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1 Introduction

Observed high-frequency �nancial prices can be considered as comprising two components, a true price and

a market microstructure noise perturbation. It is an empirical fact (consistent with market microstructure

theory) that the second moment of market microstructure noise is time-varying (for evidence, Bandi and

Russell, 2006a, Hansen and Lunde, 2006, and Oomen, 2006). This time variation (as illustrated in Figure 1)

induces time variation in the bias of the realized variance estimator constructed using high-frequency data.

Naturally, a time-varying bias in realized variance has implications for variance forecasting. This paper

shows that the time-varying nature of market microstructure noise is a fundamental aspect of the variance

forecasting problem in the presence of high-frequency �nancial prices. This is true both from a theoretical

and an empirical perspective.

Optimal frequency selection (in the case of realized variance) and bandwidth selection (in the case of

alternative kernel-type variance estimators) have been very active areas of recent research (Bandi and Russell,

2007, Barndor¤-Nielsen and Shephard, 2007, and McAleer and Medeiro, 2008, are recent surveys on the

subject). Joint consideration of the frequency/bandwidth selection and forecasting problem is pursued by

Andersen et al. (2010), ABM hereafter, and Ghysels and Sinko (2010), GS henceforth. Speci�cally, in

the context of theoretical linear regression models with time-invariant noise, they show that the optimal

frequency/bandwidth selection problem (for the purpose of R2 maximization) reduces (under assumptions)

to the minimization of the unconditional variance of the estimator (regressor).

We derive novel optimal frequency/bandwidth selection methods for the joint frequency/bandwidth selec-

tion and forecasting problem in the presence of time-varying microstructure noise variance. In this context,

we �nd considerably lower optimal frequencies and, similarly, considerably larger bandwidths than those ob-

tained when time variation in the noise variance is unaccounted for. Interestingly, the new frequency choices

are in general closer to those that would be derived from optimization of the �nite sample unconditional

mean-squared-error (MSE) of the regressor (as in Bandi and Russell, 2006a, 2008) than to those that would

be obtained from optimization of the unconditional variance of the regressor (under the assumption of a

constant noise second moment), as needed in linear forecasting models (ABM, 2010, and GS, 2010). Speci�-

cally, we �nd that taking bias into account sub-optimally through an unconditional MSE-based optimization

(under the assumption of a constant noise second moment) can be an empirically reasonable strategy.

We however propose the superior strategy of jointly estimating the optimal (from an R2 standpoint)

frequency/bandwidth by least-squares along with the parameters of the forecasting model. This solution

coincides with the R2-optimal, closed-form, solution which we obtain in the context of our illustrative model

(in Section 1 below). However, as we discuss in what follows, it applies to general forecasting models making

use of realized variance measures and, importantly, is robust to features of the data such as noise dependence,

dependence between the noise process and the price process, and dependence between the equilibrium price
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variance and the noise variance.

Finally, we study cases in which choosing the sampling frequency/bandwidth conditionally (for each

entry/day in the regressor vector) rather than unconditionally, as often done in the literature, is a better

strategy from a forecasting standpoint, even when the alternative is the exact, unconditional, R2-based

optimal choice. An application to SPIDERS mid-quotes validates our theoretical predictions.

Several promising, recent contributions have studied variance forecasting using microstructure noise-

contaminated high-frequency variance estimates. These contributions have evaluated the forecasting poten-

tial of the classical realized variance estimator (Andersen et al., 2003, and Barndor¤-Nielsen et al., 2002) as

well as that of classes of theoretically more robust (to noise) kernel-based estimators (e.g., Zhou, 1996, Hansen

and Lunde, 2006, Zhang et al., 2005, and Barndor¤-Nielsen et al., 2008). Given time-series of alternative

variance estimates, the forecasts have generally been obtained using ARFIMA models (Bandi and Russell,

2008, 2010, and Bandi et al., 2008), Mincer-Zarnowitz-style linear regressions (Andersen et al., 2010), or

MIDAS-type regressions (Ghysels and Synko, 2006, 2010). Either statistical metrics, such as forecast MSEs

and coe¢ cients of determination (Aït-Sahalia and Mancini, 2008, Andersen et al., 2010, Corradi et al., 2006,

and Ghysels and Sinko, 2006, 2010) or economic metrics, such as the utility obtained by investors or the

pro�ts obtained by option traders on the basis of alternative variance forecasts (Bandi and Russell, 2008,

2010, and Bandi et al., 2008), have been used for the purpose of evaluating the goodness of the forecasts.

Time-varying noise variance and its impact on variance forecasting have been considered by Bandi and

Russell (2008, 2010) and Bandi et al. (2008) using conditional frequency/bandwidth selection rules. The

joint frequency/bandwidth selection and forecasting problem has been studied by ABM (2010) and GS

(2010) using unconditional optimal rules in the presence of a time-invariant noise second moment. In this

paper, we emphasize the importance of the time-varying nature of the noise variance for the joint problem,

we provide an appealing least-squares solution to the unconditional problem, and discuss conditions under

which conditional optimality methods may be preferable to unconditional methods.

We work with a price formation mechanism, presented in Section 1, which has been broadly adopted

in the literature and is extended here solely to allow for a time-varying noise second moment. Similarly,

we illustrate matters in the context of a simple, but commonly-employed, autoregressive forecasting model.

Both choices are meant to derive closed-form results and illustrate important issues pertaining to variance

forecasting using realized variance measures when the noise variance is time-varying. In the unconditional

case, the theoretical analysis will however lead us to a least-squares solution to the choice problem which,

as emphasized in Section 9, has general applicability and does not hinge either on the �ne-grain features of

the relation between noise and price process or on the forecasting model.

In what follows, we use the symbol ?? to signify "statistical independence."
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2 A classical price formation mechanism and a forecasting model

Consider a trading day t. Assume availability of M + 1 equispaced, observed logarithmic asset prices over

[t; t+ 1] and write

pt+j� = p�t+j� + ut+j� j = 0; :::;M

or, in terms of continuously-compounded returns,

pt+j� � pt+(j�1)�| {z }
rt+j�

= p�t+j� � p�t+(j�1)�| {z }
r�t+j�

+ ut+j� � ut+(j�1)�| {z }
"t+j�

; j = 1; :::;M;

where p� denotes the unobservable true price, u denotes unobservable market microstructure noise, and

� = 1
M represents the time distance between adjacent price observations.

We assume the true price process evolves in time as a stochastic volatility local martingale, i.e.,

p�t =

Z t

0

�sdWs;

where �t is a càdlàg stochastic volatility process, Wt is a standard Brownian motion, and � ??W (leverage

e¤ects are ruled out1). The daily integrated variance is therefore de�ned as Vt;t+1 =
R t+1
t

�2sds. From now

on, we abuse notation a bit and write Vt instead of Vt;t+1.

We assume the noise contaminations in the price process u are IID in discrete time, over each day, with

variance �2tu and fourth moment cu�
4
tu (where cu denotes kurtosis). In addition, u ?? p� and �2tu ?? Vt (the

latter assumption will be relaxed in Section 7).

Importantly, the variance of the market microstructure noise has a subscript t to signify that it can change

from day to day. All other assumptions are classical assumptions in this literature and, with the exception

of � ??W (which can be easily relaxed in asymptotic designs), have been routinely employed when studying

the �nite sample and asymptotic properties of nonparametric estimates of integrated variance in the presence

of noise (see, e.g., ABM (2010), Bandi and Russell, 2003, 2010, Barndor¤-Nielsen et al., 2008, Hansen and

Lunde, 2006, and Zhang et al., 2005, among others).2 While the assumptions capture important �rst-order

e¤ects in the data, their empirical accuracy depends on the market structure, on the price measurement

(transaction prices vs. mid-quotes, for example), as well as on the sampling scheme (calendar time vs.

event time, for instance). Bandi and Russell (2006b) discuss these ideas. Here, we depart from the "usual"

assumptions by allowing for a time-varying noise second moment. Assuming a constant second moment over

a day, but allowing it to change from day to day, is a useful way to combine theoretical soundness with

1Bandi and Russell (2006b) discuss the validity of this assumption in the case of equities and exchange rates.
2Aït-Sahalia et al. (2005), Bandi and Russell (2003, 2008), Hansen and Lunde (2006), and Oomen (2005, 2006) discuss noise

dependence. Kalnina and Linton (2008) allow for a form of dependence between the noise and the true price.
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empirical tractability. As we discuss below, the time-varying second moments can be estimated consistently

(nonparametrically) for each day in the sample. Alternatively, one could imagine a situation where each

noise contamination is endowed with a time-varying second moment.3 We leave the theoretical and empirical

complications that this modelling choice would entail for future work.

