making equilibrium choices,

AE
i,t+1, A

E
−i,t+1, respectively, from period t + 1 onwards conditional on their current choices.

The expectations operator here is over the distribution of the state variables in time period

t+1 conditional on the realization of the time t state variables and the action profile at time

t. Therefore Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) is the payoff to firm i at stage t of the game.

A stationary pure strategy Markov perfect equilibrium of the dynamic game is defined

by a best response strategy profile (AE
i,t, AE

−i,t) that satisfies

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt) ∀ i, t. (8)

This is a game of complete information. Hence, if the state, which includes the current

cost vector of all firms (Ci,t, C−i,t) and total revenue (Rt), is known, then the equilibrium is

known. Therefore, an ex ante value function can be computed from the choice specific value

function

Vi(Ci,t, C−i,t, Rt) = Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt). (9)

The ex ante value function satisfies the Bellman equation

Vi(Cit, C−i,t, Rt) (10)

= AE
it

(

Rt/N
E
t − Cit

)

+ β E
[

Vi(Ci,t+1, C−i,t+1, Rt+1) |AE
i,t, A

E
−i,t, Ci,t, C−i,t, Rt

]

,

where NE
t is the number of firms that enter in equilibrium, which can be computed using

equation (1), i.e., NE
t =

∑I

i=1 AE
it . Equation (10) is different from the Bellman equation

associated with the choice specific value function (equation (7)) as it represents the sum

of current and future payoffs to firm i from an optimal equilibrium choice AE
i,t at time t

explicitly conditioning on the equilibrium choices that would be made by other firms AE
−i,t

at time t, and with the expectation that all firms would be making equilibrium choices from

period t + 1 onwards.

A comprehensive discussion of results for existence of equilibria in Markovian games is

provided by Dutta and Sundaram (1998). More results on existence of equilibria in dynamic

oligopolistic models are to be found in Doraszelski and Satterthwaite (2007). When the state

space can only take on a finite set of values, Theorem 3.1 of Dutta and Sundaram (1998)

implies that the baseline game just described has a stationary Markov perfect equilibrium in
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mixed strategies. Parthasarathy (1973) showed that this support condition can be relaxed

to include a state space with countable values. The regularity conditions of Theorem 5.1

of Dutta and Sundaram (1998) come closer to the problem as we have posed it, notably

that the revenue and cost do not have to be discrete but they do need to be bounded. The

equilibrium strategy profiles provided by Theorem 5.1 may depend on periods t and t− 1 of

the state vector.

We could modify our problem to meet the requirements of Theorem 3.1 that the state

space be finite and countable. However we rely on Theorem 5.1 instead as we do not have

trouble computing pure strategy equilibria for the problem as posed with a continuous state

space. Theorem 3.1 is of interest to us because its proof relies on a dynamic programming

approach that motivates our computational strategy, discussed below in Section 5 (see also

Rust (2006) for a discussion of a similar computation strategy). We find that we can com-

pute pure strategy equilibria that depend only on period t of the state vector, and hence

automatically satisfy the regularity conditions of Theorem 5.1. While the results described

above imply that a slightly modified version of the game proposed by us has equilibria, we

rely mostly on the fact that we have no difficulty computing equilibria. In fact the key

hurdle we face is not the lack of existence of equilibria but instead multiplicity of equilibria.

In Sections 5 and 6 we discuss how we resolve this problem.

3.3 Measurement Error Model

To avoid the degeneracy issue associated with likelihood inference, one can assume that the

predicted equilibrium outcome AE
it ,∀i is not observed by the econometrician. Instead, the

observed entry decision Ait of firm i is a Bernoulli random variable taking value AE
it with

probability pa, and taking value 1 − AE
it with probability qA = 1 − pA.

The baseline model with measurement error relates to the generic model as follows. The

parameters of the model are

θ = (µc, ρc, σc, µr, σr, ρa, κa, β, pa). (11)
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The cost equations become

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (12)

ck,i,t = ρa ck,i,t−1 + κaA
E
i,t−1 (13)

The first cost component can not be observed by the econometrician. The equilibrium is

given by the deterministic function

AE
t = SB(cu,t, ck,t, rt, θ). (14)

The measurement error density described above can be written

p(At |AE
t , θ) =

I
∏

i=1

(pa)
δ(Ait=AE

it)(1 − pa)
1−δ(Ait=AE

it). (15)

where 0 < pa < 1, δ(a = b) = 1 if a = b (element by element when a and b are vectors as

below). The map to the variables and densities of the generic model is

x1t = cut

x2t = (ckt, rt)

at = At

p(xt|at−1, xt−1, θ) = n[cut |µc1 + ρc(cu,t−1 − µc1), σ2
cI]

× δ[ck,t = ck,t−1 + κaSB(cu,t−1, ck,t−1, rt−1, θ)]

×n(rt |µr, σ
2
r)

p(x1,t|at−1, xt−1, θ) = n[cut |µc1 + ρc(cu,t−1 − µc1), σ2
cI]

p(at |xt, θ) = p[At |SB(cu,t, ck,t, rt, θ), θ]

In the measurement error model, the state variable xt = (ct, A
E
t , rt) evolves autonomously.

The observed action profile in the data is a misclassified version of AE
t . While this model is

internally coherent, it is difficult to believe that such nontransitory misclassification errors

will persist in a given time series data set of reasonable sample size. Who is making the

mistake? Presumably, firms should be able to observe the realized action profile At as well

as econometricians. It is difficult to believe that firms always perceive AE
t as the realized

market outcome even when it systematically differs from At. Conversely, it is equally difficult

to believe that the firm observes correctly but that data are perpetually in error regarding

something as simple as determining if a firm enters a market or not.
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3.4 The Boundedly Rational Model

An alternative model is to assume that the discrepancy between the observed At and the

equilibrium prediction AE
t arises structurally from the combination of optimization error

and ex post uncertainty rather than merely as a statistical misclassification error. Given

the small number of firms in most empirical models and the short horizon of the time series

data set, it is more convincing to believe that the entry decisions are recorded correctly in

the data. We adopt such a view in the second model. However, the observed action profile

At can still differ from the equilibrium prediction AE
t computed by the firms. Consider the

generic drug market. The entry decision of firm i is coded as AE
it = 1 if the firm desires to

submit an application to the FDA. If the At in the data set records the approval by FDA

instead of the submission of proposal by the firms, each proposal carries a small probability

of being rejected by the FDA. On the one hand, firms collectively decide on the equilibrium

AE
t . On the other hand, the econometrician does observe the ex post realization of At at the

end of each period without misclassification error. Therefore the latent cost state variable

will involve according to At instead of AE
t . The cost evolution is observed by all the firms.

Conditional on observing the costs, whether the firms observe At or not is not important.

However, it appears reasonable to assume that they do.

This model relates to the generic model as follows. The parameters of the model are

given by (11). The cost equations become

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (16)

ck,i,t = ρa ck,i,t−1 + κaAi,t−1 (17)

The first cost component cannot be observed by the econometrician; the second can be

observed. The deterministic function giving the equilibrium is (14). The density for the

discrepancy between outcomes and intentions is (15). The map to the variables and densities
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of the generic model is

x1t = cut

x2t = (ckt, rt)

at = At

p(xt | at−1, xt−1, θ) = n[cut |µc1 + ρc(cu,t−1 − µc1), σ2
cI]

× δ[ck,t = ck,t−1 + κaat−1, θ)]

×n(rt |µr, σ
2
r) (18)

p(x1,t | at−1, xt−1, θ) = n[cut |µc1 + ρc(cu,t−1 − µc1), σ2
cI] (19)

p(at |xt, θ) = p[At |SB(cu,t, ck,t, rt, θ), θ] (20)

p(x1,t | θ) = n[cut |µc,
σ2

c

(1 − ρ2
c)

I] (21)

p(at, x2t |x1,t, θ) = p[At |SB(cu,t, ck,t, rt, θ), θ] n(rt |µr, σ
2
r) (22)

In equations (20) and (22),

p(At|AE
t , θ) =

I
∏

i=1

p
δ(Ai,t=AE

i,t)

A (1 − pA)1−δ(Ai,t=AE
i,t).

Hidden within SB(cu,t, ck,t, rt, θ) of equations (20) and (22) are equations (7) to (10), which

describe the computation of the value function and the search algorithm for the Nash equi-

librium used to compute the predicted action profiles AE
t from each ct and rt. When firms

configure the equilibrium action profile AE
t according to the Nash condition (8), they act as

if they are unaware of the discrepancy between the ex post At and AE
t . The discrepancy

At −AE
t appears to the firms as pure ex post random shocks. In other words, at the time of

the equilibrium determination firm i does not know either Ait − AE
it or any of the Ajt − AE

jt

for each j 6= i. Since the value function iterations in (7) and (10) make use of a single action

profile instead of a mixture of action profiles, the computation in (7) and (10) implicitly

assumes that firms do not figure in the randomness in At − AE
t when they calculate their

value functions in the forward-looking manner. In this sense, firms are boundedly rational.

While they have perfect observations of the costs when the equilibrium is determined, and

presumably are able to observe the history of differences between At and AE
t , they do not
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account for this difference in their value function iteration and assume that the future equi-

librium path of AE
t can be perfectly executed in their forward perceptions. However, the

evolution of the cost process, as given in the transition equations in (3) and (4), is, in fact,

actually determined by the historically realized values of the observed At’s.

