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Abstract

We show how simple pre-averaging of financial high-freqyetata can be applied to the problem of measuring the
ex-post covariance matrix of asset returns under markebstizicture noise and non-synchronous trading. A realised
covariance based on pre-averaged data is proposed anddsindhis setting, and we provide complete large sample
asymptotics for this new estimator, including feasibletranimit theorems for standard methods such as covarjance
regression, and correlation analysis. We discuss seversibwns of this "modulated” realised covariance, whichlsan
designed to possess an optimal rate of convergence or tamgearpositive semi-definite covariance matrix estimates.
We also derive a pre-averaged version of the Hayashi-Yasksétimator that can be applied directly to the noisy and
non-synchronous data without any prior alignment of prigesimulation study documents the ability of our estimators
to estimate time-varying covariance, regression and tadioe in finite samples, and we illustrate their practica¢u
with an application to some high-frequency equity quotaiand transaction prices.
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1 Introduction

The theory of financial economics is often cast in multi&risettings, where the covariance structure of assets plays
key role to the solution of fundamental economic problemushsas optimal asset allocation and risk management. In
recent years, a broader access to financial high-frequesteyhds improved our ability to accurately estimate and draw
inference about financial covariation. The underlying idet use quadratic covariation, which we can estimate using
realised covariance, as an ex-post measure, whose indosnbe studied to learn about the properties of the tre ass
return covariation (e.g. Andersen, Bollerslev, Diebola] &abys, 2003; Barndorff-Nielsen and Shephard, 2004).

In practice, implementing realised covariance is hampéretivo empirical phenomena, namely the presence of
market microstructure noise (e.g., price discretenes#deastk spread bounce) and non-synchronous trading. Thacimp
of microstructure noise has received much attention in tireatiate setting, where its effect on the realised varamas
been well-documented. This builds on previous work in thiseless case, including Andersen, Bollerslev, Diebold, an
Labys (2001), Barndorff-Nielsen and Shephard (2002), oklstyd and Zhang (2006, 2009). A key to understanding
the nature of the noise and a possible tool of how to deal withthat microstructure noise induces autocorrelation in
high-frequency returns and this leads to a bias problem ésge Zhou, 1996; Ait-Sahalia, Mykland, and Zhang, 2005;
Hansen and Lunde, 2006). Currently, there are three mauawaie approaches, where the damage caused by the noise is
explicitly fixed: the two-scale subsampler proposed by ghafykland, and Ait-Sahalia (2005) or its multi-scale vens
of Zhang (2006), the realised kernel introduced in Barrfeldiglsen, Hansen, Lunde, and Shephard (2008a), whiabsreli
on autocovariance-based corrections, and finally the yeeaging estimator of Podolskij and Vetter (2009) and Jacod
Li, Mykland, Podolskij, and Vetter (2009).

The multivariate version of this problem is, however, masmplicated in that not only does the estimator need to be
robust against various types of noise, it also has to cope nah-synchronous trading (see, e.g., Fisher, 1966). Asyn-
chronicity causes high-frequency covariance estimatdsetbiased towards zero as the sampling frequency increases.
This feature of the data, the so-called Epps effect, wadigtgled by Epps (1979). Intuitively, as the sampling fremme
is increased, there are more and more zero-returns in tiserme of non-synchronous trading, and this will dominate
realised covariance and related statistics (e.g. reatieg@lation). Hayashi and Yoshida (2005) introduced amest
tor, which is capable of dealing with non-synchronous dht#,not with market microstructure noise. More recently,
Zhang (2008) extended the two-scale RV to integrated caweei estimation in the simultaneous presence of noise and
non-synchronicity, while in concurrent and independentkniarndorff-Nielsen, Hansen, Lunde, and Shephard (2008b)
proposed a multivariate realised kernel. Additional warkhis growing line of research includes Malliavin and Mantci
(2002), Martens (2003), Rend (2003), Bandi and RusseD3p0Griffin and Oomen (2006), Large (2007), Voev and
Lunde (2007), and Boudt, Croux, and Laurent (2008), amohgret

In this paper, we propose to use a "'modulated” realised vee (MRC) to estimate the ex-post integrated co-



variance. The econometric technique employed here foirdealith microstructure noise relies on rather simple pre-
averaging of the high-frequency data, which makes the asbinboth intuitive to understand and trivial to implemeit.
relates to previous work in the univariate case, where pegaging has been suggested in Podolskij and Vetter (20@D) a
Jacod, Li, Mykland, Podolskij, and Vetter (2009). The catrarticle draws ideas from these papers, but the multitearia
extension is challenging, as it faces the additional corifyl@f non-synchronous trading and requires that the tiegul
estimator be positive semi-definite.

The pre-averaging approach depends on a bandwidth paramet@ndow length, that grows with the sample and
dictates the amount of averaging to be carried out. In tim&choice of this tuning parameter controls the influence of
microstructure noise on the MRC and, hence, also its asyogimoperties. In the optimal case, called balanced pre-
averaging, this leads to an efficient'/* rate of convergence, which is known to be the fastest atigr(aee, e.g., Gloter
and Jacod, 2001a,b). This baseline MRC estimator, howeees a bias-correction to be consistent for the integrated
covariance. As a result, it is not guaranteed to be posigvei-glefinite in finite samples, though our empirical work
indicates this shortcoming is not too much of a concern foramecent data. Nonetheless, as we show in the paper, it is
straightforward to design a positive semi-definite estonhy increasing the pre-averaging window length slightligich
can also serve to make the MRC robust against more genesa pmcesses.

The MRC is, in all its essence, a realised covariance cordputehe back of pre-averaged high-frequency returns.
As such, it depends on receiving synchronous observat®impat, which clashes with the irregular spacing of reahhig
frequency data. We propose two distinct ways in which peragying can be applied in the context of non-synchronous
trading. First, we use traditional imputation schemes t@ amynchronous data onto a common time grid, for example
using previous-tick or refresh time, where the latter apphohas been used in Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008b). An MRC computed from such returns will argototically robust to non-synchronous trading.
Second, we extend the Hayashi and Yoshida (2005) estinatbetcase of microstructure noise by using pre-averaging
and show that it is consistent. This second estimator hasrthperty that it can be implemented directly on the irregula
non-synchronous and noisy observations without any forimpfitation. It therefore omits throwing away information
in the sample and further avoids potential biases arisimg fartificially imputed returns.