We are interested in predicting Vt+1 given past daily values of the classical realized variance estimator,

namely bVt = MX
j=1

r2t+j� (Andersen et al., 2003, and Barndor¤-Nielsen et al., 2002). To this extent, it is useful

to begin with a speci�c model which forms the basis for some of our analysis in the paper, although general

results will be presented later. Assume Vt+1 = �+ �Vt + �t+1, where �t+1 is such that E(�t+1jFt) = 0. The

model estimation is performed using lagged values of bVt, leading to the forecasting regression
Vt+1 = b�+ b� bVt + b�t+1: (1)

The next section provides intuition about the main e¤ects of time-varying noise on the sampling frequency

and the model�s parameters.

3 Preliminary discussion and intuition

Under our assumed structure, the realized variance estimator takes the form bVt = MP
j=1

r2t+j� =
MP
j=1

r�2t+j� +

MP
j=1

"2t+j� +
MP
j=1

r�t+j�"t+j�. The estimator can also be rewritten as bVt = Vt +ME ��2t"�+
 

MP
j=1

r�2t+j� � Vt

!
+

M
�
�2t" �E

�
�2t"
��
+

 
MP
j=1

"2t+j� �M�2t"

!
+

MP
j=1

r�t+j�"t+j�. We denote the estimation error with no market

microstructure noise by at =
MP
j=1

r�2t+j��Vt. We de�ne the di¤erence between the realized bias on day t and the

expected bias on day t as eat =  MP
j=1

"2t+j� �M�2t"

!
. The unconditional expected bias is given by ME

�
�2t"
�

and the di¤erence between the expected day-t bias and the unconditional bias is given byM
�
�2t" �E

�
�2t"
��
.

Finally, we denote the mean-zero cross-product term by t =
MP
j=1

r�t+j�"t+j�.

The forecast error of the estimated model can now be expressed as b�t+1 = Vt+1 �
�b�+ b� bVt� = � +

�Vt + �t+1 � b� � b� �Vt +ME ��2t"�+ at +M �
�2t" �E

�
�2t"
��
+ eat + t�. Re-arranging terms yields b�t+1 =h

�� b�� b�ME ��2t"�i + �� � b��Vt � b� �at +M �
�2t" �E

�
�2t"
��
+ eat + t� + �t+1: For any values of M , b�,

3 In this case, our estimates may be readily interpreted as local daily averages. Importantly, our estimates can be further
localized in the sense that, at the cost of decreased accuracy, the noise second moment can be estimated consistently (under
our assumptions) over any �xed intra-daily period.
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and b�, the variance of the forecast error is now given by

Var
�b�t+1� =

�
� � b��2Var (Vt) + b�2

0BBBBBBBBBB@
Var (at)| {z }
No noise

+Var (eat) +Var (t)
| {z }

Noise

+M2Var
�
�2t"
�

| {z }
Time�varying noise

1CCCCCCCCCCA
+Var(�t+1):

(2)

The sampling frequency only a¤ects the second term in Eq. (2) implying that the value of M which

minimizes the forecast error variance can be determined without consideration of the parameters of the

forecasting model. Focusing on this second term, we note that the no noise case coincides with Var (at).

This variance is minimized by choosing M as large as possible. The time-invariant noise case leads to

Var (at) +Var (eat) +Var (t), a concave function of the sampling frequency. The resulting optimal M is

lower than the optimal M in the no noise case but, as we show formally in the next section, larger than

the optimal M in the time-varying noise case due to the presence, in the latter case, of the extra term

M2Var
�
�2t"
�
. In sum, the frequency which minimizes the forecast error variance coincides with the value

which minimizes the variance of the regressor (bVt). Below, we provide a representation for this variance in
terms of the structural parameters.

The value of b� which minimizes the forecast error variance, instead, depends on the choice of M

and, hence, on the variance of bVt. Importantly, if Vt were observable, we would have Var
�b�t+1� =�

� � b��2Var (Vt)+Var(�t+1) and the solution to the problem would be classical: b� = � = Cov(Vt+1; Vt)=Var(Vt).
In our case,

b� = � Var(Vt)

Var(Vt) + (Var (at) +Var (eat) +M2Var (�2t") +Var (t))
(3)

and the theoretical least-squares b� estimate is attenuated by the optimized (over M) variance of the mean-
zero measurement error component in realized variance, thereby giving b� < �.
Our results are presented in two parts. First, we consider methods for optimally-choosing M . In our

set-up, we obtain (near) closed-form solutions for M . Next, we consider the joint problem of estimating the

forecasting parameters along with M . Again, while closed-form solutions are available for the joint problem

in the simple model presented here, the class of forecasting models, as well as the types of estimators of

realized variance, is extended beyond our current set-up (in Section 9). Convergence rates of the estimated

parameters are also established.
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4 Optimal forecasting frequencies: closed-form expressions

Theorem 1 presents the optimal rule to choose the R2-maximizing number of observations M:

Theorem 1.

Consider the regression in Eq. (1). Then,

M1 = argmaxR2M

= argmin

�
2

M
E(Qt) + (2E(�t")� 3E(�4t"))M +M2Var(�2t")

�
; (4)

where Qt =
R t+1
t

�4sds, �t" = E("
4
t ), and �

2
t" = E("

2
t ) = 2�

2
tu:

Proof.

See Appendix.

Remark 1. (Interpretation.)

M1 minimizes the unconditional variance of the regressor (realized variance). Under an assumption of

independence between �2tu and Vt (relaxed in Section 7), this minimization translates into maximization of

the forecasting regression�s R2M (as in ABM, 2010, and GS, 2010). The form of this unconditional variance

is unusual and includes a term (of order M2) which accounts for the variability of the noise variance (i.e.,

the last term in Eq. (4)).

Remark 2. (Implementation.)

The quantities �t" and �2t" can be estimated consistently (for each day in the sample) by using sample

moments of the observed return data sampled at the highest frequencies (Bandi and Russell, 2003, 2006a).4

Given b�t" and b�2t", consistent estimates of the unconditional moments E(�t"), E(�4t"); and Var(�2t") can be
obtained by employing sample moments of the daily estimates under classical (stationarity) assumptions.

Estimation of the daily quarticity Qt can be conducted by sampling the observed returns at relatively low

(15- or 20-minute) frequencies.5 Roughly unbiased estimates of the unconditional moment E(Qt) can then

be derived by averaging the estimated daily quarticities under an assumption of stationarity for Qt. While

empirical implementation of the method (by virtue of numerical minimization of the function in Eq. (4)) is

fairly straightforward, the Corollary below provides a convenient, approximate rule to select the optimal M .

Corollary to Theorem 1.

Consider the regression in Eq. (1). For a large optimal M1;

4Bandi and Russell (2007) discuss �nite sample bias corrections.
5Bandi and Russell (2008) discuss the empirical validity of this simple (albeit theoretically ine¢ cient) procedure by simula-

tion. E¢ cient estimation of the quarticity is an important issue for future work.
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M�
1 � argmaxR2M =

�
E(Qt)

Var(�2t")

�1=3
: (5)

Remark 3

The approximate rule in Eq. (5) readily adapts to the noise variance�s variance. The larger this variance

relative to the signal E(Qt) coming from the underlying equilibrium price, the smaller the optimal number of

observations needed to compute bV . As always in these problems, a smaller number of observations translates
into smaller noise contaminations.

