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ABSTRACT

This paper examines Wald-type tests in presence of (possibly) singular covariance matrices. Two different type:
of singularity are addressefrst, the sample matrix hasill rank but converges to aingular covariance matrix;

in this case, the Wald statistic is still computable, but usual regularity conditions do not hold anymore, which
modifies its asymptotic distribution. This asymptotic singularity causes the rank condition of Andrews (1987) to
be violated at the limit due to isolated values of the param&erondthe sample matrix does not have full rank,

but converges to a possibly nonsingular population matrix. This finite sample singularity may be due to redundant
restrictions. To address such difficulties, we introduce a clagsgofarizedinverses that exploitstal eigenpro-
jectiontechniques, [Kato (1966), Tyler (1981)], together witheaiance regularizing functioVRF) that modifies

the small eigenvalues that fall below a certain threslaad that their inverse is well defined. Under specific reg-
ularity conditions, the new regularized inverse converges to its regularized counterpart. This class of regularizec
inverses nests the spectral cut-off type inverse used by Lutkepohl and Burda (1997), and the Tikhonov-type inverse
We definethreeregularized Wald statistics: the first statistic admits a nonstandard asymptotic distribution, which
corresponds to a linear combinatiomgfvariables if the restrictions are Gaussian. uper bounds derived that
corresponds to &2 variable withfull rank. The second regularized statistic relies csugerconsistengstimator

of the eigenvalues at the thresheldhose distribution can be simulated. The third statistic lets the threshold vary
with the sample size leading to the spectral cut-off modified Wald statistic of Lutkepohl and Burda (1997). The
regularized statistics are consistent against global alternatives, with a loss of power for the spectral cut-off Wald
statistic relative to the other statistics, as illustrated in a simulation exercise.

Key words: Regularized Wald test; Moore-Penrose inverse; spectral cut-off and Tikhonov regularizations; super-
consistent estimator.
JEL classification: C1, C13, C12, C32, C15
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1. Introduction

This paper examines Wald-type tests in presence of (possibly) singular covariance matrices. More specifically
we address two different types of singularitirst, the sample matrix hasill rank but converges to aingular
covariance matrix; in this case, the Wald statistic is still computable, but usual regularity conditions do not hold
anymore, which modifies its asymptotic distribution. The claim made by Andrews (1987), and used by Lutkepohl
and Burda (1997), is that if the sample matrix is consistent for a singular covariance matrix, then the use of a
generalized inverse of the sample matrix instead of the g-inverse based on the population matrix will not affect
the asymptotic distribution of the quadratic form, provided the sample matrix has the same rank as the populatior
matrix with probability converging to one. Otherwise, the asymptotic distribution of the quadratic form is modified.
Andrews'’s rank condition may be violated at the limit due to isolated values of the parameter. For instance, in the
case of (highly) nonlinear restrictions, the rank of the derivative matrix of the restrictions may be lower for certain
values of the parameter than for others. If this isolated value is true, the rank of the derivative matrix based on the
consistent estimator will generally exceed that of the derivative matrix evaluated at the true value with probability
bounded away from zero. Therefore, the weight matrix of the Wald statistic based on the estimator will not satisfy
the rank condition when this isolated value is true, thus modifying the asymptotic distribution of the test statistic;
see Dufour and Valéry (2009) for the stochastic volatility model with a Jacobian matrix that is degeniegated (
reduced rank) at an isolated value of the parameter.

Asymptotic singularity can arise due to highly nonlinear restrictions, as encountered in impulse response func-
tions in VAR models, or when testing multi-step noncausality in VAR models, or testing Granger noncausality in
VARMA models. Pefaranda and Sentana (2008) also faced an asymptotic singularity problem in the context of
spanning tests in the return-mean-variance-frontier; in a GMM framework, the asymptotic covariance matrix of
the sample moment conditions is singular under the null of spanning. Consequently, the Wald-type test does no
have its standard asymptotic distribution anymore. One can also face asymptotic singularity with asymptotically
redundant restrictions when testing candidate stochastic discount factors in the Hansen-Jaganathan distance, ¢
Kan and Robotti (2009, p. 3461). Asymptotic singularity can be caused alsog®rconsistengstimators or
any estimators that do not exhibit the conventional parametric speed of convergence. In this case, the Jacobic
matrix can display a lower rank when the estimator is not appropriately scaled. While some authors investigate the
possibility of multiple convergence rates, we adopt a systematic approach by regularizing the matrix. For multiple
convergence speed estimators, see Antoine and Renaulaj2046re generally, any situations in a linear regres-
sion, where the matrix of the cross product of the covariéﬁé‘sX)/T does converge to a singular population
matrix are potential applications.

Thesecondype of singularity our methodology can deal with corresponds to the case where the sample matrix
does not have full rank, but converges to a possibly nonsingular population matrix. This finite sample singularity
may be due to redundant restrictions. When dealing with highly nonlinear conditional moment restrictions as
in Gallant and Tauchen (1989) in the I-CAPM framework, many of the parametric restrictions turn out to be
redundant, creating thereby collinearity problems for the Jacobian matrix. Redundant moment restrictions alsc
arise with the dynamic panel GMM estimator, when linear moment conditions imply nonlinear moment conditions
under additional initial conditions on the dependent variable, see Arellano and Bond (1991), Ahn and Schmidt
(1995), and Blundell, Bond and Windmeijer (2000). Also, the presence of a cointegrating relationship implies the
singularity of the VAR coefficient matris(1) in finite samples, and this can be related to tests of rank.

To overcome the problem of asymptotic singularity, Lutkepohl and Burda (1997) proposes to reduce the rank
of the matrix estimator in order to satisfy Andrews’s rank condition. In so doing, they set to zero the small
problematic eigenvalues to produce a consistent estimator for the rank of the population matrix. In the same
vein, Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Robin and Smith (2000) focus on tests for the
rank of a matrix that is unobserved, but for whick/a consistent estimator is available. While Gill and Lewbel
(1992), Cragg and Donald (1996, 1997) requir&towthe rank of the asymptotic covariance matrix, Robin and



Smith (2000) relaxes this assumption. In contrast, we tackle this problem differently by regularizing the matrix
estimator,.e. perturbing its small problematic eigenvalues. Thus, the regularized matrix estimator will converge
to its limiting regularized counterpart. However, unlike Cragg and Donald (1996, 1997) and Robin and Smith
(2000) who assume Gaussianity for the limiting distribution of the covariance matrix estimator, our methodology
based on Eaton and Tyler (1994) condition is more general, as Gaussianity is not required, nor the conyéntional
convergence speed; in this respect, compare our AssunthBppage 5, to Robin and Smith (2000), Assumption

2.2, page 154. In addition, a rank condition, (Assumption 2.2, page 155) relating the asymptotic covariance matrix
to the characteristic vector matrices has to be satisfied for Robin and Smith (2000) tests of rank to hold, which
requires more information on the characteristic vector structure of the matrix of interest; in practice, however,
there is no guarantee for this assumption to be satisfied. Moreover, our methodology is simple and transparer
compared to that of Robin and Smith (2000) that is more difficult to implement. Thus, their methodology can
be viewed as an alternative to that of Lutkepohl and Burda (1997) to provide a consistent estimator for the rank
of the population covariance matrix, or to consistently estimate the small problematic eigenvalues. Although our
methodology can be applied to any procedure providing a consistent estimate for the rank of the population matrix
the availability of such a procedure is not necessary for the validity of our approach.

Knight and Fu (2000) have tackled the asymptotic singularity problem differently by working on the null space
of the singular matrix on which there exists a positive definite matrix. More specifically, they study the asymptotic
behavior of Bridge estimators in nearly singular designs and find that the resulting estimators have a slower rate o
convergence than the usual root-n convergence rate. Therefore, the regularization helps preserve the usual roof
convergence rate of the estimators; see for instance Carrasco and Florens (2000),Carrasco, Chernov, Florens &
Ghysels (2007).

Further advantages of owegularizationapproach that reinforces its generality are the following: the regu-
larization technique we propose does not require a re-parametrization of the initial parameters, it is systematic
for econometricians who want to apply it without efforts. Finding suitable transformations of the parameters that
surmount the singularity problems can reveal tricky, almost infeasible, in highly nonlinear models for econome-
tricians, as pointed out by Gallant and Tauchen (1989) in the I-CAPM framework. This is the approach proposed
by Pefiaranda and Sentana (2008), where the authors exploit some implicit restrictions on the initial parameters t
reduce the number of parameters to identify. Simultaneously, they use a Moore-Penrose inverse, as Lutkepohl ar
Burda (1997), in the GMM criterion to reduce the number of moment conditions. In this way, the reduced set of
moment conditions will locally identify a subset of the initial parameter vector. In so doing, the authors assume
that the strongest collinearity in the design is restricted to the conditions that have no influence on the response
They also derive a reduced rank Wald test statistic in the GMM framework similar to that of Lutkepohl and Burda
(1997).

While our main concern is testing, some authors make use of the related spectral decomposition based-tool:
[Engl, Hanke and Neubauer (2000), Kress (1999)], to regularize estimators when a continuum of moments is use
in a GMM or IV framework; see Carrasco and Florens (2000), Carrasco, Chernov, Florens and Ghysels (2007)
Carrasco, Florens and Renault (2007), Carrasco (2007). In particular, Carrasco (2007) proposesdibetelV
estimatorsbased on different ways of inverting the covariance matrix of instruments. Indeed, when the number
of instruments is very large with respect to the sample size or even infinite, the covariance matrix of the moment
conditions becomes singular and some non-standard inverses are required. Also, when they are more mome
conditions than observations, the covariance matrix of the moment conditions involved in the GMM criterion is
singular. As noticed by Satchachai and Schmidt (2008), using a generalized inverse to overcome the singularity i
not a good idea, as the value of the two step GMM criterion function is always less or equal to one. The problem
is even worse for the continuous updating GMM, as its criterion function equals one for all parameter values.

Similarly, the GMM estimator of the parameters of the Consumption-based CAPM model based on the Euler
equations involves the inverse of the covariance matrix of the moment conditions as a weighting matrix. There exisi
situations where this weighting matrix turns out to be singular. Indeed, the more asset returns are used in cross



section, the more information is available to identify the model parameters whose identification can be tricky when
dealing with important nonlinearities. Indeed, an internal nonlinear habit function based on current and lagged
consumption as the one specified in Chen and Ludvigson (2009) requires a lot of cross-sectional informatior
to empirically identify the unknown habit function. However, the more assets used in cross-section, the more
chance of collinearity, the higher the probability to end up with a singular weighting matrix which completely
invalidates the usual tests. The same problem arises when assessing the pricing errors of different candida
Stochastic Discount Factors models through ltensen-Jagannathan distanceéndeed, this measure of asset
pricing model misspecification involves a sample second moment matrix df thesets as a weighting matrix.

A large number of assets can create collinearity and hence singularity difficulties arise that break down standar
inference. From an asset pricing perspective, the availability of an inverse that does not axgdggivelyhe

pricing errors is crucial for portfolio allocation. In contrast, risk management focuses instead on a precise estimatol
of the covariance matrix. See Fan, Fan and Lv (2006) for an examination of the properties of high dimensional
covariance matrix estimators in the context of observable factor models.

By contrast, we provide valid asymptotic or simulation-bassglilarized Waldest procedures that can deal
with such problems. Moreover, otggularizationapproach goes beyond the GMM framework and can accommo-
date any consistent estimator as the Sieve Minimum Distance estimator used in Chen and Ludvigson (2009) fo
the habit-based asset pricing model.

Itis important to stress another situation where the Jacobian matrix of the moment conditions in a GMM frame-
work can have a deficient rank due to (first-order) underidentification. This is the problem studied by Dovonon and
Renault (2009), where the authors overcome the weak identification problems by going a step further and examin
a second-order identification condition. Deficient rank problems due to identification issues go beyond the scope
of the present paper. Even though we allow the underlying paramétele unidentified, unlike Lutkepohl and
Burda (1997), we assume that a transformation of it, that(#, is identified. So the kind of rank deficiency we
consider in this paper does not come from (weak) identification problems; see also Antoine and Renault (2009)
and Antoine and Renault (20@)0for such issues.

When dealing with singular covariance matrices, usual inverses are discarded and replacguherilized
inverses, olg-inversegsee Moore (1977), Andrews (1987) for the generalized Wald tests] or modified inverses
proposed by Lutkepohl and Burda (1997). However, when using non-standard inverses, econometricians are nc
always aware of two difficultiesFirst, the well-known continuous mapping theorem so widely used by econo-
metricians to derive asymptotic distributional results for test statistics does not apply anymore because g-inverse
are not (necessarily) continuous. This fact has been observed by Andrews (1987). In addition, eigenvectors ar
not continuous functions in the elements of the matrix unlike the eigenvaBezndwhen performing the sin-
gular value decomposition of a matrix, the eigenvectors corresponding to eigenvalues with multiplicity larger than
one, are not uniquely defined, which may rule out the convergence of the estimates towards population quantities
Ignoring such concerns may lead to distributional results that are strictly speaking

To address such difficulties, we introduce a classeglilarizedinverses that exploittotal eigenprojection
techniquesj.e. an eigenprojection operator taken over a subset of the spectral set. Following Kato (1966) and
Tyler (1981), we work with theigenprojectionsn order to overcome the discontinuity and non-uniqueness fea-
tures of eigenvectors. The eigenprojection projects ontantregiant (to the choice of the basis) eigenspaice,
the subspace generated by the eigenvectors. A lemma given by Tyler (1981) states the continuity property fol
the total eigenprojection In this way, the important continuity property is preserved for eigenvalues and eigen-
projections even though eigenvectors aot continuous. In addition to this total eigenprojection technique, we
define a perturbation function of the inverse of the eigenvalues cadlgdnce regularizing functiofVRF) that
modifies the small eigenvalues that fall below a certain threshold so that their inverse is well defined whereas the
large eigenvalues remain unchanged. The class of admissible VRF has to satisfy certain continuity and boundec
ness properties with additional regularity conditions so that the regularized inverse does converge to its regularize
counterpart. Otherwise the convergence result (stated with a fixed value of the threshold) may break down. Ou



regularized inverse does nest the spectral cut-off type inverse used by Lutkepohl and Burda (1997), and other moc
ified inverses as in Valéry (2005). The distributional theory of the test statistics then expressed as a transformatiol
of the regularized inverse, hence of the total eigenprojections, will be greatly simplified and valid.

Our contributions can be summarized as followstst, we introduce a novel class of regularized inverses
with full rank that satisfies a decomposition resultegular component built on large eigenvalues while the others
involving the small eigenvalues may nottegular. This block decomposition of the inverse, coming from spectral
decomposition tools, is important insofern as it is carried over to the test statistic itself, and is useful to get an
insight on the structure of the distributioBecongdunder specific regularity conditions on the VRF, the regularized
inverse is shown to converge to its regularized full rank counterpart, with the convergence holding component
by component. Besides, our regularized inverse class is generalomschesthe spectral cut-off type inverse,
or the modified Moore-Penrose inverse proposed by Lutkepohl and Burda (1997), or the Tikhonov regularized
inverse. Third, we definethree regularized Wald statistics: the first two statistics rely on a fixed value for the
threshold in the VRFy(\; ¢) while the third one lets the threshold vary with the sample size, but requires more
information about the sample behavior of the eigenvalues, see Eaton and Tyler (1994) for the distributional theory
of the sample eigenvalues of a matriaurth, the first regularized Wald statistic admits a nonstandard asymptotic
distribution in the general case, which corresponds to a linear combinatigh\afriables if the restrictions are
Gaussian. Aupper bounds then derived for this first regularized statistic under general laws for the restrictions;
such a bound corresponds tqavariable withfull rank under Gaussianity. Hence, the tesasymptotically valigl
meaning that the usual critical point (given by tyrevariable withfull rank) can be used, but is conservativéth,
the second regularized statistic relies osuperconsistengstimator of the eigenvalues at the thresholghose
distribution can be simulated. Interestingly, we observe that simulating the distribution of the superconsistent
estimator-based regularized statistic makes it unsensitive to the choice of the threshold. In other words, simulating
the distribution makes the regularized statistic less sensitive to the tuning parangéx¢inswhen the threshold
goes to zero with the sample size, we obtain the spectral cut-off modified Wald statistic of Lutkepohl and Burda
(1997) as a special case. Under normality, the test has the asymptddistribution with a reduced rank.e.
the number of eigenvalues greater than zero. Note that Lutkepohl and Burda (1997) result only holds for distinct
eigenvalues whereas our result accounts for eigenvalues with multiplicity larger thaSemthwe also show
that the regularized statistics are consistent against global alternatives, but the spectral cut-off Wald test used b
Lutkepohl and Burda (1997) has reduced power in some directions of the alternative, as illustrated in a Monte
Carlo simulation.

Finally, we investigate, in a Monte Carlo experiment, the finite sample properties of the (regularized) test statis-
tics under two different designéirst, under Gaussianity, the full-rank regularized statistic using the conservative
bound tends to underreject the null hypothesis in singular designs, while the full-rank regularized statistic basec
on the superconsistent estimator of the eigenvalues displays the righasswaptotically(for a sufficient large
value of the threshold). In contrast, the spectral cut-off modified Wald statistic proposed by Lutkepohl and Burda
(1997) tends to overreject the null hypothesis in small samples, with severe size distortions when the process af
proaches the nonstationary region. Using a reduced critical point in a singular design, their statistic reaches th
right level asymptotically. As for the standard Wald statistic, its behavior is clearly modified in singular designs,
either suffering from severe overrejections in small samples (especially for parameter values set to -0.99), or un
derrejections in large samples. Regarding power properties, although the bound is conservativeit eluad
a loss of power under the alternative, which makes it attractive. Further, our regularization approach is system:
atic and robust to both designs, regular and irregular, whereas the modified Moore-Penrose statistic has reduce
power in regular designs. Indeed, by setting to zero the small eigenvalues, the modified Moore-Penrose statisti
does not exploit the additional information unlike the full-rank regularized statiSmsondwhen deviating from
normality, the standard Wald statistic along with the spectral cut-off statistic strongly overreject the null hypothe-
sis, with empirical size frequencies varying between 0.17 and 0.50 compared to a 0.05 level test. In contrast, th
full-rank regularized statistics that allow different probability distributions achieve to control for the size without

4



losing power. Overall, the full-rank regularized statistic that uses the bound is very appealing, as it always controls
for size, does not imply reduced power, is robust to both designs, regular and irregular, and is easier to implemen
compared to the simulation-based superconsistent estimator full-rank competitor. Moreover, the standard Wal
statistic and the modified Moore-Penrose Wald statistigrdeasibletests in practice, as they overreject the null
when the process is close to the nonstationary region. Besides, the modified Moore-Penrose Wald statistic require
to know whether we are in a singular or nonsingular design to choose the reduced critical point; this makes it less
attractive in practice.

