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ABSTRACT

This paper examines Wald-type tests in presence of (possibly) singular covariance matrices. Two different types
of singularity are addressed:first, the sample matrix hasfull rank but converges to asingular covariance matrix;
in this case, the Wald statistic is still computable, but usual regularity conditions do not hold anymore, which
modifies its asymptotic distribution. This asymptotic singularity causes the rank condition of Andrews (1987) to
be violated at the limit due to isolated values of the parameter.Second, the sample matrix does not have full rank,
but converges to a possibly nonsingular population matrix. This finite sample singularity may be due to redundant
restrictions. To address such difficulties, we introduce a class ofregularizedinverses that exploitstotal eigenpro-
jectiontechniques, [Kato (1966), Tyler (1981)], together with avariance regularizing function(VRF) that modifies
the small eigenvalues that fall below a certain thresholdc so that their inverse is well defined. Under specific reg-
ularity conditions, the new regularized inverse converges to its regularized counterpart. This class of regularized
inverses nests the spectral cut-off type inverse used by Lutkepohl and Burda (1997), and the Tikhonov-type inverse.
We definethreeregularized Wald statistics: the first statistic admits a nonstandard asymptotic distribution, which
corresponds to a linear combination ofχ2 variables if the restrictions are Gaussian. Anupper boundis derived that
corresponds to aχ2 variable withfull rank. The second regularized statistic relies on asuperconsistentestimator
of the eigenvalues at the thresholdc whose distribution can be simulated. The third statistic lets the threshold vary
with the sample size leading to the spectral cut-off modified Wald statistic of Lutkepohl and Burda (1997). The
regularized statistics are consistent against global alternatives, with a loss of power for the spectral cut-off Wald
statistic relative to the other statistics, as illustrated in a simulation exercise.

Key words: Regularized Wald test; Moore-Penrose inverse; spectral cut-off and Tikhonov regularizations; super-
consistent estimator.
JEL classification: C1, C13, C12, C32, C15
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1. Introduction

This paper examines Wald-type tests in presence of (possibly) singular covariance matrices. More specifically,
we address two different types of singularity:first, the sample matrix hasfull rank but converges to asingular
covariance matrix; in this case, the Wald statistic is still computable, but usual regularity conditions do not hold
anymore, which modifies its asymptotic distribution. The claim made by Andrews (1987), and used by Lutkepohl
and Burda (1997), is that if the sample matrix is consistent for a singular covariance matrix, then the use of a
generalized inverse of the sample matrix instead of the g-inverse based on the population matrix will not affect
the asymptotic distribution of the quadratic form, provided the sample matrix has the same rank as the population
matrix with probability converging to one. Otherwise, the asymptotic distribution of the quadratic form is modified.
Andrews’s rank condition may be violated at the limit due to isolated values of the parameter. For instance, in the
case of (highly) nonlinear restrictions, the rank of the derivative matrix of the restrictions may be lower for certain
values of the parameter than for others. If this isolated value is true, the rank of the derivative matrix based on the
consistent estimator will generally exceed that of the derivative matrix evaluated at the true value with probability
bounded away from zero. Therefore, the weight matrix of the Wald statistic based on the estimator will not satisfy
the rank condition when this isolated value is true, thus modifying the asymptotic distribution of the test statistic;
see Dufour and Valéry (2009) for the stochastic volatility model with a Jacobian matrix that is degenerated (i.e.
reduced rank) at an isolated value of the parameter.

Asymptotic singularity can arise due to highly nonlinear restrictions, as encountered in impulse response func-
tions in VAR models, or when testing multi-step noncausality in VAR models, or testing Granger noncausality in
VARMA models. Peñaranda and Sentana (2008) also faced an asymptotic singularity problem in the context of
spanning tests in the return-mean-variance-frontier; in a GMM framework, the asymptotic covariance matrix of
the sample moment conditions is singular under the null of spanning. Consequently, the Wald-type test does not
have its standard asymptotic distribution anymore. One can also face asymptotic singularity with asymptotically
redundant restrictions when testing candidate stochastic discount factors in the Hansen-Jaganathan distance, see
Kan and Robotti (2009, p. 3461). Asymptotic singularity can be caused also bysuperconsistentestimators or
any estimators that do not exhibit the conventional parametric speed of convergence. In this case, the Jacobian
matrix can display a lower rank when the estimator is not appropriately scaled. While some authors investigate the
possibility of multiple convergence rates, we adopt a systematic approach by regularizing the matrix. For multiple
convergence speed estimators, see Antoine and Renault (2010a). More generally, any situations in a linear regres-
sion, where the matrix of the cross product of the covariates

(
X ′X

)
/T does converge to a singular population

matrix are potential applications.
Thesecondtype of singularity our methodology can deal with corresponds to the case where the sample matrix

does not have full rank, but converges to a possibly nonsingular population matrix. This finite sample singularity
may be due to redundant restrictions. When dealing with highly nonlinear conditional moment restrictions as
in Gallant and Tauchen (1989) in the I-CAPM framework, many of the parametric restrictions turn out to be
redundant, creating thereby collinearity problems for the Jacobian matrix. Redundant moment restrictions also
arise with the dynamic panel GMM estimator, when linear moment conditions imply nonlinear moment conditions
under additional initial conditions on the dependent variable, see Arellano and Bond (1991), Ahn and Schmidt
(1995), and Blundell, Bond and Windmeijer (2000). Also, the presence of a cointegrating relationship implies the
singularity of the VAR coefficient matrixΦ(1) in finite samples, and this can be related to tests of rank.

To overcome the problem of asymptotic singularity, Lutkepohl and Burda (1997) proposes to reduce the rank
of the matrix estimator in order to satisfy Andrews’s rank condition. In so doing, they set to zero the small
problematic eigenvalues to produce a consistent estimator for the rank of the population matrix. In the same
vein, Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Robin and Smith (2000) focus on tests for the
rank of a matrix that is unobserved, but for which a

√
n consistent estimator is available. While Gill and Lewbel

(1992), Cragg and Donald (1996, 1997) require toknowthe rank of the asymptotic covariance matrix, Robin and
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Smith (2000) relaxes this assumption. In contrast, we tackle this problem differently by regularizing the matrix
estimator,i.e. perturbing its small problematic eigenvalues. Thus, the regularized matrix estimator will converge
to its limiting regularized counterpart. However, unlike Cragg and Donald (1996, 1997) and Robin and Smith
(2000) who assume Gaussianity for the limiting distribution of the covariance matrix estimator, our methodology
based on Eaton and Tyler (1994) condition is more general, as Gaussianity is not required, nor the conventional

√
n

convergence speed; in this respect, compare our Assumption2.3, page 5, to Robin and Smith (2000), Assumption
2.2, page 154. In addition, a rank condition, (Assumption 2.2, page 155) relating the asymptotic covariance matrix
to the characteristic vector matrices has to be satisfied for Robin and Smith (2000) tests of rank to hold, which
requires more information on the characteristic vector structure of the matrix of interest; in practice, however,
there is no guarantee for this assumption to be satisfied. Moreover, our methodology is simple and transparent
compared to that of Robin and Smith (2000) that is more difficult to implement. Thus, their methodology can
be viewed as an alternative to that of Lutkepohl and Burda (1997) to provide a consistent estimator for the rank
of the population covariance matrix, or to consistently estimate the small problematic eigenvalues. Although our
methodology can be applied to any procedure providing a consistent estimate for the rank of the population matrix,
the availability of such a procedure is not necessary for the validity of our approach.

Knight and Fu (2000) have tackled the asymptotic singularity problem differently by working on the null space
of the singular matrix on which there exists a positive definite matrix. More specifically, they study the asymptotic
behavior of Bridge estimators in nearly singular designs and find that the resulting estimators have a slower rate of
convergence than the usual root-n convergence rate. Therefore, the regularization helps preserve the usual root-n
convergence rate of the estimators; see for instance Carrasco and Florens (2000),Carrasco, Chernov, Florens and
Ghysels (2007).

Further advantages of ourregularizationapproach that reinforces its generality are the following: the regu-
larization technique we propose does not require a re-parametrization of the initial parameters, it is systematic
for econometricians who want to apply it without efforts. Finding suitable transformations of the parameters that
surmount the singularity problems can reveal tricky, almost infeasible, in highly nonlinear models for econome-
tricians, as pointed out by Gallant and Tauchen (1989) in the I-CAPM framework. This is the approach proposed
by Peñaranda and Sentana (2008), where the authors exploit some implicit restrictions on the initial parameters to
reduce the number of parameters to identify. Simultaneously, they use a Moore-Penrose inverse, as Lutkepohl and
Burda (1997), in the GMM criterion to reduce the number of moment conditions. In this way, the reduced set of
moment conditions will locally identify a subset of the initial parameter vector. In so doing, the authors assume
that the strongest collinearity in the design is restricted to the conditions that have no influence on the response.
They also derive a reduced rank Wald test statistic in the GMM framework similar to that of Lutkepohl and Burda
(1997).

While our main concern is testing, some authors make use of the related spectral decomposition based-tools,
[Engl, Hanke and Neubauer (2000), Kress (1999)], to regularize estimators when a continuum of moments is used
in a GMM or IV framework; see Carrasco and Florens (2000), Carrasco, Chernov, Florens and Ghysels (2007),
Carrasco, Florens and Renault (2007), Carrasco (2007). In particular, Carrasco (2007) proposes somemodified IV
estimatorsbased on different ways of inverting the covariance matrix of instruments. Indeed, when the number
of instruments is very large with respect to the sample size or even infinite, the covariance matrix of the moment
conditions becomes singular and some non-standard inverses are required. Also, when they are more moment
conditions than observations, the covariance matrix of the moment conditions involved in the GMM criterion is
singular. As noticed by Satchachai and Schmidt (2008), using a generalized inverse to overcome the singularity is
not a good idea, as the value of the two step GMM criterion function is always less or equal to one. The problem
is even worse for the continuous updating GMM, as its criterion function equals one for all parameter values.

Similarly, the GMM estimator of the parameters of the Consumption-based CAPM model based on the Euler
equations involves the inverse of the covariance matrix of the moment conditions as a weighting matrix. There exist
situations where this weighting matrix turns out to be singular. Indeed, the more asset returns are used in cross-
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section, the more information is available to identify the model parameters whose identification can be tricky when
dealing with important nonlinearities. Indeed, an internal nonlinear habit function based on current and lagged
consumption as the one specified in Chen and Ludvigson (2009) requires a lot of cross-sectional information
to empirically identify the unknown habit function. However, the more assets used in cross-section, the more
chance of collinearity, the higher the probability to end up with a singular weighting matrix which completely
invalidates the usual tests. The same problem arises when assessing the pricing errors of different candidate
Stochastic Discount Factors models through theHansen-Jagannathan distance. Indeed, this measure of asset
pricing model misspecification involves a sample second moment matrix of theN assets as a weighting matrix.
A large number of assets can create collinearity and hence singularity difficulties arise that break down standard
inference. From an asset pricing perspective, the availability of an inverse that does not amplifyexcessivelythe
pricing errors is crucial for portfolio allocation. In contrast, risk management focuses instead on a precise estimator
of the covariance matrix. See Fan, Fan and Lv (2006) for an examination of the properties of high dimensional
covariance matrix estimators in the context of observable factor models.

By contrast, we provide valid asymptotic or simulation-basedregularized Waldtest procedures that can deal
with such problems. Moreover, ourregularizationapproach goes beyond the GMM framework and can accommo-
date any consistent estimator as the Sieve Minimum Distance estimator used in Chen and Ludvigson (2009) for
the habit-based asset pricing model.

It is important to stress another situation where the Jacobian matrix of the moment conditions in a GMM frame-
work can have a deficient rank due to (first-order) underidentification. This is the problem studied by Dovonon and
Renault (2009), where the authors overcome the weak identification problems by going a step further and examine
a second-order identification condition. Deficient rank problems due to identification issues go beyond the scope
of the present paper. Even though we allow the underlying parameterθ to be unidentified, unlike Lutkepohl and
Burda (1997), we assume that a transformation of it, that isψ(θ), is identified. So the kind of rank deficiency we
consider in this paper does not come from (weak) identification problems; see also Antoine and Renault (2009),
and Antoine and Renault (2010b) for such issues.

When dealing with singular covariance matrices, usual inverses are discarded and replaced withgeneralized
inverses, org-inverses[see Moore (1977), Andrews (1987) for the generalized Wald tests] or modified inverses
proposed by Lutkepohl and Burda (1997). However, when using non-standard inverses, econometricians are not
always aware of two difficulties.First, the well-known continuous mapping theorem so widely used by econo-
metricians to derive asymptotic distributional results for test statistics does not apply anymore because g-inverses
are not (necessarily) continuous. This fact has been observed by Andrews (1987). In addition, eigenvectors are
not continuous functions in the elements of the matrix unlike the eigenvalues.Second, when performing the sin-
gular value decomposition of a matrix, the eigenvectors corresponding to eigenvalues with multiplicity larger than
one, are not uniquely defined, which may rule out the convergence of the estimates towards population quantities.
Ignoring such concerns may lead to distributional results that are strictly speakingwrong.

To address such difficulties, we introduce a class ofregularizedinverses that exploitstotal eigenprojection
techniques,i.e. an eigenprojection operator taken over a subset of the spectral set. Following Kato (1966) and
Tyler (1981), we work with theeigenprojectionsin order to overcome the discontinuity and non-uniqueness fea-
tures of eigenvectors. The eigenprojection projects onto theinvariant (to the choice of the basis) eigenspace,i.e.
the subspace generated by the eigenvectors. A lemma given by Tyler (1981) states the continuity property for
the total eigenprojection. In this way, the important continuity property is preserved for eigenvalues and eigen-
projections even though eigenvectors arenot continuous. In addition to this total eigenprojection technique, we
define a perturbation function of the inverse of the eigenvalues calledvariance regularizing function(VRF) that
modifies the small eigenvalues that fall below a certain threshold so that their inverse is well defined whereas the
large eigenvalues remain unchanged. The class of admissible VRF has to satisfy certain continuity and bounded-
ness properties with additional regularity conditions so that the regularized inverse does converge to its regularized
counterpart. Otherwise the convergence result (stated with a fixed value of the threshold) may break down. Our
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regularized inverse does nest the spectral cut-off type inverse used by Lutkepohl and Burda (1997), and other mod-
ified inverses as in Valéry (2005). The distributional theory of the test statistics then expressed as a transformation
of the regularized inverse, hence of the total eigenprojections, will be greatly simplified and valid.

Our contributions can be summarized as follows.First, we introduce a novel class of regularized inverses
with full rank that satisfies a decomposition result: aregularcomponent built on large eigenvalues while the others
involving the small eigenvalues may not beregular. This block decomposition of the inverse, coming from spectral
decomposition tools, is important insofern as it is carried over to the test statistic itself, and is useful to get an
insight on the structure of the distribution.Second, under specific regularity conditions on the VRF, the regularized
inverse is shown to converge to its regularized full rank counterpart, with the convergence holding component
by component. Besides, our regularized inverse class is general anddoes nestthe spectral cut-off type inverse,
or the modified Moore-Penrose inverse proposed by Lutkepohl and Burda (1997), or the Tikhonov regularized
inverse. Third, we definethree regularized Wald statistics: the first two statistics rely on a fixed value for the
threshold in the VRFg(λ; c) while the third one lets the threshold vary with the sample size, but requires more
information about the sample behavior of the eigenvalues, see Eaton and Tyler (1994) for the distributional theory
of the sample eigenvalues of a matrix.Fourth, the first regularized Wald statistic admits a nonstandard asymptotic
distribution in the general case, which corresponds to a linear combination ofχ2 variables if the restrictions are
Gaussian. Anupper boundis then derived for this first regularized statistic under general laws for the restrictions;
such a bound corresponds to aχ2 variable withfull rank under Gaussianity. Hence, the test isasymptotically valid,
meaning that the usual critical point (given by theχ2 variable withfull rank) can be used, but is conservative.Fifth,
the second regularized statistic relies on asuperconsistentestimator of the eigenvalues at the thresholdc whose
distribution can be simulated. Interestingly, we observe that simulating the distribution of the superconsistent
estimator-based regularized statistic makes it unsensitive to the choice of the threshold. In other words, simulating
the distribution makes the regularized statistic less sensitive to the tuning parameters.Sixth, when the threshold
goes to zero with the sample size, we obtain the spectral cut-off modified Wald statistic of Lutkepohl and Burda
(1997) as a special case. Under normality, the test has the asymptoticχ2 distribution with a reduced rank,i.e.
the number of eigenvalues greater than zero. Note that Lutkepohl and Burda (1997) result only holds for distinct
eigenvalues whereas our result accounts for eigenvalues with multiplicity larger than one.Seventh, we also show
that the regularized statistics are consistent against global alternatives, but the spectral cut-off Wald test used by
Lutkepohl and Burda (1997) has reduced power in some directions of the alternative, as illustrated in a Monte
Carlo simulation.

Finally, we investigate, in a Monte Carlo experiment, the finite sample properties of the (regularized) test statis-
tics under two different designs:first, under Gaussianity, the full-rank regularized statistic using the conservative
bound tends to underreject the null hypothesis in singular designs, while the full-rank regularized statistic based
on the superconsistent estimator of the eigenvalues displays the right levelasymptotically(for a sufficient large
value of the threshold). In contrast, the spectral cut-off modified Wald statistic proposed by Lutkepohl and Burda
(1997) tends to overreject the null hypothesis in small samples, with severe size distortions when the process ap-
proaches the nonstationary region. Using a reduced critical point in a singular design, their statistic reaches the
right level asymptotically. As for the standard Wald statistic, its behavior is clearly modified in singular designs,
either suffering from severe overrejections in small samples (especially for parameter values set to -0.99), or un-
derrejections in large samples. Regarding power properties, although the bound is conservative, it doesnot entail
a loss of power under the alternative, which makes it attractive. Further, our regularization approach is system-
atic and robust to both designs, regular and irregular, whereas the modified Moore-Penrose statistic has reduced
power in regular designs. Indeed, by setting to zero the small eigenvalues, the modified Moore-Penrose statistic
does not exploit the additional information unlike the full-rank regularized statistics.Second, when deviating from
normality, the standard Wald statistic along with the spectral cut-off statistic strongly overreject the null hypothe-
sis, with empirical size frequencies varying between 0.17 and 0.50 compared to a 0.05 level test. In contrast, the
full-rank regularized statistics that allow different probability distributions achieve to control for the size without
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losing power. Overall, the full-rank regularized statistic that uses the bound is very appealing, as it always controls
for size, does not imply reduced power, is robust to both designs, regular and irregular, and is easier to implement
compared to the simulation-based superconsistent estimator full-rank competitor. Moreover, the standard Wald
statistic and the modified Moore-Penrose Wald statistic areinfeasibletests in practice, as they overreject the null
when the process is close to the nonstationary region. Besides, the modified Moore-Penrose Wald statistic requires
to know whether we are in a singular or nonsingular design to choose the reduced critical point; this makes it less
attractive in practice.

The paper is organized as follows. In Section 2 we describe a general framework with minimal assumptions.
In Section 3, we provide specific examples found in the literature, where the researcher can face (asymptotic)
singularity covariance matrices that modify the asymptotic distribution of the standard Wald test statistic. Then,
we introduce the class ofregularizedinverses as opposed togeneralizedinverse in Section 4 followed by the
regularizedtest statistic in Section 5. More specifically, a decomposition of the test statistic is identified through
the corresponding decomposition of the covariance matrix. In Section 6 we review and adapt some results on
total eigenprojections to derive the convergence results for the regularized inverses. In particular, we emphasize
some (non)uniqueness and (dis)continuity properties related to eigenvectors of a given matrix and resort to total
eigenprojection techniques to surmount such difficulties. In Section 7, we establish the asymptotic properties of the
new regularized inverse based on fixed threshold. In Section 8, we state new asymptotic distributional results for
the regularized Wald test statistic using a fixed threshold and exploit the decomposition of the regularized statistic
to derive an upper bound. In Section 9, we propose a new statistic based on a superconsistent estimator atc of the
eigenvalues. In Section 10, we find as a special case the Lutkepohl and Burda (1997) result in the Gaussian case.
Finally an application to causality testing is provided in Section 3 followed by simulation results in Section 11.
Concluding remarks follow while the proofs are gathered in the appendix.