Remark 4

The derived approximate rule di¤ers from the optimal (in an unconditional �nite sample MSE sense),

approximate rule proposed by Bandi and Russell (2003, 2008) in the presence of time-invariant noise, i.e.,

M�
2 =

�
E(Qt)

(E("2))2

�1=3
: (6)

It also di¤ers from the optimal (in an R2 sense), approximate rule proposed by ABM (2010) and GS (2010)

in the case of time-invariant noise, i.e.,6

M�
3 =

�
2E(Qt)

2E("4)� 3E("2)2

�1=2
. (7)

Naturally, the relative performance of these alternative rules depends on their relation with M�
1 . In general,

M�
3 > M�

2 . This is easy to see. Since 2E("
4) � 3E("2)2 = 4E(u4), then M�

2 =
�
E(Qt)
4�4u

�1=3
and M�

3 =�
2E(Qt)
4cu�4u

�1=2
under our assumptions (but with time-invariant noise). Intuitively, because the noise-induced

bias of the realized variance estimator (M�2u) increases drastically with the number of observations, the

number of observations which minimizes the unconditional MSE of realized variance is lower than the number

of observations which minimizes its unconditional variance.

Importantly, if Var(�2t") > (E("2))2 = (E(�2t"))
2 under time-varying noise, then M�

2 > M�
1 . This last

condition will be easily satis�ed for our data. Speci�cally, we will �nd that M�
3 > M

�
2 > M

�
1 and, of course,

R2M�
1
> R2M�

2
> R2M�

3
. This result deserves attention. While a time-varying noise second moment can lead

to relatively infrequent optimal sampling (M�
1 ), optimizing the realized variance estimator�s unconditional

MSE (under the assumption of a constant noise variance), as implied by M�
2 , can be a superior strategy to

focusing on the unconditional variance of realized variance (again under the assumption of a constant noise

variance), as implied by M�
3 . This �nding is particularly interesting since the latter choice would in fact be

the optimal choice, from a forecasting standpoint, should the second moment of the noise (or the realized

variance estimator�s bias) be assumed to be time-invariant.

6 Interestingly, this is the same rule obtained by Bandi and Russell (2003) in a di¤erent context, namely the �nite sample
MSE (variance) minimization of their proposed bias-corrected realized variance estimator.

8



5 Conditional vs. unconditional frequency choices

Rather than selecting one sampling frequency for all entries in the regressor vector (i.e., the vector of realized

variance estimates), one could select a di¤erent optimal frequency for each entry/day. Bandi and Russell

(2006a, 2008) use this approach in predicting variance on the basis of autoregressive (fractionally-integrated)

models.

This section shows that whether the conditional approach has the potential to deliver superior forecasts

than the unconditional approach described in the previous section depends on empirically veri�able con-

ditions. Speci�cally, we consider the conditional �nite sample MSE-based approximate rule in Bandi and

Russell (2003, 2008), i.e.,

M�
2t =

�
Qt
�4t"

�1=3
; (8)

and compare it to the optimal, approximate unconditional rule in Eq. (5).

Theorem 2.

De�ne

VarM�
1
(xt) = 2

�
Var

�
�2t"
��1=3

E(Qt)
2=3 +

�
E(Qt)

Var (�2t")

�1=3
E(2�t" � 3�4t")

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var(Vt) +

�
E(Qt)

Var (�2t")

�2=3 �
Var

�
�2t"
��

and

VarM�
2t
(xt) = 2E

��
�2t"
�2=3�

E
�
Q
2=3
t

�
+E

 �
Qt
�4"t

�1=3
(2�t" � 3�4t")

!
+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var(Vt) +Var
�
(Qt)

1=3 �
�2t"
�1=3�

+ 2Cov
�
Vt; (Qt)

1=3 �
�2t"
�1=3�

:

If

�
Var(Vt) +Cov

�
Vt; (Qt)

1=3 �
�2t"
�1=3��2

VarM�
2t
(xt)

>
(Var(Vt))

2

VarM�
1
(xt)

; (9)

then

R2M�
2t
> R2M�

1
:
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Proof.

See Appendix.

Remark 5

The statement in Theorem 2 highlights the moment condition a¤ecting the preferability of an approximate

conditional rule versus an approximate unconditional rule (see Eq. (9)). Leaving aside issues related to

estimation uncertainty, the inequality can be easily evaluated empirically by using the methods described in

Remark 2 above. The condition is easily satis�ed for our data.

Similarly, we can provide a statement for exact conditional and unconditional rules. Speci�cally, one

could compare

(Var(Vt))
2

VarM1(xt)
(10)

with

VarM1
(xt) =

2

M1
E(Qt) + (2E(�t")� 3E(�4t"))M1

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var(Vt) + (M1)
2
Var(�2t")

to

�
Var(Vt) +Cov

�
Vt;M2t�

2
t"

��2
VarM2t

(xt)
(11)

with

VarM2t(xt) = 2E

�
Qt
M2t

�
+E

�
M2t(2�t" � 3�4t")

�
+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var(Vt) +Var
�
M2t�

2
t"

�
+ 2Cov

�
Vt;M2t�

2
t"

�
;

where M1 is the exact R2-optimal number of observations (from Theorem 1) and M2t is the exact (condi-

tional) MSE-optimal number of observations from Bandi and Russell (2003, 2008). If Eq. (11) is larger than

Eq. (10), then R2M2t
> R2M1

. Naturally, this new inequality is slightly harder to verify than the inequality

in the theorem. Its veri�cation requires solution of n + 1, where n is the number of days in the sample,

optimization problems to compute the relevant M�s (i.e., M1 and M2t with t = 1; :::; n).
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6 Forecasting regressions in practise

This section examines the implications of theory with data. We use SPIDERS (Standard and Poor�s depos-

itory receipts) mid-quotes on the NYSE.7 We remove quotes whose associated price changes and/or spreads

are larger than 10%.

In order to render the regressions feasible (i.e., to evaluate the regressand Vt+1), we employ �at-top

kernels as advocated by Barndor¤-Nielsen et al. (2008). Write

bV BNHLSt = b0 + �X
s=1

ws(bs + b�s);
where bs = PM

j=1 rt+j�rt+(j�s)� with s = �q; :::; q, ws = k
�
s�1
q

�
and k(:) is a function on [0; 1] satisfying

k(0) = 1 and k(1) = 0. The well-known Bartlett kernel (k(x) = 1�x), the cubic kernel (k(x) = 1�3x2+2x3),

and the modi�ed Tukey-Hanning kernel (k(x) =
�
1� cos�(1� x)2

�
=2), among other functions, satisfy the

conditions on k(:): These estimators have favorable limiting properties under our price formation mechanism

(Barndor¤-Nielsen et al., 2008).8 Furthermore, they have been shown to perform satisfactorily in practise

(Bandi and Russell, 2010, and Bandi et al., 2008). Importantly, for each day in the sample, the estimators

are unbiased under our assumptions. This is a useful property in that it guarantees (theoretically, at least)

unbiasedness of the forecasts.9 We optimize the performance of the estimators by using methods discussed

in Bandi and Russell (2010). Speci�cally, for each day in the sample (i.e., "conditionally," using our previous

terminology) we select the number of autocovariances � in order to minimize the estimators��nite sample

variance.10

We run regressions of bV BNHLSt+1 on lagged realized variance. To fully capture the persistence properties

of volatility, we run regressions of bV BNHLSt+1 on �ve lags of realized variance. We consider two subsets of

data, the full period 1/2002 - 3/2006 and the shorter 1/2004 - 3/2006 period. In all cases, we use 1,000

observations to estimate the model�s parameters and forecast. We report 6 cases for the regressor(s):

1. Realized variance with M�
2t:

7SPIDERS are shares in a trust which owns stocks in the same proportion as that found in the S&P 500 index. They trade
like a stock (with the ticker symbol SPY on the Amex) at approximately one-tenth of the level of the S&P 500 index. They
are widely used by institutions and traders as bets on the overall direction of the market or as a means of passive management.
SPIDERS are exchange-traded funds. They can be redeemed for the underlying portfolio of assets. Equivalently, investors have
the right to obtain newly issued SPIDERS shares from the fund company in exchange for a basket of securities re�ecting the
SPIDERS�portfolio.