An appealing feature of pre-averaging is that it is a genstiatistical tool that can be applied to many estimation
problems. This proves useful in our setting, because ad tisganixed Gaussian central limit theorems feature an
unknown conditional covariance matrix. In practice, thigsinbe robustly estimated from sample data in the presence
of noise and non-synchronous trading to make the distdbatiresults feasible, such that confidence bands for elismen
of the integrated covariance matrix can be constructed. Mée how this can be done based on pre-averaged high-
frequency data.

The paper progresses as follows. In section 2, we formukeeheoretical setup and define the MRC estimator.

In section 3, we first show consistency of the MRC based onnbath pre-averaging and then derive its asymptotic



distribution. As discussed above, this estimator needasdnrrection, so we carry on to study a modified MRC estimato
in which the degree of pre-averaging is increased. We asmuds the application of the MRC to non-synchronous data,
show its relation to the multivariate realised kernel, andlfy we derive a pre-averaged version of the Hayashi-dzshi
estimator. In section 4, we propose an estimator of the tiondi covariance matrix that appears in the central limit
theorem of MRC, which can be used to transform infeasiblét liesults into feasible ones. In section 5, the focus is
shifted towards regression and correlation analysis. Alkition study is undertaken in section 6 to uncover the finite
sample properties of our estimators, while an empiricasitiation is conducted in section 7. Section 8 draws corarias

and presents some ideas for future work. The appendix cantia¢ derivations of all our theoretical results.

2 Theoretical setup

We consider a vector of log-price¥ defined on a probability spad&’, 7, PY) and equipped with an information
filtration (F7);>0. X has dimensior - the number of assets under consideration.

A standard no-arbitrage condition suggests security pmgast be semimartingales (see, e.g., Back, 1991; Delbaen
and Schachermayer, 1994). These processes obey the fumdhtheorem of asset pricing and, as a result, are used
extensively to model the evolution of asset prices throumgk.tIn accordance with this, we modglas a semimartingale
that follows the equation . .

X =X —i—/o a,du +/0 o, dW,, t>0, @

wherea = (at);> is ad-dimensional predictable locally bounded drift vecter= (o¢),, an adapted cadlag x d
covolatility matrix andW = (W), is d-dimensional Brownian motion.

This model is a Brownian semimartingale, or stochastictitijamodel with drift, which permeates financial eco-
nomics (cf., Ghysels, Harvey, and Renault, 1996, for a véviéVe think of this construct as governing an underlying
efficient price process - the price that would prevail in thsemnce of market frictions, which we then subject to mi-
crostructure noise.

Of importance to our analysis is the quadratic covariatimtess ofX, which is defined as

X, = p-lim > (X, = X)) (X, = X)) (2)
=1

n—00 T

for any sequence of deterministic partitiohs= ¢y < t; < ... < t, = t with sup, {¢; — t;—1} — 0 for n — oo. In our

setting, the quadratic covariation &f is given by

t
X), = /0 S, du, 3)

whereX = o¢’. The quadratic covariation is pivotal in financial econasn(see, e.g., the reviews by Barndorff-Nielsen

and Shephard, 2007; Andersen, Bollerslev, and DieboldR@Mhd we thus take Eq. (3) as defining the target that we are
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interested in estimating. We note that for obvious reasbasratrix in Eq. (3) is also called the integrated covariance
and both terms are used interchangeably.
Throughout the remainder of the paper, and without loss negdity, we restrict the clock to evolve in the unit

interval [0, 1], which we think of as representing the passing of an econexgnt, for example a trading day.

2.1 Microstructure noise

In practice, market microstructure noise leads to a demaftom the pure semimartingale model. Microstructure &ois
has many forms, including price discreteness and bid-asladounce, which creates spurious variation in assetric
As a result, we do not observg from Eg. (1) in the market but a proce¥s which is the efficient price distorted by

noise. More precisely, we consider the procEs®bserved at time pointgn, i = 0,1,...,n, which is given as
Y, = Xy + ¢, 4)

where(e;) is an i.i.d. process wittkX' 1L e (the symbollL is used to denote stochastic independence).

The noise process can be constructed as follows. We defiradsprobability spacé!, 71, (Fl)io0, P), where
Q! denotesR[*! and F! the product Boreb-field onQ'. Next, letQ be a probability measure dh (Q is the marginal
distribution ofe). For anyt € [0,1], P! = Q and P! denotes the producb,c(, ;. The filtered probability space

(Q, F, (Fi)e=0, P), on which we define the process is given as

0=00xQl, F=F"xF, Fr = Nygoy FO X FL,

%)
P=P'g PL

The multivariate noise processs assumed to satisfy:
E (&) =0, E (e€) = 0, (6)
whereV is a positive definitel x d-matrix.

Remark 1 The empirical results found by Hansen and Lunde (2006) shaivkioth the i.i.d. assumption di;) and
the independenc& L e can be called into question when sampling the data at vely fngguencies, e.g., below the
1-minute mark (see also Diebold and Strasser, 2008). Ja¢olilykland, Podolskij, and Vetter (2009) consider more
general types of (1-dimensional) noise processes. Rowpleigking, they assume that the errgisare, conditionally on
X, centered and independent. The asymptotic theory dewtliopdis paper still holds true for the multivariate version

of such noise processes, but we restrict attention to madéhe form in Eq. (4) to ease the exposition.



2.2 Pre-averaging of high-frequency data

It is intuitive that under mean zero i.i.d. microstructumse some form of smoothing of the observed log-pticehould
tend to diminish the impact of the noise. Effectively, we going to approximateX,;, X being a continuous function of
t, by an average of observations¥fin a neighborhood of, the noise being averaged away.
Here, we describe in more detail how to conduct the pre-gugga In particular, we consider a sequence of integers,
k., and a numbef € (0, co) such that .
n

% = 9—1—0(71_1/4). (7)

An example of this would bé,, = |0/n].
We also choose a functiopon [0, 1], which is continuous, piecewise continuously differeigawith a piecewise

Lipschitz derivativeg’ with g(0) = ¢g(1) = 0 and which satisfiesfo1 g% (s)ds > 0. Furthermore, we introduce the

following functions and numbers that are associated with

1 1
¢1<s>=/g/<u>g'<u—s>du, ¢2<s>=/g<u>g<u—s>du, G =61(0), v =02(0),

1 1 1
bi= [ G0 e[ a@nee - [ ded

The functionsp; and¢, are assumed to bieoutside the interval, 1].