3.5 The Fully Rational Model

Taking the transition equations and the measurement equations in the previous subsection

as given, it is possible to amend the value function iterations and equilibrium condition in

(7) to (10) to avoid imposing the bounded rationality condition on the firms.

In order for firms to account for the statistical uncertainty of At −AE
t when they decide

on their equilibrium behavior, we need to modify the model in (7). This requires redefinition

of the choice specific value function (7) as follows:

V f
i (ai,t, a−i,t, Ci,t, C−i,t, Rt)

=
1
∑

l1=0

p
δ(l1=a1t)
A (qA)1−δ(l1=a1t) · · ·

1
∑

lI=0

p
δ(lI=aIt)
A (qA)1−δ(lI=aIt)

{

li

(

R
∑I

j=1 lj
− Cit

)

(7′)

+ β E
[

V f
i (AE

i,t+1, A
E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) |Li,t, L−i,t, Ci,t, C−i,t, Rt

]

}

,

where Li,t = li and L−i,t is (l1, . . . , lI) with li deleted. Note that Li,t and L−i,t affect the

conditioning information via equations (3) and (4), both for j ∈ Li,t and j ∈ L−i,t; lj, like

Aj, is one for entry and zero otherwise.

Equations (8) and (9) stay unchanged with this new definition of choice specific function

in (7′). A Bellman equation is implied by (7′), (8), and (9) that is easy to code directly from

(7′), (8), and (9) without deriving an explicit expression. The firms use the implied Bellman

equation to make correct forecasts of the future value function taking into account the

uncertainty that the ex post realized action profile At might be different from the equilibrium

action profile AE
t . A fully rational stationary pure strategy equilibrium is defined by a best

response strategy profile (AE
i,t, A

E
−i,t) that satisfies (8) with V f replacing V . When it is

necessary to distinguish a fully rational equilibrium, we use the notation AFR
t .

To summarize, the only difference between the fully rational model and the boundedly

rational model is in the deterministic function used to compute the equilibrium. For the
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boundedly rational model it is (14). For the fully rational model we write

AFR
t = SR(cu,t, ck,t, rt, θ). (23)

All that changes in the map to the variables and densities of the generic model are equations

(20) and (22), where SR replaces SB.

There is yet another possible model with partial bounded rationality of the firms. In this

model we replace the choice specific value function with

Vi(At, Ci,t, C−i,t, Rt)

=
1
∑

l1=0

pl1=a1t

a ql1 6=a1t

a · · ·
1
∑

lI=0

plI=aIt
a qlI 6=aIt

a li

(

Rt/

(

I
∑

j=1

lj

)

− Cit

)

(7′′)

+ β E
[

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) | at, Ci,t, C−i,t, Rt

]

.

In such a model, firms are fully rational in computing the current period expected payoff, but

use a partial solution method to compute the continuation value function in which they do

not account for the discrepancy between the equilibrium predicted action profile and the ex

post realized action profile. We will not pursue this alternative model in the rest of paper.

4 Solving the Model

In this section we describe a method for computing the equilibrium of a dynamic game of

complete information given the observed and latent state variables and a set of parameter

values. Because we consider infinite horizon models, we look for a stationary Markov perfect

equilibrium which entails finding the fixed point of Bellman equations. In Section 3 we

described three alternative models. The solution method for the baseline model and the

bounded rationality model are identical. These two models differ only in the evolution

of the latent cost state variable, which only becomes relevant in the likelihood function

and parameter estimation sections, which are Sections 5 and 6. The solution for the fully

rational model does differ from the baseline model in the definition of the choice specific

value function. Therefore in the following we describe the solution method for the baseline

model first, and then we discuss how it can be augmented for the fully rational model.
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4.1 The Baseline Model

Recall that the entry decisions of all i = 1, . . . , I firms for a market opening at time t, i.e.,

the strategy profile of the dynamic game, are denoted by At = (A1t, ..., AIt) . As discussed in

Section 3, the strategy profile At at time t of the dynamic game is a function of the current

period state variables (C1t, ..., CIt) and Rt. The vector of the log of the state variables at

time t is

st = (cu1t, ..., cuIt, ck1t, ..., ckIt, rt) . (24)

In particular, equations (7) and (10) can be expressed in terms of st using Cuit = exp(sit) and

Ckit = exp(sI+i,t) for i = 1, . . . , I and Rt = exp(s2I+1,t). We describe the solution algorithm

for a given parameter vector θ and a given state st at time t.

We begin by defining a grid on the state space which determines a set of (2I + 1)-

dimensional hyper-cubes. For each hyper-cube we use its centroid as its index or key K.

A state st within hyper-cube can be mapped to its key K.1 Let the vector VK(st) have as

its elements the ex ante value functions Vi,K(st), i.e., VK(st) = (V1,K(st), . . . , VI,K(st)) (see

equations (9) and (10). To each K associate a vector bK of length I and a matrix BK of

dimension I by I + 1. A given state point st is mapped to its key K and the value function

at state st is represented by the affine function VK(st) = bK + (BK)st.
2 A value function

VK(st) whose elements satisfy equation (10) is denoted V ∗
K(st) = b∗K + (B∗

K)st.

The game is solved as follows:

1. Given a state point s, get the key K that corresponds to it. (We suppress the subscript

t for notational convenience.)3

2. Check whether the fixed point V ∗
K(s) of the Bellman equations (10) at this key has

1Grid increments are chosen to be fractional powers of two so that the key has an exact machine repre-
sentation. This facilitates efficient computation through compact storage of objects indexed by the key. The
rounding rules of the machine resolve which key a state on a grid boundary gets mapped to, although lying
on a boundary is a probability zero event in principle. The entire grid itself is never computed because all
we require is the mapping s 7→ K, which is determined by the increments and is easily computed as needed.

2Keane and Wolpin (1997) adopt a similar approach for a single agent model. Our approach differs
from Keane and Wolpin (1997) in that we let the coefficients of the regression depend on the state variables,
specifically the key K, whereas Keane and Wolpin (1997) use an OLS regression whose coefficients are not
state specific. Thus, our value function, unlike theirs, need not be continuous. Our value function can be
thought of as an approximation by a local linear function.

3In fact, because it is a stationary game, the subscript t does not really matter
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already been computed, i.e., whether the (b∗K , B∗
K) for the K that corresponds to s has

been computed. If not, then use the following steps to compute it.

3. Start with an initial guess of the ex ante value function V
(0)
K (s). An initial guess of the

value function is represented by the coefficients (b
(0)
K , B

(0)
K ) being set to 0.

4. Obtain a set of points sj, j = 1, . . . , J , that are centered around K. The objective

now is to obtain the ex ante value functions associated with these points to use in a

regression to recompute (or update) the the coefficients (b
(0)
K , B

(0)
K ).

5. Ex ante value functions are evaluated at best response strategies. In order to com-

pute these we must, for each sj, compute the choice specific value function (7) at as

many strategy profiles A as are required to determine whether or not the equilibrium

condition in equation (8) is satisfied. In this process we need to take expectations to

compute the continuation value β E
[

V
(0)
K,i (st+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]

that appears

in equation (7), where we have used equation (9) to express equation (7) in terms

of V
(0)
K (s). To compute expectations over the conditional distribution of the random

components of next period state variables, we use Gauss-Hermite quadrature. To do

this, we obtain another set of points centered around each sj, i.e., sjl
, l = 1, . . . , L.

These points are the abscissae of the Gauss-Hermite quadrature rule which are located

relative to sj but shifted by the actions A under consideration to account for the dy-

namic effects of current actions on future costs (see equation (4)). Expectations are

computed using a weighted sum of the value function evaluated at the abscissae (more

details are provided below).

6. We can now compute the continuation value at sj for each candidate strategy A. We

compute the best response strategy profile AE
j corresponding to sj by checking the

Nash equilibrium condition (8). As just described, the choice specific value function

evaluated at (AE
i , sj) is computed using V

(0)
K (s) and equation (7), and denoted by

V
(1)
K (AE, sj) = (V

(1)
1,K(AE, sj), . . . , V

(1)
I,K(AE, sj)).

7. Next we use the “data” (V
(1)
K (AE, sj), sj)

J
j=1 to update the ex ante value function

to V
(1)
K (sj). This is done by updating the coefficients of its affine representation to
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(b
(1)
K , B

(1)
K ) via a multivariate regression on this “data” (as described in detail below).4

8. We iterate (go back to step 5) over the ex ante value functions V
(0)
i,K (s), V

(1)
i,K (s), . . . by

finding a new equilibrium strategy profile AE for each sj until convergence is achieved

for the coefficients (b
(0)
K , B

(0)
K ), (b

(1)
K , B

(1)
K ), . . . ,(b

(∗)
K , B

(∗)
K ). This gives us V ∗

K(s) = b∗K +

(B∗
K)s for every s that maps to key K.