8 If q / M2=3; the estimators are consistent and converge to an asymptotic mixed normal distribution at speed M1=6. The
additional requirements k

0
(0) = 0 and k

0
(1) = 0; combined with q / M1=2, yield a faster rate of convergence (M1=4) to the

estimators�mixed normal distribution. The cubic kernel and the modi�ed Tukey-Hanning kernel satisfy the extra requirements.
9 In general, of course, how to optimally trade-o¤ bias and variance of the forecasts depends on the adopted loss function.

Since we are simply using kernel estimates to make the regressions feasible by empirically evaluating the regressand, it seems
natural to employ unbiased estimators with favorable variance properties.
10Other estimators, such as the two-scale estimator of Zhang et al. (2005) and the multi-scale estimator of Zhang (2006),

also have favorable properties and could be used.
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2. Realized variance with a conditional version of M�
3 ; i.e., M

�
3t =

�
2Qt

2�t"�3�4t"

�1=2
:

3. Realized variance with an unconditional choice of M obtained by least-squares minimization (jointly

with estimation of the regression�s parameters), M�
4 .

4. Realized variance with M
�
2t (a unique M obtained by averaging the M�

2ts across 1,000 observations -

the same observations used for forecasting).

5. Realized variance with M�
3 .

6. Realized variance with M
�
3t (a unique M obtained by averaging the M�

3ts across 1,000 observations -

the same observations used for forecasting).

We begin by focusing on unconditional choices ((3) through (6)). The one-step estimator in (3) performs

better than the estimator obtained by averaging conditional MSE-optimal frequencies in (4). In turn, the

estimator in (4) outperforms the estimator (in (5)) obtained by choosing the unconditional optimal (in a

variance sense) frequency. Notice that the one-step least-squares estimator is the estimator which empirically

maximizes the regression�s R2 jointly with the regression�s parameters. In other words, this estimator

represents the least-squares solution to frequency optimization in the context of forecasting. Under our

assumptions, this estimator should provide a similar answer as the exact theoretical solution M1. Hence,

its superiority is not surprising. It is also not surprising that taking the time-varying noise into account

through an MSE criterion (as implied by (4)) appears to be a superior strategy than simply focusing on the

unconditional variance of the regressor under the assumption of a time-invariant noise (as implied by (5)).

We �nd that M�
4 < M

�
2t < M�

3 . In other words, q
�
4 > q�2t > q�3 , where q indicates the average number

of high-frequency observations to be skipped in the computation of the corresponding realized variance

estimator. These values are reported in the tables. For the case of the �at-top Bartlett kernel in Table 1,

for example, q�4 � 123, q�2t � 74, and q�3 � 55. Since, empirically, Var(�2t")(= 5:19e � 14) >
�
E(�2t")

�2
(=

1:6e� 14), the ranking of M values is fully consistent with theory. Di¤erently put, it is consistent with the

ranking reported in Section 3 above, namely M�
1 < M

�
2 < M

�
3 . This said, M

�
4 and M

�
2t are not exactly equal

to M�
1 and M

�
2 , respectively. However, we expect them to be very close to M�

1 and M
�
2 . While, as noted,

M�
4 is the empirical R

2-maximizing number of observations, M�
1 is a useful approximation to it highlighting

the main determinants of the optimal frequency in the time-varying noise case. In addition, M
�
2t and M

�
2

are not identical objects due to Jensen�s inequality-type arguments.

In our sample, averaging the conditional, optimal (in a variance sense) frequencies (as in (6)) is an inferior

strategy to using the unconditional, variance-optimal frequency (as in (5)) advocated by ABM (2010) and

GS (2010).
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Turning to conditional choices, we �nd that using conditional MSE-optimal frequencies as in (1) and

conditional variance-optimal frequencies as in (2) performs better than selecting only one frequency (even if

it is the R2-optimal frequency in (3)) for all realized variance entries. Importantly, as stressed earlier, the

moment condition in Theorem 2 is easily satis�ed in our sample. Hence, these results nicely conform with

the implications of theory too.

Our �ndings are consistent across regressands (i.e., choices of kernels) and sample periods. Statistically,

we �nd that (i) the forecast MSEs are always di¤erent from zero, (ii) a chi-squared test of the null hypothesis

of equal MSEs across forecasting models is easily rejected, and (iii) pairwise t-tests of the null of equal MSEs

between conditional and unconditional frequency choices are generally rejected in the low variance sample

period 1/2004 - 3/2006 (Tables 4, 5, and 6).

7 Alternative robust regressors

We have shown that the presence of a time-varying bias should lead to careful consideration when forecasting

variance using realized variance. Not only is this type of bias not absorbed by the regression�s intercept in

general, but it can lead to unconditional choices of sampling frequency that are lower, rather than higher as

in the constant bias case, than the realized variance estimator�s unconditional MSE-optimal choice (under

the assumption of a constant bias). We have also found that conditional choices can be bene�cial in practise.

One could of course forecast variance using alternative, theoretically more robust (to microstructure

noise) regressors than the classical realized variance estimator. In this section we employ the same regressors

that were used earlier as regressands, namely �at-top Bartlett kernels, �at-top cubic kernels, and �at-top

modi�ed Tukey-Hanning kernels. When using the �at-top Bartlett kernel as a regressand, for instance, we

also use it as a regressor. The forecasting set-up is the same as that in the previous section. We consider 5

lags for the regressor to capture volatility persistence e¤ectively. We employ 1,000 observations to estimate

the model�s parameters and forecast. We now report 3 cases for the regressor(s):

1. Kernel estimates with a number of autocovariances chosen conditionally (for each day) in order to

minimize the �nite sample MSE (variance, in this case) of the estimator as suggested by Bandi and

Russell (2010).

2. Kernel estimates with a number of autocovariances chosen unconditionally in order to minimize least-

squares (i.e., jointly with the model�s parameters).

3. Kernel estimates with a number of autocovariances chosen unconditionally as the average of the con-

ditional MSE(variance)-optimal choices in Bandi and Russell (2010).
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As earlier, we begin with unconditional choices. Even in the case of estimators with favorable (the-

oretically) bias properties in the presence of noise, there appears to be scope for taking the documented

time-variation in the noise second moment into account from a forecasting perspective. Unconditional au-

tocovariance/bandwidth choices which empirically maximize the R2 of the regression perform better than

unconditional variance-optimal bandwidth choices (as in (3)). As thoroughly discussed by ABM (2010) and

GS (2010), the latter would be optimal should the noise-induced bias be constant (or absent, as is the case

for the �at-top kernels in theory). It is interesting to notice that the average number of autocovariances that

is selected by the one-step R2-optimal procedure is larger (around 13) then the average number of autoco-

variances selected by the variance-optimal procedure (around 5). The divergence between the unconditional

choices in (2) and (3) is potentially due to a time-varying (noise-induced) bias component that is left in

the kernel estimates despite their favorable (theoretically) �nite sample bias properties. Qualitatively and

quantitatively, this result is reminiscent of �ndings in Bandi and Russell (2010). There it was shown that the

(conditional) �nite sample MSE-based optimization of the promising two-scale estimator results in a larger

number of autocovariances than the �nite sample MSE-based optimization of the class of �at-top kernels.

This outcome was due to the presence of a �nite sample bias component in the case of the former and the

need to reduce it for the purpose of MSE minimization.11

Turning to conditional bandwidth choices, choosing the autocovariances to optimize the �nite sample

variance of the estimator (as in (1)) for each entry in the regressor vector outperforms, in our sample, the

"best" unconditional choice in (2). This is, again, consistent with our �ndings in the realized variance case.