2. Framework

We want to test a null hypothesis of the form

H0(ψ0) : ψ(θ) = ψ0 (2.1)

whereψ(θ) ∈ Ω ∈ Rq is the parameter of interest with the parameterθ identifying the true underlying data
generating process. A usual test statistic for testing the null hypothesis is the Wald statistic as soon as we can find
a consistent estimator̂ψn of the restrictions no matter where it comes from,i.e.,

Wn(ψ0) = a2
n[ψ̂n − ψ0]′Σ−1

n [ψ̂n − ψ0] (2.2)

provided the inverse of the weighting matrix exists.an represents a convergence rate that may bedifferent from
the conventional

√
n to precisely allow situations where some components ofψ̂n, or linear combinations of them,

may converge faster or slower than
√

n. It is well-known in the faster case thatsuperconsistentestimators can raise
asymptotic singularity problems, when not suitably scaled. Usually,Σn is a consistent estimator of the restriction
covariance matrixΣ in order to get a chi square distribution, as specified in Assumption2.4 below. For another
choice ofΣn, the Wald test will not have the standard chi square distribution, but can still be conducted. In this
paper, we shall place ourselves under weak assumptions contrary to the ones usually made in the econometric
literature to conduct such a test. First, we willnot assume the restrictionsψ(θ) to be differentiable with respect to
(w.r.t.) the underlying parameterθ. Such a differentiability assumption unnecessarily restricts the set of admissible
restrictions and can be avoided. To do so, we assume that a consistent estimatorψ̂n is available satisfying the

following assumption, where the notation
L→

n→∞ denotes the usual convergence in law, andL(X) the law ofX.
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Assumption 2.1 CONVERGENCE IN LAW OF THE RESTRICTIONS. an is a sequence of real constants such that
an →∞, and

Xn = an(ψ̂n − ψ) L→
n→∞ X (2.3)

whereL(X) is known.

This assumption significantly enlarges the family of admissible laws forψ̂n, or ψ(θ̂n), θ̂n being a consistent esti-
mator ofθ. For instance, the typical Gaussian distribution forX can easily be replaced by a chi-square distribution.
Generally speaking, any distribution that can be consistently estimated by simulations is admissible. Therefore, if
L(X) is not known, but can be simulated through bootstrap techniques, e.g., then the techniques proposed in this
paper can be applied to providevalid tests under nonregular conditions. More importantly, note that Assumption
2.1only requires thatψ is identified; in other words,θ can be unidentified, but there exist transformations ofθ, i.e.
ψ(θ), that can be identified. Whereas Lutkepohl and Burda (1997) assume the availability of an asymptotic gaus-
sian estimator ofθ, as in equation (2.10), that restricts unnecessarily to situations whereθ is identified, we relax
this assumption here. Note thatψ will alternately equalψ0 under the null hypothesis, orψ1 under the alternative.
Further assumptions are required on the limiting weighting matrixΣ to obtain a componentwise characterization
of themodifiedWald statistic.

Assumption 2.2 EIGENSPACE AND EIGENPROJECTION. Theq × q matrixΣ is such that:∀ j = 1, . . . , k, with
1 ≤ k ≤ q,

B(dj) =
(

v(dj)l

)

l=1,...,m(dj)

(2.4)

forms an orthonormate basis for the eigenspace

V(dj) = {v ∈ Rq, | Σv = djv} (2.5)

such as
Σ =

∑

dj

djPj(Σ) (2.6)

where
Pj(Σ) = P (dj)(Σ) = B(dj)B(dj)′ (2.7)

where thedj ’s denote thek distinct eigenvalues ofΣ with multiplicitym(dj) such thatq =
k∑

j=1
m(dj).

Most of the time, the weighting matrixΣ, as well as its sample analogΣn, is interpreted as a covariance matrix.
Nevertheless, such an interpretation is very restrictive and discards distributions whose moments do not exist, e.g.,
the Cauchy distribution. Therefore, Assumptions2.1and2.3are purposedly formulated to allow such degenerate
distributions. A general condition, given by Eaton and Tyler (1994), states the convergence result for this set of
parameters.

Assumption 2.3 EATON-TYLER CONDITION. Σn is a sequence ofp× q real random matrices andΣ is ap× q
real nonstochastic matrix such that

Qn = bn(Σn −Σ) L→ Q (2.8)

wherebn is a sequence of real constants such thatbn → +∞ andQ a random matrix.

Again, this assumption is general and allows situations, unlike Robin and Smith (2000), where the matrix
estimator is not asymptotically Gaussian. Eaton-Tyler condition is stated for rectangular matrices, but most of the
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time we will consider square matrices that are symmetric matrices with real eigenvalues. Assumptions2.1 and
2.3, together with relaxing the assumption of convergence of ranks, will define the cornerstone for the validity of
the distributional results developed further. In addition, it is important to note that the generality of Assumption
2.3 allows for a mixture of a continuous distribution and of a Delta-Dirac distribution at an eigenvalueλ = c.
Therefore, it is not superfluous to examine this case, specifically for non-continuous distributions of matrices and
their eigenvalues, to provide a thorough distributional theory.

A special case of Assumptions2.1and2.3 that is usually encountered in the econometric literature consists in
specifying a Gaussian distribution forX whose parameterization hinges onΣ with an =

√
n as in Lutkepohl and

Burda (1997).

Assumption 2.4 ROOT-n ASYMPTOTIC NORMALITY.

Xn =
√

n(ψ(θ̂n)− ψ(θ)) L→
n→∞ X = N(0, Σ) (2.9)

whereΣ is a q × q matrix.

Note that the most degenerate case corresponding toΣ = 0 is allowed by Assumption2.4. In this case,dj = 0,
with m(0) = q. Usually, the asymptotic normality of the restrictions is deduced from the root-n asymptotic
normality of the estimator̂θn of the underlying parameterθ through the delta method,i.e.,

√
n(θ̂n − θ) L→

n→∞ N(0, Σθ) . (2.10)

This requires the differentiability of the restrictions unlike Assumption2.1. In so doing, econometricians unnec-
essarily restrict the family of admissible restrictions to those for which the delta method is applicable. Thus, when
the delta method is applied to the Gaussian estimator given in equation (2.10), the covariance matrix has the typical
form

Σ = P (θ)ΣθP (θ)′ (2.11)

which critically hinges on the differentiability of the restrictions,i.e.

P (θ) = ∂ψ/∂θ′

as in Lutkepohl and Burda (1997). By contrast, Andrews (1987, Theorem 1) does not rely on the differentiability
property of the restrictions, nor on the delta method, but on the Gaussian distribution of the random variableX,
and on the consistency of the samplecovariancematrix to its population counterpart. Indeed, any weighting matrix
can be used in the Wald statistic but only thecovariancematrix of the restrictions yields the standard chi-squared
distribution. If a different weighting matrix is used instead, the distribution may be modified as seen further.

Further, among usual regularity conditions made, when conducting tests based on quadratic forms such as
Wald-type tests, is the well-known rank condition for the covariance matrix. WhenΣ andΣn have full ranks,
we are in the regular case with theq × q-weighting matrixΣ being nonsingular, and thereforeWn(ψ0) has an
asymptoticχ2(q) distribution. This is not necessarily true, however, ifΣ is singular. In this case,Σ does not admit
a usual inverse, but can still be inverted by means of a generalized inverse, or aregularizedinverse as shown later
on. However, when the population matrixΣ has a reduced rank, additional conditions are required. This is the
case covered by Andrews (1987).

Assumption 2.5 CONVERGENCE OF THE RANKS. Σ andΣn are matrices such that

P
[
rank(Σn) = rank(Σ)

] → 1, with |Σ| ≥ 0

andn growing to infinity, where| · | stands for the determinant.
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In other words, the rank of the sample matrix has to converge almost surely (a.s.) towards thereduced rankof the
population matrix in order for the quadratic form to have a limitingχ2 distribution, with fewer degrees of freedom,
under Gaussianity. We shall relax this assumption in the paper.

To tackle the problem of ranks that do not converge, unlike Moore (1977), Andrews (1987) and Lutkepohl
and Burda (1997) who use a reduced rank estimator for the covariance matrix, such as the spectral cut-off Moore-
Penrose inverse, we shall eventually increase the rank, by regularizing the smallest eigenvalues instead. In so
doing, the modified matrix will converge to a different object, affecting thereby the limiting distribution. It is
important to note that the regularization approach exposed next embed all rank possibilities, including the spectral
cut-off reduced rank. Also, the regularization techniques proposed to deal with incomplete ranks, when (possibly)
combined with simulated testing procedure, holds under weak assumptions as Assumptions2.1and2.3. In Section
5, we introduce theregularizedWald test statistic based onregularizedinverses of the covariance matrix as a way
to handle such difficulties. Let us introduce before the class ofregularizedinverses, as opposed to the class of
generalizedinverses.

3. Examples

In this section, we provide examples where the econometrician can face (asymptotic) singularity of the covariance
matrix that will affect the asymptotic distribution of the Wald test statistic.

3.1. Multistep noncausality under Gaussianity

As already observed by Lutkepohl and Burda (1997), testing noncausality restrictions may raise some singularity
problems for the Wald test. We shall reconsider the example provided by Lutkepohl and Burda (1997) in our
specific regularization design. A VAR(1) process is considered for the(3× 1)vectoryt = [xt yt zt]′ as follows:




xt

yt

zt


 = A1




xt−1

yt−1

zt−1


 + ut =




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz







xt−1

yt−1

zt−1


 +




ux,t

uy,t

uz,t


 .

Consider
Y ≡ (y1, . . . , yn) (3× n)

B ≡ (A1) (3× 3)

Zt ≡ [yt] (3× 1) Z ≡ (Z0, . . . , Zn−1) (3× n)

U = (u1, . . . , un) (3× n)

whereut = [ux,t uy,t uz,t]′ is a white noise with(3 × 3) nonsingular covariance matrixΣu. Let α = vec(A1) =

vec(B). TestingH0 : yt

(∞)

6→ xt requires to testh = pKz + 1 = 2 restrictions onα [see Dufour and Renault
(1998)] of the form:

r(α) =
[

αxy

αxxαxy + αxyαyy + αxzαzy

]
=

[
0
0

]
.

These restrictions are fulfilled in the following three different parameter settings

αxy = αxz = 0, αzy 6= 0

αxy = αzy = 0, αxz 6= 0

αxy = αxz = αzy = 0 (3.1)
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But we can observe that the first-order partial derivative of the restrictions leads to a singular matrix

∂r

∂α′
=

[
0 0 0 1 0 0 0 0 0

αxy 0 0 αxx + αyy αxy αxz αzy 0 0

]
(3.2)

if (3.1) holds. Under such circumstances, the Wald test does not have the standardχ2−distribution under the null.
To perform the Wald test, let us consider the multivariate LS estimator ofα = vec(A1) = vec(B). Using the
column stacking operatorvec we have:

Y = BZ + U (3.3)

or

vec(Y ) = vec(BZ) + vec(U) (3.4)

y =
(
Z ′ ⊗ I3

)
vec(B) + vec(U) (3.5)

y =
(
Z ′ ⊗ I3

)
α + u (3.6)

whereE(uu′) = I3 ⊗Σu. The multivariate LS estimator̂α is given by:

α̂ =
(

(ZZ ′)−1Z ⊗ I3

)
y . (3.7)

The asymptotic distribution of the multivariate LS estimator:

√
n(α̂− α) L→ N

(
0, Γ−1 ⊗Σu)

)
(3.8)

implies the asymptotic distribution for the restrictions:

√
n(r(α̂)− r(α)) L→ N

(
0, Σr(α))

)
(3.9)

where

Σ̂r(α) =
∂r

∂α′
(α̂)Σ̂α

∂r′

∂α
(α̂) (3.10)

is a consistent estimator forΣr(α) and

Σ̂α = Γ̂−1 ⊗ Σ̂u (3.11)

is a consistent estimator forΣα with

Γ̂ =
1
n

ZZ ′ (3.12)

and

Σ̂u =
1
n

n∑

t=1

ûtû
′
t =

1
n

Y
[
In − Z ′(ZZ ′)−1Z

]
Y ′ . (3.13)

From the asymptotic distribution (3.9), a Wald-type test is easily obtained to test the nullH0 : r(α) = 0, i.e.

Wψ = nr(α̂)′Σ̂R
r(α)r(α̂) (3.14)

where a regularization is required under parameter setting (3.1).
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3.2. Deviation from Normality: the Delta method breaks down

Suppose the underlying parameterθ is ap× 1 vector such as

√
n(θ̂n − θ) ∼ N [0, Ip] , (3.15)

and suppose we want to test a null hypothesis of this form:

H0(ψ0) : ψ(θ) = θ′θ = 0 . (3.16)

The data generating process corresponding to (3.15) is:

Y = θι + u , u ∼ N [0, Ip] ,

whereY is p× n, θ is p× 1, ι is 1× n andu is p× n. Using the multivariate least square estimator, we can write:

θ̂n = [(ιι′)−1ι⊗ Ip]y =
1
n

(ι⊗ Ip)y (3.17)

wherey = vec(Y ) is pn× 1. Under the null, it is easily seen that the restrictions do not have the conventional
√

n
convergence speed as usual. Thus, its distribution under the null, whereθ = 0, is

nψ(θ̂n) = (
√

nθ̂n)′(
√

nθ̂n) ∼ χ2(p) . (3.18)

The weighting matrix used in the quadratic form is:

Σ = P (θ)ΣθP (θ)′, Σθ = Ip (3.19)

with

P (θ) =
∂ψ

∂θ′
= 2θ′ .

One difficulty introduced by such a restriction is a deficiency of the rank of the weighting matrix when shifting
from Σθ with full rank p to Σ with rank1. More importantly, although the restriction is differentiable w.r.t.θ, the
delta method completely breaks down because the distribution of the estimator of the restriction is not Gaussian
anymore but belongs to a new family, theχ2 distribution. A consistent estimator ofΣθ andΣ are given by:

Σ̂θ =
1
n

ûû′, with û = Y − θ̂nι

and
Σ̂ = P (θ̂n)Σ̂θP (θ̂n)′ . (3.20)

We will apply the regularization techniques introduced in sections 7 and 10 toΣ̂ to getΣ̂R(c). Hence, the appro-
priate statistic to test this null hypothesis should be:

WR
ψ (c) = nψ(θ̂n)′Σ̂R(c)nψ(θ̂n) = n2ψ(θ̂n)′Σ̂R(c)ψ(θ̂n) (3.21)

instead of the standard Wald statistic

W =
√

nψ(θ̂n)′Σ̂−1√nψ(θ̂n) = nψ(θ̂n)′Σ̂−1ψ(θ̂n) ; (3.22)
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neither the Moore-Penrose modified Wald statistic proposed by Lutkepohl and Burda (1997) is suitable:

W+(cn) =
√

nψ(θ̂n)′Σ̂+(cn)
√

nψ(θ̂n) = nψ(θ̂n)′Σ̂+(cn)ψ(θ̂n) ; (3.23)

both of them do not use theright convergence speed neither theright distribution sinceψ(θ̂n) is not Gaussian
anymore.

3.3. Jacobian matrix degenerate at isolated values for a stochastic volatility model

A two-step GMM-type estimator for estimatingθ = (aw, rw, ry)′ has been proposed by Dufour and Valéry (2009)
in the context of a lognormal stochastic volatility model:

yt = cyt−1 + ut , |c| < 1 ,

ut = [ry exp(wt/2)]zt ,

wt = awwt−1 + rwvt , |aw| < 1 .

based on the following moment conditions:

µ2(θ1) = E(u2
t ) = r2

y exp[(1/2)r2
w/(1− a2

w)] ,

µ4(θ1) = E(u4
t ) = 3r4

y exp[2r2
w/(1− a2

w)] ,

µ2, 2(1|θ1) = E[u2
t u

2
t−1] = r4

y exp[r2
w/(1− aw)] .

When testing for homoskedasticity(aw = rw = 0), in this model, which can be writtenψ(θ) = 0 with
ψ(θ) = (aw, rw)′, there are two restrictions, and the derivative matrix of the restrictions

P (θ) =
∂ψ

∂θ′
=

(
1 0 0
0 1 0

)

has full rank two, so it appears to be regular. However, the Jacobian of the moment conditions does not have full
rank when evaluated at a point that satisfies the null hypothesis: it is shown that

∂µ

∂θ′
=




0 0 2ry

0 0 12r3
y

0 0 4r3
y


 (3.24)

whenaw = rw = 0, so that the Jacobian∂µ/∂θ′ has at most rank one (instead of three in the full-rank case).
But GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994, p. 2127). An important
regularity condition is violated. This raises estimation difficulties and was handled by redefining the estimator in
this case: we setaw = rw = 0 andry =

√
µ2(θ1) whenκ ≤ 3. Further,∂µ/∂θ′ typically has full rank when it

is evaluated at a point that does not satisfy the null hypothesis, for example at an unrestricted point estimate ofθ,
as in Wald-type statistics. Therefore, the rank of∂µ/∂θ′, when evaluated at an unrestricted point estimate ofθ,
generally exceeds the rank of∂µ/∂θ′ evaluated at the trueθ whenaw = rw = 0 holds. This is again a violation of
a standard regularity condition, and the Wald statistic has a non-regular asymptotic distribution.

3.4. Asymptotic singularity for (X ′X)/T in (linear) regressions

More generally, each time the matrix of the cross product of the covariates ,(X ′X)/T , does converge to a singular
population matrix, the standard Wald test will fail to have its conventional distribution, as illustrated in the two
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examples below.

3.4.1. Degenerate factors

Suppose we want to test whether macroeconomic fundamentals, like real and inflation factors in Ludvigson and
Ng (2009), have no forecasting power for future excess returns on U.S. government bonds beyond the predictive
power contained in forward rates and yield spreads as in Cochrane and Piazzesi (2005). The forecasting regression
of excess bond returns on estimated common factors, and possibly nonlinear functions of those factors has the
following form:

yt+1 = γ0 + γ1F1t + γ2F2t + γ3F3t + γ4F4t + γ5F5t + γ6F6t + γ7CPt + εt+1 (3.25)

whereF2t = F β
1t, and εt+1

i.i.d.∼ N(0, 1); the corresponding forecasting regression of excess bond returns

averaged across maturity, that is1
4

5∑
N=2

rx
(N)
t+1, on a linear combination of factors, proposed by Ludvigson and Ng

(2009), and Cochrane and Piazzesi (2005), is given by:

1
4

5∑

N=2

rx
(N)
t+1 = γ0 + γ1F1t + γ2F

3
1t + γ3F2t + γ4F3t + γ5F4t + γ6F8t + γ7CPt + εt+1 , (3.26)

whereCPt is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads. Suppose
we want to test the null hypothesis that the sixth macroeconomic factor has no predictive power,i.e. H0 : γ6 = 0
againstH1 : γ6 6= 0 in equation (3.25), when the true data generating process (DGP) corresponds toβ = 0. Thus,
for some isolated value of the parameter space, the factor loadingγ2 on the second factor is not identified, as the
constant term turns out to bẽγ0 = γ0 +γ2. Therefore, the sample covariance matrixΣn based on the finite sample
estimates will converge to a singular population matrixΣF under the true DGP,i.e.,

Σn =
1
n

n∑

t=0

FtF
′
t

p→ ΣF ≥ 0 ,

whereFt = (ι, F1t, F
β̂
1t, F3t, F4t, F5t, F6t)′, with β̂ a consistent estimate ofβ. Provided we can find a consistent

estimateΓ̂n of Γ = (γ0, γ1, γ2, γ3, γ4, γ5, γ6)′, the asymptotic distribution of the Wald statistic

nγ̂6[Σ̂γ̂6 ]
−1γ̂6

will be modified due to the reduced rank ofΣF , whenβ = 0.