Next, with any proces¥” = (V;).>o we associate the following random variables

kn—1 .
A?V:V%—Vi%, fori=1,....n V= Zg<ki>A?+jV, fori=0,...,n—k,+ 1.
j=1 "

Applying this notation toy’, it can be seen thah”Y represents the noisy high-frequency returns, whijfeis the pre-

averaged return data, using the weight funcgorit follows that the stochastic order &f* = X + € is controlled by

- knp, n 1
Xz‘n:O:n< ;>> Ei:O:n< k_> (8)

Thus, takingk, = O(,/n) implies that the orders of the two terms in Eq. (8) are equethatY;” = O, (n=1/%). This

is called balanced pre-averaging and delivers the besbfatenvergence. As shown below, it is also useful to look at

the sequencg,,, since

cases in which a higher order bf is chosen. This results in a suboptimal rate of convergenddt has some potentially
valuable side-effects on the robustness and finite sampfeedies of our estimator.
The pre-averaging window length,,, depends on the tuning paramefewhich needs to be chosen by the user. We

will later discuss how to sensibly make this choice.



2.3 Modulated realised covariance

The core statistic of this paper is the multivariate extemsif the estimator, which was introduced in Jacod, Li, Mykla
Podolskij, and Vetter (2009). We call it the modulated i covariance (MRC) and define it as

n—kp+1
n 1 on (vn\/
MRC[Y]n_n_knJrzwzkn ; v (v 9)

The factorn/(n — k,, + 2) is a finite sample correction for the true number of summandeg RC' [Y],, relative to the

sample sizer. It is sometimes left out in the presentation below, but &hgays included in implementations on data.

Remark 2 The sum of outer products in Eq. (9) is a realised covariamsed on pre-averaged data. To build some

intuition for our approach, we explain the usage’gfin more detail. Supposk, is an even number and write

5 kn/2—1
Y= E ; Yiej,

n

which is a simple average of over k,, /2 terms. Because of this pre-averagirfg} will be closer to the efficient price

X :. Next, we compute the realised covariation estimator basdtiese filtered increments by setting

n

. 1 An An 1 k)n—l kn/2_1
V= g0y =¥ = | X2 Yeu— D Yiu
"\ j=kn/2 §=0

(However, as we shall see this induces a bias, which is aitumof ¥). This method was originally proposed by Podolskij

and Vetter (2009) and using the above definitio¥fcorresponds to choosing the weight function
g (z) =min (z,1 —x), (20)

which is the most intuitive example. Here we explicitly gitee numerical values of the asymptotic constants for this

choice of functiory, as it is the one used for all our simulations and empiricalkwo

1 1 1 151

P =1, Py = —, Dy =5 ‘13122%, (I)QZZM'

Remark 3 As noted in Jacod, Li, Mykland, Podolskij, and Vetter (2Q0®) avoid biases in small samples we should

replace the asymptotic constants and functionsys, ¢1, ¢2, 11, 12, and®s, by their Riemann approximations:

ko i i—1\\?2 1 kol i
kn — . _ — n o — ___ 2 -

0= S () @) () () #0-E(0) ()

i=j+1




. kn—1 2 1 9 . 1 kn—1 .
o =k [ 3 (et ) —5 (eb @) |, o5 = | D ol () eh )——aﬁ”( ) 65" (0) |

j=0 j=0
kn—1
1 " 2 1 2
k’n kn > kn
Py; = 53 Z <¢2 (])) D) (¢2 (0))
These are the actual terms that appear in the computatiche &MRC. Note that for all appropriate indicesiodnd 7,
z/zf” — 1, qﬁf“ — ¢, @f; — ®;; asn — oo at smaller order than—1/4, so the finite sample versions can be replaced

with the asymptotic constants in all the limit theorems gibelow, including the central limit theorems.

3 Asymptotic properties of MRC

3.1 Consistency

Our first result inspects the probability limit 8 RC' [Y],..

Theorem 1 Assume thak (|e/|*) < oo forall j = 1, ...,d and (ky, 6) satisfy Eq(7). Asn — o, it holds that
MRC|Y —>/ Yds + —— sz (11)

Proof See appendix. |

A couple of points are worth highlighting. First, as TheorénshowsM RC [Y],, is consistent forfo1 Ysds up to a
bias-correction. The bias term depends on the unknéywvhich must be estimated from the data.

We set
. 1 <&
v, = ATY (ATY 12
3 2 MY (A1)’ (12)

which is linked to the univariate estimator proposed by®dhalia, Mykland, and Zhang (2005) and Bandi and Russell
(2006, 2008). Then, we obtain the convergerige> ¥, such that

o 1
MRC|Y], — Qf;k v, 5 / ¥,ds.
2’!L O

Hence, for the remainder of the paper, we shall incorporadias-correction term into the definition &f RC [Y]n.l In

doing so, we are no longer ensured thaRRC [Y],, is positive semi-definite in finite samples. To deal with twisblem,

'Since}" | ATY (ATY) = 2n\I/ + fol Ysds + 0,(n" "), where the error of this approximation has expectation,zé@ bias-corrected

021/k" 2n fO

MRC Y], actually estlmate<1 ¥ sds and thus needs to be rescaledll;/y( — ef;kn 2n> We include this rescaling in our

simulations and empirical work but omit it throughout theneénder of the text to simplify notation.



we propose an alternative formulation of the MRC below, \whises a longer pre-averaging windbyto avoid this step.
Second, sincd,, is ay/n-estimator of¥, it will not affect the CLT of A/ RC' [Y'],,, as the latter converges at a slower rate.
Third, our initial MRC estimator is based on synchronousadassuming all components of the log-price vedfoare

observed contemporaneously. We will later extend the MR@@iéaon-synchronous setting.

3.2 The central limit theorem

We proceed with the central limit theorem fof RC' [Y'],,. As in Jacod, Li, Mykland, Podolskij, and Vetter (2009), we
only require a moment condition @rto prove this result.

The notion of stable convergence is used, which we descebe. PA sequence of random variablg$ is said to
converge stably in law towards, whereV is defined on an appropriate extensi@f, 7', P’') of the probability space
(Q, F, P), if and only if for any F-measurable, bounded random variatifeand any bounded, continuous functign
the convergence

lim E[Wf(V")] = E [Wf(V))

n—00
holds.