The use of robust regressors leads, as expected, to gains over the use of the realized variance estimator.

Interestingly, however, these gains can be fairly small in practise. Consider the case bV BNHLSt+1 = Bartlett andbVt = realized variance vs. the case bV BNHLSt+1 = Bartlett and bV BNHLSt = Bartlett for the optimal R2-based

unconditional choice. The corresponding forecast MSE values are 1:08e�09 and 9:92e�10:When using cubic

kernels, the values are 1:1819e� 09 and 1:1814e� 09, respectively. They are 1:0986e� 09 and 1:0753e� 09

in the modi�ed Tukey-Hanning kernel case.

8 Extending the framework: dependence between noise variance
and true price variance

Sound economic reasoning suggests the potential for non-negligible cross-sectional dependence between noise

variance and true price variance. For instance, higher uncertainty about the asset�s true value (as represented

by a higher Vt) implies higher likelihood of adverse price moves and, hence, higher inventory risk for the

market maker. Similarly, higher uncertainty about the true value of the asset increases the market maker�s

11The proposed analogy should only be regarded as suggestive in that the �nite sample bias of the two-scale estimator simply
depends on the moments of the underlying price process and not on the moments of the noise contaminations.
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risk of transacting with traders with superior information. Both risks ought to be compensated. Generally,

other things equal, higher price variance translates into larger bid-ask spreads set by the market maker

and hence larger noise variances. Bandi and Russell (2006a) provide discussions about the economic reasons

underlying the cross-sectional dependence between true price variance and noise variance as well as empirical

evidence for the S&P100 stocks.

A related issue has to do with the time-series dependence between true price variance and noise variance.

From a forecasting perspective, if Cov(Vt; �2tu) 6= 0, the R2-optimal rule to sample realized variance should

be modi�ed.

Theorem 3.

Consider the regression in Eq. (1). If Cov(Vt; �2tu) 6= 0, then

MN
1 = argmaxR

2
M = argmax

(Var(Vt) +MCov(Vt; �
2
t"))

2

VarM (xt)
; (12)

where

VarM (xt) =
2

M
E(Qt) +ME(2�t" � 3�4t") +

�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +M
2Var

�
�2t"
�
+ 2MCov(Vt; �

2
t"):

Proof.

See Appendix.

Given consistent daily estimates of �2t" and preliminary estimates of Vt (obtained as described in Remark

2 above), the additional input Cov(Vt; �2t") can be readily evaluated. Numerical maximization of R
2
M can

then be easily conducted.

Naturally, the least-squares solution M�
4 (above) accounts for the presence of a non-zero covariance

between Vt and �2t" directly. Under our assumptions, this solution should be close to M
N
1 . Having made this

point, a thorough study of the dynamic properties of the bi-variate system (Vt; �
2
t"); and their implications

for forecasting integrated variance, is an important topic of research better left for future work.

9 A general solution to the unconditional problem: joint least-
squares optimization

Our previous discussion used a conventional price formation mechanism (extended to allow for time-varying

noise second moments) as well as a simple, but commonly-employed, forecasting model. Both choices were

intended to obtain closed-form implications for important determinants of the optimal bandwidth/frequency

choice when noise is time-varying. In this setting, we have shown that there are theoretical reasons for
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choosing unconditional sampling frequencies (bandwidths) which are lower (larger) than those that would

be optimally chosen in linear forecasting models when time-variation in the second moment of the noise is

unaccounted for. Our empirical work con�rmed this implication of theory.

The solutions we derived were, of course, intended to minimize the mean-squared forecast error of the

assumed forecasting regressions. Importantly, this optimization may be conducted without imposing poten-

tially strong assumptions on the noise properties and in the context of any variance forecasting model relying

on realized variance measures. Coherently with our general logic as laid out in Section 3 (as well as our M�
4

choice in Section 6), here we propose to evaluate the optimal frequency/bandwidth jointly with the model�s

parameters.

Let Vt+1 = f(Vt; Vt�1; :::; Vt�(K�1)j�)+�t+1 withE(�t+1jFt) = 0 and de�ne Vt+1 = f(bVb�;t; bVb�;t�1; :::; bVb�;t�(K�1)jb�)+b�t+1, for some function f(:) and a speci�c number of lags K > 0. The least-squares solution to the joint

forecasting/sampling problem is given by:

argmin
�;�

TX
t=1

b�t+1 = argmin
�;�

TX
t=1

[Vt+1 � f(bV�;t; bV�;t�1; :::; bV�;t�(K�1)j�)]2;
where bV�;t+h is a realized variance measure and � is either a frequency (in the case of realized variance) or
a bandwidth (in the case of kernel estimates).

Under our assumption on the noise, if f(:) is an AR(1) model, the solution to the (non-linear) least-

squares problem coincides with the theoretical solution in Section 3. More generally, this solution is robust

to potential noise dependence, dependence between the noise and the equilibrium price process, as well

as dependence between the equilibrium price variance and the noise variance, as discussed in the previous

section. Moreover, the forecasting model may be richer than an autoregression of any order. For instance,

the joint approach readily applies to the MIDAS regressions in GS (2010), inter alia, to the heterogeneous

autoregressive regressions (HAR) of Corsi (2009), possibly with leverage e¤ects and jumps as in Corsi and

Renò (2010), and to the HEAVY speci�cations in Shephard and Sheppard (2009), among other approaches.

We note that the speci�cation f(bV�;t; bV�;t�1; :::; bV�;t�(K�1)j�) can be viewed as a mixed parameter model
in that � is naturally de�ned over a discrete set. Under conventional assumptions (see, e.g., Choirat and

Seri, 2001, and Ryu, 1999), it is readily shown that E(b�i � �i0)2 � �T�1, for 0 � i � K � 1 and some

� > 0, and E(b�� �0)2 � �T for some 0 < � < 1. In other words, the discrete parameter vector b� converges
(in mean square) to its theoretical counterpart at a faster (exponential) rate than the classical root T rate.

In the context of a simple AR(1) model, the values b� = (b�1;b�0) are a slope and an intercept estimate,
respectively, consistent for the pseudo-true parameters �0 in Eq. (3) and �0 = E(Vt+1) � �0E(Vt) (c.f.,

Section 3). As shown, �0 and �0 do not coincide with the parameters of the true autoregression but are

such that �0 < � and �0 > �. In addition, b� is consistent for the value �0 which minimizes the variance of
the estimated regressor (as discussed in Section 3 and shown in Theorem 1). The same logic applies to the
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general speci�cation f(bV�;t; bV�;t�1; :::; bV�;t�(K�1)j�) for which b� is a consistent estimate of the attenuated
pseudo-true parameter vector �0 6= � and b� is consistent (at the accelerated rate �� 1

2T ) for the value �0

which minimizes the regressor�s variance.

10 Conclusions

The second moment of market microstructure noise is time-varying. We study the impact of this time

variation on variance forecasting. In the context of linear volatility forecasting models, we �nd the need for

lower sampling frequencies (in the case of realized variance) and larger bandwidth choices (in the case of

kernel estimators of integrated variance) than required when microstructure noise is assumed to be present

but its variability is unaccounted for. We also show that frequency/bandwidth choices which adapt to the

moments of the true price and noise components (named "conditional" in the text) have the potential to

outperform (from an R2 or forecast MSE standpoint) their optimal unconditional counterparts.

Importantly, the goal of this paper is not to advocate a speci�c variance forecasting model. Choosing

an optimal lag structure in the relevant forecasting regressions, as well as enlarging the information set by

allowing for additional predictors (aside from lagged variance), are, among other extensions, important issues

beyond the scopes of the present paper. Our goal is to use a well-understood price structure, as well as a

classical loss function amenable to the derivation of clear theoretical implications, to highlight aspects of the

volatility forecasting problem in the presence of market microstructure noise which we regard as important.