The paper is organized as follows. In Section 2 we describe a general framework with minimal assumptions.
In Section 3, we provide specific examples found in the literature, where the researcher can face (asymptotic
singularity covariance matrices that modify the asymptotic distribution of the standard Wald test statistic. Then,
we introduce the class atgularizedinverses as opposed teneralizedinverse in Section 4 followed by the
regularizedtest statistic in Section 5. More specifically, a decomposition of the test statistic is identified through
the corresponding decomposition of the covariance matrix. In Section 6 we review and adapt some results or
total eigenprojections to derive the convergence results for the regularized inverses. In particular, we emphasiz
some (non)uniqueness and (dis)continuity properties related to eigenvectors of a given matrix and resort to tota
eigenprojection techniques to surmount such difficulties. In Section 7, we establish the asymptotic properties of the
new regularized inverse based on fixed threshold. In Section 8, we state new asymptotic distributional results fo
the regularized Wald test statistic using a fixed threshold and exploit the decompaosition of the regularized statistic
to derive an upper bound. In Section 9, we propose a new statistic based on a superconsistent estiofdter at
eigenvalues. In Section 10, we find as a special case the Lutkepohl and Burda (1997) result in the Gaussian cas
Finally an application to causality testing is provided in Section 3 followed by simulation results in Section 11.
Concluding remarks follow while the proofs are gathered in the appendix.

2. Framework

We want to test a null hypothesis of the form

Ho(v0) = 9(0) = 9o (2.1)

wherey(0) € 2 € RY is the parameter of interest with the parametedentifying the true underlying data
generating process. A usual test statistic for testing the null hypothesis is the Wald statistic as soon as we can fin
a consistent estimatar,, of the restrictions no matter where it comes froma,

Wi (o) = a2 [thn — o]’ 2 [ty — o] (2.2)

provided the inverse of the weighting matrix exists, represents a convergence rate that magifferentfrom

the conventional/n to precisely allow situations where some componentg,ofor linear combinations of them,

may converge faster or slower thgf. It is well-known in the faster case thaiperconsistergstimators can raise
asymptotic singularity problems, when not suitably scaled. Usugjlyis a consistent estimator of the restriction
covariance matrix’ in order to get a chi square distribution, as specified in Assumiébelow. For another
choice of Y, the Wald test will not have the standard chi square distribution, but can still be conducted. In this
paper, we shall place ourselves under weak assumptions contrary to the ones usually made in the economett
literature to conduct such a test. First, we wilit assume the restrictiong ) to be differentiable with respect to
(w.r.t.) the underlying parametér Such a differentiability assumption unnecessarily restricts the set of admissible
restrictions and can be avoided. To do so, we assume that a consistent esfimit@vailable satisfying the

following assumption, where the notatiod> denotes the usual convergence in law, gfd’) the law of X.

n—oo



Assumption 2.1 CONVERGENCE IN LAW OF THE RESTRICTIONS a,, iS a sequence of real constants such that
a, — oo, and
- Py
X, = an(wn —) = X (2.3)

whereL(X) is known.

This assumption significantly enlarges the family of admissible lawsforor ¢(6,,), 6, being a consistent esti-

mator off. For instance, the typical Gaussian distributionXocan easily be replaced by a chi-square distribution.
Generally speaking, any distribution that can be consistently estimated by simulations is admissible. Therefore, i
L(X) is not known, but can be simulated through bootstrap techniques, e.g., then the techniques proposed in thi
paper can be applied to provigalid tests under nonregular conditions. More importantly, note that Assumption
2.1only requires that) is identified; in other wordg)] can be unidentified, but there exist transformations, ak.

1 (0), that can be identified. Whereas Lutkepohl and Burda (1997) assume the availability of an asymptotic gaus-
sian estimator ofl, as in equation2.10), that restricts unnecessarily to situations wheig identified, we relax

this assumption here. Note thatwill alternately equat)y under the null hypothesis, @r under the alternative.
Further assumptions are required on the limiting weighting mairbo obtain a componentwise characterization

of themodifiedWald statistic.

Assumption 2.2 EIGENSPACE AND EIGENPROJECTION Theq x ¢ matrix X is such thatV j = 1,... k, with
1<k <q,
B(d;) = (U(dj)z) (2.4)
I=1,...,m(dj)
forms an orthonormate basis for the eigenspace
V(dj) ={v eR? | Yv=djv} (2.5)
such as
=3 diF(X) (2.6)
d;
where
Pj(X) = P(d;)(¥) = B(d;)B(d;)’ (2.7)

k
where thel;’s denote thé: distinct eigenvalues of with multiplicity m(d;) such thaty = »_ m(d;).

j=1
Most of the time, the weighting matriX’, as well as its sample analdg,, is interpreted as a covariance matrix.
Nevertheless, such an interpretation is very restrictive and discards distributions whose moments do not exist, e.g
the Cauchy distribution. Therefore, Assumpti@$and2.3 are purposedly formulated to allow such degenerate
distributions. A general condition, given by Eaton and Tyler (1994), states the convergence result for this set of
parameters.

Assumption 2.3 EATON-TYLER CONDITION. X, is a sequence gf x ¢ real random matrices andl' is ap x ¢

real nonstochastic matrix such that

Qn=bu(Zn—5) 5 Q (2.8)

whereb,, is a sequence of real constants such that- +oo and @ a random matrix.

Again, this assumption is general and allows situations, unlike Robin and Smith (2000), where the matrix
estimator is not asymptotically Gaussian. Eaton-Tyler condition is stated for rectangular matrices, but most of the
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time we will consider square matrices that are symmetric matrices with real eigenvalues. Assuitems
2.3 together with relaxing the assumption of convergence of ranks, will define the cornerstone for the validity of
the distributional results developed further. In addition, it is important to note that the generality of Assumption
2.3 allows for a mixture of a continuous distribution and of a Delta-Dirac distribution at an eigenvaltie:.
Therefore, it is not superfluous to examine this case, specifically for non-continuous distributions of matrices and
their eigenvalues, to provide a thorough distributional theory.

A special case of Assumptio@sl and2.3that is usually encountered in the econometric literature consists in
specifying a Gaussian distribution f&f whose parameterization hinges &rwith a,, = y/n as in Lutkepohl and
Burda (1997).

Assumption 2.4 ROOT-n ASYMPTOTIC NORMALITY.

X, = Va(h(0,) - (0)) 5 X =N(0,X) (2.9)

n—oo
whereX' is aq x ¢ matrix.

Note that the most degenerate case corresponding o0 is allowed by Assumptio2.4. In this case¢d; = 0,
with m(0) = gq. Usually, the asymptotic normality of the restrictions is deduced from the root-n asymptotic
normality of the estimatof,, of the underlying parametérthrough the delta methode.,

Vb, — 0) nf;o N(0, Zy) . (2.10)
This requires the differentiability of the restrictions unlike Assumpfah In so doing, econometricians unnec-
essarily restrict the family of admissible restrictions to those for which the delta method is applicable. Thus, when
the delta method is applied to the Gaussian estimator given in equation (2.10), the covariance matrix has the typicz
form
X =P(0)XeP(6) (2.11)

which critically hinges on the differentiability of the restrictions,
P(0) = 0vy/00

as in Lutkepohl and Burda (1997). By contrast, Andrews (1987, Theorem 1) does not rely on the differentiability

property of the restrictions, nor on the delta method, but on the Gaussian distribution of the random y&riable

and on the consistency of the sampt&ariancematrix to its population counterpart. Indeed, any weighting matrix

can be used in the Wald statistic but only twrariancematrix of the restrictions yields the standard chi-squared

distribution. If a different weighting matrix is used instead, the distribution may be modified as seen further.
Further, among usual regularity conditions made, when conducting tests based on quadratic forms such a

Wald-type tests, is the well-known rank condition for the covariance matrix. Whemd X, have full ranks,

we are in the regular case with thex g-weighting matrixX’ being nonsingular, and therefoV&, (i9) has an

asymptoticy?(q) distribution. This is not necessarily true, howevep;ifs singular. In this case, does not admit

a usual inverse, but can still be inverted by means of a generalized inversegoitaizedinverse as shown later

on. However, when the population mattx has a reduced rank, additional conditions are required. This is the

case covered by Andrews (1987).

Assumption 2.5 CONVERGENCE OF THE RANKS X and X, are matrices such that
P[rank(X,) = rank(X)] — 1, with|X]> 0
andn growing to infinity, where - | stands for the determinant.
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In other words, the rank of the sample matrix has to converge almost surely (a.s.) towassthitex ranlkof the
population matrix in order for the quadratic form to have a limitifgdistribution, with fewer degrees of freedom,
under Gaussianity. We shall relax this assumption in the paper.

To tackle the problem of ranks that do not converge, unlike Moore (1977), Andrews (1987) and Lutkepohl
and Burda (1997) who use a reduced rank estimator for the covariance matrix, such as the spectral cut-off Moore
Penrose inverse, we shall eventually increase the rank, by regularizing the smallest eigenvalues instead. In <
doing, the modified matrix will converge to a different object, affecting thereby the limiting distribution. It is
important to note that the regularization approach exposed next embed all rank possibilities, including the spectra
cut-off reduced rank. Also, the regularization techniques proposed to deal with incomplete ranks, when (possibly)
combined with simulated testing procedure, holds under weak assumptions as Assuthphamal2.3. In Section
5, we introduce theegularizedWald test statistic based segularizedinverses of the covariance matrix as a way
to handle such difficulties. Let us introduce before the clase@ilarizedinverses, as opposed to the class of
generalizednverses.

3. Examples

In this section, we provide examples where the econometrician can face (asymptotic) singularity of the covariance
matrix that will affect the asymptotic distribution of the Wald test statistic.

3.1. Multistep noncausality under Gaussianity

As already observed by Lutkepohl and Burda (1997), testing noncausality restrictions may raise some singularity
problems for the Wald test. We shall reconsider the example provided by Lutkepohl and Burda (1997) in our
specific regularization design. A VAR(1) process is considered fofthel)vectory; = [x; y; 2:|" as follows:

Tt Tt—1 Qpy Qgy Oy Tt—1 Ug t
| = A1 (Y1 | tu = Qg Qyy  Qyy Yt—1| + Uyt
Zt 2t—1 Qzp  Qgy Oy Zt—1 Uzt

Consider
Y =(1,-.-,¥n) (3xn)

B=(4) (3x3)
Zi=1yi) Bx1) Z=(Zoy...,Zn-1) (3xn)
U= (ui,...,un) (3xmn)
whereu; = [ug; uy+ u. )" is @ white noise with{3 x 3) nonsingular covariance matri¥,,. Leta = vec(4;) =

(c0)
vec(B). TestingH, : y: # x; requires to tesk = pK, + 1 = 2 restrictions onx [see Dufour and Renault

(1998)] of the form:

o borean) =
r(a) = = .
Qg Qgy T QpyQyy + Qzz 0y 0
These restrictions are fulfilled in the following three different parameter settings
Qgy = Ay = 0, Qzy #0
Qgy = Qzy = 0, Qg 7é 0

gy = Oz = Qizy = 0 (3.1
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But we can observe that the first-order partial derivative of the restrictions leads to a singular matrix

o [0 00 1 0 0 0 00 52)
Dol |omy 0 0 agpt+oayy ayy qp az 0 0 '

if (3.1) holds. Under such circumstances, the Wald test does not have the stghdalistribution under the null.
To perform the Wald test, let us consider the multivariate LS estimatar of vec(A;) = vec(B). Using the
column stacking operataec we have:

Y =BZ+U (3.3)
or
vec(Y) = vec(BZ) + vec(U) (3.4)
y = (Z' @ Is)vec(B) + vec(U) (3.5)
y= (Z’®I3)a+u (3.6)

whereE(uu’) = I3 ® X,. The multivariate LS estimatat is given by:

& = ((ZZ’)lz ® I3>y . (3.7)

The asymptotic distribution of the multivariate LS estimator:

Va(a—a) 5 N0, e x,) (3.8)

implies the asymptotic distribution for the restrictions:

. L
\/ﬁ(T(O[) - T(a)) - N(Ou Er(a))) (39)
where 5 oy
A T ~ Or
Yooy = — (@) Xy=(a A
is a consistent estimator fdr, ) and
S,=T"'1®%, (3.11)
is a consistent estimator far,, with .
Ir==-z7 (3.12)
n
and
I 1 - NN 1 / n—1 /
Sy = n;utut_nY[In—Z(ZZ) Z)Y’. (3.13)

From the asymptotic distribution (3.9), a Wald-type test is easily obtained to test thEnutl(a) = 0, i.e.
Wy =nr(a) SE  r(a) (3.14)

where a regularization is required under parameter setting (3.1).



3.2. Deviation from Normality: the Delta method breaks down

Suppose the underlying paramefiés ap x 1 vector such as
Vn(l, —60) ~ N[0,1,] , (3.15)
and suppose we want to test a null hypothesis of this form:
Ho(tho) : 9(0) =00 = 0. (3.16)
The data generating process corresponding to (3.15) is:
Y=60+u, u~NI[0,1,)],

whereY isp x n,0isp x 1,cis1 x n andu is p x n. Using the multivariate least square estimator, we can write:

b= 1) M@ Ly = By (3.17)

wherey = vec(Y') ispn x 1. Under the null, it is easily seen that the restrictions do not have the convengianal
convergence speed as usual. Thus, its distribution under the null, Whkefe is

n¢(én) = (\/ﬁén)/(\/ﬁén) ~ XQ(p) . (318)

The weighting matrix used in the quadratic form is:

2 =P(0)Z,P(0), Zy=1I, (3.19)
with o0
R /
P(0) = 50 20" .

One difficulty introduced by such a restriction is a deficiency of the rank of the weighting matrix when shifting
from Xy with full rank p to X with rank1. More importantly, although the restriction is differentiable w#,tthe

delta method completely breaks down because the distribution of the estimator of the restriction is not Gaussiat
anymore but belongs to a new family, thé distribution. A consistent estimator &f; and.X are given by:

1 . A
Yo =—ud, with a=Y —0,.
n

and R o )
X = P(0,)%gP(0,) . (3.20)

We will apply the regularization techniques introduced in sections 7 and Ilteoget % (¢). Hence, the appro-
priate statistic to test this null hypothesis should be:

WE() = nip(B) SR () (Bn) = n26(B,) 57 () (6n) (3.21)
instead of the standard Wald statistic
W = /mp(0,) 7 /np(0,) = np(0,) £ 14b(0,,) (3.22)
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neither the Moore-Penrose modified Wald statistic proposed by Lutkepohl and Burda (1997) is suitable:

W+(Cn) = ﬁ¢(én)/§+(cn)ﬁ¢(én)

both of them do not use théght convergence speed neither ttight distribution sincey(6,,) is not Gaussian
anymore.

() 2 (cn) ¥ (0) ; (3.23)

3.3. Jacobian matrix degenerate at isolated values for a stochastic volatility model

A two-step GMM-type estimator for estimatifig= (a.,, 7, ry)’ has been proposed by Dufour and Valéry (2009)
in the context of a lognormal stochastic volatility model:

yr=cy— +ur, | <1,
ur = [ry exp(we/2))z

Wi = QuWi—1 + TV, |aw| < 1.
based on the following moment conditions:
p2(61) = E(uf) = rjexp[(1/2)r3 /(1 — a3)],
pa(61) = E(u)) = 3ryexp[2ry, /(1 — al,)],

o2 (1161) = Efufu?_y) = i explr /(1 — ).

When testing for homoskedasticityt,, = r, = 0), in this model, which can be writtett(¢) = 0 with
¥(0) = (aw, mv)’, there are two restrictions, and the derivative matrix of the restrictions

9 (100
P<9)_80’_<0 1 o>

has full rank two, so it appears to be regular. However, the Jacobian of the moment conditions does not have ful
rank when evaluated at a point that satisfies the null hypothesis: it is shown that

5 00 2r
875,: 0 0 129 (3.24)
0 0 4r3

Yy

whena,, = r,, = 0, so that the Jacobiafiu/06’ has at most rank one (instead of three in the full-rank case).
But GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994, p. 2127). An important
regularity condition is violated. This raises estimation difficulties and was handled by redefining the estimator in
this case: we set,, = r,, = 0 andr, = \/u2(01) whenx < 3. Further,0p/06’ typically has full rank when it

is evaluated at a point that does not satisfy the null hypothesis, for example at an unrestricted point esimate of
as in Wald-type statistics. Therefore, the rankopf/00’, when evaluated at an unrestricted point estimate, of
generally exceeds the rank@fi/ 06’ evaluated at the trueéwhena,, = r,, = 0 holds. This is again a violation of

a standard regularity condition, and the Wald statistic has a non-regular asymptotic distribution.

3.4. Asymptotic singularity for (X’'X)/T in (linear) regressions

More generally, each time the matrix of the cross product of the covarigl¥sX,) /T', does converge to a singular
population matrix, the standard Wald test will fail to have its conventional distribution, as illustrated in the two
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examples below.

3.4.1. Degenerate factors

Suppose we want to test whether macroeconomic fundamentals, like real and inflation factors in Ludvigson anc
Ng (2009), have no forecasting power for future excess returns on U.S. government bonds beyond the predictivi
power contained in forward rates and yield spreads as in Cochrane and Piazzesi (2005). The forecasting regressi
of excess bond returns on estimated common factors, and possibly nonlinear functions of those factors has th
following form:

Yer1 = Yo + v1F1 + 2 For + 3F53 + vaFu + 5 E5 + 6 Fer + 7 C P+ €441 (3.25)

where Fy; = Flt, ande; N0 (0,1); the corresponding forecasting regression of excess bond returns

averaged across maturity, thaHsZ m’t+1)’ on a linear combination of factors, proposed by Ludvigson and Ng

=2
(2009), and Cochrane and Plazze3| (2005), is given by:

5

1 N

1 Zm;r% =0 + 1 Pt + o Fp + v3For + vaF3 + 5 Far + v6 st + 17C P + €41 (3.26)
N=2

whereC P, is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads. Suppose
we want to test the null hypothesis that the sixth macroeconomic factor has no predictiveigougy,: v = 0
againstH; : g # 0in equation (3.25), when the true data generating process (DGP) correspghgdsitoThus,

for some isolated value of the parameter space, the factor loagliag the second factor is not identified, as the
constant term turns out to Bg = ~ + 2. Therefore, the sample covariance maftix based on the finite sample
estimates will converge to a singular population ma¥ix under the true DGR,e.,

11’L
:—ZFtF{ Loye>o0,
n

whereF; = (¢, Fie, Fw Fs¢, Faz, Fst, Fet)', with 5 a consistent estimate ¢f Provided we can find a consistent
estimatel’;, of I" = (y0, 71, 72, 73, V4, V5, 76)/, the asymptotic distribution of the Wald statistic

A

nYe [E’VG]_I’%
will be modified due to the reduced rank bf-, whens = 0.