We write this asi™™ % ¥ and note that stable convergence is a slightly stronger mbdenvergence than weak
convergence, or convergence in law, which is the specia cbtined by taking” = 1 (see, e.g., Rényi, 1963; Aldous
and Eagleson, 1978, for further details on stable convesenlacod and Shiryaev (2003) discuss the extension of this
concept to stable convergence of processes. The key reas@uuire the convergence in law stably is that the condition
covariance matrix in the CLT a¥/ RC[Y],,, avaiurc,, , is @ function ofo and therefore random, and the usual convergence
in law is insufficient to ensure joint convergence of the bai@ vector(M RC|[Y],,, avaiurc, ), which we need to apply

the delta method to the joint asymptotic distribution anddostruct confidence intervals.

Theorem 2 Assume thalE (|¢/|*) < oo forall j = 1,...,d and (k,,, 6) satisfy Eq.(7). Asn — oo, it holds that
1 d d 1 RN 1.
nl/4 <MRC’ Y], — / Esds> - Z / AIRITR dBIK (13)
0 3 k/_l 0
j 5 =

whereB is a standardi?-dimensional Brownian motion defined on an extensioffF, (F;)i>o, P) with B 1 F,

d : 2 o o
Z ,yéemm,yf’l’,ym - = <(I)229A1§l,k’l’ + ﬁ@lzz,k'z’ + %rﬂcl,k’l’) ’

(5 o 0

7,m=1



and where\, © andY ared x d x d x d arrays with elements

Al — {Ekk’Ell’+2kl’zlk’}
s s s 578 fpkir=1,..d

0, = {Elsck’q,ll’ posEgRL R Eél’\l,kk’}kk, o (14)

T — {\I,kk’\pll’ n \I,kl’\I,lk’}
kK LU=1,....d

Proof See appendix. |
BecauseB L F, we can write the convergence statement in Theorem 2 asvillo
1
nt/4 <MRC [Y], — / Esds> 95 MN (0, avalyre) ,
0

where
2 ® o
avalire = <<1>229/ Ayds + ﬁ/ 0,ds + 11T> (15)
2

is the conditional covariance matrix. This means that tlyengsotic distribution of\/ RC [Y'], is mixed normal. To make
use of this result to construct confidence intervals for eletsof fol Y. du in practice, we need to estimate ayag, which

is addressed in section?4.

3.3 Choosing in practice

The avagrc matrix in Theorem 2 depends on the paraméteor in other words the window size,. If the purpose
is to estimate some one-dimensional parameters (such lesedeaovariance, regression or correlation) by real-eglu
functions of the MRC, it is in principle possible to minimiaeairc by choosing the "bestd for a fixed functiong.®

To illustrate this point, we focus on the estimation problemnthe univariate case] = 1. In this situation, the

4 1 20 1 b1y
avalyrc = F (@229/0 Ugds + le\lf2/0 U?ds + B \If4>
2

wherelV = fol o2dsandIQ = fol olds are called the integrated variance and integrated qugytieispectively. Mini-

expressions reduce to

mizing this term with respect tBresults in solving a quadratic equation. Thus, for the oatichoice off, sayf*, we get

2The assumption that data be equidistant is not requirechéoconsistency to hold true. It would also apply under idmtbbservation times
(i-e., synchronous but non-equidistant data). H&feRC [Y], is consistent withA}'V redefined as\'V = V;, — V;,_, for any proces$” and
kn = 0/n + o(n1/4). This is not surprising: the realised covariance also remeonsistent for irregular observations (by definitionhe TLT
also holds, but here the variable of integratienngteds to be replaced bydd, where H is the so-called "quadratic variation of time”, see, e.g.,

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b).
3The optimal choice of will depend on the original real-valued functions of the MR(Cthis sense, there is no universal optiral



0* = f(IV,IQ, V). Then, we can use an iterative procedure to find an approxmat 0*: (i) Choose a "reasonable”
value ford and computdV, 1QQ and ¥, (i) from these computé* by settingd* = f(IV, IQ, ¥) and (iii) then, assuming
the values of* converge, repeat this process ufitilhas stabilized.

In practice, a simple guide that informs us about how to $éldor small values of: would certainly be valuable.
Unfortunately,d comes from asymptotic statistics and therefore it does ivet @ny precise instructions on this issue.
Nonetheless, some plausible range of valugsan be inferred from previous work in this area. For examjaepd, Li,
Mykland, Podolskij, and Vetter (2009) report that the uriste pre-averaged realised variance measure is fairlystdb
the choice oft,,, and they suggest to takke= 1/3. Christensen, Oomen, and Podolskij (2010) use simulatmgauge
the influence of sample size and noise on the optimal choiée biterestingly, they show that the MSE curve of their
pre-averaged quantile-based realised variance is higiiiyjaetric ink,, and they generally prefer to use a slightly higher
value ofk,, than what would be optimal. In their empirical analysisythé&so show that conservative choiceskgfhelps
to heavily reduce the detrimental effects of price disere$s. In the simulation section and empirical illustrati@ow,

we therefore pick conservative valueskgfby choosing = 1, which seems to work well.

3.4 Positive semi-definite estimators

In the previous section, we used an optimal pre-averagingow length to construct the MRC, which balances the impact
of the noise with the estimation of the integrated covagamatrix. This choice leads to an optimal rate of convergence
- n~1/4 - but requires that we subtract an estimateldab eliminate the bias induced by noise, and the final estiniato
then not positive semi-definite in general. Here, we demmateshow positive semi-definite estimatesféfEsds can be
formed by increasing the bandwidth paramétegs to kill the influence of the noise, rather than balancinghis comes

at the cost of slowing down the speed at which MRC convergésettrue integrated covariation.

Now, we take:

% —0+o (n—1/4+5/2) (16)
for some0 < § < 1/2, and set
MRC[Y])) = — = ! n_fjﬂ v (V) (17)
Mk 20Uk, 2V

The following result shows that/ RC [Y]fL is consistent without a bias-correction.