Speci�cally, we show that (1 ) accounting for the time-varying nature of the noise moments, (2 ) deriving

unconditional solutions by jointly selecting the frequency/bandwidth and the model�s parameters, and (3 )

allowing for conditional frequency/bandwidth choices may be very bene�cial in practise. The evaluation of

richer forecasting models and alternative (statistical and economic) loss functions is better left for future

work.

11 Appendix

Proof of Theorem 1. Consider the d.g.p. Vt+1 = � + �Vt + �t+1, where �t+1 is a forecast error uncorrelated
with time t information. We run a regression of Vt+1 on xt = Vt + Ut + (xt � Vt � Ut) = Vt + Ut + �t; where

Ut = E

 
MX
j=1

"2j j�; �u

!
= M�2t"; and �t =

 
MX
j=1

r2j � Vt

!
+

MX
j=1

rj"j +

 
MX
j=1

"2j � Ut

!
: Notice that E(�tj�; �u) = 0.

Now, consider R2 =
Cov2(Vt+1;xt)

Var(Vt+1)Var(xt)
: The (square root of the) numerator can be expressed as Cov (Vt+1; xt) =

Cov(�+ �Vt + �t+1; Vt + Ut + �t) = �Var(Vt) + �Cov(Vt; �t) since Cov(Vt; Ut) = 0: But,
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Cov(Vt; �t) = E(Vt�t)�E(Vt)E(�t)
= E(Vt�t)

= E (E(Vt�tj�; �u))
= E(VtE(�tj�; �u))
= 0:

Hence, minM Var(xt)) maxM R2. By the law of total variance and Theorem 4 in Bandi and Russell (2008), write

Var(xt) = E(Var(xtj�; �u)) +Var(E(xtj�; �u))

= E

�
2

M
Qt

�
+E(M(2�t" � 3�4t")) +

�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var
�
Vt +M�

2
t"

�
=

2

M
E(Qt) +ME(2�t" � 3�4t") +

�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +M
2Var

�
�2t"
�
; (13)

since, again, Cov(Vt; Ut) = 0:�

Proof of Theorem 2. Consider Eq. (13). Plugging in the approximate unconditional rule M�
1 =

�
E(Qt)

Var(�2t")

�1=3
we obtain

VarM�
1
(xt) =

2�
E(Qt)

Var(�2t")

�1=3E(Qt) +E
 �

E(Qt)

Var (�2t")

�1=3
(2�t" � 3�4t")

!

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +

�
E(Qt)

Var (�2t")

�2=3 �
Var

�
�2t"
��

= 2Var
�
�2t"
�1=3

E(Qt)
2=3 +

�
E(Qt)

Var (�2t")

�1=3
E(2�t" � 3�4t")

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +E(Qt)
2=3Var

�
�2t"
�1=3

: (14)

Hence, R2M�
1
= �2(Var(Vt))

2

Var(Vt+1)VarM�
1
(xt)

. Using the conditional rule in Bandi and Russell (2003, 2008):
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VarM�
2t
(xt) = E

0B@ 2�
Qt
�4t"

�1=3Qt
1CA+E �Qt

�4t"

�1=3
(2�t" � 3�4t")

!

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��
+Var

�
Vt +M�

2
t"

�
= 2E

��
�2t"
�2=3

(Qt)
2=3
�
+E

 �
Qt
�4t"

�1=3
(2�t" � 3�4t")

!

+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��
+Var

 
Vt +

�
Qt
�4t"

�1=3
�2t"

!

= 2E
��
�2t"
�2=3�

E(Q
2=3
t ) +E

 �
Qt
�4t"

�1=3
(2�t" � 3�4t")

!
+
�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +Var
�
(Qt)

1=3 ��2t"�1=3�+ 2Cov(Vt; (Qt)1=3 ��2t"�1=3):
Thus, R2M�

2t
= �2(Var(Vt)+Cov(Vt;Ut))

2

Var(Vt+1)VarM�
2t
(xt)

=
�2

 
Var(Vt)+Cov

 
Vt;

�
Qt
�4t"

�1=3
�2t"

!!2
Var(Vt+1)VarM�

2t
(xt)

=
�2
�
Var(Vt)+Cov

�
Vt;(Qt)

1=3(�2t")
1=3

��2
Var(Vt+1)VarM�

2t
(xt)

.

�
Proof of Theorem 3. If Cov(Vt; �2tu) 6= 0, then Cov (Vt+1; xt) = Cov(� + �Vt + �t+1; Vt + Ut + �t) =

�Var(Vt) + �MCov(Vt; �
2
t") from the proof of Theorem 1. In addition,

Var(xt) =
2

M
E(Qt) +E(M(2�t" � 3�4t")) +

�
4E(�2t"Vt)�E(�t") + 2E

�
�4t"
��

+Var (Vt) +M
2Var

�
�2t"
�
+ 2MCov(Vt; �

2
t"): (15)

Hence,

R2 =
�2

Var(Vt+1)

(Var(Vt) +MCov(Vt; �
2
t"))

2

Var(xt)

with Var(xt) de�ned in Eq. (15).
�
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Figure 1. Microstructure noise second moment’s estimates. We use Spiders mid-quotes on the NYSE. 

The sample period is 2002/1 - 2006/3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

LHS = FlatBart RHS = RV 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  162.326 9.66E-10 4.67E-05 5.88E-05 5.00E-05 4.93E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.32E-05 0.281312 0.0989931 -0.0033682 0.0937042 0.045113 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  117.478 9.98E-10 4.67E-05 5.80E-05 5.00E-05 4.29E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.43E-05 0.318263 0.0556906 0.0192768 0.102851 0.00968516
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  123.879 1.08E-09 4.67E-05 6.26E-05 5.00E-05 4.86E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.77E-05 0.219259 0.0998483 0.0352042 0.0524899 0.0425611 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 74.8889 1.09E-09 4.67E-05 6.18E-05 5.00E-05 4.51E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 2.94E-05 0.210582 0.0894445 0.0269597 0.0575391 0.0497621 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  55.8889 1.13E-09 4.67E-05 6.25E-05 5.00E-05 4.57E-05 

(5) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.86E-05 0.212029 0.0925057 0.0296564 0.055968 0.0469369 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  53.9468 1.19E-09 4.67E-05 6.26E-05 5.00E-05 4.54E-05 

   (6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.79E-05 0.21654 0.0936616 0.0285354 0.0555054 0.0496944 

       
  (1) (2) (3) (4)     (5) (6) 

MSE 9.66E-10 9.98E-10 1.08E-09 1.09E-09 1.13E-09 1.19E-09 
HAC_std 2.34E-10 2.41E-10 2.20E-10 2.25E-10 2.10E-10 2.40E-10 
t_MSE 4.1291 4.13497 4.91409 4.85042 5.37764 4.97761 

  t12 t13 t14 t15 t25   
T -0.24062 -1.32543 -1.54206 -1.66828 -1.02195   

Joint Chi-squared test: 50.41     
 
Table 1. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top Bartlett kernels as in Bandi and Russell, 2010) on five lags of realized variance. The regressor 

(realized variance) is sampled using 6 methods described in the main text. We use Spiders mid-quotes 

on the NYSE. The sample period is 2002/1 - 2006/3. In all cases, 1,000 observations are employed to 

estimate the model parameters (a0 through a5) and forecast. The table reports means and standard 

deviations for both the regressand (true) and the volatility forecasts. It also reports the average number 

of observations to be skipped (q) according to each sampling rule. T-statistics for the individual MSEs, 

t-statistics for pair-wise tests of equal MSEs, and a joint Chi-squared test of equal MSEs across 

sampling methods are reported in the second panel.   