3.4.2. Asymptotic singularity in event studies

Finally, we can also face asymptotic singularity problems when conducting event studies in the following specifi-
cation:
Tt:Oé—f—,BT'mt—F’}/dt—i-Gt, t:l,...,T,

wherer; denotes the stock return at timer,,,; the return on the market portfolio at timeandd; is the event
dummy such thatd; = 1 for the event day, and zero otherwise. If the event occurs only once in the sample,
then the matrix of the cross product of the covariate¥’ X) /T, will converge to a singular population matrix.
Hence, the standard Wald statistic for testing some hypotheses on the parameters will not have its convention:
distribution.
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3.5. Singularity issues when testing SDF candidates with the Hansen-Jagannathan distance

Lety(+) be a stochastic discount factor (SDF) candidate involving some unknown parameteds: be a vector
of gross returns otV test portfolios; see Hansen and Jagannathan (1991) for@&BFis said to be misspecified
if for all values of~, the pricing errorg () is nonzeroj.e.,

e(y) = E[Ry(v)] — Iy # On - (3.27)

The famous Hansen and Jagannathan (1997) distance, henceforth HJ-distance, for assessing specification error:
stochastic discount factor models, is defined as the square root of a quadratic form of the pricing errors:

0= [e(’y)’U‘le(’y)] 1/2, (3.28)

whereU = E[RR']. When the model is misspecified, the HJ-distance is defined as

d= [mA%n e(v)'U_le(y)]l/Q .

(3.29)

in the empirical asset pricing literature. Kan and Zhou (2006) show that for linear factor models it is equivalent to
use the inverse of the covariance matrix of gross returns instead of the second sample rrimﬂéfggls,instead
of U~! in the HJ-distance. Kan and Robotti (2009) also focus on linear factor asset pricing models:

y(v) =z

wherex = [1, F’]’, and the pricing errors of th& assets are given by:

e(y) = E[Ry(y)] = 1y = E[Ra'y] =1y = Dy — 1y,

whereD = E[R2] = [ug, Va1 + paiy]. Kan and Robotti (2009) usk,,'as a weighting matrix in the squared
HJ-distance:

52 = mwm [D7 — 1N}/V251 [D*y — 1N}

-1
= /NV2211N—1/NV221D<D/V221D> (D’ngllzv)-
(3.30)

The unique value of that minimizese(y)’vzgle(y) is given by:

-1
Vi = (D’V221D) <D/V2211N> ) (3.31)

provided thatls; is of full column rank which implies thatD is also offull column rank However, if some factors
in F' are nonpervasive and do not contribute to the variance of the gross r&urhsmay be singular along with

-1
D. As aresultyy; and the minimized value @ are not defined anymore because the maérD(VﬁlD> is

singular.
Kan and Robotti (2009) consider two competing SDF models: SDF of model 1 is given byn'z1, with
x1 = [1, f1, f4], while SDF of model 2 is given by, = 3'zo, with zo = [1, f1, fi]. When the dimensioi, of
the second factor is equal to zero, model 2 nests model 1. For non-nested models, Kan and Robotti (2009) show
that testing equality of two SDk;; = y-, imposes restrictions omand3: y; = y2 holds if and only ify; = 34,
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n2 = Ok,, andB2 = Og,. However, the restriction; = [, is redundant because it is implied hy = Og, and
B2 = 0k,. Lety = [nh, 55)'. Hence, Kan and Robotti (2009) notes in a footnote page 3461:

"that we should not perform a \[Valgl test &y : m = (1, ¥ = Ok,4+K,. This is because the
asymptotic variance of/n[7] — gg,w]’ is singular undeifiy, and the Wald test statistic does not
have the standard asymptofig, , ., x, . distribution. The proof is available upon request.”

3.6. Spanning tests in the Return Mean Variance Frontier with asymptotic singularity

Pefiaranda and Sentana (2008) examine spanning tests in the Return Mean Variance Frontier (RMVF). They test
there is simultaneous tangency at two points. They decq*oltcalndci;1 two arbitrary expected returns. The null of
spanning can be written as:

Hy : a(c;) =0, a(c;) =0

where the regression intercepts:;) anda(c;;) are defined by the moment conditions:
E{HL [R; a(ci), b(Ci), a(cii, b(C“)] } =0.

But it has been pointed out by Marin (1996), Peflaranda and Sentana (2008) and that the asymptotic covarianc
matrix of the sample analog of the moment conditions is singular under the null. Hence, the conventional distribu-
tional theory of the Wald-type test does not hold anymore. To deal with this issue, Penaranda and Sentana (200¢
propose for spanning tests in RMVF, and in Stochastic Discount Frontier Mean-Variance frontiers introduced by
Hansen and Jagannathan (1991)), a modified GMM estimator under singularity of the covariance matrix (GMMS).
Their methodology consists in replacing the ordinary invers& dfy a generalized inverse, the Moore-Penrose,
while imposing parametric restrictions in order to work with a smaller number of parameters. By decreasing both
the number of parameters and the number of moment conditions, they avoid singularity. Hence, they propose, like
Lutkepohl and Burda (1997), a Wald test statistic wétuced rankbased on a modified GMM estimator.

4. Regularized inverses

The methodology introduced in this section applies to any symmetric matrices and more specifically to covariance
matrices. We first introduce some notations. Aet (A1,...,Ag) whereh; > Xy > ... > ), are the eigenvalues
of ag x ¢ (covariance) matrix’, andV an orthogonal matrix such that = VAV, whereA = diag(\1, ..., \y).
Specifically,V' consists of eigenvectors of the matfixordered so thab'V’ = V A. Letm(\) be the multiplicity

of the eigenvalué\. Although the matrixA is uniquely defined, the matriX consisted of the eigenvectors is not
uniquely defined when there is an eigenvalue with multiplieity\) > 1. The eigenvectors which correspond to
eigenvalues withm(\) > 1 are uniquely defined only up to post-multiplication bysa\) x m(\) orthogonal
matrix. Moreover, letY,, be a consistent estimator &f with eigenvalues\;(X,) > A (2,) > ... > A\ (Zy)
andV;, an orthogonal matrix such that, = V,,4,,V;, whereA,, = diag[Ai(Xy,),..., A(Zy)]. Forc > 0, we
denotey (X, c¢) the number of eigenvaluessuch that\ > ¢ andq(X,,, ¢) the number of eigenvalueg X,,) such
that\(X,,) > c.

If rank(X,,) = rank X)) = ¢ with probability 1,i.e. both matrices are almost surely (a.s.) nonsingular,
so the inverse ! = VA~V and X! = V,, A1V are a.s. well defined. However, if rai®) < ¢ and
rank(X,,) < ¢, we need to make adjustments. For this, we defiregalarizedinverse of a (covariance) matrix
as below.

Definition 4.1 DEFINITION OF THE REGULARIZED INVERSE. X' is ag x ¢ real symmetric semi-definite positive
matrix with ranKY') < ¢. Its regularized inverse is:

SEe) =vAl(e)V (4.1)
14



where
g(A1;¢) 0
Af(e) = AT[X; ] = (4.2)
0 9(Agic)
g(A;¢) >0, withc > 0, andg(A; ¢) bounded.

The scalar functiory(A; ¢) modifies the inverse of the eigenvalues in order to make the inverse well-behaved in
a neighborhood of the true eigenvalues. We shall call itf(#fagiance) regularization functioqVRF). The VRF
perturbs the small eigenvalues in order to stabilize their inverse, preventing them from exploding.

We now introduce a partition of the matrik (¢) into three submatrices where@epresents a threshold which
may depend on the sample size and possibly on the sampleiitself= c[n, Y, ]:

Alxeg 0 0
Af(e) = 0 Al 0 . (4.3)
0 0 Ag; [\ ]

Let ¢; = dim AI[S\; cl, fori = 1,2,3, with ¢ = ¢(X,¢), g2 = m(c) andgs = ¢ — ¢1 — g2. m(c) denotes the
multiplicity of the eigenvalue\ = ¢ (if any). The three components correspond to:

AI [A;c] = diag[g(Mis¢),. .., g(Agis0)] for A>c (4.4)
A;[X;c] =g(c;c)ly, for A=c , (4.5)
Ag[j\; ] = diag[g(Ag 42415 €)s - - -, g(Ags ¢)] for A< c. (4.6)

More specifically, the large eigenvalues that fall above the threshodnain unchanged whereas those equal
to or smaller than the threshold are inflated to make their inverse well-behaved. Thus, the first component is
"regular" and remains unmaodified, while the others may not be "regular". In particular, the third component
requires a regularization. Indeed, because of the invertibility difficulties raised from small valdesvefshall
replace the latter with eigenvalues bounded away from zero. Instead of using a spectral cut-off Moore Penrost
inverse, we propose alternativelyfdl-rank regularized matrix. This regularization contains the spectral cut-off
type regularization as a special case. Indeed, the spectral cut-off Moore Penrose inverse sets to zero all the sm:
problematic eigenvaluese. Ag ;] = Ag[;\; ] = 0, yielding areduced-rankmatrix.

Let V1 be ag x ¢; matrix whose columns are the eigenvectors associated with the eigenyatuesrranged
in the same order as the eigenvalues. The eigenvectors associated withhform a basis for the eigenspace
corresponding with\. If m(\) = 1, these eigenvectors are uniquely defined, otherwise not. The same holds
for the ¢ x ¢o matrix V5, whose columns are the eigenvectors associated with the eigenvalges and for
the g x g3 matrix V3 whose columns are the eigenvectors associated with the eigenvakies AJ{ A(Zn); cl,
/1; A(Zn); c],/l;g A(Z0); ], Vin, Vo, andVs,, denote the corresponding quantities based on the sample atialog
with dim A;[A(Xy); ] = g1 = card{i € I : \;j(2y) > ¢}, dim Aa[A(X},);¢] = Go = card{i € I : \{(X),) = ¢},
dim A3[\(X),);c] = g3 = card{i € I : \;(X,) < ¢}, respectively.

Using (4.3), theegularizedinverse can be decomposed as follows:

AN 0 0 v/ 3
Re) = vaAlV =Vl [ 0 Aled 0 Vil => 5f(e)
0 0 Ag[)\;c] Vi =1

4.7)
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where

2

SEe)=viAl(eV) i=1,2,3 (4.8)

Aj(c) = AZT [\; ] for the sake of notational simplicity. Note that the original matfican be decomposed similarly
as:

3 3
T=VAV =) 5 =) VidV] . (4.9)
=1 i=1

with A1(c) = {\: XA > ¢}, Aa(e) = {\: A = c} andA3(c) = {\ : XA < c¢}. In the absence of problematic zero
eigenvalues, the usual inverse can be computed as:

3 3
Sh=vATV =) n = VA (4.10)
=1 =1

Let I, andI,, denote conformable identity matrices. Let us establish some useful properties for the regularized
inverses.

Property 1 PROPERTY OF THE REGULARIZED INVERSES LetY = VAV’ be a positive semi definite matrix,
suchthat\; > --- > X\, > 0. LetAg()\;c) <1 V A Then, the regularized inversg”(c) of ¥, defined im4.1,
satisfies the following relations.

) DY) =XE()Y < I,;
iy TXR(c)T < I, ,whereT = VAY2V" s the square root of. ;

i)y YXR(e)Y < X
iv) If g(A;¢) > 0, then(ZR(c)) ' > %,
V) If (A>0 = g(X;c) > 0), then (rank(XF(c)) > rank(X)) .

It is important to notice that any transformation of the original ma¥ithat diminishes the inversg”(c) satisfies
relationiv). Note that the generalized inverses usually denotet bghare propertie§ andiii) with theregular-
izedinverses. By contrast, properiyi) appears as a dominance relation for sgularizedinverse as opposed to
g-inverses for whicl? ¥~ ' = . Resultv) is well known for g-inverses and is related to generalized inverse with
maximal rank. See Rao and Mitra (1971, Lemmas 2.2.1 and 2.2.3 page 20-21)] for tg3w@telv) regarding
g-inverses. Finally, note that) is another way of formulating), and can be useful for sandwich estimators.

5. Regularized Wald statistic

In this section, we introduce the concept of regularized tests which embed three possibl€assdsorresponds

to the regular setup where the estimator of the covariance matrix converges to a full-rank fixed matrix. In this case
regularizing is useless with decomposition (4.9) and (4.10) boiling down to single block avken. Case 2
corresponds to a sample covariance matrix which converges to a singular limiting matrix but satisfying the rank
condition2.5. In such a case, the limiting distribution is modified only through an adjustment of the degree of
freedom; this is the case covered by Andrews (1987) and Lutkepohl and Burda (1997). €asallgmakes use

of a sample covariance matrix which violates the typical rank condition. Also, the regularized weighting matrix
converges to an object that is different from the original population matrix. Regularizing then yields a valid test but
at the cost of dully modifiedasymptotic distribution. This is the route investigated here. We consider situations
where the finite sample rank generally exceeds the asymptotic one. This type of singularities can be encountere
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when the derivative matrix of the restrictions has a lower rank only at the true value of the parameter, or in the
presence of superconsistent estimators or estimators that do not converge at the expected parametric speed.
this respect, Antoine and Renault (2009), Antoine and Renault @&Qddinted out that although all parameters
are identified, but some rates of convergence are as slow/4sthe standard GMM estimator asymptotics are
modified. The regularized Wald statistic can also handle cases where the finite sample matrix is singular possibl
due to redundant restrictions that are difficult to detect analytically.

Based on decomposition (4.9), the original Wald statigfjg v ) defined in equation (2.2) enjoys the following
decomposition

Wn(wO) = Wln + WQn + W3n s (51)

whereW;,, = a2 [ty — vo] 55} [tn — o], with Z1 = Vi, A1V fori = 1,2,3, and A, = A7 A(Z0); .
Fori = 2,3, W;, = 0, eventually.

The specific irregular setup here consists in allowing singular covariance matrices that violates AssRfption
of Andrews (1987). As a consequence, the Wald test statistic has to be modiggllarizedto account for such
irregularities. Let us introduce thregularizedWald statistic in the next definition.

Definition 5.1 DEFINITION OF THE REGULARIZEDWALD STATISTIC. The regularized Wald statistic is

Whie) = X/ xEe)X,
= Qn [7]}11 - Q;Z)Oysz(c)an [7])11 - @Z)O} . (52)

Built on theregularizedinverse of Section 4 and its decomposition (4.7)-(4.8) rédgeilarizedWald statistic can
be decomposed as follows.

Wile) = XpZ3(e)Xn = aj [t — 0] E5(e) [hn — vo]
3

= a} [ — 0] Y _Zf(c) [ — ]
=1
= WiL(e) + Wapn(c) + Wii(c) (5.3)

where

Wzﬁ(c) = a?L [qﬁn - ¢0]/25L(C) [dzn - 77[)0]

with X2 (¢) = Vi, Al (¢)V], fori = 1,2, 3.

By partitioning the inverse of the eigenvalue matfik into three bIocksAI(c) for A > ¢, Ag(c) for A = ¢
and Ag(c) for A < ¢, we have identified a convenient decomposition of the statistic into three components: a
first component involving the "large” eigenvalues remains unchanged; a second component gathers the eigenvalu
exactly equal to the threshoiglwhile a third one incorporates the small eigenvalues. As we shall see in S&dfion
this decomposition helps one to better understand the structure of the distributiorredulerizedtest statistic.
By contrast, Lutkepohl and Burda (1997) only keep the eigenvalues greater than the theesinidth cancels out
the last two componentse. Wi (c) = 0 andW. (¢) = 0. Thus discarding the small eigenvalues may result in a
loss of information. However, as Lutkepohl and Burda (1997) ugedistribution with fewer degrees of freedom,
a deeper investigation must be conducted for power assessment. More importantly, in finite samples it will be
difficult to disentangle between the estimates which really correspoihd=a from those close te, but distinct
from c. This makes the estimation procedure trickier and the asymptotic distribution more complicated. Note that
Wi, = Wi (e) for this is the regular component common to both statistics, the usual Wald and the regularized
Wald statistics. Moreover, when there is no eigenvalues exactly equaht-) = 0, and the second component
collapses to zero.
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6. Results on eigenprojections

6.1. Discontinuities of eigenvectors: an illustration

We discuss now some hon-unigueness and discontinuity issues regarding the eigenvectors of a given matrix. Whil
it is well-known in spectral theory that eigenvectors corresponding to multiple eigenvalues are not uniquely defined
(but only up to the post multiplication by an(A) x m(\) orthogonal matrix withn () indicating the multiplic-

ity of the eigenvalue), econometricians are not cautious about such considerations that could entail convergenc
problems. Second, whereas the eigenvalues are generally known to be continuous functions of the elements of tt
matrix, this statement does not necessarily hold for the eigenvectors. The main pitfall consists of drawing conver-
gence results for the estimates of the eigenvectors based on the consistency of the sample matrix which criticall
hinges on the continuity assumption of eigenvectors (w.r.t. the elements of the matrix). Even in the determin-
istic case, the eigenvectors are not necessarily continuous functions of the elements of the matrix. To see the
discontinuity, we consider a simple counter-exarhple

Example 6.1 Let A(x) be the matrix function defined as:

1
Tt 0] if 2 <0
0 1—=x
Az) = (6.1)
1
1 ifz>0.
x 1

This matrix function is clearly continuous at= 0, with A(0) = I,. However, forz < 0, the spectral decomposi-
tion of A(z) is:

A@M—O+xﬂﬂ[10y+ﬂ—xﬂﬂ[01] (6.2)
[with (1 4+ z) and(1 — z) being the eigenvalues aifdl, 0)" and(0, 1)’ the eigenvectors], while far > 0, it is
1 1 1 1
A@ﬂ—v§ﬂ+xﬂJ[11]+¢J1—@[{Jﬂ —1] (6.3)

[with (1 + z) and (1 — z) being the eigenvalues an%(l, 1)’ and %(1, —1) the eigenvectors]. Clearly, the
eigenvalueg1 + z) and (1 — z) are continuous at = 0 whereas the eigenvectors are not the same whether
x—0Torz— 0.