Theorem 3 Assume thalE (|¢/|*) < oo forall j = 1,...,d and (k,,, 6) satisfy Eq.(16). Asn — oo, it holds that
MRCY] & /O 1 ¥, ds. (18)

Proof See appendix. |
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In Theorem 3, the properties of the noise process do not shawthe stochastic limit of Eqg. (18), because the influence
of the noise is negligible by the choice of order fgr made in Eq. (16) (refer back to Eq. (8)). This has some apmgali
advantages. Firsfy/ RC [Y]i is positive semi-definite by construction. Second, altthowg state and prove this result
in the i.i.d. noise case, Theorem 3 does in fact allow for ngemeeral noise dynamics than in Theorem 1. In particular, so

_1/2, the theorem will hold (so we do not

long asE (¢; | X) = 0 ande} admits asymptotic normality at the usual r&
require any assumptions on the dependence betWweande). Of course, the ratégl/2 is achieved in the i.i.d. case, but
there are more general cases where it also holds (e.gsdependent and mixing processes).

To show the CLT, we require a restriction nThis is because the bias caused by the noise, which is it#glig

Theorem 3, becomes more substantial when multiplying wigrate of convergence.

Theorem 4 Assume thalE (|¢/|®) < oo for all j = 1,...,d and (k,, 6) satisfy Eq.(16). Asn — oo, it holds that

(i) If 6> 0.1

1 1
n1/4—5/2 <MRC [Y]i _/ 25d3> d$ MN <O’ 232229/ A8d$> 5 (19)
0 2 J0

where(A;) is defined in(14).

(i) If 6 =0.1

1 1
nl/s <MRC’ ]S — / Esds> 9N (mﬂqf@ / Asds>. (20)
0 (5! 7/’2 0

Proof See appendix. |

Theorem 4 amounts to a classical bias-variance tradetahaws the expected result that using a longer pre-avayagin
window k, = O(n'/?*9) averages enough to makd RC [Y]fL consistent without a bias-correction, but it also slows
down its rate of convergence. The larged,ishe harder is this effect. Note that the asymptotic vaeatepends solely on
the volatility process, while the two noise-dependent terms (a cross-term andearpise term) appearing in Eq. (15)

are wiped out.

The optimal choic& = 0.1 results in a»~'/® rate of convergence, and a large sample bias of the arde?P 9;{22 U,
If desired, the bias can be estimated using but it should be small for more recent data and could be gfor

This result bears some resemblance to that of the multtearémlised kernel of Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2008b). A flat-top kernel estimator can bededito converge at raie '/#, but the resulting estimator
may go negative. To guarantee positive semi-definitenbgssadithors propose kernel corrections that are not entirely

flat-top and they show this resultsm!/? rate of convergence and a non-zero asymptotic mean as @diece as well.

4If we do bias-correcf/ RC [Y]ji, the resulting estimator is then again not ensured to béiposiemi-definite.

11



3.5 Mapping MRC into a realised kernel estimator

We can indeed make a stronger link between the multi-scal¢hi@\kernel approach and our pre-averaging method, when
estimating quadratic variation. Here, we provide some ndeteils about this relationship. To fix ideas, we take: 1

(i.e., the univariate setting) and compare only to the Kespproach. Barndorff-Nielsen, Hansen, Lunde, and Shephar
(2008a) then show how the multi-scale RV fits into the redlisernel setting.

When we explicitly include the bias-correction and ignoreté sample issues, the RC Y], estimator is given by

the formula
1 n—kp+1 ¢1 ~
MRCY], = 172."2——\1:. 21
Consider a flat-top kernel-based estimator with kernel fatsig
P2(s)
k(s) = —=,
(s) o

wheregs(s) andi), are defined as in Section 2.2. We call the functioa flat-top kernel, if (i)k(0) = 1, (i) k(1) =
and (iii) £/(0) = k(1) = 0. We note thak(s) = ¢2(s) /1 satisfies all three conditions: (i) and (ii) are trivial, \ehthe

third condition follows from the identity:

1
K(s) = —i / o()g (z — )dz,

and integration by parts (recall thaf0) = g(1) = 0).

In the next step, we map the MRC statistic into a kernel-like as follows

kn—2n—h
MRC[Y Zaolwyﬁ +23 ) ORATYAL,Y (22)
i=1 h=1 =1
with
gl 25=19° () = g 1<i<kn—2
Soi = ¢21kn Zﬁ:n;lg% ) — 923}’;% : ky—1<i<n—k,+2 (23)
w i RN~ nka+3<i<n
and
T i 9 a5 1<i<hy,—h-—2
Oni =19 g Ty )g(E) - b —h—1<i<n—ky,+2 (24)
o S g (B g (et n—ky+3<i<n

forl<h<k,—2.

An example and some remarks are now in order.
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Example 1 Takeg(z) = min(x, 1 — z) for = € [0, 1], which is our canonical weight function. Then, the corregpog

kernelk(s) = ¢a(s) /12 is the Parzen kernel.

Remark 4 Apart from border terms, i.e. terms close to 0 and 1, the peeagying estimator coincides with the kernel-
based estimator using the flat-top kernel functidr) = ¢2(s) /1. Both estimators possess the optimal rate of conver-
gencen /4, but the border terms affect their asymptotic distributibnfact, to arrive at their central limit theorem for the
realised kernel, Barndorff-Nielsen, Hansen, Lunde, angp8ard (2008b) need to apply some averaging (or ”jitte)ing”

to edge terms, while the pre-averaging estimator is asyimptly mixed normal "by construction”.

Remark 5 Using the definitiork(s) = ¢2(s) /12, we learn that for every weight functionthere exists a flat-top kernel

k. However, the converse statement is not true in generals, The class of flat-top kernels is larger than our class of pre
averaging functions, but this does not appear to be a nblieelisadvantage for practical applications (Barndoiitisen,
Hansen, Lunde, and Shephard, 2008b, for example, advos@ag tlne Parzen kernel in practice, which corresponds to

our g function by Example 1).

It is worthwhile to underscore that pre-averaging is a gangpproach, which can be used to estimate various char-
acteristics of semimartingales, when they are cloaked moike. Jacod, Li, Mykland, Podolskij, and Vetter (2009), fo
example, pre-average realised variance, but it has alsoussegl in jump-robust inference in conjunction with the kipo
variation statistic (e.g., Podolskij and Vetter, 2009)lw uantile-based realised variance (e.g., Christensemge®, and
Podolskij, 2010). This is also the reason, why we can eséirtied asymptotic conditional variance in the CLT using the
same type of estimator to deliver a feasible result. Oth&gmetion methods are typically designed to estimate quiedra

variation and cannot, in general, be used to solve othenastin problems.