3.4.2. Asymptotic singularity in event studies

Finally, we can also face asymptotic singularity problems when conducting event studies in the following specifi-
cation:

rt = α + βrmt + γdt + εt, t = 1, . . . , T ,

wherert denotes the stock return at timet, rmt the return on the market portfolio at timet, anddt is the event
dummy such that:dt = 1 for the event day, and zero otherwise. If the event occurs only once in the sample,
then the matrix of the cross product of the covariates ,(X ′X)/T , will converge to a singular population matrix.
Hence, the standard Wald statistic for testing some hypotheses on the parameters will not have its conventional
distribution.
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3.5. Singularity issues when testing SDF candidates with the Hansen-Jagannathan distance

Let y(γ) be a stochastic discount factor (SDF) candidate involving some unknown parametersγ, andR be a vector
of gross returns onN test portfolios; see Hansen and Jagannathan (1991) for SDF.y(γ) is said to be misspecified
if for all values ofγ, the pricing errorse(γ) is nonzero,i.e.,

e(γ) = E[Ry(γ)]− 1N 6= 0N . (3.27)

The famous Hansen and Jagannathan (1997) distance, henceforth HJ-distance, for assessing specification errors in
stochastic discount factor models, is defined as the square root of a quadratic form of the pricing errors:

δ =
[
e(γ)′U−1e(γ)

]1/2
, (3.28)

whereU = E[RR′]. When the model is misspecified, the HJ-distance is defined as

δ =
[
min

γ
e(γ)′U−1e(γ)

]1/2
. (3.29)

in the empirical asset pricing literature. Kan and Zhou (2006) show that for linear factor models it is equivalent to
use the inverse of the covariance matrix of gross returns instead of the second sample moments,i.e. V −1

22 instead
of U−1 in the HJ-distance. Kan and Robotti (2009) also focus on linear factor asset pricing models:

y(γ) = γ′x

wherex = [1, F ′]′, and the pricing errors of theN assets are given by:

e(γ) = E[Ry(γ)]− 1N = E[Rx′γ]− 1N = Dγ − 1N ,

whereD = E[Rx′] = [µ2, V21 + µ2µ
′
1]. Kan and Robotti (2009) useV −1

22 as a weighting matrix in the squared
HJ-distance:

δ2 = min
γ

[
Dγ − 1N

]′
V −1

22

[
Dγ − 1N

]

= 1′NV −1
22 1N − 1′NV −1

22 D

(
D′V −1

22 D

)−1(
D′V −1

22 1N

)
.

(3.30)

The unique value ofγ that minimizese(γ)′V −1
22 e(γ) is given by:

γHJ =
(

D′V −1
22 D

)−1(
D′V −1

22 1N

)
, (3.31)

provided thatV21 is of full column rank, which implies thatD is also offull column rank. However, if some factors
in F are nonpervasive and do not contribute to the variance of the gross returnsR, V21 may be singular along with

D. As a result,γHJ and the minimized value ofδ2 are not defined anymore because the matrix

(
D′V −1

22 D

)−1

is

singular.
Kan and Robotti (2009) consider two competing SDF models: SDF of model 1 is given byy1 = η′x1, with

x1 = [1, f ′1, f
′
2], while SDF of model 2 is given byy2 = β′x2, with x2 = [1, f ′1, f

′
3]. When the dimensionK2 of

the second factor is equal to zero, model 2 nests model 1. For non-nested models, Kan and Robotti (2009) shows
that testing equality of two SDF,y1 = y2, imposes restrictions onη andβ: y1 = y2 holds if and only ifη1 = β1,
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η2 = 0K2 , andβ2 = 0K3 . However, the restrictionη1 = β1 is redundant because it is implied byη2 = 0K2 and
β2 = 0K3 . Let ψ = [η′2, β

′
2]
′. Hence, Kan and Robotti (2009) notes in a footnote page 3461:

"that we should not perform a Wald test ofH0 : η1 = β1, ψ = 0K2+K3 . This is because the
asymptotic variance of

√
n
[
η̂′1 − β̂′1, ψ̂

′]′ is singular underH0, and the Wald test statistic does not
have the standard asymptoticχ2

K1+K2+K3+1 distribution. The proof is available upon request."

3.6. Spanning tests in the Return Mean Variance Frontier with asymptotic singularity

Peñaranda and Sentana (2008) examine spanning tests in the Return Mean Variance Frontier (RMVF). They test if
there is simultaneous tangency at two points. They denotec−1

i andc−1
ii two arbitrary expected returns. The null of

spanning can be written as:
H0 : a(ci) = 0, a(cii) = 0

where the regression interceptsa(ci) anda(cii) are defined by the moment conditions:

E
{
HL

[
R; a(ci), b(ci), a(cii, b(cii)

]}
= 0 .

But it has been pointed out by Marin (1996), Peñaranda and Sentana (2008) and that the asymptotic covariance
matrix of the sample analog of the moment conditions is singular under the null. Hence, the conventional distribu-
tional theory of the Wald-type test does not hold anymore. To deal with this issue, Penaranda and Sentana (2008)
propose for spanning tests in RMVF, and in Stochastic Discount Frontier Mean-Variance frontiers introduced by
Hansen and Jagannathan (1991)), a modified GMM estimator under singularity of the covariance matrix (GMMS).
Their methodology consists in replacing the ordinary inverse ofΣ by a generalized inverse, the Moore-Penrose,
while imposing parametric restrictions in order to work with a smaller number of parameters. By decreasing both
the number of parameters and the number of moment conditions, they avoid singularity. Hence, they propose, like
Lutkepohl and Burda (1997), a Wald test statistic withreduced rankbased on a modified GMM estimator.

4. Regularized inverses

The methodology introduced in this section applies to any symmetric matrices and more specifically to covariance
matrices. We first introduce some notations. Letλ̄ = (λ1, . . . , λq)′ whereλ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues
of aq× q (covariance) matrixΣ, andV an orthogonal matrix such thatΣ = V ΛV ′, whereΛ = diag(λ1, . . . , λq).
Specifically,V consists of eigenvectors of the matrixΣ ordered so thatΣV = V Λ. Let m(λ) be the multiplicity
of the eigenvalueλ. Although the matrixΛ is uniquely defined, the matrixV consisted of the eigenvectors is not
uniquely defined when there is an eigenvalue with multiplicitym(λ) > 1. The eigenvectors which correspond to
eigenvalues withm(λ) > 1 are uniquely defined only up to post-multiplication by anm(λ) × m(λ) orthogonal
matrix. Moreover, letΣn be a consistent estimator ofΣ with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn)
andVn an orthogonal matrix such thatΣn = VnΛnV ′

n whereΛn = diag
[
λ1(Σn), . . . , λq(Σn)

]
. For c > 0, we

denoteq(Σ, c) the number of eigenvaluesλ such thatλ > c andq(Σn, c) the number of eigenvaluesλ(Σn) such
thatλ(Σn) > c.

If rank(Σn) = rank(Σ) = q with probability 1, i.e. both matrices are almost surely (a.s.) nonsingular,
so the inversesΣ−1 = V Λ−1V ′ andΣ−1

n = VnΛ−1
n V ′

n are a.s. well defined. However, if rank(Σ) < q and
rank(Σn) ≤ q, we need to make adjustments. For this, we define aregularizedinverse of a (covariance) matrixΣ
as below.

Definition 4.1 DEFINITION OF THE REGULARIZED INVERSE. Σ is aq×q real symmetric semi-definite positive
matrix with rank(Σ) ≤ q. Its regularized inverse is:

ΣR(c) = V Λ†(c)V ′ (4.1)
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where

Λ†(c) = Λ†[λ̄; c] =




g(λ1; c) 0
...

0 g(λq; c)


 (4.2)

g(λ; c) ≥ 0, with c ≥ 0, andg(λ; c) bounded.

The scalar functiong(λ; c) modifies the inverse of the eigenvalues in order to make the inverse well-behaved in
a neighborhood of the true eigenvalues. We shall call it the(variance) regularization function(VRF). The VRF
perturbs the small eigenvalues in order to stabilize their inverse, preventing them from exploding.

We now introduce a partition of the matrixΛ†(c) into three submatrices wherec represents a threshold which
may depend on the sample size and possibly on the sample itself,i.e. c = c[n, Yn]:

Λ†(c) =




Λ†1[λ̄; c] 0 0
0 Λ†2[λ̄; c] 0
0 0 Λ†3[λ̄; c]


 . (4.3)

Let qi = dim Λ†i [λ̄; c], for i = 1, 2, 3, with q1 = q(Σ, c), q2 = m(c) andq3 = q − q1 − q2. m(c) denotes the
multiplicity of the eigenvalueλ = c (if any). The three components correspond to:

Λ†1[λ̄; c] = diag
[
g(λ1; c), . . . , g(λq1 ; c)

]
for λ > c , (4.4)

Λ†2[λ̄; c] = g(c; c)Iq2 for λ = c , (4.5)

Λ†3[λ̄; c] = diag
[
g(λq1+q2+1; c), . . . , g(λq; c)

]
for λ < c . (4.6)

More specifically, the large eigenvalues that fall above the thresholdc remain unchanged whereas those equal
to or smaller than the threshold are inflated to make their inverse well-behaved. Thus, the first component is
"regular" and remains unmodified, while the others may not be "regular". In particular, the third component
requires a regularization. Indeed, because of the invertibility difficulties raised from small values ofλ, we shall
replace the latter with eigenvalues bounded away from zero. Instead of using a spectral cut-off Moore Penrose
inverse, we propose alternatively afull-rank regularized matrix. This regularization contains the spectral cut-off
type regularization as a special case. Indeed, the spectral cut-off Moore Penrose inverse sets to zero all the small
problematic eigenvalues,i.e. Λ†2[λ̄; c] = Λ†3[λ̄; c] = 0, yielding areduced-rankmatrix.

Let V1 be aq × q1 matrix whose columns are the eigenvectors associated with the eigenvaluesλ > c arranged
in the same order as the eigenvalues. The eigenvectors associated withλ > c form a basis for the eigenspace
corresponding withλ. If m(λ) = 1, these eigenvectors are uniquely defined, otherwise not. The same holds
for the q × q2 matrix V2 whose columns are the eigenvectors associated with the eigenvaluesλ = c and for
the q × q3 matrix V3 whose columns are the eigenvectors associated with the eigenvaluesλ < c. Λ†1[λ(Σn); c],
Λ†2[λ(Σn); c],Λ†3[λ(Σn); c], V1n, V2n andV3n denote the corresponding quantities based on the sample analogΣn,
with dim Λ1[λ(Σn); c] = q̂1 = card{i ∈ I : λi(Σn) > c}, dim Λ2[λ(Σn); c] = q̂2 = card{i ∈ I : λi(Σn) = c},
dim Λ3[λ(Σn); c] = q̂3 = card{i ∈ I : λi(Σn) < c}, respectively.

Using (4.3), theregularizedinverse can be decomposed as follows:

ΣR(c) = V Λ†(c)V ′ = [V1 V2 V3]




Λ†1[λ̄; c] 0 0
0 Λ†2[λ̄; c] 0
0 0 Λ†3[λ̄; c]







V ′
1

V ′
2

V ′
3


 =

3∑

i=1

ΣR
i (c)

(4.7)
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where
ΣR

i (c) = ViΛ
†
i (c)V

′
i i = 1, 2, 3 (4.8)

Λ†i (c) = Λ†i [λ̄; c] for the sake of notational simplicity. Note that the original matrixΣ can be decomposed similarly
as:

Σ = V ΛV ′ =
3∑

i=1

Σi =
3∑

i=1

ViΛiV
′
i . (4.9)

with Λ1(c) = {λ : λ > c}, Λ2(c) = {λ : λ = c} andΛ3(c) = {λ : λ < c}. In the absence of problematic zero
eigenvalues, the usual inverse can be computed as:

Σ−1 = V Λ−1V ′ =
3∑

i=1

Σ−1
i =

3∑

i=1

ViΛ
−1
i V ′

i . (4.10)

Let Iq andIqi denote conformable identity matrices. Let us establish some useful properties for the regularized
inverses.

Property 1 PROPERTY OF THE REGULARIZED INVERSES. LetΣ = V ΛV ′ be a positive semi definite matrix,
such thatλ1 ≥ · · · ≥ λq ≥ 0 . Letλg(λ; c) ≤ 1 ∀ λ. Then, the regularized inverseΣR(c) of Σ, defined in4.1,
satisfies the following relations.

i) ΣΣR(c) = ΣR(c)Σ ≤ Iq ;

ii) TΣR(c)T ≤ Iq , whereT = V Λ1/2V ′ is the square root ofΣ ;

iii) ΣΣR(c)Σ ≤ Σ ;

iv) If g(λ; c) > 0 , then
(
ΣR(c)

)−1 ≥ Σ ;

v) If
(
λ > 0 ⇒ g(λ; c) > 0

)
, then

(
rank

(
ΣR(c)

) ≥ rank(Σ)
)

.

It is important to notice that any transformation of the original matrixΣ that diminishes the inverseΣR(c) satisfies
relationiv). Note that the generalized inverses usually denoted byΣ− share propertiesi) andiii) with theregular-
izedinverses. By contrast, propertyiii) appears as a dominance relation for theregularizedinverse as opposed to
g-inverses for whichΣΣ−Σ = Σ. Resultv) is well known for g-inverses and is related to generalized inverse with
maximal rank. See Rao and Mitra (1971, Lemmas 2.2.1 and 2.2.3 page 20-21)] for resultsiii) andv) regarding
g-inverses. Finally, note thatii) is another way of formulatingi), and can be useful for sandwich estimators.

5. Regularized Wald statistic

In this section, we introduce the concept of regularized tests which embed three possible cases.Case 1corresponds
to the regular setup where the estimator of the covariance matrix converges to a full-rank fixed matrix. In this case,
regularizing is useless with decomposition (4.9) and (4.10) boiling down to single block whenc = 0. Case 2
corresponds to a sample covariance matrix which converges to a singular limiting matrix but satisfying the rank
condition2.5. In such a case, the limiting distribution is modified only through an adjustment of the degree of
freedom; this is the case covered by Andrews (1987) and Lutkepohl and Burda (1997). Finallycase 3makes use
of a sample covariance matrix which violates the typical rank condition. Also, the regularized weighting matrix
converges to an object that is different from the original population matrix. Regularizing then yields a valid test but
at the cost of afully modifiedasymptotic distribution. This is the route investigated here. We consider situations
where the finite sample rank generally exceeds the asymptotic one. This type of singularities can be encountered
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when the derivative matrix of the restrictions has a lower rank only at the true value of the parameter, or in the
presence of superconsistent estimators or estimators that do not converge at the expected parametric speed. In
this respect, Antoine and Renault (2009), Antoine and Renault (2010a) pointed out that although all parameters
are identified, but some rates of convergence are as slow asn1/4, the standard GMM estimator asymptotics are
modified. The regularized Wald statistic can also handle cases where the finite sample matrix is singular possibly
due to redundant restrictions that are difficult to detect analytically.

Based on decomposition (4.9), the original Wald statisticWn(ψ0) defined in equation (2.2) enjoys the following
decomposition

Wn(ψ0) = W1n + W2n + W3n , (5.1)

whereWin = a2
n

[
ψ̂n − ψ0

]′
Σ−1

in

[
ψ̂n − ψ0

]
, with Σ−1

in = VinΛ−1
in V ′

in for i = 1, 2, 3, andΛ−1
in = Λ−1

i [λ(Σn); c].
For i = 2, 3, Win = 0, eventually.

The specific irregular setup here consists in allowing singular covariance matrices that violates Assumption2.5
of Andrews (1987). As a consequence, the Wald test statistic has to be modified orregularizedto account for such
irregularities. Let us introduce theregularizedWald statistic in the next definition.

Definition 5.1 DEFINITION OF THE REGULARIZEDWALD STATISTIC. The regularized Wald statistic is

WR
n (c) = X ′

nΣR
n (c)Xn

= an

[
ψ̂n − ψ0

]′
ΣR

n (c)an

[
ψ̂n − ψ0

]
. (5.2)

Built on theregularizedinverse of Section 4 and its decomposition (4.7)-(4.8), theregularizedWald statistic can
be decomposed as follows.

WR
n (c) = X ′

nΣR
n (c)Xn = a2

n

[
ψ̂n − ψ0

]′
ΣR

n (c)
[
ψ̂n − ψ0

]

= a2
n

[
ψ̂n − ψ0

]′ 3∑

i=1

ΣR
in(c)

[
ψ̂n − ψ0

]

= WR
1n(c) + WR

2n(c) + WR
3n(c) , (5.3)

where
WR

in(c) = a2
n

[
ψ̂n − ψ0

]′
ΣR

in(c)
[
ψ̂n − ψ0

]

with ΣR
in(c) = VinΛ†in(c)V ′

in for i = 1, 2, 3.
By partitioning the inverse of the eigenvalue matrixΛ† into three blocks,Λ†1(c) for λ > c, Λ†2(c) for λ = c

andΛ†3(c) for λ < c, we have identified a convenient decomposition of the statistic into three components: a
first component involving the "large" eigenvalues remains unchanged; a second component gathers the eigenvalues
exactly equal to the thresholdc, while a third one incorporates the small eigenvalues. As we shall see in Section8.1,
this decomposition helps one to better understand the structure of the distribution of theregularizedtest statistic.
By contrast, Lutkepohl and Burda (1997) only keep the eigenvalues greater than the thresholdc, which cancels out
the last two components,i.e. WR

2n(c) = 0 andWR
3n(c) = 0. Thus discarding the small eigenvalues may result in a

loss of information. However, as Lutkepohl and Burda (1997) use aχ2 distribution with fewer degrees of freedom,
a deeper investigation must be conducted for power assessment. More importantly, in finite samples it will be
difficult to disentangle between the estimates which really correspond toλ = c from those close toc, but distinct
from c. This makes the estimation procedure trickier and the asymptotic distribution more complicated. Note that
W1n = WR

1n(c) for this is the regular component common to both statistics, the usual Wald and the regularized
Wald statistics. Moreover, when there is no eigenvalues exactly equal toc, m(c) = 0, and the second component
collapses to zero.
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6. Results on eigenprojections

6.1. Discontinuities of eigenvectors: an illustration

We discuss now some non-uniqueness and discontinuity issues regarding the eigenvectors of a given matrix. While
it is well-known in spectral theory that eigenvectors corresponding to multiple eigenvalues are not uniquely defined
(but only up to the post multiplication by anm(λ)×m(λ) orthogonal matrix withm(λ) indicating the multiplic-
ity of the eigenvalue), econometricians are not cautious about such considerations that could entail convergence
problems. Second, whereas the eigenvalues are generally known to be continuous functions of the elements of the
matrix, this statement does not necessarily hold for the eigenvectors. The main pitfall consists of drawing conver-
gence results for the estimates of the eigenvectors based on the consistency of the sample matrix which critically
hinges on the continuity assumption of eigenvectors (w.r.t. the elements of the matrix). Even in the determin-
istic case, the eigenvectors are not necessarily continuous functions of the elements of the matrix. To see their
discontinuity, we consider a simple counter-example1.

Example 6.1 Let A(x) be the matrix function defined as:

A(x) =





[
1 + x 0

0 1− x

]
if x < 0

[
1 x

x 1

]
if x ≥ 0 .

(6.1)

This matrix function is clearly continuous atx = 0, with A(0) = I2. However, forx < 0, the spectral decomposi-
tion of A(x) is:

A(x) = (1 + x)
[
1
0

] [
1 0

]
+ (1− x)

[
0
1

] [
0 1

]
(6.2)

[with (1 + x) and(1− x) being the eigenvalues and(1, 0)′ and(0, 1)′ the eigenvectors], while forx > 0, it is

A(x) =
1√
2
(1 + x)

[
1
1

] [
1 1

]
+

1√
2
(1− x)

[
1
−1

] [
1 −1

]
(6.3)

[with (1 + x) and (1 − x) being the eigenvalues and1√
2
(1, 1)′ and 1√

2
(1,−1)′ the eigenvectors]. Clearly, the

eigenvalues(1 + x) and (1 − x) are continuous atx = 0 whereas the eigenvectors are not the same whether
x → 0+ or x → 0−.

Being unaware of this caveat may lead towrongdistributional results through mistakenly applying the continuous
mapping theorem to objects that arenot continuous. Nevertheless, there exists functions of the eigenvectors that
are continuous w.r.t. the elements of the matrix. Specifically, for an eigenvalueλ, the projection matrixP (λ) that
projects onto the space spanned by the eigenvectors associated withλ - the eigenspaceV (λ) - is continuous in
the elements of the matrix. This follows from the fact thatV (λ) is invariant to the choice of a basis. For further
discussion of this important property, see Rellich (1953), Kato (1966) and Tyler (1981).