To summarize, the process of solving for the equilibrium begins with a conjecture (b
(l)
K =

0, B
(l)
K = 0) for the linear approximation of the value functions at a given state at iteration

l = 0. These guesses are then used in computing the choice specific value functions at

iteration l + 1 using equation (7). This computation involves taking expectations over the

conditional distribution of the future state variables, which is accomplished using Gaussian-

Hermite quadrature. Once we have the choice specific value functions we compute the

equilibrium strategy profile at iteration l + 1 using equation (8). The best response strategy

profile at iteration l + 1 is then used to compute the iteration l + 1 ex ante value functions

via a regression that can be viewed as iterating equation (10). The iteration l + 1 ex ante

value functions are then used to compute the iteration l + 2 choice specific value functions

using equation (7), and the entire procedure is repeated till a fixed point of equation (10)

is obtained. This iterative procedure solves the dynamic game. We next provide additional

details about the steps of the algorithm described above to solve the model.

To describe the Gauss-Hermite quadrature procedure used in Step 5, note that if one

conditions upon st and At, then a subset of the elements of st+1 are independently normally

distributed with means µi = µc + ρc(cit − µc) for the first I elements, mean µ2I+1 = µR

for the last element, standard deviations σi = σc for the first I elements, and standard

deviation σ2I+1 = σR for the last. The other I elements of st+1, (st+1,I+1, . . . , st+1,2I) are

deterministic functions of st and Ait. Computing a conditional expectation of functions of

the form f(st+1) given (At, st) such as appear in equations (7) and (10) is now a matter

of integrating with respect to a normal distribution with these means and variances which

can be done by a Gauss-Hermite quadrature rule that has been subjected to location and

scale transformations. The weights wj and abscissae xj for Gauss-Hermite quadrature may

4V
(1)
K (AE , sj) will not equal V

(1)
K (sj) because the former is “data” and the later is a regression prediction.
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be obtained from tables such as Abramowitz and Stegun (1964) or by direct computation

using algorithms such as Golub and Welsch (1969) as updated in Golub (1973). To integrate

with respect to si,t+1 conditional upon At and st the abscissae are transformed to s̃j
t+1,i =

µi +
√

2σixj, and the weights are transformed to w̃j = wj/
√

π, where π = 3.142.5 Then,

using a 2L + 1 rule,

E [f(st+1) |At, st] ≈
L
∑

j1=−L

· · ·
L
∑

jI=−L

L
∑

j2I+1=−L

f(s̃j1
t+1,1,· · · , s̃jI

t+1,I , s̃
j2I+1

t+1,2I+1, st+1,I+1, . . . , st+1,2I)w̃j1· · ·w̃jI
w̃j2I+1

.

If, for example, there are three firms and a three point quadrature rule is used, then

E [f(st+1) |At, st]

≈
1
∑

j1=−1

1
∑

j2=−1

1
∑

j3=−1

1
∑

j7=−1

f(s̃j1
t+1,1, s̃

j2
t+1,2, s̃

j3
t+1,3, s̃

j7
t+1,7, st+1,4, . . . , st+1,6)w̃j1w̃j2w̃j3w̃j7 .

We use three point rules throughout. A three point rule will integrate a polynomial in st+1

up to degree five exactly.67

Step 7 involves updating the ex ante value function using a regression. We next describe

how we do this. As stated above, we have a grid over the state space whose boundaries are

fractional powers of two over the state space.8 We approximate the value function V (st)

by a locally indexed affine representation as described above. For the the grid increments

that determine the index of hyper-cubes we tried a range of values from 4 to 16 times the

standard deviation of the state variables rounded to a nearby fractional power of two to

scale the grid appropriately. The results are effectively the same. Hence in estimating the

5These transformations arise because a Hermite rule integrates
∫

∞

−∞
f(x) exp (−x2)dx. Hence we need

to do a change of variables to get our integral
∫

∞

−∞
g(σz + µ)(1/

√
2π) exp (−0.5z2)dz to be of that form. A

change of variables puts the equation in the line above in the form
∫

∞

−∞
g(
√

2σx + µ)(1/
√

π) exp (−x2)dx,
which is where the expressions for s̃t+1,i and w̃i come from.

6If the s̃t+1 cross a grid boundary when computing (7) in Step 5, we do not recompute K because this
would create an impossible circularity due to the fact that the value function at the new K may not yet be
available. Our grid increments are large relative to the scatter of abscissae of the quadrature rule so that
crossing a boundary will be a rare event, if it happens at all.

7Positivity is enforced by setting the value function to zero if a negative value is computed. If this does
not happen at any quadrature point, which is easily detected by checking the most extreme point of the
quadrature rule, then quadrature is not necessary and the conditional mean can be used as the integral.

8Recall that grid increments are chosen to be fractional powers of two so that the key has an exact
machine representation. This facilitates efficient computation through compact storage of objects indexed
by the key.
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model we set the grid increments at 16 times the standard deviation of the state variables.9

We compute the coefficients bK and BK as follows. They are first initialized to zero. We

then generate a set of abscissae {sj} clustered about K and solve the game with payoffs (7)

to get corresponding equilibria {AE
j }. We substitute the (AE

j , sj) pairs into equation (7) to

get {V (AE
j , sj)}J

j=1. Using the pairs {(V (AE
j , sj), sj} as data, we compute bK and BK by

multivariate least squares. We repeat until the bK and BK stabilize. We have found that

approximately twenty iterations suffice for three firms and thirty for four firms.10 The easiest

way to get a cluster of points {sj} about a key is to use abscissae from the quadrature rule

described above with s set to K and A set to zero. However, one must jiggle the points so

that no two firms have exactly the same cost (see next paragraph for the reason for this).

Of importance in reducing computational effort is to avoid recomputing the payoff (equation

(7)) when checking equilibrium condition (8). Our strategy is to (temporarily) store payoff

vectors indexed by A and check for previously computed payoffs before computing new ones

in checking condition (8).

There will, at times, be multiple equilibria in solving the game. We therefore adopt an

equilibrium selection rule as follows. Multiple equilibria usually take the form of a situation

where one or another firm can profitably enter but if both enter they both will incur losses

whereas if neither enters then one of them would have an incentive to deviate. We resolve

this situation by assuming an explicit equilibrium selection rule. We pick the equilibrium

with the lowest total cost. This idea is similar to that used by Berry (1992) and Scott-

Morton (1999). That is, the strategy profiles At are ordered by increasing aggregate cost,

C =
∑I

i=1 AitCit and the first At that satisfies the equilibrium condition (8) is accepted as

the solution. Note that our distributional assumptions on st guarantee that no two C can

be equal so that this ordering of the At is unique. Moreover, none of the Cit can equal

one another and when that is true failure to compute an equilibrium for a given θ and cost

history is extremely rare. At worst all that happens is a few particles in the particle filter are

9The set of keys that actually get visited in any MCMC repetition is about the same for grid increments
ranging from 4 to 16 times the standard deviation of the state variables in our data. For a three firm game
the number of hyper-cubes that actually are visited in any one repetition is about six.

10An alternative is to apply a modified Howard acceleration strategy as described in Kuhn (2006); see also
Rust (2006) and Howard (1960). The idea is simple: The solution {AE

t } of the game with payoffs (7) will
not change much, if at all, for small changes in the value function V (s). Therefore, rather than recompute
the solution at every step of the (bK , Bk) iterations, one can reuse a solution for a few steps.
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lost (but replaced at the resampling step). The situation where all particles are lost thereby

causing an MCMC proposal to be rejected never occurs.

4.2 The Fully Rational Model

The solution method in the fully rational model is only different from that in the baseline

model and the bounded rationality model regarding how the conjectures of the ex ante value

functions are being used to compute the choice specific value functions at each iteration

using equation (7′) instead of using equation (7). In addition to taking expectations over

the conditional distribution of future state variables using Gaussian-Hermite quadrature for

each action profile, the computation in the fully rational model also needs to average over

all the possible action profiles using the ex post error probabilities pA and qA according to

the candidate member of the equilibrium action profile.

More specifically, only step 5 of the solution method in the baseline model needs to

be modified for the fully rational model. For each sj, the choice specific value functions

(7′) instead of (7) should be computed at as many strategy profiles A as needed to seek

an equilibrium that satisfies condition (8). Each of the terms within the curly bracket in

(7′) are computed exactly as in the baseline model, for each combination of Ait(l) ranging

over all possible i and l. However, instead of calculating them only as needed to compute

the equilibrium as in the base model, all the terms are now precomputed and stored prior

to calculating the weighted sum in (7′). Once these values are precomputed and stored,

evaluating the left hand side of (7′) for each candidate equilibrium action profile At only

requires taking a weighted sum of the stored values, where the weights obviously depend on

the action profile At.

The issue of multiple equilibria is handled in the same way as in the baseline model.

The candidate equilibrium action profiles At are pre-sorted on ascending order of total costs.

We start search for the Nash equilibrium based on condition (8) from the lowest cost action

profile, and stop once the first equilibrium is found.
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5 Likelihood Computation

In Section 6 we use MCMC to compute the posterior. If one has an unbiased estimator

of the likelihood the posterior is computed exactly.11 In this section we derive an unbiased

particle filter estimate of the likelihood for a Markov process with partially observed state and

endogenous feedback that is general enough to accommodate the generic game described at

the beginning of Section 3. Because we only require unbiasedness, our regularity conditions

are quite weak – much weaker than is standard in the particle filter literature.12 While

the result does not require that the number of particles tend to infinity, the number of

particles does affect the rejection rate of the MCMC chain so that the number of particles,

like the scale of the proposal density, becomes a tuning parameter of the chain that has to

be adjusted. For the examples in Section 7, the requisite number of particles is small.