 
 

LHS = FlatCubic RHS = RV 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  162.326 1.05E-09 4.85E-05 5.98E-05 5.19E-05 4.87E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.42E-05 0.287751 0.10447 -0.0050108 0.0934314 0.0368125 

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  117.478 1.07E-09 4.85E-05 5.90E-05 5.19E-05 4.23E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.50E-05 0.324704 0.0627989 0.0173676 0.102172 0.00247085
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  117.969 1.1819E-09 4.85E-05 6.41E-05 5.19E-05 4.82E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.86E-05 0.222019 0.103153 0.0380231 0.0497926 0.0371127 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 74.8889 1.1871E-09 4.85E-05 6.29E-05 5.19E-05 4.46E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 3.03E-05 0.21586 0.0941549 0.0257633 0.0545427 0.0457488 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  55.8889 1.22E-09 4.85E-05 6.36E-05 5.19E-05 4.52E-05 

(5) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.95E-05 0.217557 0.0973909 0.0281942 0.0531524 0.0425865 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  53.9468 1.30E-09 4.85E-05 6.37E-05 5.19E-05 4.50E-05 

(6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.88E-05 0.222269 0.0983164 0.0269882 0.0528116 0.0453233 
       
  (1) (2) (3) (4) (5) (6) 

MSE 1.05E-09 1.07E-09 1.1819E-09 1.1871E-09 1.22E-09 1.30E-09 
HAC_std 2.78E-10 2.84E-10 2.60E-10 2.66E-10 2.50E-10 2.85E-10 
t_MSE 3.77433 3.77673 4.57811 4.46129 4.88257 4.5744 

  t12 t13 t14 t15 t25   
T -0.1656 -1.4041 -1.50741 -1.57473 -1.01939   

Joint Chi-squared test: 43.78     
 
Table 2. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top cubic kernels as in Bandi and Russell, 2010) on five lags of realized variance. The regressor 

(realized variance) is sampled using 6 methods described in the main text. We use Spiders mid-quotes 

on the NYSE. The sample period is 2002/1 - 2006/3. In all cases, 1,000 observations are employed to 

estimate the model parameters (a0 through a5) and forecast. The table reports means and standard 

deviations for both the regressand (true) and the volatility forecasts. It also reports the average number 

of observations to be skipped (q) according to each sampling rule. T-statistics for the individual MSEs, 

t-statistics for pair-wise tests of equal MSEs, and a joint Chi-squared test of equal MSEs across 

sampling methods are reported in the second panel.   



 
 

LHS = FlatTukey RHS = RV 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  162.326 9.66E-10 4.81E-05 5.94E-05 5.10E-05 4.90E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.38E-05 0.283859 0.10733 -0.0055169 0.0885941 0.0442513 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  117.478 1.02E-09 4.81E-05 5.87E-05 5.10E-05 4.25E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.47E-05 0.321145 0.0632796 0.0151823 0.0997437 0.00968388
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  122.966 1.0986E-09 4.81E-05 6.35E-05 5.10E-05 4.85E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.82E-05 0.221173 0.10493 0.0344397 0.049225 0.0417724 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 74.8889 1.1050E-09 4.81E-05 6.25E-05 5.10E-05 4.48E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 2.99E-05 0.212318 0.0955053 0.0245537 0.0530928 0.0510944 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(5)  55.8889 1.13E-09 4.81E-05 6.32E-05 5.10E-05 4.54E-05 
 Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 2.91E-05 0.214138 0.0991262 0.0267773 0.0520487 0.0472941 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  53.9468 1.22E-09 4.81E-05 6.33E-05 5.10E-05 4.52E-05 

(6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.84E-05 0.218807 0.0997764 0.0255501 0.0515927 0.0504963 
       

  (1) (2) (3) (4) (5) (6) 
MSE 9.66E-10 1.02E-09 1.0986E-09 1.1050E-09 1.13E-09 1.22E-09 

HAC_std 2.43E-10 2.59E-10 2.33E-10 2.37E-10 2.20E-10 2.56E-10 
t_MSE 3.96744 3.94106 4.72397 4.66092 5.15286 4.74954 

  t12 T13 t14 t15 t25   
T -0.39802 -1.40348 -1.62466 -1.70449 -0.848255   

Joint Chi-squared test: 48.32     
 
Table 3. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top modified Tukey-Hanning kernels as in Bandi and Russell, 2010) on five lags of realized 

variance. The regressor (realized variance) is sampled using 6 methods described in the main text. We 

use Spiders mid-quotes on the NYSE. The sample period is 2002/1 - 2006/3. In all cases, 1,000 

observations are employed to estimate the model parameters (a0 through a5) and forecast. The table 

reports means and standard deviations for both the regressand (true) and the volatility forecasts. It also 

reports the average number of observations to be skipped (q) according to each sampling rule. 

T-statistics for the individual MSEs, t-statistics for pair-wise tests of equal MSEs, and a joint 

Chi-squared test of equal MSEs across sampling methods are reported in the second panel.   



 
 

LHS = FlatBart RHS = RV 5 lags   
2004/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  171.112 2.35E-10 2.82E-05 3.20E-05 1.52E-05 9.51E-06 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.49E-05 0.276181 0.0922763 0.0236755 0.0942341 0.0224669 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  178.018 2.47E-10 2.82E-05 3.12E-05 1.52E-05 1.11E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.28E-05 0.342192 0.0666968 0.00278203 0.126232 -0.002328 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  160.244 4.11E-10 2.82E-05 3.81E-05 1.52E-05 1.48E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.10E-05 0.187816 0.0960295 0.0664505 0.0519591 0.021378 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 65.9439 5.36E-10 2.82E-05 3.87E-05 1.52E-05 1.88E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 1.84E-05 0.224782 0.0967559 0.0235081 0.0666108 0.0378135 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  71.2857 5.57E-10 2.82E-05 3.88E-05 1.52E-05 1.91E-05 

(5) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.97E-05 0.220002 0.0931147 0.0254188 0.0662948 0.0317596 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  69.6673 6.04E-10 2.82E-05 3.91E-05 1.52E-05 2.06E-05 

(6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.87E-05 0.225986 0.0959497 0.0224315 0.0649285 0.0383145 
       
  (1) (2) (3) (4) (5) (6) 

MSE 2.35E-10 2.47E-10 4.11E-10 5.36E-10 5.57E-10 6.04E-10 
HAC_std 2.20E-11 2.52E-11 7.90E-11 1.48E-10 1.49E-10 2.04E-10 
t_MSE 10.674 9.80144 5.20368 3.6313 3.73351 2.95806 

  t12 t13 t14 t15 t25   
T -1.54609 -2.38177 -2.09481 -2.21819 -2.11737   

Joint Chi-square test: 117.82     
 
Table 4. We report forecasting regressions of integrated variance (estimated using optimally-sampled 

flat-top Bartlett kernels as in Bandi and Russell, 2010) on five lags of realized variance. The regressor 

(realized variance) is sampled using 6 methods described in the main text. We use Spiders mid-quotes 

on the NYSE. The sample period is 2004/1 - 2006/3. In all cases, 1,000 observations are employed to 

estimate the model parameters (a0 through a5) and forecast. The table reports means and standard 

deviations for both the regressand (true) and the volatility forecasts. It also reports the average number 

of observations to be skipped (q) according to each sampling rule. T-statistics for the individual MSEs, 

t-statistics for pair-wise tests of equal MSEs, and a joint Chi-squared test of equal MSEs across 

sampling methods are reported in the second panel.   