3.6 Applying the MRC to non-synchronous data

Non-synchronous trading has long been a recognized featuneltivariate high-frequency data (see, e.g., Fishe8619
Lo and MacKinlay, 1990). This causes spurious cross-auteledion amongst asset price returns sampled at regular
intervals in calendar time, as new information gets builb iprices at varying intensities. It is well-known that high
frequency realised covariance estimates, using for exaithpl previous-tick method to align prices, are biased tdsvar
zero in this setting (e.g., Epps, 1979).

Motivated by these shortcomings of realised covariancenaber of alternative procedures have been proposed in the
literature. Scholes and Williams (1977) and Dimson (19t@gested to include leads and lags of sample autocovasiance
of high-frequency returns into the realised covarianceotoect for stale prices. This results in a bias reductionatsm

increases the variance of the estimator (e.g., Griffin anch€@yg 2006). Importantly, the lead-lag realised covariagace
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generally inconsistent in the presence of noise. More thgethang (2008) extends the two-scale RV to the multivaria
setting and shows that it is consistent under non-synclui®poices and noise. An analytic derivation of the impact of
Epps effect on realised covariance under previous-tickpfiamis also given. In independent and concurrent work to
ours, Barndorff-Nielsen, Hansen, Lunde, and Shephard8{@0ropose a multivariate realised kernel. They rely on the
concept of refresh time to match prices in calendar time aod $hat stale pricing errors under refresh time sampling do
not change the asymptotic distribution of the multivarisgalised kernel.

A related approach can be taken to make the MRC robust to yrefigonous observation times. In particular, under
suitable regularity conditions on the sampling times, sgnehronous trading does not alter the asymptotic digtabu
of the MRC, when constructing synchronous time series akegti A multivariate time series of high-frequency returns
obtained in this fashion can therefore be plugged into tiimasotic theory developed above without concern. The proof
of these results are highly technical, but their validitpgld be clear in the light of the comparison with the multisge
realised kernel given above. Therefore, we omit the detgiteofs of these results. Instead, we conduct some sironati

in section 6 to verify the correctness of these conjectures.

3.6.1 A pre-averaged Hayashi-Yoshida estimator

Hayashi and Yoshida (2005, 2008) develop an alternativegoiure for covariance measurement in the noise-free case,
which is based on the original non-synchronous data (sge, de Jong and Nijman, 1997; Martens, 2003; Palandri,
2006; Corsi and Audrino, 2007, for related work). This estion has the profound advantage that it does not throw away
information that is typically lost using a synchronizatiprocedure. Here, we show how this estimator can also be made
robust to noise by using pre-averaging.

Given the vector of log-price¥ = (Y'!,...,Y?), which is defined by the noisy diffusion model in Eq. (4), wewno
assume that the component proceg3és) are observed at non-random time poitf@, fori =1,...,ng, with (tl(k))
being a partition of the intervdl, 1] andk = 1,...,d. In addition, we need some regularity conditions on the diagp
such that all time schemes are comparable in the following weax |tz(.k) — tz('j)1| — 0asng — oo, fork=1,...,dand

max # {tg.’“) £ e [tV t(”]} <K, (25)

1<i<ny, v

for 1 < k,l < dand somek > 0, whereK is independent of, for k = 1,...,d. The latter condition says that data

from one process do not cluster in any single interval of thers. Finally, the following condition is needed

max |1} — %))

<ec, (26)
min [t{" — )|

wherec > 0 is a constant independent of, for all 1 < k& < d. This condition implies that; max |t§k) — t(

which could be assumed instead.
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A consistent estimator of the integrated covariafi¢e:*ds between assets* andY' can then be constructed as

follows. We setn = >"%_, n;, and define the statistic

(k1) _
HY[Y], (T/JHY]C Z Z Yk Yl J]I{(t(k) (B 10 KD, 0y (27)
wherey gy = fo r)dz andly,, is the indicator function discarding pre-averaged rettinas do not overlap in time.

Hence, HY'[Y ]ﬁf Dis a pre-averaged version of the Hayashi and Yoshida (2CBh&tor. Note that under the previous

conditions,n, n;, andn; are of the same order and thatontrols the universal pre-averaging windéy®

Theorem 5 Assume thaE (|¢/|*) < co forall j = 1,...,d, (k,,0) satisfy Eq.(7) and g(z) > 0 for 2 € (0,1). As
n — oo, it holds that
1
HY[Y]kED 5 / >k ds, (28)
0

forl <k, <d.
Proof See appendix. |

Interestingly, Theorem 5 shows the somewhat surprisingltréisat there is no asymptotic noise-induced bias in
HY[Y](k’l) not even when the spacingélk) ) and (¢ (l)) are identical. This can be seen as follows. First, under.tle i
structure on the noise only products of the fcn’m)e (l) with t(k) = t(l) = t contribute to potential bias. We consider that
set of points and assume thgt < i < n; — kj, andk < j < ng — k, (this is innocent, for the summands which do not
fulfill this are negligible). Then, an inspection HY[Y]% ) shows that all productd’e. appear with the factor

2
kn—1

J=0

in front. But3-"0" g(££) — g(;L) = 0, becausg(0) = g(1) = 0, so these terms drop out of the summation.
While HY[Y]( " has the advantage that it is free of prior alignment of lagg® and hence does not throw away
information in the sample, it does suffer from being a paewvestimator, which means that once we assemble all the

single variance/covariance estimates into a full covaeamatrix, it is not guaranteed to be positive semi-defirfitl,

50ur choice here implies that, is identical across all pairs of asset combinations. In genthe best way of choosing, depends on what is
being estimated (e.qg., covariance, correlation or beta)sTif one only cares about efficiency in pairwise covargaggtimation, a betteH{Y[Y]Ef’l)
estimator might be based on a loéal, for examplek®! = 6, ;/n + o(n'/?). This would also serve to make the estimated covarianceensei
independent (i.e., they will not change by adding or remg\dssets). To make a more qualified, statistical argumertisrissue, however, we

(k1)

need to compare an expression for the asymptotic varianégYgh’],,”"’ under different ways of choosing, (e.g., from a CLT). This is beyond

the scope of this paper and will be left for future researdieng we hope to shed more light on the subject.
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there are some problems in financial economics, in whichaihlg the accuracy of the estimator that matters and positive
semi-definiteness is less important, for example in asketadlon and risk management under gross exposure cartstrai
(e.g. Fan, Zhang, and Yu, 2009). Moreover, our empiricalltesshow that(HY[Y],(f’l))lgkvlSd does not fail to be

positive semi-definite on a single day for tthe= 5-dimensional vector of asset prices considered there.