6.2. Continuity properties of eigenvalues and total eigenprojections

In order to derive the asymptotic distribution of the regularized statistics, it will be useful to review and adapt some
results on spectral theory used by Tyler (1981). LetS(Σ) denote the spectral set ofΣ, i.e. the set of all eigenvalues

1We are grateful to Russell Davidson for this example.

18



of Σ. Theeigenspaceof Σ associated withλ is defined as all the linear combinations from a basis of eigenvectors
xi, i = 1, . . . , m(λ), i.e.

V (λ) = {xi ∈ Rq|Σxi = λxi} . (6.4)

Clearly,dimV (λ) = m(λ) . SinceΣ is aq×q matrix symmetric in the metric of a real positive definite symmetric
matrixT (i.e. TΣ is symmetric), we have:

Rq =
∑

λ∈S(Σ)

V (λ) . (6.5)

Theeigenprojectionof Σ associated withλ, denotedP (λ), is the projection operator ontoV (λ) w.r.t. decomposi-
tion (6.5) ofRq. For any set of vectorsxi in V (λ) such thatx′iTxj = δij , whereδij denotes the Kronecker’ s delta,
P (λ) has the representation

P (λ) =
m(λ)∑

j=1

xjx′jT . (6.6)

P (λ) is symmetric in the metric ofT. This yields

Σ =
∑

λ∈S(Σ)

λP (λ) , Σn =
∑

λ(Σn)∈S(Σn)

λ(Σn)P [λ(Σn)] . (6.7)

If v is any subset of the spectral setS(Σ), then thetotal eigenprojectionfor Σ associated with the eigenvalues in
v is defined to be

∑
λ∈v P (λ). We report below a lemma given by Tyler (1981, Lemma 2.1, p. 726) that states

an important continuity property for eigenvalues and eigenprojections on eigenspaces for non-random symmetric
matrices of which consistency of sample regularized inverses will follow.

Lemma 6.2 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS. LetΣn be aq×q real matrix symmetric
in the metric of a real positive definite symmetric matrixTn with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn).
LetPk,t(Σn) represent the total eigenprojection forΣn associated withλk(Σn) . . . λt(Σn) for t ≥ k. If Σn → Σ
asn →∞, then:

i) λk(Σn) → λk(Σ), and

ii) Pk,t(Σn) → Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

This lemma tells us that the eigenvalues are continuous functions in the elements of the matrix. The same continuity
property holds for the projection operators [or equivalently for the projection matrices for there exists a one-to-one
mapping relating the operator to the matrix w.r.t. the bases] associated with the eigenvalues and transmitted to
their sum. No matter what the multiplicity of the eigenvalues involved in the total eigenprojectionPk,t(Σ), this
continuity property holds provided that we can find one eigenvalue before and one after that are distinct.

It will be useful to extend Lemma6.2 to random symmetric matrices. To do so, we first consider a.s. con-
vergence (in symbol

a.s.→ ) and then convergence in probability (in symbol
p→). To the best of our knowledge,

these results are not explicitly stated elsewhere. In the following we will tacitly assume that a probability space
(Z,AZ , P ) is given and that all random variables are defined on this space.

Lemma 6.3 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: ALMOST SURE CONVERGENCE. Let
Σn be aq × q real random matrix symmetric in the metric of a real positive definite symmetric random matrixTn

and with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn). Let Pk,t(Σn) represent the total eigenprojection for

Σn associated withλk(Σn) . . . λt(Σn) for t ≥ k. If Σn
a.s.→ Σ asn →∞ , then:
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i) λk(Σn) a.s.→ λk(Σ), and

ii) Pk,t(Σn) a.s.→ Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

We can now show that the continuity property of the eigenvalues and eigenprojections established in the a.s.
case, remain valid in the case of convergence in probability .

Lemma 6.4 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: CONVERGENCE IN PROBABILITY.
Let Σn be aq × q real random matrix symmetric in the metric of a real positive definite symmetric random

matrixTn with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn). LetPk,t(Σn) represent the total eigenprojection

for Σn associated withλk(Σn), . . . , λt(Σn) for t ≥ k. If Σn
p→ Σ asn →∞ , then:

i) λk(Σn)
p→ λk(Σ), and

ii) Pk,t(Σn)
p→ Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

6.3. Asymptotic distribution of eigenvalues

In this subsection, we summarize general results on sample eigenvalue behavior established by Eaton and Tyler
(1991, 1994).

Before establishing convergence results for the regularized covariance matrices and the regularized tests statis-
tics, we shall first study the convergence rate of the eigenvalues in the general case where the covariance matrix
may be singular with (possibly) multiple eigenvalues. To do so, we shall apply a general result given by Eaton
and Tyler (1994) where they generalize classical results due to Anderson (1963, 1987)on the behavior of the sam-
ple roots (of a determinantal equation). Specifically, under relatively weak conditions Eaton and Tyler (1994)

show the following: if a sequence of random(p × q)−matricesΣn satisfying the conditionbn(Σn − Σ) L→ Q
where Σ is a nonstochastic matrix, then the sample eigenvalues will have the same convergence rate, with

bn[Ψ(Σn) − Ψ(Σ)] L→ [
HD

(
1
2 [Q′

11 + Q11]
)
, Ψ(Q22)

]′
. HD(.) andΨ(.) are vector-valued functions stack-

ing the eigenvalues of the corresponding objects. A more detailed definition of those vectors will follow. For our
purpose, the convergence ratebn of the sample eigenvalues is the only thing we need in deriving the convergence
property of the regularized covariance matrices.

Let d1 > d2 > · · · > dk denote the distinct eigenvalues of aq × q symmetric matrixC and letmi be the
multiplicity of di, i = 1, . . . , k. Given the eigenvalue multiplicities ofC, it is possible to partition the matrixC
into blocks such asCii is themi×mi diagonal block ofC andCij themi×mj off-diagonal blocks,i, j = 1, . . . , k.
Thus, a functionH on q × q symmetric matrices can be defined by

H(C) =




ρ(C11)
ρ(C22)

...
ρ(Ckk)


 (6.8)

H(C) takes values inRq andρ(Cii) consists of themi-vector of ordered eigenvalues of the diagonal blockCii,
i = 1, . . . , k. Let Γ be an orthogonal matrix such that

ΓAΓ ′ = D, (6.9)

where the diagonal matrixD consists of the ordered eigenvalues ofA. Eaton and Tyler (1991) first establish the
distributional theory for symmetric matrices before extending it to generalp× q matrices.
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Lemma 6.5 DISTRIBUTION OF THE EIGENVALUES OF A SYMMETRIC SQUARE MATRIX. LetSn be a sequence
of q × q random symmetric matrices. Suppose there exists a nonrandom symmetric matrixA and a sequence of
constantsbn → +∞ such that

Wn = bn(Sn −A) L→ W . (6.10)

Then
bn

(
ρ(Sn)− ρ(A)

) L→ H
(
ΓWΓ ′

)
. (6.11)

For anyp × q real matrixΣ, the Ψ(.) function is a vector-valued function that stacks the eigenvalues of the
corresponding object as defined below:

Ψ(Σ) = f(ρ(Σ′Σ)) =




√
ξ1
...√
ξq


 with f(x) =




√
x1
...√
xq


 (6.12)

whereξ1 ≥ · · · ≥ ξq > 0 are the eigenvalues ofΣ′Σ.
Let

T =
(
df(ξ)

)
=

1
2
diag(ξ−1/2

1 , . . . , ξ−1/2
q ) . (6.13)

In the first part of the theorem below, we gather the special cases where the matrixΣ may have rankr = 0 or
r = q before giving the general result in the second part. In the second part of the theorem, write thep× q matrix
Σ in the form

Σ = Γ ′1

(
D 0
0 0

)
Γ ′2 (6.14)

whereΓ1 (Γ2) is ap×p (resp.q×q) orthogonal matrix, andD is ar×r diagonal matrix.D consists of the strictly
positive singular values ofΣ. Partition the matrixΣn as

Σn =
(

Σn11 Σn12

Σn21 Σn22

)
(6.15)

whereΣn11 is r× r, Σn12 is r× (q− r), Σn21 is (p− r)× r andΣn22 is (p− r)× (q− r). Partition the random

limit matrix Q accordingly. Ther × r diagonal matrixD = diag(ξ1/2
1 , . . . , ξ

1/2
r ) defines a functionHD on r × r

symmetric matrices. LetTD = 1
2diag(ξ−1/2

1 , . . . , ξ
−1/2
r ). The general case1 ≤ r < q can be thought as gluing

together the two special casesr = 0 andr = q.

Theorem 6.6 DISTRIBUTION OF THE EIGENVALUES OF RECTANGULAR MATRICES IN THE GENERAL CASE.
LetΨ(·) be defined as in(6.12), and suppose Assumption2.3holds.

i) If Σ = 0, then

bn

(
Ψ(Σn)− Ψ(Σ)

) L→ Ψ(Q) . (6.16)

ii) If Σ has full rankq, then

bn

(
Ψ(Σn)− Ψ(Σ)

) L→ TH
(
Γ

[
Σ′Q + Q′Σ

]
Γ ′

)
(6.17)

whereH, Γ andT are defined in(6.8),(6.9) and(6.13).
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iii) If rank(Σ) = r, 1 ≤ r < q, then

bn

[
Ψ(Σn)− Ψ(Σ)

] L→
[
HD

(
1
2 [Q′

11 + Q11]
)

Ψ(Q22)

]
(6.18)

whereQ =
[
Q11 Q12

Q21 Q22

]
is a well-defined random element, withQ11 being anr × r matrix andQ22 a

(p−r)× (q−r) matrix. Ther×r diagonal matrixD = diag(ξ1/2
1 , . . . , ξ

1/2
r ) consisted of the strictly positive

singular values ofΣ defines a functionHD on r × r symmetric matrices asH is defined in(6.8) on q × q
symmetric matrices.

For our purposes, we do not need the knowledge of the whole distribution but only the convergence ratebn of the
sample eigenvalues for the convergence property of regularized inverse whenc varies with the sample size. See
Eaton and Tyler (1994, Propositions 3.1 and 3.4 and Theorem 4.2) for a proof.

7. Asymptotic properties of the regularized inverse

In this section, we derive asymptotic results for theregularizedinverse that hold for a relatively general variance
regularization function (VRF) family.

7.1. The family of admissible Variance Regularization Function (VRF)

We now define the VRF family, and provide a few examples.

Definition 7.1 THE FAMILY OF ADMISSIBLE VRF. Gc is the class of admissible scalar VRF, such as for a real
scalar,c ≥ 0:

g(., c) : R+ → R+

λ → g(λ; c)

g(λ; c) is continuous almost everywhere w.r.t.λ, except possibly atλ = c, (w.r.t. the Lebesgue measure).g is a
function that takes bounded values everywhere, andg is non-increasing inλ.

Note importantly that we allow a discontinuity atλ = c to precisely embed a spectral-cutoff type regularization
such as a modified Moore-Penrose inverse that is clearlynot continuous aroundλ = c, see (7.2).

Some possible choices for the VRF could be:

g(λ; c) =
{ 1

λ if λ > c
1

ε+γ(c−λ) if λ ≤ c
(7.1)

with γ ≥ 0. This VRF can be viewed as amodifiedHodges’ estimator applied to the eigenvalues. See Hodges and
Lehmann (1950), LeCam (1953). Interesting special cases include:

i) γ = ∞, c ≥ 0, hence

g(λ; c) =
{

1
λ if λ > c
0 if λ ≤ c

(7.2)

and thereforeΛ†(c) = Λ+(c), where

Λ+(c) = diag[1/λ1I(λ1 > c), . . . , 1/λq1I(λq1 > c), 0, . . . , 0 ]
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corresponds to a spectral cut-off regularization scheme [see Carrasco (2007), Carrasco, Florens and Renault
(2007) and the references therein];I(s) is equal to 1 if the relations is satisfied. In particular,Λ+

c is amodified
version of the Moore-Penrose inverse of

Λ = diag[λ1I(λ1 > 0), ..., λq1I(λq1 > 0), λq1+1I(λq1+1 > 0) . . . , λqI(λq > 0)]

used by Lutkepohl and Burda (1997, henceforth LB). We also consider the case where some eigenvalues may
be smaller than the thresholdc, with c 6= 0.

ii) γ = 0 andε = c, with c 6= 0, hence

g(λ; c) =
{

1
λ if λ > c
1
c if λ ≤ c .

(7.3)

iii) γ > 0 with γ = α
λ×(c−λ) , α > 0, andε = λ, with c 6= 0, hence

g(λ; c) =
{ 1

λ if λ > c
λ

λ2+α
if λ ≤ c ,

(7.4)

which corresponds to a variation around the Tikhonov regularization (related to the ridge regression) since
1

λ+γ(c−λ) = 1
λ+α/λ = λ

λ2+α
.

Based on the spectral decomposition defined in equation (6.7), we immediately deduce a spectral decomposi-
tion for the regularized inverses:

ΣR(c) = V Λ†(c)V ′ =
∑

λ∈S(Σ)

g(λ; c)P (λ) , ΣR
n (c) = VnΛ†n(c)V ′

n =
∑

λ(Σn)∈S(Σn)

g
[
λ(Σn); c

]
P

[
λ(Σn)

]
.

(7.5)
Thus, the dependence onc of the regularized inverses comes from the VRFg(λ; c). Besides, the thresholdc may
be size-dependent,i.e., g(λ, cn). This case is a special case ofc fixed and will be studied in Section 10.

7.2. Asymptotic properties of the regularized inverse whenc is fixed

Because the random objects considered here are matrices, we must choose a norm suitable to matrices. For this
reason, we consider the finite dimensional inner product space(Sq, < ·, · >), whereSq is the vector space of
q × q symmetric matrices.Sq is equipped with the inner product< Σ1, Σ2 >= tr[Σ′

1Σ2], wheretr denotes the
trace. Let‖ · ‖ denote the Frobenius norm induced by this inner product,i.e. ‖Σ‖2

F = tr[Σ′Σ]. LetAR denote the
regularized inverse of aq×q real symmetric matrixA. In the subsequent propositions, letI = {1, 2, . . . , q}, denote
the set of indices such thatλ1 ≥ λ2 ≥ . . . ≥ λq, andJ = {1, 2, . . . , k} the subset ofI corresponding to the indices

associated with the distinct eigenvalues ofΣ, i.e. d1 > d2 > . . . > dj > . . . > dk, so that
k∑

j=1
m(dj) = q ≥ 1 and

1 ≤ k ≤ q, with m(dj) denoting the multiplicity ofdj . Let us define a partition ofI, denotedP(I) such that:

P(I) = {Ij ⊂ I, j ∈ J : Ij

⋂
Il

j 6=l

= ∅,
k⋃

j=1

Ij = I} , I = {1, . . . , q}, (7.6)

with
Ij = {i ∈ I : λi = dj} , card Ij = m(dj) (7.7)

and
I(c) = {i ∈ I : λi = dj = c} , , card I(c) = m(c) (7.8)
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We adopt the convention thatI(c) = ∅, if there is no eigenvalues equal toc. The vector spaceRq can be de-
composed asRq = V(d1) ⊕ · · · ⊕ V(dj) ⊕ · · · ⊕ V(dk) . Eachu ∈ Rq can be expressed in the formu =
u1+· · ·+uj+· · ·+uk, with uj ∈ V(dj), j ∈ J in a unique way. The operatorPj = P (dj) is such that:Pju = uj is
the eigenprojection operator on the eigenspaceV(dj) alongNj = V(d1)⊕· · ·⊕V(dj−1)⊕V(dj+1)⊕· · ·⊕V(dk) .
Thus,

Pj(Σ) = P (dj)(Σ) (7.9)

projectsΣ onto the eigenspaceV(dj) alongNj . Furthermore,
∑k

j=1 Pj = 1, PkPj = δjkPj . There is a
one-to-one mapping fromJ toP(I) such that:

∀j ∈ J : j 7−→ Ij (7.10)

where the total eigenprojection operatorPIj (•) applied toΣn, with Σn
p→ Σ, yields by Lemma6.4 ii)

PIj (Σn)
p→ Pj(Σ) = P (dj)(Σ) (7.11)

and

dim PIj = dim Pj = m(dj) = dim V(dj) with 1 =
k∑

j=1

Pj =
k∑

j=1

PIj . (7.12)

Property 2 UNIQUE REPRESENTATION OF THE REGULARIZED INVERSE. For a giveng(., c) VRF in theGc

family, the regularized inverseΣR(c) = V Λ†(c)V ′ of a symmetric matrixΣ and its sample analogΣR
n (c) =

VnΛ†n(c)V ′
n admit an unique representation of the form:

ΣR(c) =
k∑

j=1

g(dj ; c)Pj(Σ) (7.13)

and

ΣR
n (c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) (7.14)

where thedj ’s denote the distinct eigenvalues ofΣ with multiplicity m(dj), λ̂i = λi(Σn); PIj (Σn) andPj(Σ)
are defined at equations(7.9)-(7.12) with Ij defined at equation(7.7). If Σ = 0, P (0)(Σ) = Iq, andΣR(c) =
g(0; c)P (0)(Σ) = g(0; c)Iq .

The uniqueness of the representation of the regularized inverse immediately follows from the uniqueness of the
decomposition involving only distinct eigenvalues. Thus, there is a one-to-one relation between the regularized
inverse and the VRFg(., c) in theGc family. An interesting case producing a nonstandard asymptotic distribution
corresponds to using a fixed threshold. In this case, the asymptotic distribution of the regularized test statistic
involves a nonstandard component that can be bounded above as shown in Corollary8.3.

Assumption 7.2 REGULARITY CONDITIONS FOR THE CONVERGENCE OF THE REGULARIZED INVERSE. The
VRFg ∈ Gc , and fori = 1, . . . , q, λi = λi(Σ) are the eigenvalues of aq× q semi definite matrixΣ. At least, one
of the following conditions holds:

i) the VRFg is continuous atλi = c

ii) @ λi : λi = c
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iii) the estimatorλ̂i(c) of λi is superconsistent atc, i.e. P
[
λ̂i(c) = c

] →
n→∞ 1 .

As soon as one of the three above conditions hold, both convergence results of the regularized inverse (Propositions
7.3 and7.4) will hold, otherwise it may break down. Let us now state the a.s. convergence for the regularized
inverse whenc is fixed.

Proposition 7.3 ALMOST SURE CONVERGENCE OF THE REGULARIZED INVERSES. Let g ∈ Gc. Suppose
Σ and Σn are q × q symmetric matrices withrank(Σ) = r ≤ q . Let the regularized inverses be defined at
equations(7.13) and(7.14). Let Assumption7.2hold. If Σn

a.s.→ Σ, then

ΣR
n (c) a.s.→ ΣR(c) . (7.15)

Proposition 7.4 CONVERGENCE IN PROBABILITY OF THE REGULARIZED INVERSES. SupposeΣ andΣn are
q × q symmetric matrices such thatrank(Σ) = r ≤ q . Assumption2.3 holds withp = q, and Assumption7.2
holds. Let the regularized inverses satisfy Property 2, and decomposition(4.7)-(4.8). Then

ΣR
n (c) = ΣR

11,n(c) + ΣR
22,n(c) + ΣR

33,n(c) (7.16)

where

ΣR
11,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k1∑

j=1

g(dj ; c)Pj(Σ) ≡ ΣR
11(c) (7.17)

ΣR
22,n(c) = PI(c)(Σn)

1
m(c)

∑

i∈I(c)

g(λ̂i, c)
p→ g(c; c)1{dj=c}Pj(c)(Σ) ≡ ΣR

22(c) (7.18)

ΣR
33,n(c) =

k∑

j=k1+1{dj=c}+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k∑

j=k1+1{dj=c}+1

g(dj ; c)Pj(Σ) ≡ ΣR
33(c) . (7.19)

ΣR
n (c)

p→ ΣR(c) . (7.20)

k1 =
k∑

j=1
1{dj>c}, k is the number of distinct eigenvalues ofΣ, andPj(c)(Σ) = P (dj)(Σ) for dj = c, where

Pj(Σ) = P (dj)(Σ) is defined at equation(7.9). Ij andI(c) are defined in(7.7) and(7.8).