The essentials of the generic game of Section 3 relative to the requirements of filtering

are as follows. The state vector is

xt = (x1t, x2t), (25)

where x1t is not observed and x2t is observed. The observation (or measurement) density is

p(at |xt, θ). (26)

The transition density is denoted by

p(xt | at−1, xt−1, θ). (27)

Its marginal is

p(x1t|at−1, xt−1, θ). (28)

The stationary density is denoted by

p(x1t | θ). (29)

ASSUMPTION 1 We assume that we can draw from (28) and (29). As to the latter, one

way to draw a sample of size N from (29) is to simulate the game and set x
(k)
1 = x1,τ+M∗k

11See e.g., Flury and Shephard (2010) and Pitt (2010).
12See, e.g. Andrieu, Douced, and Holenstein (2010) and the references therein.
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for k = 1, . . . , N for some τ past the point where transients have died off and some M large

enough that the x
(k)
1 are nearly serially uncorrelated. We do not actually need independence

so that one could set M = 1 if computational cost is an issue. We can draw from (28) by

drawing from (27) and discarding x2t. We assume that there is either an analytic expression

or algorithm to compute (26) and (27). We assume the same for (28) but if this is difficult

some other importance sampler can be substituted as discussed in Subsection 5.2.

For the examples in Section 3, which generalize an entry game taken from an application,

these conditions are met, the analytic expressions are simple, and draws straightforward. In

particular, simulation from (28) and (29) is by means of the normal autoregressive process

with transition density (19) and stationary density (21). The observation density (26) is

binomial with density (20); its evaluation requires solving the dynamic game using the

algorithm described in Section 4. Evaluation of two normal densities in (18) gives (27).

In the Bayesian paradigm, θ is random and
{

{at, xt}∞t=−T0
}, θ
}

are defined on a common

probability space. Let Ft = σ
{

{as, x2s}t

s=−T0
, θ
}

. The elements of at and xt may be either

real, without atoms, or discrete. No generality is lost by presuming that the discrete ele-

ments are positive integers. Let z denote a generic vector some of whose coordinates are

real numbers and the others positive integers. Let λ(z) denote a product measure whose

marginals are either counting measure on the positive integers or Lebesgue ordered as is

appropriate to define an integral of the form
∫

g(z) dλ(z). We adopt the convention that

when a conditional density is represented as the ratio of a joint density to a marginal density,

the ratio is zero if the marginal is zero. This is a standard convention.

Particle filters are implemented by drawing independent uniform random variables u
(k)
t+1

and then evaluating a random function13 of the form X
(k)
1,t+1(u) and putting x̃

(k)
1,t+1 =

X
(k)
1,t+1(u

(k)
t+1) for k = 1, . . . , N . Denote integration with respect to (u

(1)
t+1, . . . , u

(N)
t+1) with

X
(k)
1,t+1(u) substituted into the integrand by Ẽ1,t+1.

Concatenated draws for fixed k that start at time s and end at time t are denoted

x̃
(k)
1,s:t = (x̃

(k)
1,s , . . . , x̃

(k)
1,t );

x̃
(k)
1,0:t is called a particle. Denote expectation with respect to the uniform draws that gener-

13E.g., a conditional probability integral transformation, which depends on previous particle draws.
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ated the particles by Ẽ1,0:t. In the following we present sampling schemes that satisfy certain

unbiased properties that we discuss below.

5.1 A Conditionally Unbiased Particle Filter

In this section we discuss a particle implementation that satisfies the following recursive

property (30) → (31). The result for all t follows by induction from this recursive property.

Depending on how initial conditions are handled, the resulting estimate of the likelihood is

unbiased for either the full information likelihood or a partial information likelihood.

Given draws x̃
(k)
1,0:t and weights w̃

(k)
t , k = 1, . . . , N, that approximate the density

p(x1,0:t|Ft) in the sense that

∫

g(x1,0:t) dP (x1,0:t|Ft) = Ẽ1,0:t

{

E
[

N
∑

k=1

w̃
(k)
t g(x̃

(k)
1,0:t) | Ft

]}

(30)

for integrable g(x1,0:t), we seek to generate draws x̃
(k)
1,t+1 and compute weights w̃

(k)
t+1 that well

approximate p(x1,0:t, x1,t+1|Ft+1) in the sense that

∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1) (31)

= Ẽ1,t+1Ẽ1,0:t

{

E
[

N
∑

k=1

w̃
(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

for integrable g(x1,0:t, x1,t+1).
14 The notation E

[

∑N

k=1 w̃
(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]

is used to

indicate that even with the uniform draws held fixed by the outer expectation the weights

w̃
(k)
t+1 and draws (x̃

(k)
1,0:t, x̃

(k)
1,t+1) are functions of the variables in Ft+1.

A specific objective of the paper is to find an unbiased estimator of either the full in-

formation or a partial information likelihood. The recursive property (30) → (31) is more

general than the specific result (35) → (36) we require but it is actually easier to establish

the general result than the specific result. An outline of the development is as follows. In-

duction implies (30) holds for all t; put t = T . As shown later (43), the weights in (30) are

ratios. The unknown true likelihood function enters as the denominator of the weights on

the right hand side of (30) and does not depend on k. Putting g(x1,0:T ) ≡ 1 in (30) implies

14An implication of (31) is that N affects the second moment of E
[

∑N

k=1 w̃
(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]

but

not the first moment.
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that the right hand side of (30) is an unbiased estimate of the constant 1, which, in turn,

implies that the sum of the numerators of the weights provides an unbiased estimate of the

likelihood, which is a full information likelihood if the expectation of the time t = 0 estimate

is p(a0, x0,2|θ) or a partial information likelihood if the time t = 0 estimate is put to 1.

One often resamples particles such as (x̃
(k)
1,0:t, x̃

(k)
1,t+1) in order to prevent the variance of the

weights w̃
(k)
t+1 from increasing with t. This may done by sampling

{

(x̃
(k)
1,0:t, x̃

(k)
1,t+1)

}N

k=1
with

replacement with probability
w̃

(k)
t+1

PN
k=1 w̃

(k)
t+1

. Some particles will get copied and some particles

will not survive. We can represent the outcome of resampling by the number of times N̂
(k)
t+1

that (x̃
(k)
1,0:t, x̃

(k)
1,t+1) is selected, where

∑N

k=1 N̂
(k)
t+1 = N . A particle that does not survive has

N̂
(k)
t+1 = 0. Denoting expectation with respect to resampling by Ê , note that Ê

(

N̂
(k)
t+1

N

)

=

w̃
(k)
t+1

PN
j=1 w̃

(j)
t+1

.

In the conditionally unbiased particle filter we define weights proportional to the resam-

pled weights as follows

ˆ̃w
(k)
t+1 =

(

N
∑

j=1

w̃
(j)
t+1

)

N̂
(k)
t+1

N
. (32)

Then

Ẽ1,t+1Ẽ1,0:t Ê
{

E
[

N
∑

k=1

ˆ̃w
(k)
t+1g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

(33)

= Ẽ1,t+1Ẽ1,0:t

{

E
[

Ê
N
∑

k=1

ˆ̃w
(k)
t+1g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

= Ẽ1,t+1Ẽ1,0:t

{

E
[

Ê
N
∑

k=1

(

N
∑

j=1

w̃
(j)
t+1

)

N̂
(k)
t+1

N
g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

= Ẽ1,t+1Ẽ1,0:t

{

E
[

N
∑

k=1

(

N
∑

j=1

w̃
(j)
t+1

)

Ê
(

N̂
(k)
t+1

N

)

g(x̃
(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

= Ẽ1,t+1Ẽ1,0:t

{

E
[

N
∑

k=1

w̃
(k)
t+1g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

=

∫ ∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1).

This shows that it is possible to retain conditional unbiasedness, by which we mean (31)

holds, after resampling.
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When resampling, it is equivalent to replicate a particle that receives positive weight

N̂
(k)
t+1 times, discard those for which N̂

(k)
t+1 = 0, renumber the particles, and use the weight

ˆ̃̂wt+1 =

(

N
∑

j=1

w̃
(j)
t+1

)

1

N
(34)

for each particle.

Any resampling scheme for which Ê
(

N̂
(k)
t+1

N

)

=
w̃

(k)
t+1

PN
j=1 w̃

(j)
t+1

. will have the property that

conditional unbiasedness can be retained. What was described above is usually called multi-

nomial resampling where uniform random numbers are drawn on the interval (0, 1) and the

inverse of the distribution function defined by the weights is evaluated. Other resampling

schemes seek to improve performance by having one uniform random number in each interval

[(i−1)/N, i/N ] for i = 1, · · · , N . One approach is stratified resampling where one uniform u

is drawn inside each interval. Another is systematic resampling where the same uniform u is

placed inside each interval. In a comparison of stratified and systematic resampling, Douc,

Cappé, and Moulines (2005) find that their performance is similar.

It might be that the weights w̃
(k)
t+1 are only known to within a constant that does not

depend on k; i.e. w̃
(k)
t+1 = w̄

(k)
t+1/

∏t+1
s=0 Cs, where w̄

(k)
t+1 can be computed but

∏t+1
s=0 Cs cannot.