Being unaware of this caveat may leadimngdistributional results through mistakenly applying the continuous
mapping theorem to objects that aret continuous. Nevertheless, there exists functions of the eigenvectors that
are continuous w.r.t. the elements of the matrix. Specifically, for an eigen¥athe projection matrix(\) that
projects onto the space spanned by the eigenvectors associatel viltle eigenspacé/(\) - is continuous in

the elements of the matrix. This follows from the fact that\) is invariant to the choice of a basis. For further
discussion of this important property, see Rellich (1953), Kato (1966) and Tyler (1981).

6.2. Continuity properties of eigenvalues and total eigenprojections

In order to derive the asymptotic distribution of the regularized statistics, it will be useful to review and adapt some
results on spectral theory used by Tyler (1981). £€Y’) denote the spectral set &f, i.e. the set of all eigenvalues

We are grateful to Russell Davidson for this example.
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of Y. Theeigenspacef X’ associated with is defined as all the linear combinations from a basis of eigenvectors
Xyt =1,...,m(A),l.e.
V()\) = {Xi S Rq|2Xi = /\Xi} . (64)

Clearly,dim V' (\) = m()\) . SinceX'is ag x ¢ matrix symmetric in the metric of a real positive definite symmetric
matrix T (i.e. TX' is symmetric), we have:

RT= > V(). (6.5)
)

AES(E

Theeigenprojectiorof ' associated with\, denotedP()), is the projection operator onio(\) w.r.t. decomposi-
tion (6.5) ofR?. For any set of vectors; in V' (\) such thakTx; = d;;, whered;; denotes the Kronecker’ s delta,
P()) has the representation

m(A)
PA) =D xxT. (6.6)
7j=1
P(\) is symmetric in the metric of'. This yields

AES(X) AMZn)eS(Xhn)

If v is any subset of the spectral s¢tY), then thetotal eigenprojectiorfor X associated with the eigenvalues in

v is defined to b, ., P(A). We report below a lemma given by Tyler (1981, Lemma 2.1, p. 726) that states
an important continuity property for eigenvalues and eigenprojections on eigenspaces for non-random symmetri
matrices of which consistency of sample regularized inverses will follow.

Lemma 6.2 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS LetX), be ag x g real matrix symmetric
in the metric of a real positive definite symmetric maifjxwith eigenvalues (X,) > Aa(X,) > ... > A\ (2,).
Let P, .(X,) represent the total eigenprojection fé, associated with\, (X)) ... A\(X),) fort > k. If £, — ¥
asn — oo, then:

I) )\k(En) — /\k(Z), and
i) Pri(Xn) — Pt (X) providedA,_1(X) # Ap(X) and A (X) # Ay (X) -

This lemma tells us that the eigenvalues are continuous functions in the elements of the matrix. The same continuit
property holds for the projection operators [or equivalently for the projection matrices for there exists a one-to-one
mapping relating the operator to the matrix w.r.t. the bases] associated with the eigenvalues and transmitted t
their sum. No matter what the multiplicity of the eigenvalues involved in the total eigenprojeetidry’), this
continuity property holds provided that we can find one eigenvalue before and one after that are distinct.

It will be useful to extend Lemma@.2to random symmetric matrices. To do so, we first consider a.s. con-
vergence (in symbot3) and then convergence in probability (in symb®). To the best of our knowledge,
these results are not explicitly stated elsewhere. In the following we will tacitly assume that a probability space
(Z, Az, P) is given and that all random variables are defined on this space.

Lemma 6.3 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONSALMOST SURE CONVERGENCE Let
X, be ag x ¢ real random matrix symmetric in the metric of a real positive definite symmetric random rhatrix
and with eigenvalueg; (X)) > Xa(X),) > ... > A\ (Xy). Let P, (X)) represent the total eigenprojection for
¥, associated with\,(2,,) ... \¢(X,) for t > k. If X, 3 ¥ asn — oo , then:
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) Me(Zn) %3 A (2), and
i) Pri(2,) %S Pyy(X) provided,_1(2) # M\ (X) and \(X) # Ay1(X)

We can now show that the continuity property of the eigenvalues and eigenprojections established in the a.s
case, remain valid in the case of convergence in probability .

Lemma 6.4 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONSCONVERGENCE IN PROBABILITY.

Let X, be ag x ¢ real random matrix symmetric in the metric of a real positive definite symmetric random
matrix 7;, with eigenvalues\; (X,) > Xo(X),) > ... > A\((Xn). Let P, .(X,) represent the total eigenprojection
for X, associated with\,(X,,), ..., \¢(2,) fort > k. If X, 2y asn — oo, then:

i) Ap(Zn) 2 (X)), and

i)y Ppy(2,) 2 Ppy(X) provided;, 1 (%) # M\ (E) and A\ (2) # A1 (5)

6.3. Asymptotic distribution of eigenvalues

In this subsection, we summarize general results on sample eigenvalue behavior established by Eaton and Tyl
(1991, 1994).

Before establishing convergence results for the regularized covariance matrices and the regularized tests stati
tics, we shall first study the convergence rate of the eigenvalues in the general case where the covariance matr
may be singular with (possibly) multiple eigenvalues. To do so, we shall apply a general result given by Eaton
and Tyler (1994) where they generalize classical results due to Anderson (1963, 1987)on the behavior of the san
ple roots (of a determinantal equation). Specifically, under relatively weak conditions Eaton and Tyler (1994)

show the following: if a sequence of randdm x ¢)—matricesX,, satisfying the conditiom,, (X, — %) £ Q

where X is a nonstochastic matrix, then the sample eigenvalues will have the same convergence rate, with

b (Z,) — U(X)] 5 [Hp (3@ + Qi1]), ¥(Qa)] . Hp(.) and¥(.) are vector-valued functions stack-

ing the eigenvalues of the corresponding objects. A more detailed definition of those vectors will follow. For our
purpose, the convergence rateof the sample eigenvalues is the only thing we need in deriving the convergence
property of the regularized covariance matrices.

Letd; > do > --- > dj denote the distinct eigenvalues ofjax ¢ symmetric matrixC' and letm; be the

multiplicity of d;, i« = 1,..., k. Given the eigenvalue multiplicities @f, it is possible to partition the matrig
into blocks such ag’;; is them; x m; diagonal block of” andC;; them; x m off-diagonal blocksi, j = 1,... k.
Thus, a function ong x g symmetric matrices can be defined by
p(C11)
C
H(C) = p( .22) 6.8)
p(Ckk)
H(C) takes values ifR? and p(C;;) consists of then;-vector of ordered eigenvalues of the diagonal blatk
i=1,...,k. LetI" be an orthogonal matrix such that
T'AI' =D, (6.9)

where the diagonal matri® consists of the ordered eigenvaluesAdfEaton and Tyler (1991) first establish the
distributional theory for symmetric matrices before extending it to gepexa§ matrices.

20



Lemma 6.5 DISTRIBUTION OF THE EIGENVALUES OF A SYMMETRIC SQUARE MATRIX LetS,, be a sequence
of ¢ x ¢ random symmetric matrices. Suppose there exists a nonrandom symmetric Anafrika sequence of
constants$,, — -+oo such that

Wi = b (S, — A) 5 W . (6.10)

Then
bu(p(Sn) — p(A)) & H(IWT'). (6.11)

For anyp x ¢ real matrix X, the ¥(.) function is a vector-valued function that stacks the eigenvalues of the
corresponding object as defined below:

vé VT
V()= f(p(X'Y)=| : with f(z) = [ : (6.12)
Ve VZq
where; > --- > £, > 0 are the eigenvalues a&f’ X
Let
T = (df(€)) = %diag(gl/{ e (6.13)

In the first part of the theorem below, we gather the special cases where the Matrdy have rank = 0 or
r = ¢ before giving the general result in the second part. In the second part of the theorem, write ghaatrix
X in the form
D 0
o /

Yy=1I <0 0) I (6.14)
wherel (I3)is ap x p (resp.q x ¢) orthogonal matrix, and is ar x r diagonal matrix.D consists of the strictly
positive singular values of. Partition the matrix,, as

211 2ni2
Xn = " " 6.15
" <En21 Zn22) (6.15)

whereX, 11 isr x r, Xp10isr x (g —1r), Xpo1 1S (p— 1) x rand X900 is (p — ) x (¢ — r). Partition the random

limit matrix @ accordingly. The x r diagonal matrixD = diag( i/Q, ey }/2) defines a functiort{p onr x r
symmetric matrices. Lefp = %diag({flﬂ, e ,5;1/2). The general cask < r < ¢ can be thought as gluing

together the two special cases= 0 andr = q.

Theorem 6.6 DISTRIBUTION OF THE EIGENVALUES OF RECTANGULAR MATRICES IN THE GENERAL CASE
Let¥(-) be defined as if6.12), and suppose Assumpti@r8 holds.

i) If X =0,then
b (F(2,) — (X)) & w(Q) . (6.16)
i) If X' has full rankg, then
b (T(2,) —¥(X)) & TH(I[2'Q+ QXTI (6.17)

whereH, I" andT are defined in6.8),(6.9) and(6.13).
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i) If rank(X) =r,1<r <gq,then

¢ [Hp(A[Q) +
bal(2) - w(m)] & | M2+ Qu) (6.18)
whereQ = [g“ glﬂ is a well-defined random element, wihy; being anr x r matrix and Q.2 a
21 22
(p—7) x (¢ —r) matrix. Ther x r diagonal matrixD = diag(gll/Q, el ,1/2) consisted of the strictly positive

singular values o defines a functio{p onr x r symmetric matrices a# is defined in(6.8) ongq x ¢
symmetric matrices.

For our purposes, we do not need the knowledge of the whole distribution but only the convergebgefaie
sample eigenvalues for the convergence property of regularized inversecwhers with the sample size. See
Eaton and Tyler (1994, Propositions 3.1 and 3.4 and Theorem 4.2) for a proof.

7. Asymptotic properties of the regularized inverse

In this section, we derive asymptotic results for tegularizedinverse that hold for a relatively general variance
regularization function (VRF) family.

7.1. The family of admissible Variance Regularization Function (VRF)
We now define the VRF family, and provide a few examples.

Definition 7.1 THE FAMILY OF ADMISSIBLE VRF. G, is the class of admissible scalar VRF, such as for a real

scalar,c > 0:
glbo: Ry — Ry
A = g(Xe)

g(\; ¢) is continuous almost everywhere w.tX, except possibly at = ¢, (w.r.t. the Lebesgue measurg)is a
function that takes bounded values everywhere,gischon-increasing ir\.

Note importantly that we allow a discontinuity at= ¢ to precisely embed a spectral-cutoff type regularization
such as a modified Moore-Penrose inverse that is cleatlgontinuous around = ¢, see (7.2).
Some possible choices for the VRF could be:

$ if A>c¢
svo={ 1 | &
m if A S C

with v > 0. This VRF can be viewed asmodifiedHodges’ estimator applied to the eigenvalues. See Hodges and
Lehmann (1950), LeCam (1953). Interesting special cases include:

i) v=o00,c>0,hence
L jf Aa>e¢
. — A

and thereforelf(c) = A*(c), where

AT (c) =diagl/AI(A > ¢),..., 1/ A 1(A\g > ©),0,...,0]
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corresponds to a spectral cut-off regularization scheme [see Carrasco (2007), Carrasco, Florens and Renat
(2007) and the references thereih(s) is equal to 1 if the relation is satisfied. In particular) is amodified
version of the Moore-Penrose inverse of

A=diagAiI(A1 >0),...; 05 L(Ag, > 0), Agi+1L(Agi41 > 0) ..., Al (Ag > 0)]

used by Lutkepohl and Burda (1997, henceforth LB). We also consider the case where some eigenvalues ma
be smaller than the threshatgdwith ¢ # 0.

i) v=0ande = ¢, with ¢ # 0, hence
L if A>e¢

i) v >0with~ = m a > 0, ande = A, with ¢ # 0, hence

1 if A>c
svo={ 1,2, (7.4)

At

which corresponds to a variation around the Tikhonov regularization (related to the ridge regression) since
A

1 _ 1 _
Ay(e=N) T AMa/A T A2+a”

Based on the spectral decomposition defined in equation (6.7), we immediately deduce a spectral decompos
tion for the regularized inverses:

SR e)=vAIV' = > gxaP(N), S =Vudl(@Vi= > g[AZ)id PIAEZ)] -
AES(X) A(Zn)ES(5n)
(7.5)
Thus, the dependence orof the regularized inverses comes from the ViRK; ¢). Besides, the thresholdmay
be size-dependerite., g(\, ¢,). This case is a special casecdixed and will be studied in Section 10.

7.2. Asymptotic properties of the regularized inverse wherm is fixed

Because the random objects considered here are matrices, we must choose a norm suitable to matrices. For tl
reason, we consider the finite dimensional inner product spgge< -, - >), whereS, is the vector space of

q X ¢ symmetric matricesS, is equipped with the inner produet X}, ¥y >= ¢r[X]X,], wheretr denotes the

trace. Let| - || denote the Frobenius norm induced by this inner produgct] 2|2, = ¢r[%’X)]. Let AT denote the
regularized inverse of @x ¢ real symmetric matriXd. In the subsequent propositions,let {1,2, ..., ¢}, denote

the set of indices such that > A\, > ... > \;,andJ = {1,2,..., k} the subset of corresponding to the indices

k

associated with the distinct eigenvaluesiafi.e. d; > dy > ... > d; > ... > di, sothat)  m(d;) = ¢ > 1and
j=1

1 < k < g, with m(d;) denoting the multiplicity ot/;. Let us define a partition af, denotedP (1) such that:

k
PI)={I;cljeJ:L(\L=0J=1}, T={1,...,q}, (7.6)
J#l j=1
with
Ij = {Z el: \= dj} , card Ij = m(d]) (7.7)
and
Ic)={iel: \y=dj=c},, cardI(c)=m(c) (7.8)
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We adopt the convention thdtc) = (), if there is no eigenvalues equal ¢o The vector spac®? can be de-
composed aR? = V(dy) @ --- @ V(d;) ® --- @ V(di) . Eachu € R? can be expressed in the form =
ur+- w4 Fug, Withu; € V(d;), j € J inaunique way. The operatd; = P(d;) is such thatPju = u; is
the eigenprojection operator on the eigenspaeg ) alongN; = V(d1) @ - -®V(dj—1) BV(djt1) - --BV(di) -
Thus,

Py(Z) = P(d;)(¥) (7.9

projects X onto the eigenspack(d;) along N;. Furthermore,zlePj =1, PP, = 0;,FP; . Thereis a
one-to-one mapping fromi to P(1) such that:

ViedJ:jr— I (7.10)
where the total eigenprojection operafar (e) applied toX,,, with X, L, 5, yields by Lemméb.4ii)
Pr,(£,) & Pi(£) = P(d;)(%) (7.12)

and

k k
dim Py, = dim P; = m(d;) = dim V(d;) with 1=Y P;=Y P, . (7.12)
j=1 j=1

Property 2 UNIQUE REPRESENTATION OF THE REGULARIZED INVERSE For a giveng(., ¢) VRF in theG,
family, the regularized invers&’(c) = V A'(c)V' of a symmetric matrix and its sample analog:*(c) =
VnAIL(c)V,Q admit an unique representation of the form:

Sh(e) = gldj;0)Py(2) (7.13)
j=1
and i
B0 = Py (5 s Y oo (7.1
j=1 i€l

where thed;’s denote the distinct eigenvalues Bfwith multiplicity m(d;), Ai = Ni(Zn);
are defined at equationg.9)-(7.12) with I; defined at equatio7.7). If X' = 0, P(0)(X)

9(0;¢) P(0)(X) = g(0;¢) 1 .

The uniqueness of the representation of the regularized inverse immediately follows from the uniqueness of the
decomposition involving only distinct eigenvalues. Thus, there is a one-to-one relation between the regularizec
inverse and the VRE(., ¢) in the G, family. An interesting case producing a nonstandard asymptotic distribution
corresponds to using a fixed threshold. In this case, the asymptotic distribution of the regularized test statistic
involves a nonstandard component that can be bounded above as shown in CBr8llary

P[j (En) and P](E)
= I, and X (c) =

Assumption 7.2 REGULARITY CONDITIONS FOR THE CONVERGENCE OF THE REGULARIZED INVERSEThe
VRFg € G.,andfori =1,...,q, \; = \;(X) are the eigenvalues of@x g semi definite matrix’. At least, one
of the following conditions holds:

i) the VRFg is continuous af; = ¢

i) AN Ni=c
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iii) the estimator);(c) of \; is superconsistent @ i.e. P[\;j(c) =¢] — 1.

n— oo
As soon as one of the three above conditions hold, both convergence results of the regularized inverse (Propositior
7.3and7.4) will hold, otherwise it may break down. Let us now state the a.s. convergence for the regularized
inverse wher is fixed.

Proposition 7.3 ALMOST SURE CONVERGENCE OF THE REGULARIZED INVERSES Letg € .. Suppose
XY and X, are ¢ x g symmetric matrices withank(X) = r < ¢ . Let the regularized inverses be defined at
equationg(7.13) and (7.14). Let Assumptioii.2hold. If X, “3 2, then

2R () 2h(e) . (7.15)

Proposition 7.4 CONVERGENCE IN PROBABILITY OF THE REGULARIZED INVERSES Suppose~ and X, are
g X g symmetric matrices such thatnk(X) = r < ¢ . AssumptiorR.3 holds withp = ¢, and Assumptioi.2
holds. Let the regularized inverses satisfy Property 2, and decompogition(4.8). Then

Zi(e) = Bfi n(e) + Z5b () + 235, (0) (7.16)
h
wnere " : A "
Blin(€) = D Pr (M) s ) 90 & 3 _g(di)Fi(2) = Zi(0) (7.17)
j=1 Vel j=1
1 N
Zh(€) = Prio/(Zn) s D 900 0) = 960140 Pro)(F) = Z5(0) (7.18)
icl(c)
k 1 . k
3 a(c) = > sz(En)WZg(Ai,c) = Y gldpoPi(X) = SH(e). (7.19)
j=k1+1{a;=c}+1 Vel j=k1+1 =)+

Ry B 2l . (7.20)

k

k1 = > 1(4;>¢}, k is the number of distinct eigenvalues Bf and P;.)(¥) = P(d;)(X) for d; = ¢, where
j=1

P;(X) = P(d;)(X) is defined at equatiofir.9). I; andI(c) are defined in(7.7) and(7.8).