The problematic component for the convergence of the regularized inverse is the second one involving the eigen-
valueλi = dj = c. If the VRFg is continuous atλi = dj = c, equation (7.18) holds; if there are no eigenvalues
λi = dj = c, I(c) = ∅, 1{dj=c} = 0, and the convention adopted is to setΣR

22,n(c) = ΣR
22(c) = 0; if there exists a

superconsistent estimator of the eigenvalue atc, (7.18) holds. Otherwise,ΣR
n (c) may not converge toΣR(c) . In

other words, the conditions stated in Assumption7.2are necessary conditions for (7.15) and (7.20) to hold.

8. Asymptotic distribution of the regularized Wald tests with a fixed threshold

In this section, we characterize (Proposition8.1) the asymptotic distribution of the regularized Wald statistic for
general distributions forXn, before giving its specific expression for the Gaussian case (Corollary8.2). The
decomposition of the regularized statistic into three independent components, one regular and two nonregular
ones, provides an insight on the structure of the distribution which yields an upper bound for the test statistic in the
general case (Corollary8.3); its expression in the special Gaussian case follows (Corollary8.4).
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Proposition 8.1 CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WHEN THE THRESHOLD IS

FIXED. Suppose the assumptions of Proposition7.4 hold together with Assumption2.1, with ψ = ψ0. Suppose

the q × q limiting weighting matrixΣ satisfies Assumption2.2, let k1 =
k∑

j=1
1{dj>c} be the number of distinct

eigenvalues ofΣ larger thanc, andWR
n (c) is defined in (5.2). Then

WR
n (c) L→ WR(c) (8.1)

where

WR(c) = X ′ΣR(c)X =
k∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X

= WR
1 (c) + WR

2 (c) + WR
3 (c) , (8.2)

WR
1 (c) = X ′ΣR

11(c)X =
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X , (8.3)

WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′B(c)B(c)′X , (8.4)

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X . (8.5)

Interestingly, whenΣ = 0, the distribution ofWR(c) is not degenerate: the regularized weighting matrix is
given byΣR(c) = g(0; c)Iq, so the regularized Wald statistic simplifies tog(0; c)X ′X in the general case; in the
Gaussian case, whenΣ = 0, dj = 0 with multiplicity q, and the limiting statistic is equal to zero (see equation
(8.6), whereWR(c) = 0). Note also that the components are independent due to the specific decomposition
of the regularized weighting matrix. We can now easily consider the special case whereX is Gaussian, with
the Lutkepohl and Burda (1997) result obtained as a special case of the Corollary8.2. Besides, if there is no
eigenvalues such thatλ = dj = c, WR

2 (c) = 0 due to the indicator function, andWR(c) = WR
1 (c) + WR

3 (c) for
all the subsequent results stated in this section.

Corollary 8.2 THE REGULARIZED WALD STATISTIC WITH A FIXED THRESHOLD: THE GAUSSIAN CASE.
Suppose the assumptions of Proposition8.1 hold, but replace Assumption2.1 with 2.4 , with ψ = ψ0, and
B(dj)′X =

√
djxj , wherexj = N [0, Im(dj)], for j = 1, . . . , k.

i) If Σ = 0, then

WR
n (c) L→ WR(c) = X ′ΣR(c)X =

k∑

j=1

g(dj ; c)djx
′
jxj = 0 . (8.6)

ii) If Σ 6= 0, then

WR
n (c) L→ WR(c) (8.7)

whereWR(c) = X ′ΣR(c)X =
k∑

j=1
g(dj ; c)djvj = WR

1 (c) + WR
2 (c) + WR

3 (c) with

WR
1 (c) = X ′ΣR

11(c)X =
k1∑

j=1

g(dj ; c)djvj , (8.8)
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WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}cvj(c) , (8.9)

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)djvj , (8.10)

wherevj ∼ χ2
(
m(dj)

)
, andvj(c) ∼ χ2

(
m(c)

)
.

We can see from this corollary that the three components can be interpreted as a linear combination of chi-square
variables with the degree of freedom given by the multiplicity of the distinct eigenvalues. Note that whenΣ
has rankr < q, the last componentWR

3 (c) that corresponds to the eigenvalues less thanc, will contain a zero
eigenvalue,i.e. dk = 0, whenc 6= 0. Whenc = 0, in this caseWR

2 (0) = WR
3 (0) = 0, WR

1 (0) = W+(0), and
we obtain the Lutkepohl and Burda (1997) result as a special case. Note that their result only holds for distinct
eigenvalues.

Corollary 8.3 CHARACTERIZATION OF AN UPPER BOUND IN THE GENERAL CASE. Suppose the assumptions
of Proposition8.1hold. LetYj = B(dj)′X. Letg ∈ Gc, with a fixed thresholdc such that

g(dj ; c)dj ≤ 1 ∀ j = 1, . . . , k

then,

WR(c) ≤
k∑

j=1

Y ′
j Yj .

The proof is straightforward. We obtain a characterization of anupper boundfor general distributions for the
regularizedWald statistic, whenc is fixed. Such avalid bound will yield aconsistenttest under the alternative.
However, using the standard chi square critical point corresponding to the Gaussian case will also produce consis-
tent test under the alternative, yet at the cost of size distortions under the null.

Corollary 8.4 CHARACTERIZATION OF THE BOUND: THE GAUSSIAN CASE. Suppose the assumptions of
Corollary 8.2hold. Letg ∈ Gc, with a fixed thresholdc such that

g(dj ; c)dj ≤ 1 ∀ j = 1, . . . , k

then,
WR

1 (c) ≤ χ2(q1) , WR
2 (c) ≤ χ2(m(c)), WR

3 (c) ≤ χ2(q3)

and

WR(c) ≤
k∑

j=1

vj = χ2(q)

wherevj ∼ χ2
(
m(dj)

)
, q1 =

k1∑
j=1

m(dj), q3 = q − q1 −m(c), andq =
k∑

j=1
m(dj).

In the Gaussian case, we obtain a chi square as an upper bound for theregularizedstatistic, whenc is fixed. Each
component is distributed as a chi square variable with the degree of freedom given by the sum of the multiplicity of
the distinct eigenvalues involved in the sum. As the decomposition involves three independent chi square variables,
the resulting distribution for the overall statistic is also chi square due to its stability; the degree of freedom is then
given by the sum of the degrees of freedom of each component. A convenient choice forg could beg(dj ; c)dj = 1,
for all j = 1, . . . , k1+m(c), which yieldsWR

1 (c) ∼ χ2(q1), andWR
2 (c) ∼ χ2(m(c)). Although a fixed threshold

leads to a nonstandard asymptotic distribution for the regularized statistic, the decomposition of the statistic into
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three components naturally provides an upper bound for the nonregular components. In consequence, the critical
points given by the standard chi square distribution (ifX is Gaussian) can be used to provide anasymptotically
valid test. However, improved power over those conservative bounds can be achieved by simulations.

We shall now show that the regularized statistic is consistent against a global alternative whenXn follows a
general distribution.

Proposition 8.5 CONSISTENCY PROPERTY OF THE TEST. Suppose the assumptions of Proposition8.1hold, and
WR

n (c) as defined in (5.2). Suppose there exist some eigenvalues of the limiting matrixΣ such thatdj 6= 0 under
the alternative. Suppose furtherXn = an(ψ̂n − ψ1) satisfies Assumption2.1, with ψ = ψ1. If ψ1 − ψ0 = ∆ 6= 0,
and∆′ΣR(c)∆ > 0, then

WR
n (c) →

n→∞ ∞ . (8.11)

We also characterize the behavior the regularized Wald statistic under local alternatives as in the next proposi-
tion.

Proposition 8.6 LOCAL POWER CHARACTERIZATION. Suppose the assumptions of Proposition8.1 hold, and
WR

n (c) as defined in (5.2). Suppose there exist some eigenvalues of the limiting matrixΣ such thatdj 6= 0 under
the alternative, withψ = ψ1. If an(ψ1n − ψ0) → ∆ 6= 0, and∆′ΣR(c)∆ > 0, then

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ . (8.12)

We can observe from this result that the limiting quantity involve three components: the first component, a
quadratic form inX, still satisfies the null hypothesis; the second component is a linear form inX; the third
one represents a noncentrality parameter. Only the last two component will contribute to power. Note that in
the Lutkepohl and Burda (1997) case, their noncentrality parameter based on the modified Moore-Penrose inverse
∆′Σ+

c ∆ is expected to be smaller than the noncentrality parameter∆′ΣR(c)∆, which may entail a loss of power
despite a smaller critical point, due to a chi square distribution with reduced degree of freedom. Indeed, there may
exist some directions for the alternative, where a spectral cut-off type Moore-Penrose inverse that sets to zero the
small eigenvalues, may destroy power as stated in the next corollary.

Corollary 8.7 LOCAL POWER CHARACTERIZATION: DELTA IN THE NULL EIGENSPACE. Suppose the assump-
tions of Proposition8.6are satisfied. Suppose further that∆ ∈ V(0), then

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2g(0; c)X ′∆ + g(0; c)∆′∆ . (8.13)

We do not expect the test to be consistent against all types of alternatives. There may exist some directions where
power is reduced or eventually destroyed, whether∆ lies in the eigenspaceV(0) associated with the null eigenvalue
or not. In such a case, the choice ofg(0; c) is critical for power considerations. By settingg(0; c) = 0, the spectral
cut-off Moore Penrose inverse used by Lutkepohl and Burda (1997) will destroy power.

9. Regularized Wald statistic based on a super consistent eigenvalue estimator

We now introduce a new regularized Wald statisticW̃R
n (λ̂(c); c) built on asuperconsistentestimator of the eigen-

values atc, denoted̂λ(c). In so doing, a second layer of regularization is introduced through amodifiedHodges-
Lehnman estimator applied to the eigenvalues. More importantly, the superconsistency property of the eigenvalue
estimator can accommodate a discontinuity of the VRFg atλ = c. The regularization is henceforth twofold: first,
we modify the estimator of the eigenvalue as in (9.1), second the Hodges-Lehnman estimator of the eigenvalues,
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λ̂(c), is plugged into the weighting matrix and then regularized. Such asuperconsistentestimator atc can be
designed as follows.

The modified estimator̂λ(c) = (λ̂i(c))i=1,...,q of the eigenvalues of aq × q semi definite positive matrixΣ
such that for eachi = 1, . . . , q, λ̂i(c) satisfies:

λ̂i(c) =
{

λ̂i if |λ̂i − c| > ν en
bn

c if |λ̂i − c| ≤ ν en
bn

,
(9.1)

wherebn is the speed of convergence of the sample eigenvalues as defined in Theorem6.6, en is chosen such that
en → ∞ with en

bn
→ 0 asn grows to infinity, andν is an arbitrary positive constant.̂λi(c) corresponds to

a modifiedHodges’s estimator; see Hodges and Lehmann (1950), LeCam (1953), Lehmann and Casella (1998),
Leeb and Potscher (2008). This estimator enjoys thesuperconsistencyproperty 3ii). The sign function is defined
as:

s[x] =
{ 1, if x > 0

0 if x = 0
−1, if x < 0 .

(9.2)

Property 3 SUPERCONSISTENT ESTIMATOR. Under the assumptions given in Theorem6.6, the estimator̂λi(c),
defined in(9.1), ofλi of theq×q semi definite positive matrixΣ has the following properties for eachi, 1 ≤ i ≤ q,

i) λ̂i(c)
p→ λi

ii) P
[
λ̂i(c) = c

] →
n→∞ 1 , if λi = c

iii) P
{
s[λ̂i(c)− c] = s[λi − c]

} →
n→∞ 1 , wheres[.] denotes the sign function defined in(9.2).

Property 3i) states the usual convergence in probability while 3ii) states thesuperconsistencyproperty of the
modified estimator atc. Finally, Property 3iii) states that the modified estimator falls in the appropriate class
depending on whetherλi > c, λi = c, or λi < c. As emphasized in Assumption7.2, λi = c deserves a careful
treatment, specifically if a mixture of a continuous distribution and of a Delta-Dirac distribution atc is considered.
Although it is rather unlikely to encounter situations whereλi = c in finite samples, we wanted to provide a
comprehensive thorough study of all possibilities. Thus, to circumvent the complications aroused by such a case,
we rely on asuperconsistentestimator. Recall thatI(c) is defined in (7.8), and its estimator is given by

Î(c) = {i ∈ I : λ̂i(c) = c} , (9.3)

with I(c) = Î(c) = ∅, if there exist no eigenvaluesλi = c. Then,

P
[
Î(c) = I(c)

]
= P

[
λ̂i(c) = c,∀i ∈ I(c)

]
= P

[ ⋂

i∈I(c)

{
λ̂i(c) = c

}] → 1 , (9.4)

sinceP
[
λ̂i(c) = c

] → 1 for all i. Note that only the modified estimatorλ̂i(c) satisfies (9.4) unlike estimators

with continuous distributions for whichP
[
λ̂i = c

]
= 0.

In the special case wherebn = n1/2, we can takeen = n1/2−δ with 0 < δ < 1/2, so that:

λ̂i(c) =
{

λ̂i if |λ̂i − c| > ν
nδ

c if |λ̂i − c| ≤ ν
nδ .

(9.5)
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Thus, ifλi = c, we have:

P
[
λ̂i(c) = c

]
= P

[√
n|λ̂i − c| ≤ νn1/2−δ

] ≥ P
[√

n|λ̂i − λi| ≤ νn1/2−δ
] →

n→∞ 1 (9.6)

since
√

n(λ̂i − λi) = Op(1) . If λi 6= c, ∀ ε > 0, , then

P
[|λ̂i(c)− λi| ≤ ε

]
= P

[|λ̂i − c| > ν
n1/2−δ

n1/2

]
= P

[√
n|λ̂i − c| > νn1/2−δ

] →
n→∞ 1 . (9.7)

Finally, if a consistent estimator of the number of eigenvalues greater thanc is available, we will be able to
simulate the distribution of the superconsistent estimator-based regularized statisticW̃R

n (λ̂(c); c). Therefore, the
simulated distribution will converge to the right distribution (that ofWR(c)), so that the level of the simulation-
based test is controlled asymptotically. Let us define now an estimator of the possible multiplicity ofc:

m̂(c) =
q∑

i=1

1{i∈ Î(c)} . (9.8)

The number of eigenvalues greater thanc is given byk1 =
k∑

j=1
1{dj−c>0} =

q∑
i=1

1{λi−c>0} , and its estimator

corresponding tôk1 =
q∑

i=1
1{λ̂i(c)−c>0} satisfies the following relation:∀ ε > 0 : P

[|k̂1 − k1| ≤ ε
] →

n→∞ 1 .

The regularizedinverse based on thesuperconsistentestimator̂λ(c) = (λ̂i(c))i=1,...,q , with Vn = [x̂i]i=1,...,q

the matrix of eigenvectors, corresponds to:

Σ̃R
n

(
λ̂(c); c

)
= Vn

[
diag(g(λ̂i(c); c))

]
i=1,...,q

V ′
n

= Σ̃R
11,n

(
λ̂(c); c

)
+ Σ̃R

22,n

(
λ̂(c); c

)
+ Σ̃R

33,n

(
λ̂(c); c

)
, (9.9)

where

Σ̃R
11,n

(
λ̂(c); c

)
=

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i(c); c)1{(λ̂i(c)−c)>0} , (9.10)

Σ̃R
22,n

(
λ̂(c); c

)
= g(c; c)

1
m̂(c)

∑

i∈ Î(c)

1{λ̂i(c)=c} × PÎ(c)(Σn) , (9.11)

Σ̃R
33,n

(
λ̂(c); c

)
=

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i(c); c)1{(λ̂i(c)−c)<0} , (9.12)

since
k⋃

j=1
Ij = {1, . . . , q}, and wherePIj (Σn) =

∑
i∈ Ij

x̂i

(
x̂′ix̂i

)−1
x̂′i, PÎ(c)(Σn) =

∑
i∈ Î(c)

x̂i

(
x̂′ix̂i

)−1
x̂′i. The x̂i’s

do not have norm equal to 1, and̂m(c) is defined in (9.8).

Proposition 9.1 DISTRIBUTION OF THE SIMULATION BASED TEST. Let λ̂(c) = (λ̂i(c))i=1,...,q, the vector of
the superconsistent estimators of the eigenvalues atc, satisfy Property 3, andWR

n (c) satisfy(8.1). Let the VRF
g ∈ Gc , and the superconsistent estimator-based regularized statistic be:

W̃R
n (λ̂(c); c) = X ′

nΣ̃R
n (λ̂(c); c)Xn (9.13)
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whereΣ̃R
n (λ̂(c); c) is defined in equations(9.9)-(9.12). Then

plim
n →∞

{W̃R
n (λ̂(c); c)−WR

n (c)} = 0 . (9.14)

Thus, the simulated distribution of̃WR
n (λ̂(c); c) will converge to the right distribution asymptotically so that the

level of the simulation-based test will be controlled asymptotically.

10. The case with a varying thresholdcn

We shall now present the convergence results for the regularized inverses which are fundamental to obtain well-
behaved regularized test statistics when the threshold varies with the sample size. Letλ̂i = λi(Σn) andλi = λi(Σ)
for notational simplicity. First when designing the VRFg(λ; cn), the varying thresholdcn must be selected so that

Pr
[|λ̂i − λi| > cn

]
= Pr

[|bn(λ̂i − λi)| > bncn

] →
n→∞ 0 (10.1)

with cn → 0 andbncn →∞ as n grows to infinity. Thus,cn declines to 0 slower than1/bn, andbncn →∞ slower
thanbn does. Indeed, the threshold must not decline to zero either too fast, or too slow. Selectingcn in this way
ensures that the nonzero eigenvalues of the covariance matrix will eventually be greater than the threshold, while
the true zero eigenvalues will fall below the threshold and are set to zero at least in large samples. In most cases, a
natural choice forbn =

√
n and a suitable choice forcn is cn = n−1/3. This convergence rate plays a crucial role

in Proposition10.1below.

Proposition 10.1 CONVERGENCE OF THE REGULARIZED INVERSE WHEN THE THRESHOLD VARIES WITH THE

SAMPLE SIZE. Let Σ be aq × q real symmetric positive semidefinite nonstochastic matrix andΣn a sequence
of q × q real symmetric random matrices. Suppose the assumptions of Theorem6.6 hold with p = q and let
g ∈ Gc. Let λ̂i = λi(Σn). Suppose further thatcn →

n→∞ 0 andbncn →
n→∞ ∞. If ΣR(0) andΣR

n (cn) have the

representation (7.13) and (7.14) respectively, then

ΣR
n (cn)

p→ ΣR(0) . (10.2)

Thus, an important continuity property for the regularized inverse (unlike g-inverses) is established in this propo-
sition that contributes to the econometric literature.

In the following, we establish acharacterizationof the asymptotic distribution of theregularizedtest statistic
in the general case. This characterization makes use of a decomposition of theregularizedstatistic into a regular
component and a regularized one. Recall that we want to test the null hypothesis given in equation (2.1),i.e.
H0(ψ0) : ψ(θ0) = ψ0 .

Proposition 10.2 ASYMPTOTIC CHARACTERIZATION OF THE REGULARIZEDWALD STATISTIC WITH VARY-
ING THRESHOLD. Suppose the assumptions of Proposition10.1 are satisfied. Suppose, also, Assumption2.1

holds, andrank(Σ) = q1. Letk1 be the number of non-zero distinct eigenvalues,i.e.,
k1∑

j=1
m(dj) = q1 ≥ 1, and

g(dj ; 0) = 0, ∀ j ≥ k1 + 1. LetV1(Σ), andV1(Σn), be the eigenspace associated with the total eigenprojections
k1∑

j=1
Pj(Σ),

k1∑
j=1

PIj (Σn) respectively, andV2(Σ), V2(Σn), their complements inRq. Then, underH0(ψ0),

WR
n (cn) = X ′

nΣR
n (cn)Xn

L→ X ′ΣR(0)X = WR(0) (10.3)
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WR
n (cn) = WR

1n(cn) + WR
2n(cn) (10.4)

WR
1n(cn) = X ′

nΣR
11,n(cn)Xn

L→ X ′ΣR
11(0)X ≡ WR

1 (0) (10.5)

WR
2n(cn) = X ′

nΣR
22,n(cn)Xn

L→ 0 . (10.6)

Thus, when the thresholdcn converges to zero at an appropriate rate, based on the sample eigenvalues con-
vergence rate, the limitingregularizedinverse boils down to the spectral cut-off Moore-Penrose inverse, which
annihilates the nonregular componentWR

2 (0). Moreover, if we restrict the convergence in law above to the sole
standard Gaussian distribution,i.e.,

[
Xn = an(ψ̂n − ψ0) =

√
n[ψ(θ̂) − ψ0] → N [0, Σ]

]
, we obtain the result

given by Lutkepohl and Burda (1997, Proposition 2, page 318) as a special case (Corollary10.3). In this case, the
regularized Wald test is asymptotically distributed as aχ2(q1) variable, withq1 denoting the number of nonzero
eigenvalues greater than the threshold. It is important to note, also, that Lutkepohl and Burda (1997, Proposi-
tion 2, page 318) result holds only for distinct eigenvalues, unlike Proposition10.2 that is valid under multiple
eigenvalues.