There are two cases: (1) This is a nuisance to be dealt with. (2)
∏T

s=0 Cs is the object of

interest. In the first case it is possible to use cross-validation notions (Hastie, Tibshirani,

and Friedman (2009)) and bias reduction formulae to achieve appoximate unbiasedness in

(31). However, we are in the second situation where
∏T

t=0 Ct+1 is the object of interest and

so omit consideration of the first case.

For the case where
∏T

s=0 Cs is the object of interest, we modify our objective as given by

(30) and (31) to the following: Given weights w̄
(k)
t , k = 1, . . . , N, that satisfy

t
∏

s=0

Cs = Ẽ1,0:t E
[

N
∑

k=1

w̄
(k)
t | Ft

]

, (35)

we seek to generate weights w̄
(k)
t+1 that satisfy

t+1
∏

s=0

Cs = Ẽ1,t+1Ẽ1,0:t E
[

N
∑

k=1

w̄
(k)
t+1 | Ft+1

]

. (36)

Given that we achieve this objective, the same argument as above shows that resampling
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does not destroy conditional unbiasedness if we set

ˆ̄w
(k)
t+1 =

(

N
∑

j=1

w̄
(j)
t+1

)

N̂
(k)
t+1

N
. (37)

Or, if we replicate the particles with N̂
(k)
t+1 > 0 exactly N̂

(k)
t+1 times, discard those with

N̂
(k)
t+1 = 0, and renumber

ˆ̄̂wt+1 =

(

N
∑

j=1

w̄
(j)
t+1

)

1

N
. (38)

As discussed immediately after (31), one observes from the foregoing algebra that by taking

g(·) ≡ 1 in both (30) and (31), it follows that if we can show that (30) implies (31) for

weights of the form

w̃
(k)
t =

w̄
(k)
t

∏t

s=0 Cs

w̃
(k)
t+1 =

w̄
(k)
t+1

∏t+1
s=0 Cs

, (39)

then (35) implies (36) for the weights w̄
(k)
t , w̄

(k)
t+1.

Bayes Theorem states that

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) =
p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

p(at+1, x2,t+1|Ft)
. (40)

However

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) = p(x1,0:t, x1,t+1|Ft+1) (41)

and

p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)p(x1,t+1|x1,0:t,Ft)p(x1,0:t|Ft). (42)

We use Bayes theorem to show that (30) implies (31) when weights and draws at time

t + 1 are defined as follows: For k = 1, . . . , N, given w̃
(k)
t and x̃

(k)
1,0:t defined by (30), draw

x̃
(k)
1,t+1 from p(x1,t+1|x̃(k)

1,0:t,Ft) and define

w̃
(k)
t+1 =

p(at+1, x2,t+1|x̃(k)
1,0:t, x̃

(k)
1,t+1,Ft)

p(at+1, x2,t+1|Ft)
w̃

(k)
t . (43)

We assume without loss of generality that all N of the w̃
(k)
t are positive because one can,

e.g., discard all particles with zero weight then, as often as necessary to get N particles,
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replicate the particle with the largest weight and divide that weight half and half between

that particle and its replicate. Then

∫ ∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

=

∫ ∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)
p(x1,t+1|x1,0:t,Ft)

×dλ(x1,t+1)dP (x1,0:t|Ft) (44)

= Ẽ1,0:t E
[

∫ N
∑

k=1

g(x̃
(k)
1,0:t, x1,t+1) w̃

(k)
t+1

∣

∣

∣

x̃
(k)
t+1=xt+1

p(x1,t+1|x̃(k)
1,0:t,Ft) dλ(x1,t+1) | Ft

]

(45)

= Ẽ1,t+1Ẽ1,0:t E
[

N
∑

k=1

g(x̃
(k)
1,0:t, x̃

(k)
1,t+1) w̃

(k)
t+1 | Ft+1

]

(46)

where (44) is due to (40) after substituting (41) and (42), (45) is due to (30) and (43), and

(46) is due to the fact that x̃
(k)
1,t+1 is a draw from p(x1,t+1|x̃(k)

1,0:t,Ft).

The denominator p(at+1, x2,t+1|Ft) of (43) is Ct+1; i.e., one of the components of the object

of interest
∏T

s=0 Cs. We need to express the numerator of (43) in terms of the primitives

(26), (27), and (28). Now,

p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1, x2,0:t, a0:t, θ)

=
p(at+1, xt+1, a0:t, x0:t, θ)

∫

p(at+1, xt+1, a0:t, x0:t, θ) dλ(at+1, x2,t+1)

=
p(at+1|xt+1, a0:t, x0:t, θ)p(xt+1|a0:t, x0:t, θ)p(a0:t, x0:t, θ)

∫

p(at+1|xt+1, a0:t, x0:t, θ)p(xt+1|a0:t, x0:t, θ)dλ(at+1, x2,t+1) p(a0:t, x0:t, θ)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)

∫

p(at+1|xt+1, θ) p(xt+1|at, xt, θ) dλ(at+1, x2,t+1)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)
∫

p(xt+1|at, xt, θ) dλ(x2,t+1)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)

p(x1,t+1|at, xt, θ)
(47)

Therefore,

w̃
(k)
t+1 =

v̄
(k)
t+1

Ct+1

w̃
(k)
t (48)
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where

v̄
(k)
t+1 =

p
(

at+1 | x̃(k)
1,t+1, x2,t+1, θ

)

p
(

x̃
(k)
1,t+1, x2,t+1 | at, x̃

(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t+1 | at, x̃

(k)
1,t , x2,t, θ

) (49)

and

Ct+1 = p(at+1, x2,t+1|Ft). (50)

The weights we need to estimate the likelihood follow the recursion

w̄
(k)
t+1 = v̄

(k)
t+1 w̄

(k)
t (51)

because (39) follows from

w̃
(k)
t+1 =

v̄
(k)
t+1w̄

(k)
t

∏t+1
s=0 Cs

(52)

provided that w̃
(k)
t =

w̄
(k)
t

Qt
s=0 Cs

.

We have established the recursion (30) → (31), now we must think about how to start

it. We need an estimator for C0. Ideally the estimator should be conditionally unbiased for

p(a0, x2,0 | θ). We are unwilling to impose the additional structure on the game necessary to

be able to estimate that value although some games actually do have the requisite structure.

Our example is an instance.15 Therefore, as is routinely done in time series analysis, we

discard the information in the stationary density for (a0, x2,0) and set C0 = 1.16 With this

convention, we can start the filter with draws
{

x̃
(k)
0

}N

k=1
from the stationary density (29)

and put the initial weights to w̄
(k)
0 = 1/N .

Consider the case of no resampling where particles do not lose their original labels. In

this case

N
∑

k=0

w̄
(k)
T =

(

∑N

k=1 v̄
(k)
T w̄

(k)
T−1

∑N

k=1 v̄
(k)
T−1w̄

(k)
T−2

)(

∑N

k=1 v̄
(k)
T−1w̄

(k)
T−2

∑N

k=1 v̄
(k)
T−2w̄

(k)
T−3

)

· · ·
(

∑N

k=1 v̄
(k)
1 w̄

(k)
0

∑N

k=1 w̄
(k)
0

)(

N
∑

k=1

w̄
(k)
0

)

=

(

N
∑

k=1

v̄
(k)
T

w̄
(k)
T−1

∑N

k=1 w̄
(k)
T−1

)(

N
∑

k=1

v̄
(k)
T−1

w̄
(k)
T−2

∑N

k=1 w̄
(k)
T−2

)

· · ·
(

N
∑

k=1

v̄
(k)
1

w̄
(k)
0

∑N

k=1 w̄
(k)
0

)(

N
∑

k=1

w̄
(k)
0

)

=

(

N
∑

k=1

v̄
(k)
T ŵ

(k)
T−1

)(

N
∑

k=1

v̄
(k)
T−1ŵ

(k)
T−2

)

· · ·
(

N
∑

k=1

v̄
(k)
1 ŵ

(k)
0

)(

N
∑

k=1

w̄
(k)
0

)

(53)

15Use (22) to evaluate p(at, x2t |x1,t, θ); use (21) to draw from p(x1,t | θ).
16In the Bayesian framework the stationary density p(a0, x2,0 | θ) can be regarded as (part of) the prior

for θ. Putting C0 = 1 replaces this informative prior by an uninformative prior.
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where

ŵ
(k)
t =

w̄
(k)
t

∑N

k=1 w̄
(k)
t

. (54)

The import of (53) is that the time t weights can be normalized to sum to one before

proceeding to time t + 1 because normalization does not affect which x̃
(k)
t get drawn. If

weights are normalized, the estimator of the likelihood is

T̂
∏

t=0

Ct =
T
∏

t=0

Ĉt

where

Ĉt =
N
∑

k=1

v̄
(k)
t ŵ

(k)
t−1

The same is true if resampling is used because the telescoping argument (53) shows that the

scale factors that appear in (38) cancel, in which case

ŵ
(k)
t =

v̄
(k)
t

∑N

k=1 v̄
(k)
t

. (54′)

5.2 An Alternative Importance Sampler

If computing p(x1,t+1|at, xt, θ) is costly or drawing from it troublesome, one can substitute

an alternative importance sampler. The idea is that one can advance a filter from ( ˜̃x
(k)
t , ˜̃w