The problematic component for the convergence of the regularized inverse is the second one involving the eigen
value)\; = d; = c. If the VRFg is continuous ah; = d; = ¢, equation (7.18) holds; if there are no eigenvalues
Ai=dj=cI(c)=0,114,— = 0, and the convention adopted is to §é§§m(c) = Yl (c) = 0; if there exists a
superconsistent estimator of the eigenvalue &f.18) holds. Otherwise’;?(c) may not converge t&;f(c) . In

other words, the conditions stated in Assumpfio®are necessary conditions for (7.15) and (7.20) to hold.

8. Asymptotic distribution of the regularized Wald tests with a fixed threshold

In this section, we characterize (Propositd) the asymptotic distribution of the regularized Wald statistic for
general distributions forX,,, before giving its specific expression for the Gaussian case (Cordl@y The
decomposition of the regularized statistic into three independent components, one regular and two nonregula
ones, provides an insight on the structure of the distribution which yields an upper bound for the test statistic in the
general case (Corollai§.3); its expression in the special Gaussian case follows (Cordilay
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Proposition 8.1 CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WHEN THE THRESHOLD IS
FIXED. Suppose the assumptions of Proposiffofhold together with Assumptidhl, with ¢ = 3. Suppose
k

the ¢ x ¢ limiting weighting matrixX’ satisfies AssumptioR.2, letk; = > 1¢4,>c) be the number of distinct
j=1

eigenvalues of. larger thanc, and W2 (c) is defined in$.2). Then

WEe) & Whc) (8.1)
where
Whe) = X'ZRe)X = zk:g(dj; ¢)X'B(d;)B(d;) X
= W)+ Wf(f)l Wi(c), (8.2)
Wit(e) = X'2fi(e)X = ig(dj;c)X’B(dj)B(dﬂ’X 7 (8.3)
W) = X' 28 ()X = ]g_c; )1{q;— X'B(c)B(c)' X , (8.4)
W) = X'2E ()X = k g(d;; ) X' B(d;j)B(d;)' X . (8.5)

J=kitlia,=cy+1

Interestingly, whent = 0, the distribution ofil¥’%(c) is not degenerate: the regularized weighting matrix is
given by Xf(c) = g(0; ¢)1,, so the regularized Wald statistic simplifiesgi®; c¢) X’ X in the general case; in the
Gaussian case, whe¥i = 0, d; = 0 with multiplicity ¢, and the limiting statistic is equal to zero (see equation
(8.6), wherelWfi(¢c) = 0). Note also that the components are independent due to the specific decomposition
of the regularized weighting matrix. We can now easily consider the special case Wher&aussian, with

the Lutkepohl and Burda (1997) result obtained as a special case of the CoBRarBesides, if there is no
eigenvalues such that= d; = ¢, Wi*(c) = 0 due to the indicator function, af@ 2(c) = W{(c) + W(c) for

all the subsequent results stated in this section.

Corollary 8.2 THE REGULARIZED WALD STATISTIC WITH A FIXED THRESHOLD: THE GAUSSIAN CASE
Suppose the assumptions of Propositéf hold, but replace Assumptio?.1 with 2.4, with ¢y = 4, and
B(dj)'X = \/djzj, wherez; = N[0, I,,q), forj=1,... k.

i) If X =0, then
k
WE(c) A W) = X' 2R ()X = Zg(dj;c)dj:c;xj =0. (8.6)
j=1
ii) If ¥+ 0,then
WE) & Wh(e) (8.7)
k
wherelW £ (c) = X' SR ()X = 3 g(dj; o)dju; = W (e) + W (c) + W (e) with
j=1
k1
Wi(e) = X' Sf ()X = g(dj; c)d;v; (8.8)
j=1
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Wyt(c) = X' 555 ()X = g(¢; ) 1{g,—c}Vj(c) » (8.9)

k
W) = X'ZE(e)X = > gldj;e)dsuy (8.10)
J=kit g =y +1

wherev; ~ x*(m(d;)), andvj() ~ x*(m(c)) .

We can see from this corollary that the three components can be interpreted as a linear combination of chi-squar
variables with the degree of freedom given by the multiplicity of the distinct eigenvalues. Note that®when
has rankr < ¢, the last componerit/f(c) that corresponds to the eigenvalues less thawill contain a zero
eigenvaluej.e. d; = 0, whenc # 0. Whenc = 0, in this caséV{(0) = W£(0) = 0, W{(0) = W*(0), and

we obtain the Lutkepohl and Burda (1997) result as a special case. Note that their result only holds for distinct
eigenvalues.

Corollary 8.3 CHARACTERIZATION OF AN UPPER BOUND IN THE GENERAL CASE Suppose the assumptions
of Proposition8.1hold. LetY; = B(d;)'X. Letg € G, with a fixed threshold such that

g(djie)d; <1 Vj=1,....k

then,
k

Whe) < Y Yy,

j=1

The proof is straightforward. We obtain a characterization otipper boundfor general distributions for the
regularizedWald statistic, when: is fixed. Such avalid bound will yield aconsistentest under the alternative.
However, using the standard chi square critical point corresponding to the Gaussian case will also produce consit
tent test under the alternative, yet at the cost of size distortions under the null.

Corollary 8.4 CHARACTERIZATION OF THE BOUND. THE GAUSSIAN CASE.  Suppose the assumptions of
Corollary 8.2hold. Letg € G, with a fixed threshold such that

g(dj;c)djgl Vj:L...,k

then,
Wit(e) < XP(q), Wai(e) < xP(m(e), Wit(e) < x*(g3)

and

k1 k
wherev; ~ X2 (m(dj)), q1 = Elm(dj), 3 =q—q —m(c),andqg = Zlm(dj)-

J= J=
In the Gaussian case, we obtain a chi square as an upper bound fegukeizedstatistic, where is fixed. Each
component is distributed as a chi square variable with the degree of freedom given by the sum of the multiplicity of
the distinct eigenvalues involved in the sum. As the decomposition involves three independent chi square variables
the resulting distribution for the overall statistic is also chi square due to its stability; the degree of freedom is then
given by the sum of the degrees of freedom of each component. A convenient chgioeidd beg(d;; c¢)d; = 1,
forallj = 1,..., ki+m(c), whichyieldsiW{i(c) ~ x2(q1), andW{i(c) ~ x2(m(c)). Although a fixed threshold
leads to a nonstandard asymptotic distribution for the regularized statistic, the decomposition of the statistic into
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three components naturally provides an upper bound for the nonregular components. In consequence, the critic:
points given by the standard chi square distribution(ifs Gaussian) can be used to provideasymptotically
valid test. However, improved power over those conservative bounds can be achieved by simulations.
We shall now show that the regularized statistic is consistent against a global alternativ&yyfeiows a
general distribution.

Proposition 8.5 CONSISTENCY PROPERTY OF THE TEST Suppose the assumptions of Proposi8drhold, and
WL (c) as defined ing.2). Suppose there exist some eigenvalues of the limiting matsxch thatd; # 0 under
the alternative. Suppose furthat, = a,, (¢, — ¢1) satisfies Assumptich 1, with o) = ;. If o1 — 1o = A # 0,
andA’XE(c)A > 0, then
WE(c) 0o (8.11)
We also characterize the behavior the regularized Wald statistic under local alternatives as in the next proposi
tion.

Proposition 8.6 LOCAL POWER CHARACTERIZATION Suppose the assumptions of Proposittohhold, and
WL (c) as defined ing.2). Suppose there exist some eigenvalues of the limiting matsxch thatd; # 0 under
the alternative, with) = 1. If a,, (Y1, — o) — A # 0, and A’ SE(c)A > 0, then
WE(c) néoo X'ZR(0)X +2X' SR (e) A+ ASE(0)A . (8.12)

We can observe from this result that the limiting quantity involve three components: the first component, a
guadratic form inX, still satisfies the null hypothesis; the second component is a linear fotkh ithe third
one represents a noncentrality parameter. Only the last two component will contribute to power. Note that in
the Lutkepohl and Burda (1997) case, their noncentrality parameter based on the modified Moore-Penrose invers
A'XF As expected to be smaller than the noncentrality param#&tgr(c) A, which may entail a loss of power
despite a smaller critical point, due to a chi square distribution with reduced degree of freedom. Indeed, there ma
exist some directions for the alternative, where a spectral cut-off type Moore-Penrose inverse that sets to zero th
small eigenvalues, may destroy power as stated in the next corollary.

Corollary 8.7 LOCAL POWER CHARACTERIZATION DELTA IN THE NULL EIGENSPACE. Suppose the assump-
tions of Propositior8.6 are satisfied. Suppose further thate V(0), then

L
=

n—oo

WE(c) X'5R(0)X 4 29(0;6) X' A+ g(0;¢)A'A . (8.13)

We do not expect the test to be consistent against all types of alternatives. There may exist some directions whet
power is reduced or eventually destroyed, whethées in the eigenspacde(0) associated with the null eigenvalue

or not. In such a case, the choicegd; ) is critical for power considerations. By settipf); ¢) = 0, the spectral

cut-off Moore Penrose inverse used by Lutkepohl and Burda (1997) will destroy power.

9. Regularized Wald statistic based on a super consistent eigenvalue estimator

We now introduce a new regularized Wald statisfig? (\(c); ¢) built on asuperconsistergstimator of the eigen-
values at, denoted&(c). In so doing, a second layer of regularization is introduced throumbdifiedHodges-
Lehnman estimator applied to the eigenvalues. More importantly, the superconsistency property of the eigenvalu
estimator can accommodate a discontinuity of the \yREEA = c. The regularization is henceforth twofold: first,

we modify the estimator of the eigenvalue as in (9.1), second the Hodges-Lehnman estimator of the eigenvalue:
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5\((:), is plugged into the weighting matrix and then regularized. Sushperconsistengstimator aic can be
designed as follows.

The modified estimatok(c) = (\;(c))i— 1,....q Of the eigenvalues of & x ¢ semi definite positive matrix’
such that for each= 1, ..., ¢, \i(c) satlsfles
S AN if [N > v
Ai(e) = s bn 9.1
(c) {c if (A —cl v, ®.1)

whereb,, is the speed of convergence of the sample eigenvalues as defined in Tiée@rems chosen such that

en — oo with 72 — 0 asn grows to infinity, andv is an arbitrary positive constanty; (c) corresponds to

a modlfledHodgess estimator; see Hodges and Lehmann (1950), LeCam (1953), Lehmann and Casella (1998)
Leeb and Potscher (2008). This estimator enjoysthperconsistengyroperty 3iz). The sign function is defined

as:

1, if x>0
slz] = { 0 if z=0 (9.2)
-1, if x<0.

Property 3 SUPERCONSISTENT ESTIMATOR Under the assumptions given in Theor@® the estimato; (c),
defined in(9.1), of \; of theq x ¢ semi definite positive matriX has the following properties for eaéh1 < i < g,

i) Phi(c)=c] — 1,if N=c

n— oo

i) P{s[\i(c) —c] =s[\ —c]} — 1,wheres[.]denotes the sign function defined({n2).

Property 3) states the usual convergence in probability whilg States thesuperconsistencgroperty of the
modified estimator at. Finally, Property 3ii) states that the modified estimator falls in the appropriate class
depending on whetheY; > ¢, \; = ¢, or \; < ¢. As emphasized in Assumptigh2, \; = ¢ deserves a careful
treatment, specifically if a mixture of a continuous distribution and of a Delta-Dirac distributiois abnsidered.
Although it is rather unlikely to encounter situations whege= c in finite samples, we wanted to provide a
comprehensive thorough study of all possibilities. Thus, to circumvent the complications aroused by such a case
we rely on asuperconsistergstimator. Recall thak(c) is defined in (7.8), and its estimator is given by

Ie)={iel: N(c)=¢c}, (9.3)
with I(c) = I(c) = 0, if there exist no eigenvalues = c. Then,

P[I(¢) =I(c)] = P[Ai(c) =c,Vie I(c)| =P[ () {Xi(e) =c}] — 1, (9.4)

sinceP[XZ-(c) = c] — 1 for all .. Note that only the modified estimaté{(c) satisfies (9.4) unlike estimators
with continuous distributions for whick [S\i =c] =0.
In the special case whebg = n'/2, we can take,, = n'/2~% with 0 < § < 1/2, so that:

. Nio i di—c > %
Ai(c) = A n 9.5
(c) {c if A —cf <% 9:5)
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Thus, if \; = ¢, we have:

P[S\Z‘(C) =c] = P[\/m;\Z —c| < Vn1/275] > P[\/ﬁ|5\, -\ < Vn1/275] — 1 (9.6)

sincey/n(\; — \;) = Op(1) . If A; # ¢,V e > 0, , then

1/2—6
PlAi(c) = M| <] =P — ¢ > v /1/2 | = P[Vnlhi —c| >vn'/?°] - 1. (9.7)
n— oo
Finally, if a consistent estimator of the number of eigenvalues greaterctisaavailable, we will be able to
simulate the distribution of the superconsistent estimator-based regularized stfi§th¢c); ¢). Therefore, the
simulated distribution will converge to the right distribution (thatif?(c)), so that the level of the simulation-
based test is controlled asymptotically. Let us define now an estimator of the possible multiplicity of

q
(e) =D L i) - (9.8)
=1

The number of eigenvalues greater thars given byk, = Zl{d —e>0) = Zl{x _e>0) > and its estimator
J_

corresponding th, = El{x(c)—oo} satisfies the following relation? e > 0 : P[|k1 — k| < e] — 1.
i=1 "

n— oo

Theregularizedinverse based on tfmperconsister&stimatod( ) = (5\ (€)i=1,..q » With V}, = [Z;]i=1,..4
the matrix of eigenvectors, corresponds to:

Ef(j\(c);c) = Vn[diag(g(j‘i(c);C))]izl,...,qvé

= IR (A@)ie) + 25 (Ae)ie) + T (Me)e) (9.9)
where ) A i 1 A
Sin(Me)ie) = ZPIj(En)W > 9@ )L, -0 - (9.10)
j=1 17 iel;
~ “ 1
25 (Me)se) = gle C)’rh(c) Z Lisutmes X Pige)(En) (9.11)
i€ I(c)
- “ 1 -
25 (e ZPI midy) 2 (Xi(0); )15 (0) e <01 > (9.12)
vely

k

since U I; = {1,...,q}, and whereP;, (5,) = 3 i (#}d:) 'a}, Py (Zn) = 3 @i(#4di) i) Theiy's
J=1 i I i€ I(c)

do not have norm equal to 1, ard(c) is defined in (9.8).

Proposition 9.1 DISTRIBUTION OF THE SIMULATION BASED TEST Let;\(c) = (;\i(c))izlmq, the vector of
the superconsistent estimators of the eigenvalues satisfy Property 3, andlV*(c) satisfy(8.1). Let the VRF
g € G.,and the superconsistent estimator-based regularized statistic be:

W A(e); o) = X, 2 (A(e); )Xo (9.13)
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whereZE(A(c); ¢) is defined in equation®.9)-(9.12). Then

plim {WE(A(¢);¢) = WE()} =0. (9.14)

n — oo

Thus, the simulated distribution ®,%(\(c); ¢) will converge to the right distribution asymptotically so that the
level of the simulation-based test will be controlled asymptotically.

10. The case with a varying threshold:,

We shall now present the convergence results for the regularized inverses which are fundamental to obtain well
behaved regularized test statistics when the threshold varies with the sample sige=Let ¥,,) and\; = \;(X)
for notational simplicity. First when designing the VRBEX; ¢,,), the varying threshold,, must be selected so that

Prl|A = Ni| > ¢en] = Pr{|ba(\i — X)| > bpca] — 0 (10.1)
n—oo

with ¢,, — 0 andb, ¢, — oo as n grows to infinity. Thus;, declines to 0 slower thatyb,,, andb,,c,, — oo slower
thand,, does. Indeed, the threshold must not decline to zero either too fast, or too slow. Selgétirtgis way
ensures that the nonzero eigenvalues of the covariance matrix will eventually be greater than the threshold, whil
the true zero eigenvalues will fall below the threshold and are set to zero at least in large samples. In most cases,
natural choice fob,, = v/n and a suitable choice fet, is ¢,, = n~ /3. This convergence rate plays a crucial role
in Proposition10.1below.

Proposition 10.1 CONVERGENCE OF THE REGULARIZED INVERSE WHEN THE THRESHOLD VARIES WITH THE
SAMPLE SIZE Let X be ag x ¢ real symmetric positive semidefinite nonstochastic matrix Bpaé sequence
of ¢ x ¢ real symmetric random matrices. Suppose the assumptions of Théddmld withp = ¢ and let
g € Ge. Let); = \(X,). Suppose further that, — 0 andby,c, = oo If X7(0) and X% (c,,) have the

representationq{.13 and (7.14) respectively, then .
SR B 2R(0). (10.2)

Thus, an important continuity property for the regularized inverse (unlike g-inverses) is established in this propo-
sition that contributes to the econometric literature.

In the following, we establish eharacterizatiorof the asymptotic distribution of theegularizedtest statistic
in the general case. This characterization makes use of a decompositiorregulaizedstatistic into a regular
component and a regularized one. Recall that we want to test the null hypothesis given in equatidre(2.1),

Ho (o) : 9(00) = o -

Proposition 10.2 ASYMPTOTIC CHARACTERIZATION OF THE REGULARIZEDWALD STATISTIC WITH VARY-
ING THRESHOLD. Suppose the assumptions of Propositidnl are satisfied. Suppose, also, Assumpfdh
k1
holds, andrank(X) = ¢;. Letk; be the number of non-zero distinct eigenvalugs, > m(d;) = ¢; > 1, and
j=1
g(d;;0) =0,V 5 >k + 1. LetV;(X), andV; (X)), be the eigenspace associated with the total eigenprojections

k k
21]3]-(2), ZlPIj(Zn) respectively, and»(X'), V2(2),), their complements iR?. Then, undetd (),
j=1 j=1

Wh(c,) = X, ¥B(e,) X, & X' 2R(0)X = WH(0) (10.3)
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WE(e,) = WE(¢,) + WE (¢,) (10.4)
W (en) = XLEE (e X 5 X' 2R (0)X = W (0) (10.5)
W (cn) = X,58 (en)Xn 5 0. (10.6)

Thus, when the thresholg, converges to zero at an appropriate rate, based on the sample eigenvalues con-
vergence rate, the limitingegularizedinverse boils down to the spectral cut-off Moore-Penrose inverse, which
annihilates the nonregular componé¥i?(0). Moreover, if we restrict the convergence in law above to the sole
standard Gaussian distributidre., [X,, = a, (¢ — ¢0) = v (0) — vo] — N0, £]], we obtain the result
given by Lutkepohl and Burda (1997, Proposition 2, page 318) as a special case (Cd@IBarn this case, the
regularized Wald test is asymptotically distributed ag*ég;) variable, withg; denoting the number of nonzero
eigenvalues greater than the threshold. It is important to note, also, that Lutkepohl and Burda (1997, Proposi:
tion 2, page 318) result holds only for distinct eigenvalues, unlike Propodifighthat is valid under multiple
eigenvalues.