Corollary 10.3 ASYMPTOTIC DISTRIBUTION OF THE REGULARIZEDWALD STATISTIC IN THE GAUSSIAN

CASE WITH VARYING THRESHOLD. Suppose the assumptions of Proposition10.2hold. Replace Assumption2.1
with 2.4. Suppose further Assumption2.2holds withXj = N

[
0, Im(dj)

]
for all j. g(dj ; 0) = 1

dj
, ∀ j ≤ k1 and 0

otherwise. Then, underH0(ψ0),

WR
n (cn) = n[ψ(θ̂)− ψ0]′ΣR

n (cn)[ψ(θ̂)− ψ0] = WR
1n(cn) + WR

2n(cn) ,

with
WR

1n(cn) = n[ψ(θ̂)− ψ0]′ΣR
11,n(cn)[ψ(θ̂)− ψ0] , (10.7)

WR
2n(cn) = n[ψ(θ̂)− ψ0]′ΣR

22,n(cn)[ψ(θ̂)− ψ0] , (10.8)

and
WR

1n(cn) L→ WR
1 (0) ∼ χ2(q1) and W2n(cn) L→ 0. (10.9)

When the threshold goes to zero at the appropriate speed, the limiting regularized statistic has a standard chi
square distribution with the degree of freedom given by the multiplicity of the nonzero eigenvalues. Meanwhile,
the nonregular component collapses to zero due to the spectral cut-off Moore-Penrose inverse.

Theregularizedtest has power against local alternatives:

H1 :
√

n
(
ψ1n(θ)− ψ0

) → ∆ ,∆ 6= 0 . (10.10)

Under this alternative, theregularizedtest has an asymptotic noncentralχ2 distribution,i.e.

WR
n (cn) L→ χ2

(
q1,∆

′ΣR
11∆

)
. (10.11)

For example, in the LB case the modified statistic corresponds to:

W+
n (cn) = nψ(θ̂)′V̂ Λ̂ +(cn)V̂ ′ψ(θ̂), (10.12)

with
WR

n (cn) = WR
1n(cn) + WR

2n(cn) ≥ W+
n (cn) in finite samples (10.13)

whereΛ +(cn) = diag(λ−1
1 , . . . , λ−1

q1 , 0, . . . , 0) represents a modified version of the Moore-Penrose inverse of
Λ = diag(λ1, . . . , λq1 , λq1+1, . . . , λq) . Λ +(cn) corresponds to a spectral cut-off regularization scheme.
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11. Simulation results

In this section, we perform Monte Carlo experiments to assess the empirical behavior of the (regularized) Wald
statistics in two different situations: first, we conduct a multi-step noncausality test under the normality assumption,
then we test nonlinear restrictions on parameters in a non-Gaussian case, where the delta method breaks down.

11.1. Multi-step noncausality under Gaussianity

To test the null of multi-step noncausalityH0 : r(α) = 0, we use four different versions of the Wald statistici.e.

W = nr(α̂)′Σ̂R
r(α)r(α̂) (11.1)

where singularity problems arise under parameter setting (3.1).

11.1.1. Simulation design

We examine three different kinds of parameter settings for the VAR(1) coefficients

A1 =




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


 .

The first two parameter setups correspond to:

A1 = A10 =



−0.99 αxy αxz

0 −0.99 0.5
0 0 −0.99


 , A1 = A20 =



−0.9 αxy αxz

0 −0.9 0.5
0 0 −0.9


 ,

where the problem of singularity is obtained forαxy = αxz = αzy = 0. The key parameter here to disentangle
between the regularity point and singularity point under this configuration isαxz, with αxz = 0 corresponding to
a singularity point, andαxz 6= 0 to a regularity point.

A third parameter setup is examined:

A1 = A11 =




0.3 αxy αxz

0.7 0.3 0.25
0.5 0.4 0.3


 ,

whereαxy = αxz = 0, andαzy = 0.4 6= 0 yields a regular setup. The first two parameter settings involve
parameters close to the nonstationary region, whereas the third one falls inside the stationary region.

Let ut = [ux,t uy,t uz,t]′ be a Gaussian noise with nonsingular covariance matrixΣu. The threshold values
have been set to

cn = λ̂1n
−1/3, c = 0.1, 0.001 .

Concerningcn, it has been normalized by the largest eigenvalues to account for scaling issues of the data. For the
fixed thresholdc, we study a weak and a stronger regularization to investigate its impact on the results. We use
5000 replications in the simulation experiment. The nominal size to perform the tests has been fixed to5%, with
critical points for the chi-square distribution with full rank given byχ2

95%(2) = 5.99, or with reduced rank given by
χ2

95%(1) = 3.84. In the tables below, letW1 denote the standard Wald statistic,W2 the spectral cut-off regularized
Wald statistic,W3 the full-rank regularized Wald statistic using the conservative bound, andW4 the regularized
Wald statistic based on a super-consistent estimator of the eigenvalues atc whose distribution is simulated.
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11.1.2. Level assessment

We study the empirical behavior of the test statistics under the null hypothesis:

H0 : r(α) =
[

αxy

αxxαxy + αxyαyy + αxzαzy

]
=

[
0
0

]
,

first in irregular setups (see Table 1, panelsA : A1 = A10 andB : A1 = A20), then in a regular setup (se Table
1, panelC : A1 = A11).

It is clear from Table 1, panels A and B that the standard Wald statistic,W1, does not have its conventional
asymptotic distribution in non-regular setups, either suffering from overrejections in small samples, or from under-
rejections in large samples; its behavior is more critical when parameter values approach the nonstationary region
(Table 1, Panel A). The reduced rank Wald statistic,W2, displays the same finite sample behavior asW1, in the
non-regular setups, with more and more size distortions when parameters values get close to the nonstationary
region, but reaches the right asymptotic size when the sample size increases. In contrast, the full-rank regularized
statistic that uses the bound,W3, is conservative, as it underrejects the null hypothesis, whereas the full-rank reg-
ularized statistic based on the superconsistent estimator of the eigenvalues,W4, reaches the right nominal level of
0.05 for large sample sizes, providing evidence that the level is controlledat leastasymptotically. We also report in
the last column the empirical frequency [denoted byfreq(λ̂(c))] of the superconsistent estimator for the smallest
eigenvalue. Regarding the regular setup shown in Table 1, panel C, all statistics display the correct expected size of
0.05 at least asymptotically. However, for the regular setup, the modified Moore-Penrose Wald statistic,W2, pro-
posed by Lutkepohl and Burda (1997) should use the critical point given by the full-rank chi-squared distribution,
i.e.χ2

95%(2) = 5.99, instead of the reduced rankχ2
95%(1) = 3.84 critical point. In practice, the econometrician

does not know a priori which one to use; he is better off using the same full-rankχ2
95%(2) = 5.99 associated with

the full-rank regularized statistic,W3. If he uses the full-rank critical point given byχ2
95%(2) = 5.99 associated

with the modified Moore-Penrose statistic, he will converge to the right nominal size, but if he picks up the wrong
reduced one given byχ2

95%(1) = 3.84, the size distortion increases. Indeed, we report evidence on this claim
in Table 1, panel C, where the frequencies shown in parentheses correspond to the wrong reduced critical point
(χ2

95%(1) = 3.84) in a regular setup. Note also that we have tried different values for the fixed thresholdc, and we
recommendc = 0.1 to control for the size, especially for the superconsistent-based estimator whose distribution is
simulated. Smaller values of the fixed threshold do not guarantee a control of the size forW4.

11.1.3. Power assessment

We also study the empirical power for alternatives close to a singularity pointαxz = 0:

H1 : r(α) =
[

δ
(αxx + αyy)δ

]
6=

[
0
0

]
,

with αxy = δ, (δ = 0.0632 or δ = 0.1264) whose empirical power is reported in Table 2, panels A and B. We also
consider a second type of alternative for a violation of the second restriction only, while maintaining fulfilled the
first restriction,i.e.

H1 : r(α) =
[

0
(αxz × αzy)

]
6=

[
0
0

]
,

with αxz = δ = 0.1264, αzy = 0.4 andαxy = 0, under a regular design:

A1 = A11 =




0.3 0 αxz

0.7 0.3 0.25
0.5 0.4 0.3


 ;
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Table 1. Empirical levels of tests for multistep noncausalityH0 : r(α) = 0

H0 : r(α) = 0
Panel A: irregular setup

αxx = αyy = αzz = −0.99 , A1 = A10

cn = λ̂1n
−1/3, c = 0.1;

n W1 W2 W3 W4 freq(λ̂(c))
50 0.3220 0.2766 0.0052 0.0062 1.00
100 0.2550 0.2396 0.0006 0.0006 1.00
200 0.1764 0.1776 0 0 1.00
500 0.0938 0.1158 0 0 1.00
1000 0.054 0.0842 0 0 1.00
2000 0.0362 0.0664 0 0.0662 0
5000 0.0224 0.0560 0 0.0564 0

H0 : r(α) = 0
Panel B: irregular setup

αxx = αyy = αzz = −0.9 , A1 = A20

cn = λ̂1n
−1/3, c = 0.1; [0.001]

n W1 W2 W3 W4 freq(λ̂(c))
50 0.1046 0.1418 0.0648 [0.0944] 0.1412 1.00
100 0.0584 0.0986 0.0384 [0.0442] 0.1114 1.00
200 0.0328 0.0742 0.0236 [0.0242] 0.0834 1.00
500 0.0234 0.0560 0.0170 [0.0172] 0.0620 1.00
1000 0.0182 0.0552 0.0166 [0.0166] 0.0564 1.00
2000 0.0164 0.0512 0.0140 [0.0142] 0.0966 0
5000 0.0152 0.0530 0.0118 [0.0118] 0.0574 0

H0 : r(α) = 0
Panel C: regular setup

αxx = αyy = αzz = 0.3 , A1 = A11

cn = λ̂1n
−1/3, c = 0.1; [0.001]

n W1 W2 W3 W4 freq(λ̂(c))
50 0.0442 0.0254 (0.0656) 0.0422 [0.0442] 0.0848 0.9796
100 0.0424 0.0200(0.0624) 0.0402 [0.0424] 0.0798 0.9964
200 0.0442 0.0198(0.0562) 0.0426 [0.0442] 0.0666 0.9996
500 0.0456 0.0136 (0.0536) 0.0436 [0.0456] 0.0562 1.00
1000 0.0504 0.0160 (0.0592) 0.0484 [0.0504] 0.0588 1.00
2000 0.0432 0.0294(0.0930) 0.0426 [0.0432] 0.0498 1.00
5000 0.0478 0.0478(0.1444) 0.0476 [0.0478] 0.0540 1.00
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Table 2. Locally-corrected size empirical power of tests for multistep noncausalityH1 : r(α) 6= 0

Panel A: irregular setup
αxx = αyy = αzz = −0.99 , A1 = A10

cn = λ̂1n
−1/3, c = 0.1;

H1 : r(α) 6= 0 αxy = δ = 0.0632 , αxz = 0
n W1 W2 W3 W4 freq(λ̂(c))
50 0.6970 0.8380 0.8496 0.8654 1.00
100 0.9764 0.9942 0.9972 0.9986 1.00
200 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00
2000 1.00 1.00 1.00 1.00 0
5000 1.00 1.00 1.00 1.00 0

H1 : r(α) 6= 0 αxy = δ = 0.1264 , αxz = 0
n W1 W2 W3 W4 freq(λ̂(c))
50 0.9044 0.9604 0.98 0.9852 1.00
100 0.9992 0.9998 0.9998 0.9998 1.00
200 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00
2000 1.00 1.00 1.00 1.00 0
5000 1.00 1.00 1.00 1.00 0

Panel B: irregular setup
αxx = αyy = αzz = −0.9 , A1 = A20

cn = λ̂1n
−1/3, c = 0.1; [0.001]

H1 : r(α) 6= 0 αxy = δ = 0.1264 , αxz = 0
n W1 W2 W3 W4 freq(λ̂(c))
50 0.4246 0.3888 0.4048 [0.4124] 0.1714 [0.0048] 1.00 [1.00]
100 0.8058 0.7892 0.7504 [0.8034] 0.5336 [0.00] 1.00 [1.00]
200 0.9830 0.9820 0.9670 [0.9782] 0.9396 [0.00] 1.00 [1.00]
500 1.00 1.00 0.9998 [1.00] 0.9998 [1.00] 1.00 [1.00]
1000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 1.00 [1.00]
2000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [1.00]
5000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [1.00]

Panel C: regular setup
αxx = αyy = αzz = 0.3 , A1 = A11

cn = λ̂1n
−1/3, c = 0.1; [0.001]

H1 : r(α) 6= 0 αxz = δ = 0.1264 , αxy = 0 , αzy = 0.4
n W1 W2 W3 W4 freq(λ̂(c))
50 0.0918 0.028 (0.0588) 0.0854 [0.0918] 0.0952 [0.1106] 0.9840 [0.9278]
100 0.1854 0.0310 (0.0582) 0.1692 [0.1854] 0.1982 [0.2576] 0.9966 [0.9428]
200 0.4028 0.0318 (0.0662) 0.3736 [0.4028] 0.4130 [0.5186] 0.9996 [0.9336]
500 0.8312 0.0730 (0.1160) 0.8100 [0.8312] 0.8310 [0.8908] 1.00 [0.7982]
1000 0.9866 0.2576 (0.3064) 0.9854 [0.9866] 0.9874 [0.9914] 1.00 [0.3630]
2000 1.00 0.8728 (0.8780) 1.00 [1.00] 1.00 [1.00] 1.00 [0.62]
5000 1.00 1.00 (1.00) 1.00 [1.00] 1.00 [1.00] 1.00 [0.00]
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see Table 2, panel C. First of all, all power frequencies reported in Table 2 have been locally corrected for size
distortions (only for overrejections andnot for underrejections) for a fair comparison across statistics.

Strikingly, as shown in Table 2, panel A, although the full-rank regularized test statistics,W3 andW4 are
conservative under the null hypothesis near the nonstationary region, they do not entail a loss of power under the
alternative, compared to their oversized competitorsW1 andW2. Once the latter have been corrected for size
distortions, they do not overperform the full-rank regularized statistics,W3 andW4 from the viewpoint of power.
More importantly, the locally-level corrected statisticsW1 andW2 are infeasibletests in practice, as this level
correction requires to know the true value of the parameter. Note an underperformance ofW1 relative to the others,
when the sample size is very small (panel A:n = 50). Further, the results reported in Table 2, panel B, shed light
on the better finite sample power properties of the conservative bound test relative to the superconsistent estimator-
based regularized statistic whose distribution is simulated. Besides being easier and faster to conduct,W3 also
exhibits better power properties in finite sample than its simulation-based competitorW4. Also, the performance
of W3 is less sensitive to the value of the fixed thresholdc compared toW4. Finally, the most striking result
is theunderperformanceof the reduced rank modified statistic proposed by Lutkepohl and Burda (1997) under
the regular setup shown in panel C. As expected, by underestimating the true rank of the covariance matrix, this
reduced rank statistic puts more weight on the first restriction that remains fulfilled in this case. Violation of
the null hypothesis coming from the second restriction will be missed by a statistic that underestimates the rank,
which once again makes the full-rank regularized statistics more attractive. Even with a more favorable critical
point given by theχ2(1) = 3.84 in parentheses, the spectral cut-off regularized statistic has trouble to reach the
power performance achieved by its competitors. Indeed, it requires 2000 observations to achieve reasonable power
of 87% relative to the others already at100%. Thus, these results on power reinforce the better properties of the
full-rank regularized statistics over the spectral cut-off statistic.

11.2. Deviation from normality: the Delta method breaks down

We now assess the empirical level of the null hypothesis:

H0(ψ0) : ψ(θ) = θ′θ = 0

at the nominal size of5%. For ease of notation, we shall denote the statistics as follows; the standard Wald test is

W1 = W = nψ(θ̂n)′Σ̂−1ψ(θ̂n) ; (11.2)

the Moore-Penrose modified Wald statistic proposed by Lutkepohl and Burda (1997) is:

W2 = W+(cn) = nψ(θ̂n)′Σ̂+(cn)ψ(θ̂n) ; (11.3)

theregularizedWald test statistic is

W3 = WR
ψ (c) = n2ψ(θ̂n)′Σ̂R(c)ψ(θ̂n) ; (11.4)

W3 uses the quadratic form,i.e. (χ2
95%(p))2 as a bound. For instance forp = 5, the(χ2

95%(p))2 is equal to
11.072 = 122.55 at5%, while W1 andW2 use theχ2

95%(1) = 3.84 as critical point. Finally, theregularizedWald
test statistic, using the superconsistent estimator of the eigenvalues, uses a simulated critical point,i.e.,

W4 = WR
ψ (λ̂(c); c) = n2ψ(θ̂n)′Σ̂R(λ̂(c); c)ψ(θ̂n) ; (11.5)

to simulate its distribution, we exploit the information that

nψ(θ̂n) = (
√

nθ̂n)′(
√

nθ̂n) ∼ χ2(p)
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under the null, by drawingχ2(p) random numbers.

11.2.1. Level assessment

We can observe from those results that the standard Wald test together with the modified Moore-Penrose test
proposed by Lutkepohl and Burda (1997) are never close to the nominal size of0.05, either with an under-rejection
when the dimension ofθ is low or with a severe over-rejection when the dimension ofθ increases top = 10, 14, 16.
By contrast, all theregularizedWald tests are very close to the nominal size, with an extreme precision for the
simulated version of the test based onW4, irrespective of the choice of the thresholdc. However, the choice ofc
is important for theregularizedstatisticW3 that uses the bound. The message one can draw from this table is the
following: first, the spectral cut-off Moore-Penrose regularized Wald test proposed by Lutkepohl and Burda (1997)
is useless in this example and does not add anything to the standard Wald test when normality is violated. Second,
theregularizedWald statistic that uses the bound control the level of the test, but isc-dependent. Note also that the
bound is exact here. Third, thesimulatedsuper consistentregularizedWald testalwayscontrols the level of the
test, irrespective of the choice of the thresholdc. This is a strong result insofern as it evacuates any issue related to
the choice of the threshold. The econometrician can pick up any value ofc, without any cross-validation concern,
to perform avalid simulatedtest. The simulation of the test requires only a few seconds. We also report, in the last
column of the table, the frequency (freq(λ̂(c))) at which the superconsistent estimator is set to the thresholdc. It
is mostly in small samples that the superconsistent estimator play a role.

11.2.2. Power assessment

As expected, whenW1 andW2 under-reject under the null for low dimensions ofθ , they lose power under the
alternativein small samplescompared to the full-rank regularized statisticsW3, W4. Hence, full-rank regularized
statistics based on non Gaussian distributions display over-perform in term of power, in small sample sizes, when
the dimension ofθ is low. When the dimension ofθ increases, they can match the power performance ofinfeasible
level-correctedtest,W1 andW2. The correction performed forW1 andW2 is locally and therefore the power
shown in the table is overstated. Their power would even be lower under a global level correction.