(k)
t )

that satisfies (30) to ( ˜̃x
(k)
t+1, ˜̃w

(k)
t+1) that satisfies (31) by drawing ˜̃x

(k)
t+1 from

f(x1,t+1|x1t,Ft) = f(x1,t+1|at, xt, θ) (55)

for k = 1, . . . , N, and setting

˜̃w
(k)
t+1 =

p
(

at+1 | ˜̃x(k)
1,t+1, x2,t+1, θ

)

p
(

˜̃x
(k)
1,t+1, x2,t+1 | at, ˜̃x

(k)
1t , x2t, θ

)

Ct+1 f
(

˜̃x
(k)
1,t+1 | at, ˜̃x

(k)
1t , x2t, θ

)

˜̃w
(k)
t (56)
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as is seen by noting that (44), (45), and (46) can be rewritten as

∫ ∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)

p(x1,t+1|x1,0:t,Ft)

f(x1,t+1|x1,t,Ft)
f(x1,t+1|x1t,Ft)

× dλ(xt+1) dP (x1,0:t|Ft) (57)

= Ẽ1,0:t

∫

E
[

N
∑

k=1

g( ˜̃x
(k)
1,0:t, x1,t+1) ˜̃w

(k)
t+1 f(x1,t+1| ˜̃x(k)

t ,Ft) dλ(x1,t+1) | Ft

]

= Ẽ1,t+1Ẽ1,0:t E
[

N
∑

k=1

g( ˜̃x
(k)
1,0:t, ˜̃x

(k)
t+1) ˜̃w

(k)
t+1 | Ft+1

]

due to the cancellation p(x1,t+1|x1,0:t,Ft)/p(x1,t+1|at, xt, θ) = 1 that occurs after the expres-

sion for p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft) given by (47) is substituted in (57).

The equations that replace (48), (49), and (51) when an alternative importance sampler

is used are

˜̃w
(k)
t+1 =

v̄
(k)
t+1

Ct+1

˜̃w
(k)
t (48′)

¯̄v
(k)
t+1 =

p
(

at+1 | ˜̃x(k)
1,t+1, x2,t+1, θ

)

p
(

˜̃x
(k)
1,t+1, x2,t+1 | at, ˜̃x

(k)
1,t , x2,t, θ

)

f
(

˜̃x
(k)
1,t+1 | at, ˜̃x

(k)
1,t , x2,t, θ

) . (49′)

¯̄w
(k)
t+1 = ¯̄v

(k)
t+1

¯̄w
(k)
t (51′)

The requisite regularity condition is the following:

ASSUMPTION 2

g(x1,0:t, x1,t+1)
p (at+1 |x1,t+1, x2,t+1, θ) p (x1,t+1, x2,t+1 | at, x1,t, x2,t, θ)

f(x1,t+1 | at, x1,t, x2,t, θ)

is integrable with respect to f(x1,t+1 | at, x1,t, x2,t, θ) , the support of which contains the sup-

port of p (x1,t+1 | at, x1,t, x2,t, θ) .

Another reason to consider an alternative importance sampler is to improve efficiency.

Pitt and Shephard (1999) suggest some adaptive importance samplers that one might con-

sider. In addition to Pitt and Shephard’s (1999) suggestions, one can use the notion

of reprojection (Gallant and Tauchen (1998)) to construct an adaptive density for (55)

as follows. The model can be simulated. Therefore, for given θ∗ a large simulation of
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(at, x1t, x2t, at+1, x1,t+1, x2,t+1) can be generated. Using multivariate regression one can de-

termine the location µ(v) of x1,t+1 as a linear function of

v = (at, x1t, x2t, at+1, x2,t+1) (58)

and the conditional variance Σ. The simulation can be taken so large that µ(v) and Σ can

be regarded as population quantities. We put

h(x1,t+1|x1t,Ft+1) = n(x1,t+1|µ(v), Σ), (59)

where n(·|µ, Σ) denotes the multivariate normal density and use (59) in place of (55), which

is a slight abuse of notation because the argument lists are different. We also experimented

with the multivariate Student-t density on five and six degrees of freedom with the same

location and scale but found that it had little effect on results other than increase run times.

One can see this same notion of looking ahead one step in order to improve the efficiency of

an estimate of a latent variable in a Bayesian context in Jacquier, Polson, and Rossi (1994).

This begs the question of how to choose θ∗ for the simulation that determines µ(v) and

Σ. If one is using a strongly informative prior one can use the mean or the mode of the prior

for θ∗. Otherwise, one can use the mean or mode of the MCMC chain described in Section 6

using the filter described in Section 5 with draws from (28).

5.3 Computing the Likelihood

A draw from a density f(v) is obtained by drawing a seed s from a uniform density u(s)

defined over a finite set of integers and executing an algorithm that evaluates a function

V (s) and returns v′ = V (s) and s′ such that v′ has density f(v), s′ has density u(s), and s′

is independent of s. The next draw from the same or a different density uses s′ to return

a draw v′′ from that density and another new seed s′′, and so on. The algorithm that we

describe next has sequence of such draws within it but viewed as a whole it has the same

flavor as a single draw: One specifies θ and provides a random draw s from u(s). The

algorithm evaluates a function L(θ, s) and returns ℓ ′ = L(θ, s) and a draw s′ from u(s) that

is independent of s. The crucial fact regarding the algorithm is that
∫

L(θ, s) u(s) ds = L(θ),

where L(θ) is the likelihood of the game described at the beginning of Section 3. See Flury
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and Shephard (2010) for a further discussion of this point and illustration with econometric

examples.

Given seed s and parameter θ, the algorithm for evaluating L(θ, s) follows. All draws

use the seed returned by the previous draw; there are no fixed seeds anywhere within the

algorithm.

1. For t = 0

(a) Start N particles by drawing x̃
(k)
1,0 from p(x1,0 | θ) using s as the initial seed.

(b) If p(at, x2t |x1,t, θ) is available, compute Ĉ0 = 1
N

∑N

k=1 p(a0, x2,0 | x̃(k)
1,0, θ) otherwise

put Ĉ0 = 1.

(c) Set x
(k)
1,0:0 = x̃

(k)
1,0 and x

(k)
1,0 = x̃

(k)
1,0

2. For t = 1, . . . , T

(a) For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ). (60)

(b) Compute

v̄
(k)
t =

p
(

at | x̃(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

p
(

x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

) (61)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t

(Note that the draw pair is (x
(k)
1,t−1, x̃

(k)
1,t ) and the weight is v̄

(k)
t

1
N

.)

(c) Set

x̃
(k)
1,0:t =

(

x
(k)
1,0:t−1, x̃

(k)
1,t

)

.

(d) Compute the normalized weights

ŵ
(k)
t =

v̄
(k)
t

∑N

k=1 v̄
(k)
t
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(e) For k = 1, . . . , N draw x
(k)
1,0:t by sampling with replacement from the set {x̃(k)

1,0:t}
according to the weights {ŵ(k)

t }.

(Note the convention: Particles with unequal weights are denoted by {x̃(k)
0:t }. After

resampling the particles are denoted by {x(k)
0:t }.)

(f) Set x
(k)
t to the last element of x

(k)
1,0:t.

3. Done

(a) An unbiased estimate of the likelihood is

ℓ ′ =
T
∏

t=0

Ĉt (62)

(b) s′ is the last seed returned in Step 2e.

Systematic or stratified sampling can be used at step 2e instead of multinomial resampling.

To use the alternative importance sampler of Section 5.2, replace (60) with f(x1,t+1|at, x
(k)
t , θ)17

and replace (61) with

¯̄v
(k)
t =

p
(

at | x̃(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

f
(

x
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

) . (63)

The algorithm may or may not produce a likelihood whose log is the sum of a martingale

difference sequence. It depends on the application and the choice of importance sampler.

Whether it does or not is irrelevant to Bayesian inference but might be relevant to frequen-

tist inference. Because its output is rough, the algorithm is completely inappropriate for

maximum likelihood inference that uses an optimization algorithm that relies on smoothness

(Pitt (2002)) but would be a good choice when using an MCMC algorithm (Chernozhukov

and Hong (2003)).

5.3.1 Specialization to the Boundedly and Fully Rational Models

For the boundedly rational model, substituting (20) and (18) into the numerator of (61) and

(19) into the denominator, we have

v̄
(k)
t = p[At |SB(c

(k)
u,t , ck,t, rt, θ), θ] n(rt |µr, σ

2
r) δ[ck,t = ck,t−1+κcSB(c

(k)
u,t−1, ck,t−1, rt−1, θ)]

17See (55).
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For the alternative importance sampler,

¯̄v
(k)
t = v̄

(k)
t

n[c
(k)
ut |µc1 + ρc(c

(k)
u,t−1 − µc1), σ2

cI]

f
(

c
(k)
ut | c(k)

u,t−1, ck,t−1, rt−1, θ
) .

The expressions needed at Step 1 to compute Ĉ0 are given by (21) and (22). For the fully

rational model the expressions are the same with SR replacing SB.

6 Computing the Posterior

We determine the posterior density of θ using the Metropolis algorithm. The Metropolis

algorithm is an iterative scheme that generates a Markov chain whose stationary distribution

is the posterior of θ. To implement our version we require the particle filter algorithm for

drawing (ℓ, s) described in Section 5.3, a prior π(θ), and a transition density in θ called the

proposal density. For a given θ ′, a proposal density q(θ ′, θ∗) defines a distribution of potential

new values θ∗. We use a move-one-at-a-time, random-walk, proposal density which is built

in to the public domain software that we use: http://econ.duke.edu/webfiles/arg/emm

The algorithm for the Markov chain follows. For the first θ in the chain we also need

to write to memory a draw s′′ from the uniform density on a finite set of integers used to

implement the particle filter in Section 5.3.