Corollary 10.3 ASYMPTOTIC DISTRIBUTION OF THE REGULARIZEDWALD STATISTIC IN THE GAUSSIAN
CASE WITH VARYING THRESHOLD. Suppose the assumptions of Propositifr2hold. Replace Assumptidhl
with 2.4. Suppose further Assumpti@r holds withX; = N [0, I,,,(4,)] for all j. g(d;;0) = dij, Vj<k andO
otherwise. Then, unddi(vy),

Wiik(en) = n[(9) — o) S (ea) () — o] = Wi (en) + Wan(en) ,

with R X
Wi () = n[(0) — o] 2, (cn) [1(0) — o] , (10.7)
Wit (cn) = n[v(0) — vo) D55, (ca) [ (0) — o] , (10.8)
and
WE (cn) & WH0) ~ x*(q1) and Way(cn) S 0. (10.9)

When the threshold goes to zero at the appropriate speed, the limiting regularized statistic has a standard cl

square distribution with the degree of freedom given by the multiplicity of the nonzero eigenvalues. Meanwhile,

the nonregular component collapses to zero due to the spectral cut-off Moore-Penrose inverse.
Theregularizedtest has power against local alternatives:

Hy:Vn(¢1n(0) —to) = A, A#0. (10.10)

Under this alternative, theegularizedtest has an asymptotic noncentgdldistribution,i.e.
Wh(ea) 5 P (a, 425 A) . (10.11)

For example, in the LB case the modified statistic corresponds to:

Wi (en) = np(0) VAT () V' (B), (10.12)
with
WE(cn) = WE (en) + WE (cp) > Wi (c,) infinite samples (10.13)
whereA *(c,) = diag()\l_l, .. .,A;ll,o, ...,0) represents a modified version of the Moore-Penrose inverse of
A=diag(Mi, ..., Ags Ag+1,-- - Aq) - A T(cy,) corresponds to a spectral cut-off regularization scheme.
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11. Simulation results

In this section, we perform Monte Carlo experiments to assess the empirical behavior of the (regularized) Wald
statistics in two different situations: first, we conduct a multi-step noncausality test under the normality assumption,
then we test nonlinear restrictions on parameters in a non-Gaussian case, where the delta method breaks down.

11.1. Multi-step noncausality under Gaussianity
To test the null of multi-step noncausalil : () = 0, we use four different versions of the Wald statistc
W =nr(a)2F, r(a) (11.1)

where singularity problems arise under parameter setting (3.1).
11.1.1. Simulation design
We examine three different kinds of parameter settings for the VAR(1) coefficients

Ozg  OQgy Qg

A= |oge ayy  ay
Qzy  Qzy Oy

The first two parameter setups correspond to:

—-0.99 gy Qg =09 azy o
A=A = 0 —0.99 05 |, A1=Ayn= 0 -09 0.5 |,
0 0 —0.99 0 0 —-0.9

where the problem of singularity is obtained tof, = o,. = a., = 0. The key parameter here to disentangle
between the regularity point and singularity point under this configuration iswith o, = 0 corresponding to
a singularity point, and,., # 0 to a regularity point.

A third parameter setup is examined:

0.3 azy o
A=A =107 03 025(,
0.5 04 0.3

wherea,, = a,. = 0, anda,, = 0.4 # 0 yields a regular setup. The first two parameter settings involve
parameters close to the nonstationary region, whereas the third one falls inside the stationary region.
Letuy = [uz+ uy uzy) be a Gaussian noise with nonsingular covariance matyix The threshold values
have been set to
cn = n"Y3, ¢=0.1,0.001.

Concerning:,, it has been normalized by the largest eigenvalues to account for scaling issues of the data. For the
fixed threshold:, we study a weak and a stronger regularization to investigate its impact on the results. We use
5000 replications in the simulation experiment. The nominal size to perform the tests has beenfiXeavith

critical points for the chi-square distribution with full rank givenbgé%(Q) = 5.99, or with reduced rank given by
ng,%(l) = 3.84. In the tables below, I88/; denote the standard Wald statisfi; the spectral cut-off regularized

Wald statistic,I¥3 the full-rank regularized Wald statistic using the conservative bound}ianthe regularized

Wald statistic based on a super-consistent estimator of the eigenvaluebade distribution is simulated.
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11.1.2. Level assessment

We study the empirical behavior of the test statistics under the null hypothesis:

Hy: r(a)= Yay } = m :

QpzQlgy T QpyOQyy + Oz Olzy

first in irregular setups (see Table 1, panéls A; = AjgandB : A; = Ay), then in a regular setup (se Table
1, panelC : A; = Apy).

It is clear from Table 1, panels A and B that the standard Wald stati$tic,does not have its conventional
asymptotic distribution in non-regular setups, either suffering from overrejections in small samples, or from under-
rejections in large samples; its behavior is more critical when parameter values approach the nonstationary regio
(Table 1, Panel A). The reduced rank Wald statidtie, displays the same finite sample behaviolags in the
non-regular setups, with more and more size distortions when parameters values get close to the nonstationa
region, but reaches the right asymptotic size when the sample size increases. In contrast, the full-rank regularize
statistic that uses the bounids, is conservative, as it underrejects the null hypothesis, whereas the full-rank reg-
ularized statistic based on the superconsistent estimator of the eigenV&lyesaches the right nominal level of
0.05 for large sample sizes, providing evidence that the level is contailledstasymptotically. We also report in
the last column the empirical frequency [denotedfbyq(\(c))] of the superconsistent estimator for the smallest
eigenvalue. Regarding the regular setup shown in Table 1, panel C, all statistics display the correct expected size
0.05 at least asymptotically. However, for the regular setup, the modified Moore-Penrose Wald dfatjgia-
posed by Lutkepohl and Burda (1997) should use the critical point given by the full-rank chi-squared distribution,
i.e.xgs%(Q) = 5.99, instead of the reduced rar)(%5%(1) = 3.84 critical point. In practice, the econometrician
does not know a priori which one to use; he is better off using the same fullyfapk2) = 5.99 associated with
the full-rank regularized statistid}’s. If he uses the full-rank critical point given %5%(2) = 5.99 associated
with the modified Moore-Penrose statistic, he will converge to the right nominal size, but if he picks up the wrong
reduced one given bx§5%(1) = 3.84, the size distortion increases. Indeed, we report evidence on this claim
in Table 1, panel C, where the frequencies shown in parentheses correspond to the wrong reduced critical poir
(X§5%(1) = 3.84) in aregular setup. Note also that we have tried different values for the fixed threshold we
recommend = 0.1 to control for the size, especially for the superconsistent-based estimator whose distribution is
simulated. Smaller values of the fixed threshold do not guarantee a control of the dig for

11.1.3. Power assessment

We also study the empirical power for alternatives close to a singularity peint 0:

e o=, Lol # o]

with oy = 4, (6 = 0.0632 or § = 0.1264) whose empirical power is reported in Table 2, panels A and B. We also
consider a second type of alternative for a violation of the second restriction only, while maintaining fulfilled the

first restriction,.e.
Hy: r(a) = ’ # 0
Ls Moy = (Qzz X Qzy) 0|’

with o, = § = 0.1264, o,y = 0.4 anday,, = 0, under a regular design:

03 0 g
A1 = AH =10.7 0.3 0.25 N
0.5 04 0.3
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Table 1. Empirical levels of tests for multistep noncausdtity: r(«) = 0

Hy:r(a)=0
Panel A: irregular setup
Qe = Oy = 0, = —0.99 , A1 = Ay
Cn=Mn"3 =01,
n Wy Wy W3 Wy freq()\(c))
50 0.3220 0.2766 0.0052 0.0062 1.00
100 | 0.2550 0.2396 0.0006 0.0006 1.00
200 | 0.1764 0.1776 0 0 1.00
500 | 0.0938 0.1158 0 0 1.00
1000 | 0.054 0.0842 0 0 1.00
2000 | 0.0362 0.0664 0 0.0662 0
5000 | 0.0224 0.0560 0 0.0564 0
Hy:r(a)=0
Panel B: irregular setup
Qg = Qyy = QAzy = —-0.9 5 A1 = A20
en = Mn~ /3, ¢ =0.1; [0.001]
n Wi Wo Ws Wy freg(A(c))
50 0.1046 0.1418 0.0648 [0.0944]| 0.1412 1.00
100 | 0.0584 0.0986 0.0384 [0.0442]| 0.1114 1.00
200 | 0.0328 0.0742 0.0236 [0.0242]| 0.0834 1.00
500 | 0.0234 0.0560 0.0170 [0.0172]| 0.0620 1.00
1000 | 0.0182 0.0552 0.0166 [0.0166]| 0.0564 1.00
2000 | 0.0164 0.0512 0.0140 [0.0142]| 0.0966 0
5000 | 0.0152 0.0530 0.0118 [0.0118]| 0.0574 0
Hy:r(a)=0
Panel C: regular setup
gy = Qyy = 05, = 0.3, A1 = Apy
Cn = A~ 1/3, ¢ =0.1; [0.001]
n Wi Wy W3 Wy freq()\(c))
50 0.0442| 0.0254 (0.0656)| 0.0422 [0.0442]| 0.0848| 0.9796
100 | 0.0424| 0.0200(0.0624)| 0.0402 [0.0424]| 0.0798| 0.9964
200 | 0.0442| 0.0198(0.0562)| 0.0426 [0.0442]| 0.0666| 0.9996
500 | 0.0456| 0.0136 (0.0536) 0.0436 [0.0456] 0.0562 1.00
1000 | 0.0504| 0.0160 (0.0592) 0.0484 [0.0504] 0.0588 1.00
2000 | 0.0432| 0.0294(0.0930)| 0.0426 [0.0432] 0.0498 1.00
5000 | 0.0478| 0.0478(0.1444)| 0.0476 [0.0478] 0.0540 1.00
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Table 2. Locally-corrected size empirical power of tests for multistep noncausality-(a) # 0

Panel A: irregular setup
Ay = Qyy = Qzp = —0.99 N Al = AIO
Cp = 5\1n_1/3, c=0.1;
Hy:r(a) #0az =0=0.0632, a,, =0
n Wy W W3 W, freq()\(c))
50 0.6970 0.8380 0.8496 0.8654 1.00
100 | 0.9764 0.9942 0.9972 0.9986 1.00
200 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
1000 | 1.00 1.00 1.00 1.00 1.00
2000 | 1.00 1.00 1.00 1.00 0
5000 | 1.00 1.00 1.00 1.00 0
Hy:r(a) #0agy =0=0.1264 , a,, =0
n Wi Wy Ws Wy freq(A(c))
50 0.9044 0.9604 0.98 0.9852 1.00
100 | 0.9992 0.9998 0.9998 0.9998 1.00
200 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00
1000 | 1.00 1.00 1.00 1.00 1.00
2000 | 1.00 1.00 1.00 1.00 0
5000 | 1.00 1.00 1.00 1.00 0
Panel B: irregular setup
Oy = Qyy = QAzy = —0.9 ) Al = A2O
en = Mn" 3, ¢ =0.1; [0.001]
Hy:r(a) #0az =0=0.1264, a,, =0
n Wi Ws W3 Wy f?“eq(/\(c))
50 0.4246 0.3888 0.4048 [0.4124]| 0.1714[0.0048] 1.00[1.00]
100 | 0.8058 0.7892 0.7504 [0.8034]| 0.5336 [0.00] 1.00 [1.00]
200 | 0.9830 0.9820 0.9670[0.9782]| 0.9396 [0.00] 1.00 [1.00]
500 1.00 1.00 0.9998 [1.00] 0.9998 [1.00] 1.00 [1.00]
1000 | 1.00 1.00 1.00[1.00] 1.00 [1.00] 1.00 [1.00]
2000 | 1.00 1.00 1.00[1.00] 1.00[1.00] 01[1.00]
5000 | 1.00 1.00 1.00[1.00] 1.00[1.00] 0[1.00]
Panel C: regular setup
gy = OQyy = 05, = 0.3, A1 = Apy
Cn = A~ 1/3, ¢ =0.1; [0.001]
Hi:r(o) #0 ag. =0=0.1264, azy =0, a,y =04
n Wi Wy Ws Wy freg(A(c))
50 0.0918| 0.028 (0.0588) | 0.0854 [0.0918]| 0.0952[0.1106]| 0.9840 [0.9278]
100 | 0.1854| 0.0310 (0.0582)| 0.1692[0.1854]| 0.1982 [0.2576]| 0.9966 [0.9428]
200 | 0.4028| 0.0318 (0.0662)| 0.3736 [0.4028]| 0.4130[0.5186] 0.9996 [0.9336]
500 | 0.8312| 0.0730 (0.1160) 0.8100[0.8312] 0.8310[0.8908]| 1.00][0.7982]
1000 | 0.9866 | 0.2576 (0.3064) 0.9854[0.9866]| 0.9874 [0.9914] 1.00[0.3630]
2000 | 1.00 0.8728 (0.8780) 1.00[1.00] 1.00[1.00] 1.00[0.62]
5000| 1.00 1.00 (1.00) 1.00[1.00] 1.00[1.00] 1.00 [0.00]
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see Table 2, panel C. First of all, all power frequencies reported in Table 2 have been locally corrected for size
distortions (only for overrejections amebt for underrejections) for a fair comparison across statistics.

Strikingly, as shown in Table 2, panel A, although the full-rank regularized test stati8ticend W, are
conservative under the null hypothesis near the nonstationary region, they do not entail a loss of power under th
alternative, compared to their oversized competildfisand W>. Once the latter have been corrected for size
distortions, they do not overperform the full-rank regularized statisti¢gsand ¥, from the viewpoint of power.

More importantly, the locally-level corrected statistidg and W, areinfeasibletests in practice, as this level
correction requires to know the true value of the parameter. Note an underperforméaricestdtive to the others,

when the sample size is very small (panel®= 50). Further, the results reported in Table 2, panel B, shed light

on the better finite sample power properties of the conservative bound test relative to the superconsistent estimatc
based regularized statistic whose distribution is simulated. Besides being easier and faster to Bonellsd,
exhibits better power properties in finite sample than its simulation-based compgiitaklso, the performance

of W3 is less sensitive to the value of the fixed thresholcbompared tdV,. Finally, the most striking result

is theunderperformancef the reduced rank modified statistic proposed by Lutkepohl and Burda (1997) under
the regular setup shown in panel C. As expected, by underestimating the true rank of the covariance matrix, thi
reduced rank statistic puts more weight on the first restriction that remains fulfilled in this case. Violation of
the null hypothesis coming from the second restriction will be missed by a statistic that underestimates the rank
which once again makes the full-rank regularized statistics more attractive. Even with a more favorable critical
point given by they?(1) = 3.84 in parentheses, the spectral cut-off regularized statistic has trouble to reach the
power performance achieved by its competitors. Indeed, it requires 2000 observations to achieve reasonable pow
of 87% relative to the others already &10%. Thus, these results on power reinforce the better properties of the
full-rank regularized statistics over the spectral cut-off statistic.

11.2. Deviation from normality: the Delta method breaks down
We now assess the empirical level of the null hypothesis:
Ho(to) 1 (0) =00 =0
at the nominal size d§%. For ease of notation, we shall denote the statistics as follows; the standard Wald test is
Wi =W =nep(6,) £ )(0) ; (11.2)

the Moore-Penrose modified Wald statistic proposed by Lutkepohl and Burda (1997) is:

Wa = W (cn) = ntp(0)' 2 ()t (6n) ; (11.3)
theregularizedWald test statistic is

Ws =W (c) = n*¥(0n) 27(c)(0n) ; (11.4)

W3 uses the quadratic forme. (x5, (p))* as a bound. For instance fpr= 5, the (x3,,(p))* is equal to
11.072 = 122.55 at5%, while W, andW, use thex?. (1) = 3.84 as critical point. Finally, theegularizedwald
test statistic, using the superconsistent estimator of the eigenvalues, uses a simulated critica.point,

Wi = W (A(e);¢) = n®¢(0n) ZE(A(e); )i (0n) 5 (11.5)
to simulate its distribution, we exploit the information that
nd}(én) = (\/ﬁén)/(\/ﬁén) ~ XQ(p)
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under the null, by drawing?(p) random numbers.

11.2.1. Level assessment

We can observe from those results that the standard Wald test together with the modified Moore-Penrose te:
proposed by Lutkepohl and Burda (1997) are never close to the nominal $i2 oéither with an under-rejection

when the dimension df is low or with a severe over-rejection when the dimensiofiiotreases tp = 10, 14, 16.

By contrast, all theegularizedWald tests are very close to the nominal size, with an extreme precision for the
simulated version of the test based1df, irrespective of the choice of the thresheldHowever, the choice aof

is important for theegularizedstatisticlVs that uses the bound. The message one can draw from this table is the
following: first, the spectral cut-off Moore-Penrose regularized Wald test proposed by Lutkepohl and Burda (1997)
is useless in this example and does not add anything to the standard Wald test when normality is violated. Secon
theregularizedWald statistic that uses the bound control the level of the test, budépendent. Note also that the
bound is exact here. Third, tleemulatedsuper consisteregularizedWald testalwayscontrols the level of the

test, irrespective of the choice of the threshal@his is a strong result insofern as it evacuates any issue related to
the choice of the threshold. The econometrician can pick up any valyenithout any cross-validation concern,

to perform avalid simulatedest. The simulation of the test requires only a few seconds. We also report, in the last
column of the table, the frequencﬁv(eq(ﬂ(c))) at which the superconsistent estimator is set to the threghdid

is mostly in small samples that the superconsistent estimator play a role.