12. Conclusion

In this paper, we introduce a new class ofregularizedinverses, as opposed to generalized inverses, that embeds
the spectal cut-off and Tikhonov regularized inverses known in the literature. We propose three regularized Wald
statistics for general law: the first two statistics rely on a fixed value for the threshold in the VRFg(λ; c) while
the third one lets the threshold vary with the sample size, but requires more information about the sample behavior
of the eigenvalues. The first regularized Wald statistic admits a nonstandard asymptotic distribution in the general
case, which corresponds to a linear combination ofχ2 variables if the restrictions are Gaussian. Anupper boundis
then derived for this first regularized statistic under general laws for the restrictions; such a bound corresponds to a
χ2 variable withfull rank under Gaussianity. Hence, the test isasymptotically valid, meaning that the usual critical
point (given by theχ2 variable withfull rank) can be used, but is conservative. The second regularized statistic
relies on asuperconsistentestimator of the eigenvalues at the thresholdc whose distribution can be simulated.
Besides, the simulation of the distribution makes the statistic unsensitive to the value of the threshold such that
cross-validation methods is not required. Finally, when the threshold goes to zero with the sample size, we obtain
the spectral cut-off modified Wald statistic of Lutkepohl and Burda (1997) as a special case. Under normality,
the test has the asymptoticχ2 distribution with a reduced rank,i.e. the number of eigenvalues greater than zero.
Note that Lutkepohl and Burda (1997) result only holds for distinct eigenvalues whereas our result accounts for
eigenvalues with multiplicity larger than one.Seventh, we also show that the regularized statistics are consistent
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Table 3. Empirical levels of tests

H0 : ψ(θ) = 0 ; nominal size= 0.05
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 5

n W1 W2 W3 W4 freq(λ̂(c))
50 0.0192 0.0192 0.0538 [0.0468] 0.0482 [0.0482] 0.2454 [0.1810]
100 0.0132 0.0132 0.0642 [0.0554] 0.0514 [0.0514] 0.0118 [0.0058]
200 0.0148 0.0148 0.0656 [0.0562] 0.0546 [0.0546] 0 [0]
500 0.0096 0.0096 0.064 [0.0540] 0.0526 [0.0526] 0 [0]
1000 0.0072 0.0072 0.0572 [0.0496] 0.0482 [0.0482] 0 [0]
2000 0.0072 0.0072 0.0568 [0.0498] 0.0460 [0.0460] 0 [0]
5000 0.0092 0.0092 0.0596 [0.0524] 0.0496 [0.0496] 0 [0]

dim(θ) = 10
n W1 W2 W3 W4 freq(λ̂(c))
50 0.1730 0.1730 0.0114 [0.0104] 0.0510 [0.0510] 0.6138 [0.5480]
100 0.1504 0.1504 0.0698 [0.0578] 0.0546 [0.0546 ] 0.1458 [0.0962]
200 0.1282 0.1282 0.0712 [0.0546] 0.0498 [0.0498] 0.0008 [0.0002]
500 0.1264 0.1264 0.0610 [0.0488] 0.0444 [0.0444] 0 [0]
1000 0.1192 0.1192 0.0624 [0.0508] 0.0460 [0.0460] 0 [0]
2000 0.1184 0.1184 0.0662 [0.0532] 0.0504 [0.0504] 0 [0]
5000 0.1156 0.1156 0.0652 [0.0540] 0.0488 [0.0488] 0 [0]

dim(θ) = 14
n W1 W2 W3 W4 freq(λ̂(c))
50 0.4130 0.4130 0.0014 [0.0012] 0.0538 [0.0538] 0.6204 [0.6148]
100 0.3778 0.3778 0.0586 [0.0494] 0.0560 [0.0560] 0.3862 [0.2820]
200 0.3606 0.3606 0.0706 [0.0560] 0.0500 [0.0500] 0.0070 [0.0022]
500 0.3648 0.3648 0.0650 [0.0486] 0.0460 [0.0460] 0 [0]
1000 0.3566 0.3566 0.0678 [0.0556] 0.0506 [0.0506] 0 [0]
2000 0.3576 0.3576 0.0672 [0.0548] 0.0484 [0.0484] 0 [0]
5000 0.3524 0.3524 0.0674 [0.0554] 0.0480 [0.0480] 0 [0]

dim(θ) = 16
n W1 W2 W3 W4 freq(λ̂(c))
50 0.5384 0.5384 0.002 [0.0002] 0.0536 [0.0536] 0.5424 [0.5650]
100 0.5132 0.5132 0.0438 [0.0384] 0.0546 [0.0546] 0.508 [0.4074]
200 0.5068 0.5068 0.0702 [0.055] 0.0498 [0.0498] 0.015 [0.0062]
500 0.5022 0.5022 0.0676 [0.0514] 0.0488 [0.0488] 0 [0]
1000 0.4948 0.4948 0.0678 [0.0510] 0.0474 [0.0474] 0 [0]
2000 0.5058 0.5058 0.0724 [0.0540] 0.0470 [0.0470] 0 [0]
5000 0.4938 0.4938 0.0662 [0.0514] 0.0460 [0.0460] 0 [0]
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Table 4. Empirical power of tests

H1 : ψ(θ) = 0.075916 6= 0
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 5

n W1 W2 W3 W4 freq(λ̂(c))
50 0.1384 0.1384 0.2884 [0.2724] 0.2810 [0.2810] 0.4994 [0.4388]
100 0.3124 0.3124 0.5476 [0.5366] 0.5398 [0.5398] 0.3030 [0.2318]
200 0.6990 0.6990 0.8712 [0.8686] 0.8730 [0.8730] 0.1004 [0.0528]
500 0.9948 0.9948 0.9998 [0.9998] 0.9998 [0.9998] 0.0022 [0.0006]
1000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
2000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
5000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]

H1 : ψ(θ) = 0.05223916 6= 0
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 5

n W1 W2 W3 W4 freq(λ̂(c))
50 0.0912 0.0912 0.2044 [0.1928] 0.2008 [0.2008] 0.4322 [0.3670]
100 0.1882 0.1882 0.3804 [0.3726] 0.3736 [0.3736] 0.1898 [0.1332]
200 0.4596 0.4596 0.7006 [0.6952] 0.7058 [0.7058] 0.0292 [0.0142]
500 0.9546 0.9546 0.9888 [0.9882] 0.9886 [0.9886] 0 [0]
1000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
2000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
5000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]

H1 : ψ(θ) = 0.00355332 6= 0
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 10

n W1 W2 W3 W4 freq(λ̂(c))
50 0.052 0.052 0.0112 [0.011] 0.0568 [0.0568] 0.6166 [0.5546]
100 0.0614 0.0614 0.0658 [0.060] 0.0656 [0.0656] 0.1692 [0.1104]
200 0.0708 0.0708 0.0738 [0.0738] 0.0744 [0.0744] 0.0022 [0.0004]
500 0.1216 0.1216 0.1260 [0.1240] 0.1164 [0.1164] 0 [0]
1000 0.2090 0.2090 0.1962 [0.1998] 0.1954 [0.1954] 0 [0]
2000 0.3884 0.3884 0.3912 [0.3930] 0.3908 [0.3908] 0 [0]
5000 0.8454 0.8454 0.8490 [0.8490] 0.8454 [0.8454] 0 [0]

H1 : ψ(θ) = 0.01056748 6= 0
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 14

n W1 W2 W3 W4 freq(λ̂(c))
50 0.0678 0.0678 0.0682 0.0666 0.5994 [0.6052]
100 0.0792 0.0792 0.0784 0.0808 0.4450 [0.3412]
200 0.1072 0.1072 0.1180 0.1166 0.0208 [0.0110]
500 0.2416 0.2416 0.2490 0.2382 0 [0]
1000 0.5082 0.5082 0.5074 0.5068 0 [0]
2000 0.8582 0.8582 0.8628 0.8612 0 [0]
5000 0.9996 0.9996 0.9998 0.9998 0 [0]

H1 : ψ(θ) = 0.01733792 6= 0
cn = λ̂1n

−1/3, c = 0.9; [0.97]
dim(θ) = 16

n W1 W2 W3 W4 freq(λ̂(c))
50 0.0672 0.0672 0.0006 [0.0006] 0.0716 [0.0716] 0.4994 [0.5250]
100 0.0896 0.0896 0.0810 [0.0726] 0.1002 [0.1002] 0.5960 [0.4928]
200 0.1436 0.1436 0.1598 [0.1598] 0.1580 [0.1580] 0.0556 [0.0290]
500 0.3672 0.3672 0.3934 [0.3934] 0.3822 [0.3822] 0 [0]
1000 0.7430 0.7430 0.7532 [0.7532] 0.7444 [0.7444] 0 [0]
2000 0.9840 0.9840 0.9846 [0.9846] 0.9836 [0.9836] 0 [0]
5000 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]

40



against global alternatives, but the spectral cut-off Wald test used by Lutkepohl and Burda (1997) has reduced
power in some directions of the alternative.
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A. Appendix: Proofs

Proof of Property 1 Using decomposition (4.1) and (4.9), we have:

ΣΣR(c) = V ΛV ′V Λ†(c)V ′ = V ΛΛ†(c)V ′

where we use the fact that theVi’s are orthogonal matrices. For allλ, 0 ≤ λg(λ; c) ≤ 1 , so that:

ΣΣR(c) = V diag
[
λjg(λj ; c)

]
j=1,··· ,qV

′ ≤ Iq .

Regardingii), we have:

TΣR(c)T ′ = V Λ1/2V ′V Λ†V ′V Λ1/2V ′ = V Λ1/2Λ†Λ1/2V ′ = V diag
[
λjg(λj ; c)

]
j=1,...,q

V ′ ≤ Iq

since0 ≤ λg(λ; c) ≤ 1 for all λ . Regardingiii), we have:

Σ −ΣΣR(c)Σ ≥ 0 ⇔ Σ
(
Iq −ΣR(c)Σ

) ≥ 0 ⇒ Iq −ΣR(c)Σ ≥ 0 (A.1)

sinceΣ is semi definite positive. The last implication holds byi).
Regardingiv), for all λ ≥ 0, g(λ; c) bounded, and ifg(λ; c) > 0, we have:

λg(λ; c) ≤ 1 ⇒ 0 < g(λ; c) ≤ 1
λ
≤ ∞ hence

(
g(λ; c)

)−1

− λ ≥ 0 .

Hence, (
ΣR(c)

)−1 −Σ = V diag
[(

g(λj ; c)
)−1 − λj

]
j=1,··· ,qV

′ ≥ 0 .

Finally for v), the rank is given by the number of eigenvalues greater than zero. AsΣR(c) = V g(λj ; c)j=1,··· ,qV ′,
hence (

λ > 0 ⇒ g(λ; c) > 0
) ⇒ (

rank
(
ΣR(c)

) ≥ rank(Σ)
)

.

PROOF of Lemma 6.3If Σn
a.s.→ Σ, then the eventA = {ω : Σn(ω) →

n→∞ Σ} has probability one,i.e.

P (A) = 1. For anyω ∈ A , we have by Lemma6.2:

[Σn(ω) →
n→∞ Σ] ⇒ [λj(Σn(ω)) → λj(Σ), j = 1, . . . , J ] .

DenotingB = {ω : λj(Σn(ω)) →
n→∞ λj(Σ)}, we haveA ⊆ B, hence we have with probability one resulti). By

the same argument, we have resultii) for the eigenprojections.

PROOF of Lemma 6.4
If Σn

p→ Σ with eigenvalues{λj(Σn)}, then every subsequence{Σnk
} with eigenvalues{λ(Σnk

)}, also

satisfiesΣnk

p→ Σ. By Lukacs (1975, theorem 2.4.3, page 48), there exists{Σml
} ⊆ {Σnk

} such thatΣml

a.s.→ Σ.
Hence by Lemma6.3, we have

i) λj(Σml
) a.s.→ λj(Σ),

ii) Pj,t(Σml
) a.s.→ Pj,t(Σ) providedλj−1(Σ) 6= λj(Σ) andλt(Σ) 6= λt+1(Σ) .
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As {Σml
} ⊆ {Σnk

} ⊆ {Σn} with the corresponding eigenvalues{λj(Σml
)} ⊆ {λj(Σnk

)} ⊆ {λj(Σn)} ,
by Lukacs (1975, theorem 2.4.4 page 49) it suffices that every subsequence{λj(Σnk

)} of {λj(Σn)} contains

a subsequence{λj(Σml
)} which converges a.s. to getλj(Σn)

p→ λj(Σ) . By the same argument, we have

Pj,t(Σn)
p→ Pj,t(Σ) .

PROOF of Proposition 7.3 If Σn
a.s.→ Σ, then by lemma6.3 i), we haveλ̂i

a.s.→ dj , ∀i ∈ Ij , where
Ij = {i ∈ I : λi = dj}. Under the additional Assumption7.2, and the a.e. continuity ofg(., c), we have
g(λ̂i; c)

a.s.→ g(dj ; c) ∀i ∈ Ij . Moreover, by lemma6.3 ii), we havePIj (Σn) a.s.→ Pj(Σ) . Hence,

ΣR
n (c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) =
k∑

j=1

PIj (Σn)
[
g(dj ; c)− g(dj ; c) +

1
m(dj)

∑

i∈Ij

g(λ̂i; c)
]

=
k∑

j=1

PIj (Σn)g(dj ; c) +
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; c)− g(dj ; c)

] a.s.→
k∑

j=1

Pj(Σ)g(dj ; c) (A.2)

sinceg(dj ; c) = 1
m(dj)

×m(dj)g(dj ; c) = 1
m(dj)

∑
i∈Ij

g(dj ; c) .

PROOF of Proposition 7.4Using decomposition (4.7)-(4.8), and from equation (7.14), we have:

ΣR
n (c) =

3∑

i=1

ΣR
i,n(c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c) (A.3)

whereΣR
1,n(c) =

k1∑
j=1

PIj (Σn) 1
m(dj)

∑
i∈Ij

g(λ̂i, c) , ΣR
2,n(c) = PI(c)(Σn) 1

m(c)

∑
i∈I(c)

g(λ̂i, c)

andΣR
3,n(c) =

k∑
j=k1+1{dj=c}+1

PIj (Σn) 1
m(dj)

∑
i∈Ij

g(λ̂i, c) .

By Lemma6.4 i) and ii), eigenvalues and total eigenprojections are continuous. Under Assumption7.2, we
have:

∀ i ∈ Ij , g(λ̂i, c)
p→ g(dj ; c), and PIj (Σn)

p→ Pj(Σ) .

For

ΣR
1,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) =
k1∑

j=1

PIj (Σn)
[
g(dj ; c)− g(dj ; c) +

1
m(dj)

∑

i∈Ij

g(λ̂i; c)
]

=
k1∑

j=1

PIj (Σn)g(dj ; c) +
k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; c)− g(dj ; c)

] p→
k1∑

j=1

g(dj ; c)Pj(Σ)

sinceg(dj ; c) = 1
m(dj)

×m(dj)g(dj ; c) = 1
m(dj)

∑
i∈Ij

g(dj ; c) . Hence,

ΣR
1,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k1∑

j=1

g(dj ; c)Pj(Σ) ≡ ΣR
1 (c)
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ΣR
2,n(c) = PI(c)(Σn)

1
m(c)

∑

i∈I(c)

g(λ̂i, c)
p→ g(c; c)1{dj=c}Pj(c)(Σ) ≡ ΣR

2 (c) .

The proof forΣR
3,n(c) is similar to that ofΣR

1,n(c). Hence,

ΣR
3,n(c) =

k∑

j=k1+1{dj=c}+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k∑

j=k1+1{dj=c}+1

g(dj ; c)Pj(Σ) ≡ ΣR
3 (c) .

Therefore,ΣR
n (c)

p→ ΣR(c) .

PROOF of Proposition 8.1By Proposition7.4, we haveΣR
n (c)

p→ ΣR(c) and under Assumption2.1,

Xn
L→ X, henceWR

n (c) = X ′
nΣR

n (c)Xn
L→ X ′ΣR(c)X = WR(c) . Using representation (7.13) forΣR(c),

and (2.7), we can write:

WR(c) = X ′ΣR(c)X = X ′
( k∑

j=1

g(dj ; c)Pj(Σ)
)

X =
( k∑

j=1

g(dj ; c)X ′Pj(Σ)X
)

=
k∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X .

We can further decompose the overall statistic into three blocks depending on the ranking of the eigenvalues w.r.t.

c, with k1 =
k∑

j=1
1{dj>c}, i.e.,

WR
1 (c) = X ′ΣR

11(c)X =
k∑

j=1

g(dj ; c)1{dj>c}X ′Pj(Σ)X =
k1∑

j=1

g(dj ; c)X ′Pj(Σ)X =
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X .

Similarly, WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′Pj(c)(Σ)X = g(c; c)1{dj=c}X ′B(c)B(c)′X . Finally,

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=1

g(dj ; c)1{dj<c}X ′Pj(Σ)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X .

PROOF of Corollary 8.2 In the Gaussian case, we have:B(dj)′X =
√

djxj , wherexj = N
[
0, Im(dj)

]
,

hence

WR(c) = X ′ΣR(c)X = X ′
( k∑

j=1

g(dj ; c)Pj(Σ)
)

X =
k∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X =
k∑

j=1

g(dj ; c)djx
′
jxj

with the three blocks corresponding to

WR
1 (c) = X ′ΣR

11(c)X =
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X =
k1∑

j=1

g(dj ; c)djx
′
jxj ,

WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′B(c)B(c)′X = g(c; c)1{dj=c}cx′jxj ,
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andWR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)djx
′
jxj .

PROOF of Proposition 8.5
The quantityan

[
ψ̂n − ψ0

]
can be written as:

an

[
ψ̂n − ψ0

]
= an

[
ψ̂n − ψ1 + ψ1 − ψ0

]
= an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]
. (A.4)

As Xn = an[ψ̂n − ψ1

]
satisfies Assumption2.1, we have

WR
n (c) = {an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]}′ΣR
n (c){an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]}
= an[ψ̂n − ψ1

]′
ΣR

n (c)an[ψ̂n − ψ1

]
+ 2an[ψ̂n − ψ1

]′
ΣR

n (c)an

[
ψ1 − ψ0

]

+an

[
ψ1 − ψ0

]′
ΣR

n (c)an

[
ψ1 − ψ0

]

= X ′
nΣR

n (c)Xn + 2X ′
nΣR

n (c)an∆ + a2
n∆′ΣR

n (c)∆
L→ X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2

n∆′ΣR(c)∆ → ∞ (A.5)

sinceXn
L→ X, ΣR

n (c)
p→ ΣR(c), but an(ψ1 − ψ0) = an∆ → ∞, asan grows to infinity. HenceWR

n (c)
converges to infinity with probability 1. The quantity

X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2
n∆′ΣR(c)∆

is asymptotically equivalent to
X ′ΣR(c)X + a2

n∆′ΣR(c)∆ (A.6)

due to the dominance principle ofan∆′ΣR(c)∆ over2X ′ΣR(c)∆, i.e.,

X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2
n∆′ΣR(c)∆ = X ′ΣR(c)X + an

[
2X ′ΣR(c)∆ + an∆′ΣR(c)∆

]
.

PROOF of Proposition 8.6
Under the local alternativean(ψ1n − ψ0) → ∆ 6= 0, then

WR
n (c) = an[ψ̂n − ψ1n

]′
ΣR

n (c)an[ψ̂n − ψ1n

]
+ 2an[ψ̂n − ψ1n

]′
ΣR

n (c)an

[
ψ1n − ψ0

]

+an

[
ψ1n − ψ0

]′
ΣR

n (c)an

[
ψ1n − ψ0

]

= X ′
nΣR

n (c)Xn + 2X ′
nΣR

n (c)an

[
ψ1n − ψ0

]
+ an

[
ψ1n − ψ0

]′
ΣR

n (c)an

[
ψ1n − ψ0

]
L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ (A.7)

asXn
L→ X, ΣR

n (c)
p→ ΣR(c) .

PROOF of corollary 8.7 From Proposition8.6, we have:

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ .
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As ∆ ∈ V(0), P (0)(Σ)∆ = ∆, and we have:

ΣR(c)∆ =
∑

dj

g(dj ; c)Pj(Σ)∆ = g(0; c)P (0)(Σ)∆ = g(0; c)∆

sincePj(Σ)∆ = 0, for all eigenprojections on the eigenspaces different fromV(0). Hence,

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2g(0; c)X ′∆ + g(0; c)∆′∆ .