Proposition 1 Assume thaE (|e/|*) < oo forall j = 1,...,d. If (k,6) satisfy Eq.(7) andg(z) > 0 for z € (0,1),
then

var(HY [Y (")) = O(n™"/?),

that is, H Y[Y]ff’l) has the optimal rate of convergence.
Proof See appendix. |

Proposition 1 shows that the rate of convergence associatb(HY[Y]Sf’l) isn~1/4. A proof of the much stronger
result, the CLT forHY[Y]g“’l), will be given in a companion paper to this one (see ChrigtienBodolskij, and Vetter,
2010). In the empirical section, we gauge the propertiesisféstimator on actual data and find that the pre-averaged

version performs very well.

4 An estimator of the asymptotic covariance matrix

In order to make Theorem 2 and 4 feasible, we need to estimeataslymptotic covariance matrix ayge, as it appears
in Eq. (15). Here, we give an explicit estimator of ayag. More precisely, we present an estimator of the asymptotic

covariance matrix of the vectorized statistic in Eq. (13).

First, we set
v = ved( V(YY) (29)
where ve¢:) is the vectorisation operator that stacks columns of a mbg&iow one another. Next, we define the statistic
n—kn+1 1 n—2kn+1
Valg) = 3 a0 =5 > (a0 + Xk, 06)).
i=0 i=0

We should note that,(g) depends on both the bandwidth paramétand the pre-averaging functign and that it is

positive semi-definite by construction. Moreover, for dny k, k', 1,1’ < d, we get the following convergence
1 1
Vn(k—l)d-‘rkl,(l—l)d-i-l/ (g) £> ap (g’ 9) / Aﬁk’,ll’du + CLM(Q, 9) / @ﬁk’,ll/du + aN(g7 H)Tkkl’”l,
0 0

whereag(g,0) = 6?92, ap(g,0) = 112 anday(g,0) = Z—Qf (the proof of this result is achieved by using arguments

alike the ones presented in the proof of Theorem 1; see Kionktand Podolskij, 2008, for further details).
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What needs to be estimated is
avalyrc = % <<I>229/ A du+@/ O,du + (I)llT)
2

with all constants referring to a given functign. Suppose thag(z) = min(z,1 — z) as above. Now, we take three

different functionsyy, g2 andgs that satisfy all the conditions af,, and which are chosen such that the matrix

ap(91,0) anm(g1,0) an(g1,0)
A(g1,92.93) = | ap(g2,0) an(g2.0) an(g2.0)
ap(g3,0) anm(gs,0) an(gs,0)
is invertible. We can then construct a weight vector

20990 2P 2Pqg
Ui 30 p3e°

C(g1,92,93) = ( >A_1(91792,93)- (30)

Finally, we form the statistic

avakre, = CV (g1, 92, 93) V(1) + CP (g1, 92, 93) Vi (g2) + CP (g1, 92, 93) Vi (g3), (31)

whereV,,(gx) are the above estimators associated with the funcgpnis = 1,2, 3. Then, it holds that

50 a’v(\fR é Yd+k (I-1)d+1" P avaf,fﬂkéél',
foranyl < k, k', 1,1’ < d.®

There are various classes of functions from which ghecan be selected, for examplgz) = 2% (1 — x)b with
a,b > 1 or g(x) = sin(crx) for integerc. If one manages to find a set of functiopg for which the coefficients
c®) (91,92,93) are all positivek = 1,2 and3, then the statistic in Eg. (31) is guaranteed to be posigreislefinite,
because it is a linear combination of positive semi-defisttisticsV;, (g;) using positive weight€*) (g1, g2, g3). It
appears to be quite hard to find such a combination in practice so far we did not succeed at this. Nonetheless,

avalkyrc,, remains a consistent estimator.

5 Asymptotic theory for covariance, regression and correlaon

The results in section 3 and 4 can be applied in order to cangauifidence intervals for some functionalsféfEudu

that are important in practice, such as covariance, regreasd correlation. For thi#h and;jth asset, these quantities are

5The weights(”i?", Qfgl;, i‘gég) in Eq. (30) are the coefficients in front &ff; Audu, [, ©udu, T) in the expression for the asymp-
totic variance of MRC. This choice results in a consisteninmesor of avagrc. More generally, one can estimate any linear combination of
(fo1 A du, fol ©.du, T) by choosing an appropriate weight vector in Eq. (30). Forga, the multivariate version of the integrated quarjcit

fol A.du, can be estimated by plugging the linear combinafibrd, 0) A~ * (g1, g2, g3) into Eq. (31).
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given by

1 1 g 1 g
/ Sddu, YUY = 7&)1 Eé.d@a pUt) = Jo i : (32)
0 Jo Ziidu Vo Sitdu [} 5 du
Theorem 1, 3 or 5 can be invoked to provide consistent estsmaftf) ¥/ du, 509 andpU?, e.g. forM RC'[Y],,
o Lo o 0] g
MRC Y] LN / Sy, YUY = M 2 gl
0 MRC[Y]"
g M yhd g
o = LSiLd (33

\MRC Y] MRC Y]}
foranyl < 4,5 < d. The estimators in (33) are called modulated realised ves, regression and correlation,
respectively. In the next theorem we present the assodiedesible central limit theorems, which follow from Theor@m

and the delta method for stable convergence.

Theorem 6 Assume thaE (|¢/|®) < oo forall j = 1,...,d and (k,,, 6) satisfy Eq.(7). Asn — oo, it holds that

nl/A (MRC V)il — [l s du)

d
, — : % N(0,1), (34)
ii’\/ﬁrﬁ,’.ggﬁﬂ’(l_l)d”
1/40 501 a(i)
A i S ) (35)
\/ (MRCIYL) gt
1/40 (30 (ji)
A Rl ) 4 N(0,1), (36)

.. .o\ —1 ..
\/ (MRC [Y]" MRC [Y]iﬂ) h?
whereavarvrc,, is given in(31) and g,(fi) and hgi) are defined by

o) = (1) (1.-490) . A= (- % 3, 17_135Lz'j>>fn< _ % 3091, _15?(;]'))’

2 2
with
= (i—1)d+7,(i—1)d+j  om (i—1)d+j,(i—1)d+i
Lo avanhyrcy, avar,(leQn
n — . S . )
. AVl
—— (i—1)d+i,(i—1)d+i e (i—1)d+],(i—1)d+i e (i—1)d4i,(j—1)d+j
avalyrcy, avaryrcy, avanhyrcy,
= ~oali—1)d+7,(i-1)d+j  so5li—1)d+7,(7—1)d+j
~oa i —1d+j,(j—1)d+j
[ [ ) avar'(\ARQn

All the required terms are easy to compute, so it is ratheplgio implement the estimators.
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6 Simulation study

We now demonstrate the finite sample accuracy of some of yramstic results developed above using simulations.
The design of our Monte Carlo study, which we briefly deschibee, is identical to the analysis conducted in Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2008b).