11.2.2. Power assessment

As expected, wheml’; and W5 under-reject under the null for low dimensionséof they lose power under the
alternativein small samplesompared to the full-rank regularized statisti€g, 4. Hence, full-rank regularized
statistics based on non Gaussian distributions display over-perform in term of power, in small sample sizes, whel
the dimension of is low. When the dimension @fincreases, they can match the power performanagedsible
level-correctedtest, W7 and W,. The correction performed fdi’; and W5 is locally and therefore the power
shown in the table is overstated. Their power would even be lower under a global level correction.

12. Conclusion

In this paper, we introduce a new classredularizedinverses, as opposed to generalized inverses, that embeds
the spectal cut-off and Tikhonov regularized inverses known in the literature. We propose three regularized Wald
statistics for general law: the first two statistics rely on a fixed value for the threshold in theyMRE while

the third one lets the threshold vary with the sample size, but requires more information about the sample behavio
of the eigenvalues. The first regularized Wald statistic admits a nonstandard asymptotic distribution in the genera
case, which corresponds to a linear combinatiog®fariables if the restrictions are Gaussian. Waper bounds

then derived for this first regularized statistic under general laws for the restrictions; such a bound corresponds to
x2 variable withfull rank under Gaussianity. Hence, the teshisymptotically valigmeaning that the usual critical

point (given by they? variable withfull rank) can be used, but is conservative. The second regularized statistic
relies on asuperconsistenestimator of the eigenvalues at the thresholdhose distribution can be simulated.
Besides, the simulation of the distribution makes the statistic unsensitive to the value of the threshold such tha
cross-validation methods is not required. Finally, when the threshold goes to zero with the sample size, we obtair
the spectral cut-off modified Wald statistic of Lutkepohl and Burda (1997) as a special case. Under normality,
the test has the asymptotié distribution with a reduced rankg. the number of eigenvalues greater than zero.
Note that Lutkepohl and Burda (1997) result only holds for distinct eigenvalues whereas our result accounts for
eigenvalues with multiplicity larger than on&eventhwe also show that the regularized statistics are consistent
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Table 3. Empirical levels of tests

Hy : 9(0) = 0 ; nominal size= 0.05

cn=Mn"13 c= 0.9; [0.97]

dim(f) =5
n Wi W Ws Wy freq(A(c))
50 0.0192| 0.0192| 0.0538 [0.0468]| 0.0482 [0.0482]| 0.2454 [0.1810]
100 | 0.0132| 0.0132| 0.0642 [0.0554]| 0.0514 [0.0514]| 0.0118 [0.0058]
200 | 0.0148| 0.0148| 0.0656 [0.0562]| 0.0546 [0.0546] 0 [0]
500 | 0.0096| 0.0096| 0.064 [0.0540] | 0.0526 [0.0526] 0 [0]
1000 | 0.0072| 0.0072| 0.0572 [0.0496]| 0.0482 [0.0482] 0 [0]
2000 | 0.0072| 0.0072| 0.0568 [0.0498]| 0.0460 [0.0460] 0 [0]
5000 | 0.0092| 0.0092| 0.0596 [0.0524]| 0.0496 [0.0496] 0 [0]
dim(#) = 10
n Wi Ws Ws Wy freq(A(c))
50 0.1730| 0.1730| 0.0114 [0.0104]| 0.0510 [0.0510] | 0.6138 [0.5480]
100 | 0.1504| 0.1504| 0.0698 [0.0578]| 0.0546 [0.0546]| 0.1458[0.0962]
200 | 0.1282| 0.1282| 0.0712[0.0546]| 0.0498 [0.0498]| 0.0008 [0.0002]
500 | 0.1264| 0.1264| 0.0610 [0.0488]| 0.0444 [0.0444] 0 [0]
1000 | 0.1192| 0.1192| 0.0624 [0.0508]| 0.0460 [0.0460] 0 [0]
2000 | 0.1184| 0.1184| 0.0662 [0.0532]| 0.0504 [0.0504] 0 [0]
5000 | 0.1156 | 0.1156 | 0.0652 [0.0540]| 0.0488 [0.0488] 0 [0]
dim(0) = 14
n Wi Wo W3 Wy freq(A(c))
50 0.4130| 0.4130| 0.0014 [0.0012]| 0.0538 [0.0538]| 0.6204 [0.6148]
100 | 0.3778| 0.3778| 0.0586 [0.0494]| 0.0560 [0.0560]| 0.3862 [0.2820]
200 | 0.3606| 0.3606| 0.0706 [0.0560]| 0.0500 [0.0500]| 0.0070 [0.0022]
500 | 0.3648| 0.3648| 0.0650 [0.0486]| 0.0460 [0.0460] 0 [0]
1000 | 0.3566| 0.3566| 0.0678 [0.0556]| 0.0506 [0.0506] 0 [0]
2000 | 0.3576| 0.3576| 0.0672 [0.0548]| 0.0484 [0.0484] 01[0]
5000 | 0.3524| 0.3524| 0.0674 [0.0554]| 0.0480 [0.0480] 0 [0]
dim(0) = 16
n Wy W,y W W, freq(A(c))
50 0.5384 | 0.5384| 0.002[0.0002] | 0.0536 [0.0536]| 0.5424 [0.5650]
100 | 0.5132| 0.5132| 0.0438 [0.0384] 0.0546 [0.0546]| 0.508 [0.4074]
200 | 0.5068| 0.5068| 0.0702 [0.055] | 0.0498[0.0498]| 0.015 [0.0062]
500 | 0.5022| 0.5022| 0.0676 [0.0514]| 0.0488 [0.0488] 01[0]
1000 | 0.4948 | 0.4948| 0.0678 [0.0510]| 0.0474 [0.0474] 0 [0]
2000 | 0.5058| 0.5058| 0.0724 [0.0540]| 0.0470 [0.0470] 0 [0]
5000 | 0.4938| 0.4938| 0.0662 [0.0514]| 0.0460 [0.0460] 0 [0]
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Table 4. Empirical power of tests

Hy = 9(6) = 0.075916 # 0

en = Mn" 3, c=0.9; (0.97]
dim(f) =5
n Wy W, Ws W, freq(Mc))
50 0.1384| 0.1384 | 0.2884 [0.2724]| 0.2810 [0.2810]| 0.4994 [0.4388]
100 | 0.3124| 0.3124| 0.5476 [0.5366] 0.5398 [0.5398]| 0.3030 [0.2318]
200 | 0.6990| 0.6990| 0.8712 [0.8686]| 0.8730 [0.8730] 0.1004 [0.0528]
500 | 0.9948| 0.9948| 0.9998[0.9998]| 0.9998 [0.9998]| 0.0022 [0.0006]
1000| 1.00 | 1.00 1.00 [1.00] 1.00 [1.00] 0[0]
2000| 1.00 | 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
5000| 1.00 | 1.00 | 1.00 [1.00] 1.00 [1.00] 0[0]
Hy - 4(0) = 0.05223916 # 0
Cn = Mn" Y3, ¢ =10.9; [0.97]
dim(f) =5
n Wi W Wi Wy freq(M(c))
50 0.0912| 0.0912| 0.2044 [0.1928]| 0.2008 [0.2008]| 0.4322 [0.3670]
100 | 0.1882| 0.1882| 0.3804 [0.3726]| 0.3736 [0.3736]| 0.1898 [0.1332]
200 | 0.4596 | 0.4596 | 0.7006 [0.6952]| 0.7058 [0.7058] 0.0292 [0.0142]
500 | 0.9546| 0.9546| 0.9888 [0.9882]| 0.9886 [0.9886] 0[0]
1000| 1.00 | 1.00 1.00 [1.00] 1.00 [1.00] 0[0]
2000 | 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
5000 | 1.00 1.00 1.00 [1.00] 1.00 [1.00] 0 [0]
Hy :9(0) = 0.00355332 # 0
en = n~" Y3, ¢ =0.9; [0.97]
dim(f) = 10
n Wi Wo Wy Wy freq(A(c))
50 0.052 | 0.052 | 0.0112[0.011] | 0.0568 [0.0568]| 0.6166 [0.5546]
100 | 0.0614| 0.0614| 0.0658[0.060] | 0.0656 [0.0656] 0.1692 [0.1104]
200 | 0.0708| 0.0708| 0.0738[0.0738]| 0.0744 [0.0744]| 0.0022 [0.0004]
500 | 0.1216| 0.1216 | 0.1260 [0.1240]| 0.1164 [0.1164] 0 [0]
1000 | 0.2090| 0.2090 | 0.1962 [0.1998] 0.1954 [0.1954] 0 [0]
2000 | 0.3884| 0.3884| 0.3912 [0.3930]| 0.3908 [0.3908] 0 [0]
5000 | 0.8454 | 0.8454 | 0.8490 [0.8490]| 0.8454 [0.8454] 0 [0]
Hy : () = 0.01056748 # 0
cn = Mn~ Y3, c=10.9; [0.97]
dim(f) = 14
n Wi Wy W3 Wy freg(A(c))
50 0.0678 | 0.0678 0.0682 0.0666 0.5994 [0.6052]
100 | 0.0792| 0.0792 0.0784 0.0808 0.4450 [0.3412]
200 | 0.1072| 0.1072 0.1180 0.1166 0.0208 [0.0110]
500 | 0.2416| 0.2416 0.2490 0.2382 0 [0]
1000 | 0.5082| 0.5082 0.5074 0.5068 0 [0]
2000 | 0.8582| 0.8582 0.8628 0.8612 0 [0]
5000 | 0.9996| 0.9996 0.9998 0.9998 0 [0]
Hy : (0) = 0.01733792 # 0
en = Mn" 3, c=0.9; [0.97]
dim(f) = 16
n W W Wi W, freq(A(c))
50 0.0672| 0.0672| 0.0006 [0.0006]| 0.0716 [0.0716]| 0.4994 [0.5250]
100 | 0.0896| 0.0896 | 0.0810 [0.0726]| 0.1002 [0.1002]| 0.5960 [0.4928]
200 | 0.1436| 0.1436 | 0.1598 [0.1598]| 0.1580 [0.1580] 0.0556 [0.0290]
500 | 0.3672| 0.3672| 0.3934 [0.3934]| 0.3822 [0.3822] 01[0]
1000 | 0.7430| 0.7430| 0.7532 [0.7532] 0.7444 [0.7444] 0 [0]
2000 | 0.9840| 0.9840 | 0.9846 [0.9846] 0.9836 [0.9836] 0[0]
5000| 1.00 | 1.00 1.00 [1.00] 1.00 [1.00] 0[0]
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against global alternatives, but the spectral cut-off Wald test used by Lutkepohl and Burda (1997) has reducec
power in some directions of the alternative.
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A. Appendix: Proofs
Proof of Property 1 Using decomposition (4.1) and (4.9), we have:
UXR(e) = VAV'VAT () V! = VAAT(e)V
where we use the fact that thé's are orthogonal matrices. For &l] 0 < A\g(\;¢) < 1, so that:

228(e) = Vdiag[A\jg(\j; 0)] .

/
Flw,qv < g

Regardingii), we have:

TERT = VAPVIVATVIV AV = VAP ATAVRY! = Vdiag[Ng(N\s0)] ., V! <,
since0 < A\g(X;¢) < 1forall A . Regardingii), we have:
Y-XXR)r >0 e Y, -2He)X)> 0 = I,- X)X >0 (A1)

sinceX is semi definite positive. The last implication holds®dy
Regardingiv), for all A > 0, g(\; ¢) bounded, and if(\; ¢) > 0, we have:

Vv
o

1 -1
Ag(A;e) <1 =0<g(Ae) < X <o hence <g()\; c)> - A

Hence,

(ZR(C))_l - XY= Vdiag[(g(/\j;c))_l — \j] V' >0.

Jj=1,-q

Finally for v), the rank is given by the number of eigenvalues greater than zerb"&s) = Vg(\;; ¢)j=1... 4V,
hence
(A>0 = g(X\e)>0) = (rank(ER(c)) > rank(X)) .

O]

PROOF of Lemma 6.3If X, “% ¥, thenthe eventl = {w : X,(w) — X} has probability onei.e.
P(A) = 1. Foranyw € A, we have by Lemm&.2

[Zn(w) = X = [N(Eaw) = Ai(X), j=1,....J].

n—~oo

DenotingB = {w : A\j(Xn(w)) — X;(X2)}, we haved C B, hence we have with probability one resi)lt By

the same argument, we have regijjtfor the eigenprojections.
O

PROOF of Lemma 6.4

If 3, £ 3 with eigenvalues|)\;(%,)}, then every subsequenée,,, } with eigenvalues\(%,, )}, also
satisfiesY,,, ENS By Lukacs (1975, theorem 2.4.3, page 48), there eXiSts, } C {¥,, } such that¥,,, R 3
Hence by Lemm#&.3, we have

) X (Zm) = X(2),
i) Pjt(Zm,) <5 Pjy(X) provided);_1(X) # A (X) and Ay (X) # M1 (X)
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As {¥,} € {Z,} € {&,} with the corresponding eigenvalugs;(X,,,)} € {\;j(Zn,)} € {N(Zn)} ,

by Lukacs (1975, theorem 2.4.4 page 49) it suffices that every subseq{ksice,, )} of {\;(X,)} contains
a subsequencé);(X,,,)} which converges a.s. to get(X,) S Aj(X) . By the same argument, we have

Pii(Zn) 2 Py(2) . O

PROOF of Proposition 7.31f X,, % ¥, then by lemma6.3 i), we have); %3 d;, Vi € I;j , where
I; = {i € I : )\ = d;j}. Under the additional Assumptioh2, and the a.e. continuity of(.,c), we have
g(Aise) “3 g(dj;c) Vi € I; . Moreover, by lemma.3ii), we haveP, (X,) “3 P;(X) . Hence,

k

k
o) =3 P (S0 —— 3 g(sic) = 3 Py, (2 [ dj:¢) — gldj; ©) + —— Zg(xi;@]
= m(d;) i€l; j=1 m(d;) i€l;
k k k
=Y Pr(Zn)g(djsc) + > Pry(& Z (\ije o)l %Y Pi(2)g(djie) (A2)
j=1 j=1 €l; J=1

sinceg(d;; ¢) = iz x md;)g(djs ) = gy Yier, 9(djic) -

J

O
PROOF of Proposition 7.4Using decomposition (4.7)-(4.8), and from equation (7.14), we have:
3 k 1 R
=Y 2Fe) = Pr(E)—=> 9(hic) (A.3)
— — m(d])ielj
k1
whereXf, (c) = Y- Pr(En) sty X 9(hise) s 58,(¢) = Pro(Zn) g 2 9(his0)
j=1 ’LEI GI(C
k
andzfu(@) = 2 Py Soted

j:kl-‘rl{djzc}-l-l

By Lemma6.4i) and ii), eigenvalues and total eigenprojections are continuous. Under Assuriiame
have:

Viel; g(\i,c) & g(djic), and P (2,) & Pi(X).
For

b ZPI

l?

ZPI o) = st 0) + —os gl

zeI i€l;
1 A ul
= Zsz(En)g(dj; c) + ZPIj(En)m D 9ise) —gdjze)] B Y gldjs ) Pi(X)
j=1 j=1 1 e, j=1
sinceg(d;; c) = ﬁdj) x m(dj)g(d;;c) = ﬁdj) >ier, 9(djic) . Hence,
k1 1 . , k1
Efn(c) = ZP[j(Zn)WZg<)\i7C) - Zg(dﬁC)Pj(Z) = ZF(C)
j=1 i€l j=1
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2yin(€) = Prey(Zn)

The proof forZ§?, (c) is similar to that of [, (c). Hence,

k k

SRe= 3 szwn)n@zg@,c)ﬂ Y 0P = SR .

j:k1+1{dj:c}+1 ’iGIj j:kl—‘rl{d‘j:c}—f—l

Therefore () & £B(c) .

PROOF of Proposition 8.1By Proposition7.4, we haveXX(c) LN X%(c) and under Assumptio@.1,
X, 5 X, henceWl(c) = X' YR(e)X, 5 X'SR(c)X = WE(c) . Using representation (7.13) far(c),

and (2.7), we can write:

k

W) = X' 2R(c)X = X’ (Zg(dj; C)Pj(Z’))X = (

k k
Zg(dj;c)X’Pj(E)X> = 9(dj;0)X'B(d;)B(d;)' X .
j=1

j=1 Jj=1
We can further decompose the overall statistic into three blocks depending on the ranking of the eigenvalues w.r.1

k
c, with /6‘1 = Z 1{dj>c}1 i.e.,
j=1

k k1

k1
Wi e) = X'Zf()X =) 9(dj; )lia,»q X' Pi(2)X = g(dj;0) X' Pj(X)X = g(dj; ) X'B(d;) B(d;)'X .
j=1

j=1 j=1

Similarly, Wi(c) = X' X5 ()X = g(c; ) 1ia;=e} X' Pj(oy (X)X = g(c; ¢)14;=c} X'B(c) B(c)' X . Finally,

k k
Wil(e) = X' ()X =Y g(dj; e)1{a;<) X' Pj(2)X = Y. 9ldioX'B(d)B(d)'X .
j=1 j:k1+1{dj:c}+1

O]

PROOF of Corollary 8.2 In the Gaussian case, we havB(d;)'X = ./d;xz;, wherez; = N[O,Im(dj)},
hence

k k k
WHh(c) = X'2F ()X = X’(Zg(dj; C)Pj(E)>X = g(dj;¢)X'B(dj)B(d;)' X =Y _g(dy; c)d;aja;
j=1 j=1 j=1
with the three blocks corresponding to
kl kl
Wi(e) = X' SR (X = g(dj; ) X' B(dj) B(d;) X = > g(d;s c)djarfa; ,
j=1 j=1

Wyt(c) = X' 555 (c)X = g(¢;0)1{4,—y X' B(e) B(¢)' X = g(c; ¢)1{a;—cpcxy ,
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k k

andWyt(c) = X' (c)X = > 9(dj; ¢)X'B(d;)B(d;)' X = > g(dj; c)d;ziw; .
J=kit g =cy+1 J=kitlia,=cy+1
]
PROOF of Proposition 8.5
The quantitya,, [, — 1] can be written as:
Qn [&n - Q;Z)O] = Qnp [1[}11 — 1+ — '(ZJO] = Qan ['([}n - ¢1] +an [¢1 - ¢0] . (A.4)
As X, =a, [% — ¢1] satisfies AssumptioB.1, we have
Wie) = {an[tn — 1] + an 1 — vo] Y ER(){anlthn — 1] + an [t1 — o]}
= Qn [1;11 - @Z)l]lzq}j(c)an[@z)n - "701] + 2CLnWA}n - @Z)l]lzq}j(c)an [7/}1 - 7/10]
an [P — o] T (c)an [11 — 0]
= X/ SR X, 42X, ZR(c)a, A+ a2 A SR (c)A
L X' ZROX +2X' ZR()anA + a2 A SR () A — oo (A.5)

sinceX, = X, ¥E(c) & $E(c), buta,(y) — vo) = anA — o0, asa, grows to infinity. HenceV?(c)

converges to infinity with probability 1. The quantity
X' SR (0)X 42X S (c)anA + a2 A XE(c) A

is asymptotically equivalent to
X' ZR)X + a2 A 2R (c)A (A.6)

due to the dominance principle af A’ 2% (c) A over2X' X (c)A, i.e,

X' 2R ()X +2X' 2% ()an A + a2 AL () A = X' DR ()X + a, [2X' 28 () A + a, A’ 2 () A] .