PROOF of Property 3 If λi = c, then|λ̂i − c| = |λ̂i − λi| and

P
[
λ̂i(c) = c

]
= P

[
bn|λ̂i − c| ≤ νen

]
= P

[
bn|λ̂i − λi| ≤ νen

] →
n→∞ 1 , (A.8)

sincebn(λ̂i − λi) = Op(1), andνen → ∞. Hence

P
{
s[λ̂i(c)− c] = s[λi − c]

} →
n→∞ 1 , ∀ i ∈ I(c) = {i ∈ I : λi = c} . (A.9)

On the other hand, the modified estimatorλ̂i(c) is designed such that:

|λ̂i(c)− λi| = |λ̂i(c)− λ̂i + λ̂i − λi| = |λ̂i − λi| if |λ̂i − c| > ν
en

bn
.

Hence,∀ ε > 0,

P
[|λ̂i(c)− λi| ≤ ε

]
= P

[|λ̂i − c| > ν
en

bn

]
= →

n→∞ 1 , if λi 6= c (A.10)

sinceen
bn

→
n→∞ 0. Thus, ifλi > c, we haveP

[
(λ̂i − c) > ν en

bn

] →
n→∞ 1 , hence

P
{
s[λ̂i(c)− c] = s[λi − c]

} →
n→∞ 1 . (A.11)

Also, if λi < c, we haveP
[
(c− λ̂i) > ν en

bn

] →
n→∞ 1 , hence

P
{
s[λ̂i(c)− c] = s[λi − c]

} →
n→∞ 1 . (A.12)

PROOF of Proposition 9.1As WR
n (c) = X ′

nΣR
n (c)Xn, andW̃R

n (λ̂(c); c) = X ′
nΣ̃R

n (λ̂(c); c)Xn , it is suf-
ficient to show thatΣ̃R

n (λ̂(c); c)
p→ ΣR(c) to haveW̃R

n (λ̂(c); c) a∼ WR
n (c) , where

a∼ denotes the asymptotic
equivalence. We want to show that∀ε > 0

p{|W̃R
n (λ̂(c); c)−WR

n (c)| > ε} →
n→∞ 0 .

As |W̃R
n (λ̂(c); c) − WR

n (c)| = |X ′
nΣ̃R

n (λ̂(c); c)Xn − X ′
nΣR

n (c)Xn| = |X ′
n

(
Σ̃R

n (λ̂(c); c) − ΣR
n (c)

)
Xn| it is

equivalent to show,∀ ε > 0 , p{‖Σ̃R
n (λ̂(c); c)−ΣR

n (c)‖ > ε} →
n→∞ 0. More specifically,

‖Σ̃R
n (λ̂(c); c)−ΣR

n (c)‖ = ‖Σ̃R
n (λ̂(c); c)−ΣR(c)+ΣR(c)−ΣR

n (c)‖ ≤ ‖Σ̃R
n (λ̂(c); c)−ΣR(c)‖+‖ΣR(c)−ΣR

n (c)‖
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but p{‖ΣR(c) − ΣR
n (c)‖ > ε} = p{‖ΣR

n (c) − ΣR(c)‖ > ε} → 0 by Proposition7.4. Hence, it is sufficient to
show thatΣ̃R

n (λ̂(c); c)
p→ ΣR(c) . To do so, let us study

‖Σ̃R
n (λ̂(c); c)−ΣR(c)‖ = ‖[Σ̃R

11,n

(
λ̂(c); c

)
+ Σ̃R

22,n

(
λ̂(c); c

)
+ Σ̃R

33,n

(
λ̂(c); c

)]− [
ΣR

11(c) + ΣR
22(c) + ΣR

33(c)
]‖

= ‖[Σ̃R
11,n

(
λ̂(c); c

)−ΣR
11(c)

]
+

[
Σ̃R

22,n

(
λ̂(c); c

)−ΣR
22(c)

]
+

[
Σ̃R

33,n

(
λ̂(c); c

)−ΣR
33(c)

]‖
≤ ‖∆Σ11,n‖+ ‖∆Σ22,n‖+ ‖∆Σ33,n‖ (A.13)

where∆Σii,n =
[
Σ̃R

ii,n

(
λ̂(c); c

)−ΣR
ii (c)

]
for i = 1, 2, 3 . Consider first:

‖∆Σ11,n‖ = ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i(c); c)1{(λ̂i(c)−c)>0} −
k∑

j=1

Pj(Σ)g(dj ; c)1{(dj−c)>0}‖ .

(A.14)

By adding and substracting simultaneously,
k∑

j=1
PIj (Σn)g(dj ; c)1{(dj−c)>0} we have:

‖∆Σ11,n‖ = ‖
k∑

j=1

PIj (Σn)g(dj ; c)1{(dj−c)>0} −
k∑

j=1

PIj (Σn)g(dj ; c)1{(dj−c)>0}

+
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈ Ij

g(λ̂i(c); c)1{(λ̂i(c)−c)>0} −
k∑

j=1

Pj(Σ)g(dj ; c)1{(dj−c)>0}‖

= ‖
k∑

j=1

PIj (Σn)g(dj ; c)1{(dj−c)>0} −
k∑

j=1

Pj(Σ)g(dj ; c)1{(dj−c)>0}

+
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈ Ij

[
g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}

]‖

‖∆Σ11,n‖ = ‖
k∑

j=1

[
PIj (Σn)− Pj(Σ)

]
g(dj ; c)1{(dj−c)>0}

+
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈ Ij

[
g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}

]‖

≤ ‖
k∑

j=1

[
PIj (Σn)− Pj(Σ)

]
g(dj ; c)1{(dj−c)>0}‖

+‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈ Ij

[
g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}

]‖

‖∆Σ11,n‖ ≤
k∑

j=1

‖PIj (Σn)− Pj(Σ)‖|g(dj ; c)1{(dj−c)>0}|

47



+
k∑

j=1

‖PIj (Σn)‖| 1
m(dj)

∑

i∈ Ij

[
g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}

]|

(A.15)

‖∆Σ11,n‖ ≤
k∑

j=1
‖PIj (Σn)− Pj(Σ)‖|g(dj ; c)1{(dj−c)>0}|

+
k∑

j=1
‖PIj (Σn)‖ 1

m(dj)

∑
i∈ Ij

|g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}| .
∀i ∈ Ij = {i ∈ I : λi = dj}, for thej indices such thatdj 6= c, we have by (A.10) and (A.11)

∀ ε > 0, P
[|λ̂i(c)− dj | ≤ ε

]
= P

[
bn|λ̂i − c| > νen

] →
n→∞ 1 if , dj 6= c (A.16)

and∀ ε > 0 ,

P
[|1{(λ̂i(c)−c)>0} − 1{(dj−c)>0}| ≤ ε

]
= P

{
s[λ̂i(c)− c] = s[λi − c]

} →
n→∞ 1 . (A.17)

We can write the quantity|g(λ̂i(c); c)1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}| = |∆g|. Also

|∆g| = |[g(λ̂i(c); c)− g(dj ; c) + g(dj ; c)
]
1{(λ̂i(c)−c)>0} − g(dj ; c)1{(dj−c)>0}|

= |[g(λ̂i(c); c)− g(dj ; c)
]
1{(λ̂i(c)−c)>0} + g(dj ; c)

[
1{(λ̂i(c)−c)>0} − 1{(dj−c)>0}

]|
≤ |g(λ̂i(c); c)− g(dj ; c)|1{(λ̂i(c)−c)>0} + g(dj ; c)|1{(λ̂i(c)−c)>0} − 1{(dj−c)>0}| (A.18)

By Property??i), ∀ i ∈ Ij : λ̂i(c)
p→ dj , dj 6= c, andg ∈ Gc is such thatg is continuous a.e., except possibly atc,

henceg(λ̂i(c); c)
p→ g(dj ; c). As1{(λ̂i(c)−c)>0} = Op(1), we have|g(λ̂i(c); c)−g(dj ; c)|1{(λ̂i(c)−c)>0}

p→ 0. By

equation (A.17),|1{(λ̂i(c)−c)>0}−1{(dj−c)>0}| p→ 0 andg(dj ; c) = O(1). Hence,|∆g| p→ 0 ∀ i ∈ Ij , and thej’s
are such thatdj 6= c. Besides, the projection operatorPIj (Σn) = Op(1), andplim

n→∞
PIj (Σn) = Pj(Σ) by Lemma

6.4 ii). Hence, we haveplim
n→∞

[‖∆Σ11,n‖ > ε
]

= 0 . Note thatg(c; c) = 1
m̂(c)m̂(c)g(c; c) = 1

m̂(c)

∑
i∈ Î(c)

g(c; c) .

Thus for the second component, we have:

‖∆Σ22,n‖ = ‖PÎ(c)(Σn)
1

m̂(c)

∑

i∈ Î(c)

g(c; c)1{λ̂i(c)=c} − g(c; c)1{dj=c}Pj(c)(Σ)‖ .

Similarly to‖∆Σ11,n‖, we add and substractPÎ(c)(Σn)g(c; c)1{dj=c} and by gathering the terms together, we get:

‖∆Σ22,n‖ = ‖[PÎ(c)(Σn)− Pj(c)(Σ)
]
g(c; c)1{dj=c} + PÎ(c)(Σn)

1
m̂(c)

∑

i∈ Î(c)

g(c; c)
[
1{λ̂i(c)=c} − 1{dj=c}

]‖

≤ ‖[PÎ(c)(Σn)− Pj(c)(Σ)
]
g(c; c)1{dj=c}‖+ ‖PÎ(c)(Σn)

1
m̂(c)

∑

i∈ Î(c)

g(c; c)
[
1{λ̂i(c)=c} − 1{dj=c}

]‖

= ‖[PÎ(c)(Σn)− PI(c)(Σn) + PI(c)(Σn)− Pj(c)(Σ)
]
g(c; c)1{dj=c}‖

+ ‖PÎ(c)(Σn)‖| 1
m̂(c)

∑

i∈ Î(c)

g(c; c)
[
1{λ̂i(c)=c} − 1{dj=c}

]|
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≤ ‖PÎ(c)(Σn)− PI(c)(Σn)‖|g(c; c)1{dj=c}|+ ‖PI(c)(Σn)− Pj(c)(Σ)‖|g(c; c)1{dj=c}|

+ ‖PÎ(c)(Σn)‖| 1
m̂(c)

∑

i∈ Î(c)

g(c; c)
[
1{λ̂i(c)=c} − 1{dj=c}

]|

If λi = dj = c, by equation (A.8),P
[
λ̂i(c) = c

]
= P

[
bn|λ̂i − λi| ≤ νen

] →
n→∞ 1 . By equation (9.4),

P
[
Î(c) = I(c)

]
= P

[ ⋂
i∈I(c)

{
λ̂i(c) = c

}] → 1 . Hence, by (A.9) we have:

|1{λ̂i(c)=c} − 1{dj=c}| p→
n→∞ 0 ∀ i ∈ Î(c) .

Moreover,P
[
Î(c) = I(c)

] → 1 implies plim
n→∞

PÎ(c)(Σn) = plim
n→∞

PI(c)(Σn) = Pj(c)(Σ) by Lemma6.4 ii).

Besides,PÎ(c)(Σn) = Op(1). Hence,plim
n→∞

[‖∆Σ22,n‖ > ε
]

= 0 . Finally, the proof ofplim
n→∞

[‖∆Σ33,n‖ > ε
]

= 0 ,

with

‖∆Σ33,n‖ = ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i(c); c)1{(λ̂i(c)−c)<0} −
k∑

j=1

Pj(Σ)g(dj ; c)1{(dj−c)<0}‖

is similar to∆Σ11,n. Also, the result follows.

Proof of Proposition 10.1We need to show thatlimn→∞Pr
[‖ΣR

n (cn)−ΣR(0)‖ > ε
]

= 0 for everyε > 0.
Let r denote the rank of the matrix of interestΣ. Three possible cases will be considered in the proof:r = q,
r = 0 and1 ≤ r < q. Let I = {1, 2, . . . , q} such thatλ1 ≥ λ2 ≥ . . . ≥ λi ≥ . . . ≥ λq ≥ 0, andJ = {1, 2, . . . , k}
the subset ofI corresponding to the indices of the distinct eigenvalues ofΣ: d1 > d2 > . . . > dj > . . . > dk,

where the multiplicity of the distinct eigenvaluedj is denotedm(dj), so that
k∑

j=1
m(dj) = q ≥ 1 and1 ≤ k ≤ q.

For j ∈ J , let Ij denote the subset ofI such thatIj = {i ∈ I : λi = dj}, hence theIj ’s are disjoint sets such as
k⋃

j=1
Ij = {1, . . . , q}. If there exist some eigenvaluesλi = 0, thendk = 0. Let P (dj) represent the eigenprojection

operator projecting onto the eigenspaceV(dj) associated withdj .
First let us show that

lim
n→∞Pr[sup

i∈Ij

|g(λ̂i; cn)− g(dj ; 0)| > ε] = 0 ∀ ε > 0 (A.19)

as it will be used extensively throughout the proof. By Lemma6.4 i), we have for alli ∈ Ij , λ̂i
p→ dj . Besides, as

cn →
n→∞ 0, we have

Pr
[|λ̂i − dj | > cn

]
= Pr

[|bn(λ̂i − dj)| > bncn

] →
n→∞ 0 (A.20)

sincebncn →∞ slower thanbn does, andbn

(
λ̂i−dj

)
converges in distribution by Lemma6.6. As λ̂i

p→ dj , ∀ i ∈
Ij andg is continuous a.e., thenlim

n→∞Pr[sup
i∈Ij

|g(λ̂i; cn)− g(dj ; 0)| > ε] = 0, ∀ ε > 0. As j was taken arbitrary, it

holds for anyj.
Consider first the case where the limiting matrixΣ has full rank,i.e. rank(Σ) = r = q. For allj ∈ J : dj > 0,

sincer = q, then by Lemma6.4 i) and ii), and the continuity ofg a.e., we have:

g(λ̂i; cn)
p→ g(dj ; 0) and PIj (Σn)

p→ Pj(Σ) .
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Since

g(dj ; 0) =
1

m(dj)
×m(dj)g(dj ; 0) =

1
m(dj)

g(dj ; 0)
∑

i∈Ij

1

︸ ︷︷ ︸
m(dj)

=
1

m(dj)

∑

i∈Ij

g(dj ; 0) ,

we have:

ΣR
n (cn) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; cn) =
k∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i; cn)
]

=
k∑

j=1

PIj (Σn)
[
g(dj ; 0) +

1
m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]]

p→
k∑

j=1

Pj(Σ)g(dj ; 0) = ΣR(0) ,

sincePIj (Σn)
p→ Pj(Σ) and|g(λ̂i; cn)− g(dj ; 0)| p→ 0 by (A.19).

Second, consider the case whered1 = 0 with multiplicity m(0) = q. In this case,Σn
p→ Σ = 0, i.e. Σn

converges to a zero matrix so that the range of the mappingAΣ corresponding toΣ is R(AΣ) = {0} and its
nullspace isN (AΣ) = Rq. Let P1(Σ) = P (d1)(Σ) denote the eigenprojection operator ofΣ associated with
its zero eigenvalue which projects onto the corresponding eigenspaceV(0). By Lemma6.4 i) and ii), and the
continuity ofg a.e., we have:

g(λ̂i; cn)
p→ g(d1; 0) = g(0; 0) , ∀ i ∈ I1

PI1(Σn)
p→ P1(Σ) ,

hence

ΣR
n (cn) = PI1(Σn)

1
m(d1)

∑

i∈I1

g(λ̂i; cn) = PI1(Σn)
[
g(0; 0)− g(0; 0) +

1
m(0))

∑

i∈I1

g(λ̂i; cn)
]

= PI1(Σn)g(0; 0) + PI1(Σn)
1

m(0)

∑

i∈I1

[
g(λ̂i; cn)− g(0; 0)

]

p→ g(0; 0)P1(Σ) = ΣR(0) , (A.21)

sincePI1(Σn)
p→ P1(Σ), PI1(Σn) = Op(1) and|g(λ̂i; cn)− g(0; 0)| p→ 0, by (A.19).

Finally, supposedk = 0 andd1 6= 0. Then

‖ΣR
n (cn)−ΣR(0)‖ = ‖

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; cn)−
k∑

j=1

Pj(Σ)g(dj ; 0)‖

= ‖
k∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i; cn)
]
−

k∑

j=1

Pj(Σ)g(dj ; 0)‖

= ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]
+

k∑

j=1

PIj (Σn)g(dj ; 0)−
k∑

j=1

Pj(Σ)g(dj ; 0)‖
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≤ ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]‖+ ‖
k∑

j=1

g(dj ; 0)
[
PIj (Σn)− Pj(Σ)

]‖

≤ ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]‖

+
k∑

j=1

|g(dj ; 0)|‖PIj (Σn)− Pj(Σ)‖

≤ ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]‖+
k∑

j=1

|g(dj ; 0)|‖PIj (Σn)− Pj(Σ)‖

(A.22)

sincePIj (Σn) = Op(1), |g(λ̂i; cn)− g(0; 0)| p→ 0 by (A.19),g(dj ; 0) = O(1) and‖PIj (Σn)−Pj(Σ)‖ p→ 0, by
Lemma6.4 ii).

We can finally conclude that:

lim
n→∞Pr

[‖ΣR
n (cn)−ΣR(0)‖ ≥ ε

]
= 0 .

PROOF of Proposition 10.2

By Proposition10.1, we haveΣR
n (cn)

p→ ΣR(0). Then by Assumption2.1, Xn
L→ X, hence

X ′
nΣR

n (cn)Xn
L→ X ′ΣR(0)X . (A.23)

Let us project
WR

n (cn) = X ′
nΣR

n (cn)Xn ,

where

ΣR
n (cn) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn)

onto the two orthogonal eigenspaces,V1(Σn) andV2(Σn), such that:

WR
n (cn) = WR

1n(cn) + WR
2n(cn) ,

where
WR

1n(cn) = X ′
nΣR

11,n(cn)Xn ,

WR
2n(cn) = X ′

nΣR
22,n(cn)Xn ,

with

ΣR
11,n(cn) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn) =
k1∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i, cn)
]
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=
k1∑

j=1

PIj (Σn)g(dj ; 0) +
k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]
(A.24)

sinceg(dj ; 0) = 1
m(dj)

∑
i∈Ij

g(dj ; 0). Using the continuity property of the eigenvalues and total eigenprojections

given in Lemma6.4 i) and ii), and under the assumption thatg(., (cn)) is continuous a.e., we havePIj (Σn)
p→

Pj(Σ) and∀ε > 0, ε small, lim
n→∞Pr

[
sup
i∈Ij

|g(λ̂i; cn) − g(dj ; 0)| > ε
]

= 0, with cn → 0 by (A.19). Besides, we

know that projection operators are bounded in probability. Hence,

ΣR
11,n(cn)

p→
k1∑

j=1

g(dj ; 0)Pj(Σ) ≡ ΣR
11(0) . (A.25)

Therefore, we have:

WR
1n(cn) = X ′

nΣR
11,n(cn)Xn

L→ X ′ΣR
11(0)X ≡ WR

1 (0) .

Similarly, we have

ΣR
22,n(cn) =

k∑

j=k1+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn)
p→

k∑

j=k1+1

g(dj ; 0)Pj(Σ) ≡ ΣR
22(0) ≡ 0

sinceg(dj ; 0) ≡ 0 for all j = k1 + 1, . . . , k. As Xn
L→ X, andΣR

22,n(cn)
p→ ΣR

22(0) ≡ 0, we have:

WR
2n(cn) = X ′

nΣR
22,n(cn)Xn

L→ X ′ΣR
22(0)X ≡ 0 = WR

2 (0) .

PROOF of Corollary 10.3
Apply the results of Proposition10.2with

Xn =
√

n
[
ψ(θ̂n)− ψ0

] L→ N
[
0, Σ

]
= X , and xj = N

[
0, Im(dj)

]
.

WR
1 (0) = X ′ΣR

11(0)X = X ′( k1∑

j=1

g(dj ; c)Pj(Σ)
)
X =

k1∑

j=1

g(dj ; c)X ′Pj(Σ)X

=
k1∑

j=1

g(dj ; c)X ′V (dj)V (dj)′X =
k1∑

j=1

g(dj ; c)djx
′
jxj

=
k1∑

j=1

1
dj

djx
′
jxj =

k1∑

j=1

x′jxj ,

wherexj = N
[
0, Im(dj)

]
. As

k1∑
j=1

m(dj) = q1, WR
1 (0) ∼ χ(q1).
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