 
 

LHS = FlatCubic RHS = RV 5 lags   
2004/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  171.112 2.31E-10 2.94E-05 3.36E-05 1.56E-05 9.47E-06 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.63E-05 0.285943 0.100449 0.0191892 0.0940962 0.012773 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  178.018 2.36E-10 2.94E-05 3.27E-05 1.56E-05 1.11E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.42E-05 0.351297 0.0773286 -0.00088397 0.125422 -0.0128982
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  145.897 4.90E-10 2.94E-05 4.08E-05 1.56E-05 1.68E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.27E-05 0.188722 0.100167 0.0738194 0.047709 0.0128716 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 65.9439 5.65E-10 2.94E-05 4.04E-05 1.56E-05 1.91E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 2.00E-05 0.232728 0.104053 0.0209948 0.0620747 0.0318149 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  71.2857 5.89E-10 2.94E-05 4.05E-05 1.56E-05 1.94E-05 

(5) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.13E-05 0.227631 0.10084 0.0228622 0.0618063 0.0257183 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  69.6673 6.42E-10 2.94E-05 4.08E-05 1.56E-05 2.11E-05

(6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.03E-05 0.234069 0.103272 0.0199102 0.0602224 0.0322606 
       
  (1) (2) (3) (4)     (5) (6) 

MSE 2.31E-10 2.36E-10 4.90E-10 5.65E-10 5.89E-10 6.42E-10 
HAC_std 2.31E-11 2.56E-11 1.15E-10 1.68E-10 1.69E-10 2.28E-10 
t_MSE 9.97592 9.21065 4.25107 3.36381 3.48204 2.81823 

  t12 t13 t14 t15 t25   
T -0.73573 -2.31294 -2.01153 -2.14223 -2.10502   

Joint Chi-squared test: 105.71     
 

Table 5. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top cubic kernels as in Bandi and Russell, 2010) on five lags of realized variance. The regressor 

(realized variance) is sampled using 6 methods described in the main text. We use Spiders mid-quotes 

on the NYSE. The sample period is 2004/1 - 2006/3. In all cases, 1,000 observations are employed to 

estimate the model parameters (a0 through a5) and forecast. The table reports means and standard 

deviations for both the regressand (true) and the volatility forecasts. It also reports the average number 

of observations to be skipped (q) according to each sampling rule. T-statistics for the individual MSEs, 

t-statistics for pair-wise tests of equal MSEs, and a joint Chi-squared test of equal MSEs across 

sampling methods are reported in the second panel. 



 
 

LHS = FlatTukey RHS = RV 5 lags   
2004/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  171.112 2.34E-10 2.94E-05 3.30E-05 1.57E-05 9.43E-06 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.58E-05 0.279715 0.103455 0.0165643 0.0901693 0.0233784 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  178.018 2.42E-10 2.94E-05 3.23E-05 1.57E-05 1.11E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.38E-05 0.346032 0.07832 -0.0041256 0.121751 -0.0022715
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  158.505 4.55E-10 2.94E-05 3.96E-05 1.57E-05 1.64E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.20E-05 0.189851 0.103888 0.0649971 0.0479956 0.0198157 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 

(4) 65.9439 5.50E-10 2.94E-05 3.99E-05 1.57E-05 1.90E-05 
  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 

 1.94E-05 0.227948 0.105575 0.0190842 0.0605393 0.0394834 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  71.2857 5.76E-10 2.94E-05 3.99E-05 1.57E-05 1.93E-05 

(5) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.07E-05 0.222864 0.103168 0.0205479 0.0605758 0.0326004 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore) 
  69.6673 6.21E-10 2.94E-05 4.03E-05 1.57E-05 2.09E-05 

(6)  Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.97E-05 0.228984 0.105312 0.0172791 0.0590676 0.0400023 

       
  (1) (2) (3) (4) (5) (6) 

MSE 2.34E-10 2.42E-10 4.55E-10 5.50E-10 5.76E-10 6.21E-10 
HAC_std 2.45E-11 2.71E-11 1.06E-10 1.65E-10 1.66E-10 2.21E-10 
t_MSE 9.54519 8.91172 4.3104 3.33834 3.46247 2.80679 

  t12 t13 t14 t15 t25   
T -0.97995 -2.21054 -1.94983 -2.08929 -2.03753   

Joint Chi-squared test: 95.5     
 
Table 6. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top modified Tukey-Hanning kernels as in Bandi and Russell, 2010) on five lags of realized 

variance. The regressor (realized variance) is sampled using 6 methods described in the main text. We 

use Spiders mid-quotes on the NYSE. The sample period is 2004/1 - 2006/3. In all cases, 1,000 

observations are employed to estimate the model parameters (a0 through a5) and forecast. The table 

reports means and standard deviations for both the regressand (true) and the volatility forecasts. It also 

reports the average number of observations to be skipped (q) according to each sampling rule. 

T-statistics for the individual MSEs, t-statistics for pair-wise tests of equal MSEs, and a joint 

Chi-squared test of equal MSEs across sampling methods are reported in the second panel. 



 
 

 

 
LHS = FlatBart RHS = FlatBart 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  10.2688 9.00E-10 4.67E-05 5.38E-05 5.00E-05 3.61E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.94E-05 0.364522 0.141937 0.0872028 0.099541 0.0647708
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  13.3276 9.92E-10 4.67E-05 4.99E-05 5.00E-05 3.17E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.28E-05 0.307943 0.111025 0.0200002 0.091199 0.0587348
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  5.49193 1.03E-09 4.67E-05 5.37E-05 5.00E-05 3.48E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.27E-05 0.332203 0.125932 0.0373003 0.09843 0.069047 

 

Table 7. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top Bartlett kernels as in Bandi and Russell, 2010) on five lags of Bartlett kernel estimates. The 

regressor’s autocovariances are chosen using 3 methods described in the main text. We use Spiders 

mid-quotes on the NYSE. The sample period is 2002/1 - 2006/3. In all cases, 1,000 observations are 

employed to estimate the model parameters (a0 through a5) and forecast. The table reports means and 

standard deviations for both the regressand (true) and the volatility forecasts. It also reports the average 

number of autocovariances selected according to each rule.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

LHS = FlatCubic RHS = FlatCubic 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  8.83476 1.02E-09 4.85E-05 5.55E-05 5.19E-05 3.67E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.02E-05 0.367511 0.144537 0.0827307 0.096981 0.0580071
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  13.0978 1.1814E-09 4.85E-05 5.18E-05 5.19E-05 3.59E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.39E-05 0.308348 0.112293 0.0176941 0.090176 0.045786 
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  5.03989 1.1908E-09 4.85E-05 5.52E-05 5.19E-05 3.42E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.32E-05 0.34386 0.127008 0.0337753 0.094211 0.0649336

 
Table 8. We report forecasting regressions of integrated variance (estimated using optimally-defined 

flat-top cubic kernels as in Bandi and Russell, 2010) on five lags of cubic kernel estimates. The 

regressor’s autocovariances are chosen using 3 methods described in the main text. We use Spiders 

mid-quotes on the NYSE. The sample period is 2002/1 - 2006/3. In all cases, 1,000 observations are 

employed to estimate the model parameters (a0 through a5) and forecast. The table reports means and 

standard deviations for both the regressand (true) and the volatility forecasts. It also reports the average 

number of autocovariances selected according to each rule.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
LHS = FlatTukey RHS = FlatTukey 5 lags   
2002/1-2006/3      

  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  13.7749 9.10E-10 4.81E-05 5.49E-05 5.10E-05 3.67E-05 

(1) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 1.94E-05 0.372265 0.150015 0.0671072 0.091612 0.0789061
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  19.8585 1.0753E-09 4.81E-05 5.09E-05 5.10E-05 3.24E-05 

(2) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
  2.34E-05 0.308512 0.116799 0.0170259 0.087551 0.0556742
  Avg. q MSE Mean(Vtrue) Mean(Vfore) Std(Vtrue) Std(Vfore)
  7.94207 1.0908E-09 4.81E-05 5.45E-05 5.10E-05 3.38E-05 

(3) Avg. a0 Avg. a1 Avg. a2 Avg. a3 Avg. a4 Avg. a5 
 2.27E-05 0.341694 0.131405 0.0328646 0.089792 0.0768419

 
Table 9. We report forecasting regressions of integrated variance (estimated using optimally-sampled 

flat-top modified Tukey-Hanning kernels as in Bandi and Russell, 2010) on five lags of flat-top 

modified Tukey-Hanning kernel estimates. The regressor’s autocovariances are chosen using 3 methods 

described in the main text. We employ Spiders mid-quotes on the NYSE. The sample period is 2002/1 - 

2006/3. In all cases, 1,000 observations are employed to estimate the model parameters (a0 through a5) 

and forecast. The table reports means and standard deviations for both the regressand (true) and the 

volatility forecasts. It also reports the average number of autocovariances selected according to each 

rule.  
 