Given a current θ ′ we obtain the next θ ′′ as follows:

1. Draw θ∗ according to q(θ ′, θ∗).

2. Set s∗ to s′′ retrieved from memory.

3. Compute ℓ∗ corresponding to (θ∗, s∗) using the particle filter in Section 5.3 and write

to memory the s′′ returned by the particle filter.

4. Compute α = min
(

1, ℓ∗ π(θ∗) q(θ∗,θ ′)
ℓ ′ π(θ ′) q(θ ′,θ∗)

)

.

5. With probability α, set θ ′′ = θ∗, otherwise set θ ′′ = θ ′.

6. Return to 1.

The choice for the parameter N of the particle filter in Section 5.3 does play a role in

the performance of the MCMC chain: It influences the rejection rate. If N is too small then
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L(θ, s) = ℓ′ given by (62) will be a jittery estimator of L(θ) which will increase the chance

that the chain gets stuck. Pitt (2010) shows that what is relevant is the variance

Var {logL(θ, s)} =

∫
[

logL(θ, s) −
∫

logL(θ, s) ds

]2

ds, (64)

which can be computed from draws of ℓ′ obtained by putting the filter in a loop. It is

interesting that for an entry game such as our example, the classification error rate can be so

small that one is almost matching 0’s and 1’s and using the particle filter to solve backwards

for {x1t} that will allow the match. The consequence is that N can be quite small. For our

example, Pitt’s charts suggest that N = 300 will suffice. We actually use N = 512. Even

without such charts, one can always determine N empirically by increasing it until the chain

is no longer sticky. The fact that N can be quite small is one of the main features of our

approach.

It is possible to set forth regularity conditions such that limN→∞ supθ Var {logL(θ, s)} =

0. They are stringent: see Andrieu, Douced, and Holenstein (2010). One might argue that

there is no point to verifying that variance declines with N in an application because N

is a tuning parameter that affects the rejection rate of MCMC in much the same manner

as the scale parameters of the proposal density. One must still determine the requisite N

empirically. If an acceptable N is found, it does not matter if variance declines with N or

not. If an affordable N cannot be found, a proof that variance declines with N does not help

except to provide support for a request for more computing resources.

7 Simulation Experiment Results

To assess the efficacy of the approach proposed here that directly contradicts current practice

in that the seed is random and the number of particles small, we conduct a simulation

exercise.

We simulate the fully rational game described in Subsection 3.5 configured to represent

the manufacture of a single object where entry constrains capacity. There are three firms.

The time increment is one year. We set parameters according to the following considerations.

A hurdle rate of 20% is a standard assumption in business which leads to a discount factor of

β = 0.83333. Setting pa = 0.95 seems intuitively reasonable and is in line with the estimates
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of Gallant, Hong, and Khwaja (2010) who estimate a similar model from pharmaceutical

data, where entry has the effect of reducing rather than increasing costs. We set ρa = 0.5,

which gives the entry effect a half-life of six-months. Costs are usually persistent so ρc = 0.9

seems reasonable. The remaining parameters scale with µr. The parameter µr can be chosen

arbitrarily because it is the log of the nominal price of the product. We chose µr = 10. A

gross margin of 30% puts µc = 9.7. With κa = 0.2 the immediate impact of entry is to

reduce the gross margin to 10%. The two scale parameters σc and σr are determined by the

foregoing because, if one wants a sample that mimics competition to some extent, there is

far less freedom in their choice than one might imagine. One can easily produce samples

where one firm is dominant for long periods or a monopoly develops. By trial and error, we

found σc = 0.1 and σr = 2 to be satisfactory. In general, σr must be fairly large, as it is

here, to prevent a monopoly.

Gallant, Hong, and Khwaja (2010) reported that pa was estimated precisely and varying

it within reason had little effect on estimates. Because the parameter was of no intrinsic

interest, they fixed it to reduce computational cost. We estimated with pa both fixed and

free to see if that held true here.

The firm’s discount rate β is extremely difficult to estimate in studies of this sort (see e.g.,

Magnac and Thesmar (2002) and Rust (1994)). On the other hand it is not difficult to form

priors for β. As mentioned above, a common rule of thumb in business is not to undertake

a project whose internal rate of return is less than 20%. Theoretically, a firm should not

undertake a project whose rate of return is less than its cost of capital. The historical risk

premia for various industries are available (e.g., Gebhardt, Lee, and Swaminathan (2001)) to

which one can add a nominal borrowing rate of 5% to arrive at a value for β. We estimated

with β both fixed and free to assess the value of prior information regarding β.

We also investigated the effect of misspecification by estimating using the boundedly

rational model of Subsection 3.4.

All the models in the suite described in Section 3.1 are recursive due to (4). The custom-

ary way of dealing with this situation in time series analysis (e.g. GARCH models) is to run

the recursion over a few initial lags prior to estimation. We set the number of initial lags to a

large value T0 = 160 to reduce effect of the choice of T0 in our results. The choice of large T0
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was also motivated by the Gallant, Hong, and Khwaja (2010) study where a structural break

– a bribery scandal – gave rise to 160 initial lags that could be used to run the recursion

(4) but could not be used for estimation. As in Gallant, Hong, and Khwaja (2010), we also

pass (5) through the recursion as part of the likelihood which is equivalent to determining

a loose prior for µr and σr from the initial lags. We used three simulated data sets, small,

medium, and large, with T = 40, 120, and 360 respectively.

What we propose here is computationally intensive. Serial computation on a 2.9 MHz

CPU takes about 8 hours per 5,000 MCMC repetitions for the medium size data set. Our

code is not particularly efficient because it collects a lot of diagnostic information. Perhaps

efficiency could be improved by 20% by removing these subsidiary computations. On the

other hand, the computations are trivially parallelizable with linear scaling. The public

domain code that we use, http://econ.duke.edu/webfiles/arg/emm, has parallelization

built in. Machines with 8 cores are nearly standard (two Intel quad core chips). Machines

with 48 cores (four AMD twelve core chips) are available at a reasonable price. On a 48 core

machine the computational cost would be 10 minutes per 5,000 MCMC repetitions.

We considered four cases

1. The fully rational model is fit to the data using a blind sampler and multinomial

resampling. Estimates are in Table 1. Histograms of the marginals of the posterior

density are in Figure 1 for the medium sample size. Figure 2 is the same with β

constrained. Figure 3 shows the latent cost estimates for the medium sample size and

β constrained.

2. The boundedly rational model is fit to the data using a blind sampler and multinomial

resampling. Estimates are in Table 2.

3. The fully rational model is fit to the data using an adaptive sampler and multinomial

resampling. Estimates are in Table 3.

4. The fully rational model is fit to the data using an adaptive sampler and systematic

resampling. Estimates are in Table 4. Figure 4 shows the latent cost estimates for the

medium sample size and β constrained.
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The key parameter in the study of games of this sort is κa so we mainly focus on it

although our remarks generally apply to the other parameters as well. In most respects our

results are not surprising.

• A large sample size is better. In Tables 1 through 4 the estimates shown in the columns

labeled “lg” would not give misleading results in an application.

• In smaller sample sizes the specification error caused by fitting the boundedly rational

model to data generated by the fully rational model can be serious: compare columns

“sm” and “md” in Tables 1 and 2. The saving in computational time is about 10%

relative to the fully rational model so there seems to be no point to using the boundedly

rational model unless that is what firms are actually doing, which they are not in this

instance.

• Constraining β is beneficial: compare Figures 1 and 2. The constraint reduces the

bimodality of the marginal posterior distribution of σr and pushes all histograms closer

to unimodality. In consequence, the descriptive statistics in the columns labeled “β”

and “β & pa” of Tables 1 through 4 represent the posterior distribution better than

those in the columns labled “Unconstrained.”

• Constraining pa is irrelevant except for a small savings in computational cost: compare

columns “β” and “β & pa” in Tables 1 through 4.

• Improvements to the particle filter are helpful. In particular, an adaptive sampler is

better than a blind sampler; compare Tables 1 and 3 and compare Figures 3 and 4.

Systematic resampling is better than multinomial resampling; compare Tables 3 and 4.

Table 1 about here

Table 2 about here

Table 3 about here
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Table 4 about here

Figure 1 about here

Figure 2 about here

Figure 3 about here

Figure 4 about here

8 Conclusions

We propose a method based on sequential importance sampling (particle filtering) to es-

timate the parameters of a dynamic game that can have state variables that are partially

observed, serially correlated, endogenous, and heterogeneous. We illustrated by application

to a dynamic oligopolistic model for which a capacity constraint due to entry affects future

costs.