O
PROOF of Proposition 8.6
Under the local alternative, (¢1, — ¥9) — A # 0, then
Wr?(c) = Qn [qz)n - wln]lzf(c)an [1/A1n - wln] + 2ap [@Z)n - ¢1n],25(0)an [wln - ¢0]
+an [P0 — o] TR (C)an [trin — o]
= X, 5 X0+ 2X, 5 (0)an [1n — v0] + an[t1n — 0] T ()an 1 — o]
5 X'ER(OX 42X 2R (0)A+ A5 (o)A (A7)
asX, 5 X, XE() L ¥ER(c) .
O

PROOF of corollary 8.7 From Propositior8.6, we have:

L
ad

n—oo

WE(e) X' 2R X +2X' 2 ()A+ A'ZR(e)A .
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As A € V(0), P(0)(X)A = A, and we have:

SR(e)A = "g(dy; ) Pi(2)A = g(0;¢) P(0)(2) A = g(0;0) A
d;

sinceP;(X)A = 0, for all eigenprojections on the eigenspaces different fit{@). Hence,

Wl(e) néoo X'ZR()X +29(0;¢) X' A+ g(0;0)A'A .
O
PROOF of Property 31f \; = ¢, then|\; — ¢| = |A; — ;| and
P[;\Z(c) =c] = P[bn\jx,- — | <vey) = P[bnlj\i — \i| < vey] T 1, (A.8)
sinceb,, (A; — \;) = O,(1), andve,, — oo. Hence
P{sAi(c) = =s\—c} — 1, Viel()={iel: hi=c}. (A.9)
On the other hand, the modified estimapfc) is designed such that:
|5\z(0) - )\i| = |5\z(0) - 5\1 + 5\@ - )\i’ = |5\z - )\i| if \5\1 — C| > VZ—” .
Hencey ¢ > 0,
PU;\l(c) — N <¢€| = PU;\Z —c| > VZ—Z] = 1,if A #c (A.10)
sinceZ—: T 0. Thus, if\; > ¢, we haveP[(f\z- —c) > ug—:} T 1, hence
P{S[S\i(c) —d =sN—d} i 1. (A.11)
Also, if \; < ¢, we haveP[(c — A;) > v ~—_ 1,hence
P{s\i(c) — ] = s[\; — ¢} o L (A.12)
O

PROOF of Proposition 9.1As W/i(c) = X! 2E(¢)X,,, andWE(A(c); ¢) = X, B (A(c); )X, , itis suf-
ficient to show that X (A(c);c) & X%B(c) to haveWE(A(c);¢) & WE(c) , where denotes the asymptotic
equivalence. We want to show that > 0

P{W(Ae);e) = WiHe) > e} — 0.
As [WEA(e)ie) = W) = X, ZE(N0);0)Xp — X, R0 Xa| = X} (ZFA(0);0) — L () X, it i
equivalent to showy e > 0, p{||Z2(A(c);c) — ZE(¢)| > e} — 0. More specifically,

n

IZFAe); ) =2 ()l = 127 (Ae); ) =2 () + 2 (&)= Z (o)l < [ Z7(A(e); ) =2 (o) +] ZF ()= Z ()]

n
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butp{|| X% (c) — ZE(c)|| > €} = p{|ZE(c) — ZE(c)|| > ¢} — 0 by Propositiori7.4. Hence, it is sufficient to
show thatZE(A(c);¢) & XE(c) . To do so, let us study
1[5 ()i e) + 25, (Mo)se) + 235 . (Ae)i )] — [Zfi(0) + Z33(e) + Zis ()] |

= ||[211 n()‘( ); ) 211( )] + [ig,n(j\(cﬁc) - Eg( )] [Eszm()\( ); ) 233( )}H
[AZ11 0l + [[AZ22n]| + [[AX335| (A.13)

IZR(Ae);e) = 2R ()|

IN

whereAY; ,, = [ZR (;\(c);c) — X (c)] for i =1,2,3. Consider first:

mn,mn

k
[AZuall = 1D2PL(En) s D 9@ L5, 0000 ZP &)1id,—e>03 ]l -
j=1

ZEI
(A.14)

k
By adding and substracting simultaneously, s, (X%)g(d;; ¢)1{(4;—)>0) We have:

j=1
k
[AX1.] = ||ZPIJ dj; ) 1{(d;—c)>0) — ZPI )9(dj; ) 1(a;—c)>0
7j=1
k 1 . k
+ ' P]j(En)m(dj) Zg()\i(c)i C)l{(j\i(c)_c»o} - ZPj(2>g(dj§ C)l{(dj—c)>0}”
j=1 i€ I 7=1
k k
= D PL(Zn)g(ds; Olia,—es0p — > Pi(2)g(dy; €)1{(a;—c)>0)
j=1 j=1
k 1 )
+ZPI]' (En)m(d) Z [Q(Ai(C% C)l{(j\i(c),c»o} —g(dj;c )1{( fc)>0}] |
j=1 1 ie 1
k
IAZ 1l = 1D [Py (E0) = Pi(2)]g(dj; 0)1{(g;—c)>0)
=1
k 1 .
—i—ZlPIJ (En)m(dj) Z] [g(/\i(c)m)l{( (c)—c)>0} g(d],c)l{(d —c)>0}] |
1= 1€ 1
k

< ||Z[P1j(2n) — Pi(2)]g(dj; €)1{(a;,—e>0

1 ~
X )m(d Z[Q(Ai(0)§C)l{(j\i(c),cbo} —g(d )1{( fc)>0}]H

i€ Ij

k
1AZ 0] < Y I1PL(Z0) = Pi(D)9(dj; )L, —e)>0

j=1
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=+ ZHPI Wl Z [g(j\i(c); C)l{(j\i(c)_cpo} (d], 0)1{( fc)>0}}|
(dj)ie I;
(A.15)
k
[AZ 110l < Z |1Pr; (X0) — Pi(2)|g(djs )1, —c)>0}
k
+ LIPL(E ity T s s, 0-00y ~ 950 -
]:
Vielj={iel: )\ = d;}, for thej indices such thai; # ¢, we have by (A.10) and (A.11)
Ve>0, P[[hi(c) —dj| < €| = Plba|i —c| > ve,] —  1if, dj#c (A.16)
andve >0,
P[|1{(5\i(6)—c)>0} —1{g;—e>03| < €] = P{s[Ai(c) — ] = s[\i — (]} T 1. (A.17)
We can write the quantityy(\;(c); ¢ )1{(A (©)—c)>0} — 9(dj; )1{(4;—c)>03| = |Ay]. Also
‘Ag| = |[9(Ai(c)§c) g(djvc) ( )]1{(A.(C)_c)>0} - g(dj§c)1{(dj—c)>0}|
= |[9(Ai(c)§ C) g(d]7 C)] {(Ai(c)—c)>0} + g(d], )[ {(Ai(e)—e)>0} — 1{(djfc)>0}]’
< |9(5\i(0)5 c) — g(dw C)H{ Xile)—c)>0} + g(d], C)‘l{p\ (¢)—c)>0} 1{(dj_c)>0}| (A.18)

By Property??i), Vi e I; : S\i(c) 2 d;, dj # ¢, andg € G. is such thay is continuous a.e., except possiblycat
hencey(Ai(c);c) & g(dy;c). AS L5, (0)— C)>0} = Op(1), we havelg(Ai(c); c) —g(d; )|1{()\ (¢)—c)>0} = 0. By
equation (A. 17)11 (i(e)—e)>03 ~ H(ds—c) )>0}| 2 0andg(d;; c) = O(1). Hence,\Ag| 20 VieI;,and thej’s
are such that; # c. Besides, the projection operatBr, (X,,) = O,(1), andplim Py, (X)) = P;(X) by Lemma
6.4ii). Hence, we havelim [||AXy1,| > €] = 0 . Note thatg(c;c) = %m(c)g(c; c) = ﬁ S glce) .

i€ I(c)
Thus for the second component, we have:

1
[AZ2nl = HPf(C)(En)m(C) D 9GO 0=y — 9(E g,y Pico) (D) -
i€ I(c)

Similarly to || A%y, ,,||, we add and substraE’g( )g(c; ¢)114,=¢; and by gathering the terms together, we get:

1
|AZ220ll = I[Py (Zn) = Pie)(Z)]9(ci ) 1ia;=) + Pj(c)(zn)m > gleo) [Lisu(0=e) — Hay=ar]
i€ I(c)

1
< [Pry(Zn) = Pi)(2)] 9(es )1 ia,=c | + 1 Pr(py (Zn) > 9(E s 0= — Ha=a] |

(c) ie I(c)
(En) - PI(C)(ZH) + PI(C)(ETL) - Pj(c)(E)]g(c; c)l{dj:c}H

1
m(c) > 960 L= ~ Lol

i€ I(c)
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< 1Py (Zn) = ch)( n)l9(6 ) ta,=cy| + 1 Priey (En) = Pje)(P)ll9(¢; ) 1qa,=}

+ HPj(c)(En)mm Z 9(05 C) [1{5\2.(0)26} - 1{dj:c}]|
i€ I(c)

If \i = dj = ¢, by equation (A 8),P[Ni(c) = ¢] = P[ba|\i — Ni| < ve,] — 1 .By equation (9.4),

PlI(c)=1(c)] =P[ N {)\ =c}] — 1.Hence, by (A.9) we have:
i€l(c)
150} — Ldy=c}] n;@ 0Viel(e).
Moreover,P[f(c) = I(c)] — 1 implies plimPf(C)(En) = plim Py (Xn) = Pj)(X) by Lemmab.4 ii).
Besides P\ (Xn) = Oy(1). Henceplim[|| AL || > €] = 0 . Finally, the proof ofplim [[|AX33,]] > €] =0,
{(Ai(e)—c) <0} ZP )1i(a,—c)<or
zeI

is similar toAXy; ,,. Also, the result follows.
O

Proof of Proposition 10.1We need to show thatm,, .. Pr (|| 25 (c,) — 2F(0)|| > €] =0 for everye > 0.
Let » denote the rank of the matrix of intereSt Three possible cases will be considered in the proot: ¢,
r=0andl <r <gq.Letl ={1,2,...,¢}suchthat\y > Ao > ... > \; > ... > A\, >0,andJ = {1,2,...,k}
the subset of corresponding to the indices of the distinct eigenvalue§30fl1 >dy > ... >dj > ... > dy,

where the multiplicity of the distinct eigenvalug is denotedn(d;), so thatz m(d;) = ¢ > landl <k <gq.
Forj € J, letI; denote the subset dfsuch thatl; = {i € I : \; = d;}, hence the;'s are disjoint sets such as

k
U ={1,...,q}. If there exist some eigenvalugs = 0, thend;, = 0. Let P(d;) represent the eigenprojection
j=1
operator projecting onto the eigenspad{@;) associated witl;.

First let us show that

lim Prlsuplg(\i; ¢n) — g(dj;0)| > €] =0 Y e>0 (A.19)

n—ao i€l

as it will be used extensively throughout the proof. By Lentinéi), we have for ali € I;, PN d;. Besides, as
¢, — 0, we have

Pr{|Ai — dj| > cu] = Pr|ba(Ni — dj)| > bacn] — 0 (A.20)

sinceby,c,, — oo slower tharb,, does, and,, (\;—d;) converges in distribution by Lemn@a6. As\; 2 d;, Vi€

I; andg is continuous a.e., thetim PT[Sup|g()\Z, cn) — g(dj;0)| > €] =0,V e > 0. As j was taken arbitrary, it
n— i€l
holds for any;.
Consider first the case where the limiting mattbhas full rankj.e. rank(X) = r = ¢. Forallj € J : d; > 0,
sincer = ¢, then by Lemmd.41i) and ii), and the continuity o§ a.e., we have:

g(\isen) B g(dj;0) and Pp(Z,) 5 Pi(X).
49



Since

1
(d;;0) mid) (d;)g(d;; 0) @) (dj;O)iezI; ;g dj;0) ,
——
m(d;)
we have:
k
SH(en) = > Pr(Zn) md > ghisen) = ZPI [ (dj;0) — g(d;;0) + md > gl A“cn]
7j=1 ze[ zEI
1 .
= ZPI [ (dj;0) + m(dj)g[g(&,cn)g(djvo)]}

k

=Y Pi(£)g(dj;0) =

j=1

£H0),

sinceP;,(X,) & P;(X) and|g(\i; cn) — g(d;;0)| 2 0 by (A.19).

Second, consider the case whefe= 0 with multiplicity m(0) = ¢. In this case X, > ¥ =0, i.e. X,
converges to a zero matrix so that the range of the mappingorresponding ta” is R(Ayx) = {0} and its
nullspace isV(Ay) = R%. Let P,(X) = P(dy)(X) denote the eigenprojection operatorXfassociated with

its zero eigenvalue which projects onto the corresponding eigen3ffige By Lemma6.4 i) and ii), and the
continuity ofg a.e., we have:

g(\isen) B g(di;0) = g(0;0) ,Vie Iy
P, & P(Y),

hence
Zien) = Pr(E glg Nisen) = Pr () [g <0;0>—g<0;0>+Wialg@;cnﬂ
= Pu(S)9(0:0) + P () 3 [oChsicn) - 5(0:0)
= g(0;0)P1(2) = 2(0) (A.21)

sincePr, (5,) = Py(X), Pr,(Zn) = Op(1) and|g(As; cn) —
Finally, suppose. = 0 andd; # 0. Then

9(0;0)] & 0, by (A.19).

125 (en) = RO =

Zg )\17C7L

k
”ZPIJ(
= ”ZPI
= HZPIJ-(Z)

=1

ZEI

{ 0 a0

1
m(d;)

i€l
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Z [9(5\1‘; Cn) —

k
=) Pi(2)g(dy; 0)]
j=1

i T }z

zGI j=1

g(dj; 0)] +ZP1

P;i(X)g(d;;0)]|

9(d;;0) = S Pi(2)g(d;; 0))

Mw

Jj=1



< ujépzjwn)m(ldj) 3 lothsen) —otds0ll+ \f;gwﬁ 0)[P1,(Z0) = (2]
< uijlpzj(xn)m(ldj) 3 lohsen = (0]

+§|g<dj; 0)lI1P1,(Z) = Po(2)]
< u;ﬂjwn)m(ldj) 3 lohsen —olds0)ll+ ;gwﬁonuﬂjwm - P2l

(A.22)

sincePr, (£,) = Op(1), [9(Ai; cn) — 9(0;0)| > 0 by (A.19),9(d;;0) = O(1) and|| Py, () — Py(2)]| * 0, by
Lemma6.4ii).
We can finally conclude that:

lim Pr(|| 28 (c,) — ZR0)| > €] =0.

O
PROOF of Proposition 10.2
By Proposition10.1, we haveX%(c,,) & $%(0). Then by Assumptiog.1, X,, = X, hence
X! SRe)X, 5 X'ZR0)X . (A.23)

Let us project
W??(Cn) = X;zzyjj(cn)Xn >

where

k
5len) = Y oP (S s o)
=1 !

icl;
onto the two orthogonal eigenspac¥’s(X,,) andVs(X,,), such that:

Wi (cn) = Wik (cn) + Wit (cn) |

where
Wi (cn) = X3 211 1 (en) Xon
Wﬁ(cn) = Xalzxg,n(cn)Xn )
with
R o 1 . u 1 3
Enm(cn) = ZPIj (En)ng()‘ia n) = ZPIj(En) 9(dj;0) — g(d;;0) + m(d;) Zg(/\ia Cn)
=1 Ve, j=1 Vel
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k1
= Zsz(En)g(dj; 0) + ZPIj(En)m(dj) Z [9(Xisen) — g(dj;0)]  (A.24)
j=1 j=1 i€l

sinceg(d;; 0) = ﬁ Zielj g(d;;0). Using the continuity property of the eigenvalues and total eigenprojections
J

given in Lemma6.4 i) and ii), and under the assumption thgt, (c,,)) is continuous a.e., we havg, (X,) 2

P;(X) andVe > 0, e small, lim Pr [sup|g(5\i;cn) —g(dj;0)] > €] = 0, with ¢, — 0 by (A.19). Besides, we

know that projection operators are bofmded in probability. Hence,

k1

Sf len) B g(d; 0)Py(2) = 2f(0) . (A.25)
j=1

Therefore, we have:
c
Wi (cn) = X, 28 L (e) X0 = X' 200X = W0) .
Similarly, we have

k k

1 .
Shale) = X Pu(E) s ale) B Y aldi 0B () = B0) =0
j=k1+1 1 el j=k1+1

sinceg(d;;0) =0forallj =k +1,..., k. As X, £ X, andXfy  (cn) & X (0) = 0, we have:

L
Wan(en) = X3,5555 5 (cn) Xn = X'Z55(0)X = 0= W5'(0) .

O
PROOF of Corollary 10.3
Apply the results of Propositioh0.2with
A c
Xn = \/ﬁ[w(%) — lpo] — N[O, E] =X ,and Tj = N[O,Im(dj)] .
k1 k‘l
W0) = X'ZRO0)X =X'(D g(dj;0)Pi(2) X =) g(dy; o) X' P;(2)X
j=1 j=1
kl kl
= ) gldj )XV (d)V(d) X = g(dy; o)djaja;
7j=1 7j=1
kl kl
= Zd dja?;wj = Zx;:cj ,
7j=1 7=1
k1 n
Wherexj = N[()?Im(dj)} . As Zm(dj) = q1, W1 (0) ~ X(fh)-
j=1
]
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