The method depends on computing an unbiased estimate of the likelihood that is used

within a Metropolis chain to conduct Bayesian inference. Unbiasedness guarantees that the

stationary density of the chain is the exact posterior, not an approximation. The remarkable

feature of this approach is that the number of particles required is both small and easily

determined.
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Table 1. Parameter Estimates for the Fully Rational Model
Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.10 9.72 9.68 9.94 9.67 9.68 9.86 9.72 9.68
(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12) (0.06)

ρc 0.90 0.58 0.86 0.92 0.69 0.92 0.91 0.69 0.85 0.91
(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11) (0.03)

σc 0.10 0.16 0.09 0.09 0.17 0.08 0.10 0.15 0.09 0.10
(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03) (0.01)

µr 10.00 9.87 9.98 9.96 9.88 9.99 9.98 9.84 9.99 9.99
(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06) (0.02)

σr 2.00 1.95 1.97 1.98 2.02 2.00 2.02 2.04 2.00 2.03
(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03) (0.01)

ρa 0.50 0.76 0.56 0.58 0.59 0.57 0.56 0.76 0.57 0.52
(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07) (0.04)

κa 0.20 0.04 0.24 0.19 0.15 0.26 0.20 0.14 0.22 0.22
(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06) (0.03)

β 0.83 0.90 0.95 0.87 0.83 0.83 0.83 0.83 0.83 0.83
(0.07) (0.04) (0.04)

pa 0.95 0.97 0.94 0.95 0.96 0.94 0.95 0.95 0.95 0.95
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the fully rational model with parameters set as shown in

the column labeled “value”. For all data sets T0 = −160. For the small data set T = 40; for

the medium T = 120; and for the large T = 360. The estimate is the mean of the posterior

distribution. The values below each estimate in parentheses are the standard deviation of the

posterior. The prior is uninformative except for the following support conditions |ρc| < 1, |ρa| < 1,

0 < β < 1, and 0 < pa < 1. The likelihood for µr and σr includes the observations from T0 to

0. In the columns labeled constrained, the parameters β and pa are constrained to equal their

true values as shown in the table. The number of MCMC repetitions is 240,000 with every 25th

retained for use in estimation.
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Table 2. Parameter Estimates for the Boundedly Rational Model
Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.06 9.71 9.69 9.71 9.48 9.64 9.90 9.57 9.66
(0.18) (0.10) (0.06) (0.18) (0.13) (0.06) (0.23) (0.14) (0.05)

ρc 0.90 0.80 0.92 0.91 0.83 0.95 0.90 0.73 0.94 0.92
(0.13) (0.03) (0.02) (0.13) (0.04) (0.03) (0.20) (0.03) (0.03)

σc 0.10 0.31 0.08 0.09 0.13 0.06 0.09 0.13 0.07 0.09
(0.13) (0.02) (0.01) (0.06) (0.02) (0.02) (0.05) (0.02) (0.01)

µr 10.00 9.84 9.96 9.96 9.91 9.99 9.92 9.82 10.00 9.94
(0.07) (0.02) (0.03) (0.08) (0.02) (0.04) (0.14) (0.02) (0.04)

σr 2.00 1.91 1.95 1.99 1.93 1.96 1.99 2.00 2.01 2.00
(0.09) (0.04) (0.03) (0.05) (0.05) (0.02) (0.09) (0.05) (0.02)

ρa 0.50 0.22 0.47 0.52 0.72 0.56 0.55 0.78 0.55 0.57
(0.15) (0.13) (0.06) (0.15) (0.06) (0.07) (0.06) (0.07) (0.05)

κa 0.20 0.01 0.25 0.19 0.19 0.36 0.20 0.10 0.32 0.19
(0.14) (0.05) (0.02) (0.07) (0.08) (0.03) (0.10) (0.07) (0.02)

β 0.83 0.61 0.95 0.85 0.83 0.83 0.83 0.83 0.83 0.83
(0.28) (0.04) (0.06)

pa 0.95 0.97 0.93 0.95 0.97 0.94 0.95 0.95 0.95 0.95
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the fully rational model with parameters set as

shown in the column labeled “value”. For all data sets T0 = −160. For the small data

set T = 40; for the medium T = 120; and for the large T = 360. The estimate is

the mean of the posterior distribution. The values below each estimate in parentheses

are the standard deviation of the posterior. The prior is uninformative except for

the following support conditions |ρc| < 1, |ρa| < 1, 0 < β < 1, and 0 < pa < 1.

The likelihood for µr and σr includes the observations from T0 to 0. In the columns

labeled constrained, the parameters β and pa are constrained to equal their true values

as shown in the table. The number of MCMC repetitions is 80,000 with every 25th

retained for use in estimation.
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Table 3. Parameter Estimates for the Fully Rational Model
Adaptive Proposal, Multinomial Resampling

Constrained
Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.00 9.82 9.77 9.93 9.74 9.70 9.85 9.73 9.65
(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.95 0.85 0.87 0.87 0.92 0.93 0.87 0.92 0.94
(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.09 0.10 0.12 0.08 0.08 0.12 0.09 0.08
(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 9.93 10.00 10.01 10.00 9.99 9.97 9.94 9.96 9.96
(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.93 1.98 1.99 2.01 1.98 2.00 2.03 1.97 1.99
(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 -0.11 0.51 0.47 0.56 0.59 0.57 0.47 0.51 0.61
(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.19 0.20 0.17 0.17 0.21 0.18 0.24 0.20 0.19
(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.87 0.95 0.92 0.83 0.83 0.83 0.83 0.83 0.83
(0.10) (0.03) (0.04)

pa 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 0.95
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the fully rational model with parameters set as

shown in the column labeled “value”. For all data sets T0 = −160. For the small data

set T = 40; for the medium T = 120; and for the large T = 360. The estimate is

the mean of the posterior distribution. The values below each estimate in parentheses

are the standard deviation of the posterior. The prior is uninformative except for

the following support conditions |ρc| < 1, |ρa| < 1, 0 < β < 1, and 0 < pa < 1.

The likelihood for µr and σr includes the observations from T0 to 0. In the columns

labeled constrained, the parameters β and pa are constrained to equal their true values

as shown in the table. The number of MCMC repetitions is 80,000 with every 25th

retained for use in estimation.
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Table 4. Parameter Estimates for the Fully Rational Model
Adaptive Proposal, Systematic Resampling

Constrained
Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 9.87 9.82 9.72 9.81 9.78 9.68 9.78 9.76 9.65
(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.77 0.82 0.91 0.93 0.94 0.94 0.86 0.92 0.94
(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.10 0.09 0.14 0.08 0.08 0.11 0.08 0.08
(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 10.05 10.00 9.97 9.95 9.96 9.94 9.78 9.95 9.96
(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.94 1.99 1.99 1.93 1.97 2.01 2.07 1.98 1.97
(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 0.61 0.53 0.56 0.41 0.36 0.61 0.71 0.58 0.64
(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.21 0.22 0.18 0.20 0.18 0.18 0.17 0.19 0.18
(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.93 0.96 0.90 0.83 0.83 0.83 0.83 0.83 0.83
(0.10) (0.03) (0.04)

pa 0.95 0.96 0.94 0.95 0.95 0.93 0.95 0.95 0.95 0.95
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the fully rational model with parameters set as

shown in the column labeled “value”. For all data sets T0 = −160. For the small data

set T = 40; for the medium T = 120; and for the large T = 360. The estimate is

the mean of the posterior distribution. The values below each estimate in parentheses

are the standard deviation of the posterior. The prior is uninformative except for

the following support conditions |ρc| < 1, |ρa| < 1, 0 < β < 1, and 0 < pa < 1.

The likelihood for µr and σr includes the observations from T0 to 0. In the columns

labeled constrained, the parameters β and pa are constrained to equal their true values

as shown in the table. The number of MCMC repetitions is 80,000 with every 25th

retained for use in estimation.
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Figure 1. Fully Rational Model, Unconstrained, Blind Proposal. Shown are

histograms constructed from the MCMC repetitions for the column labeled ”Uncon-

strained,” ”md” in Table 1.
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Figure 2. Fully Rational Model, β Constrained, Blind Proposal. Shown

are histograms constructed from the MCMC repetitions for the column labeled ”Con-

strained,” ”β,” ”md” in Table 1.
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Figure 3. Fully Rational Cost Estimates, β Constrained, Blind Proposal.

Shown are the particle filter estimates of each firm’s unobserved computed from the

MCMC repetitions for the column labeled ”Constrained,” ”β,” ”md” in Table 1. The

dashed line is the true unobserved cost. At each MCMC repetition, c̄ut =
∑N

k=1 x̃
(k)
1t

is computed for t = 0, . . . , T ; T = 120 and N = 512. The solid line is the average with

a stride of 25 of the c̄ut over 240,000 MCMC repetitions. The dotted lines are ± 1.96

standard deviations about the solid line. The circles indicate that the firm entered the

market at time t. The sum of the norms of the difference between the solid and dashed

lines is 0.186146.
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Figure 4. Fully Rational Cost Estimates, β Constrained, Adaptive Proposal.

Shown are the particle filter estimates of each firm’s unobserved computed from the

MCMC repetitions for the column labeled ”Constrained,” ”β,” ”md” in Table 4. The

dashed line is the true unobserved cost. At each MCMC repetition, c̄ut =
∑N

k=1 x̃
(k)
1t

is computed for t = 0, . . . , T ; T = 120 and N = 512. The solid line is the average with

a stride of 25 of the c̄ut over 80,000 MCMC repetitions. The dotted lines are ± 1.96

standard deviations about the solid line. The circles indicate that the firm entered the

market at time t. The sum of the norms of the difference between the solid and dashed

lines is 0.169411.
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