Specifically, to simulate log-prices we consider the follogvbivariate stochastic volatility model

dx? = a@dt + pDodBY + /1 — [p@)26PdW,, fori=1,2, (37)

whereB(® andW are independent Brownian motions. In this model, the tgfta'” dB” is an idiosyncratic component,
while /T — [p@ 26" dW; is a common factor.
The spot volatility is modeled ast(i) = exp(ﬁol + ﬁll gtl ) with an Ornstein-Uhlenbeck specification fgf):

do!” = a®o"dt + dB™. This implies that there is perfect correlation betweenitimevations ofp?) " dB" and

(4)

at( ), while it is p(?) between the increments of,” and gi"). Finally, the magnitude of correlation between the two

underlying price process@é(l) andX Vis \/1 \/1 [p(@)]2. The reported results are based on the following
configuration of parameters for both process@é. BOZ B o sy = (0.03,—5/16,1(8,—1/40,—0.3), so that
ﬁ((f [B(l 1?/[2a(9]. We note that this particular choice of parameters also st the volatility process has been
normalized, in the sense tHE(fO ol 2ds) =1.

We simulate 1,000 paths of this model over the intefal]. Motivated by our empirical data, we Igt, 1] represent
6.5 hours worth of trading, which is then further decomposgd N = 23,400 subintervals of equal length/N (N
denoting the number of seconds in 6.5 hours). In constmatinisy pricesY (), we first generate a complete high-
frequency record ofV equidistant observations of the efficient pri&é? using a standard Euler scheme. The initial
values for thegti) processes at each simulation run is drawn randomly fromtttesary distribution ofgy), which is
o) ~ N(0,[-2a1]71).7

We add simulated microstructure nois&) = X @ + ¢ by taking

N
iid , 1 (i)4
D {o, X} X NO0,w?) with w?=+? NE O IN (38)
J =1

This choice again follows Barndorff-Nielsen, Hansen, Leyndnd Shephard (2008b) and means that the variance of the
noise process increases with the level of volatility)6f), as documented by Bandi and Russell (20063.takes the
values 0, 0.001, 0.01, which covers scenarios with no naigeigh low-to-high levels of noise.

Finally, we extract irregular, non-synchronous data fréwe ¢complete high-frequency record using Poisson process

sampling to generate actual observation tim[eg?}. In particular, we consider two independent Poisson psasewith

"Note that the Ornstein-Uhlenbeck process admits an exactddization (see, e.g., Glassermann, 2004). We use thait teere to avoid

discretization errors in approximating the continuousetitistribution of @) over discrete time steps of sizet = 1/N.
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intensity parametek = (\;, \y). Here); denotes the average waiting time (in seconds) for new daia firocesg” (¥,
so that an average day will hawe/)\; observations ot (), i = 1,2. We vary), through(3, 5, 10, 30, 60) to capture the
influence of liquidity on the performance of our estimatansg we sef\, = 2); such that on averagg(® refreshes at
half the pace ot ().

In Table 1, we report the results of the simulations. As theilte for estimating the variance components of the
2 x 2 covariance matrix are as expected compared to prior workgiwefocus here towards estimating the integrated
covariance, correlation and beta. Also, because the retieee sampled MRC estimators perform somewhat better
than the previous-tick based MRC estimators, we only refpertresults for the MRC estimators based on refresh time
sampling ¢ = RT).2 In the three panels of the table, we therefore provide the 4l root mean squared error (rmse)
of the various estimators in terms of estimating the intiegt@ovariance, correlation and beta. We compare our setsult
a standard realised covariance sampled at either a 1-nondfe-minute frequency.

Looking at the table, we see that the MRC estimators are Vifigiemit across all scenarios of noise and non-
synchronous trading considered here, matching or outpeniig the standard realised covariance. 'IZIiiéf'[Y](’f’”
estimator is less efficient, owing largely to a larger finisngle bias in this estimator. We will study the possibiditie
of making finite sample adjustments by [Y] (k1) elsewhere.

Above, we conjectured without a proof that the MRC was roloisttale prices and retained its rate of convergence
under non-synchronous trading. If this is to be true, andrigug finite sample biases, we should then expect the rmse of
the two MRC estimators to decrease at raté/4 andn—'/5. As can be seen from the table, this is exactly what we find.
For example, when estimating the integrated covariancegamdy from\ = (60, 120) to A = (3,6), i.e. an approximate
twenty-fold increase in sample size, the rmselMéRC[Y],, decreases roughly by half and the rmseléRC[Y]? by
slightly less than a half, which is consistent with the rafieen above.

All in all, the simulation results show that the estimatorspgmsed in this paper are very good at estimating the
integrated covariance, correlation and beta across a \aitgerof noise and liquidity scenarios, and that the asymnaptot

predictions given above are also reasonable guides tofihiéér sample behavior.

8All unreported results are available upon request.
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Table 1: Simulation results

Panel A: Integrated covariance

Cov'om Cov'm MRC[Y]p—gr MRC[Y]P=%L.  HY[Y]
£ =0 bias rmse bias rmse bias rmse bias rmse bias rmse
A= (3,0) -0.015 0.159 -0.052 0.103 -0.007 0.156 -0.018 0.222 -0.0442780
A = (5,10) -0.025 0.170 -0.090 0.147 -0.010 0.167 -0.023 0.233 -0.055296)
A =(10,20 -0.044 0.174 -0.178 0.266 -0.017 0.207 -0.027 0.270 -0.069338
A= (30,60 -0.128 0.255 -0.387 0.547 -0.028 0.259 -0.038 0.326 -0.10142@&)
/\2: 60, 120) -0.228 0.367 -0.505 0.702 -0.038 0.300 -0.047 0.370 -0.12351
=0.001
?\: 3,6) -0.019 0.166 -0.054 0.122 -0.008 0.148 -0.018 0.220 -0.04427%)
A = (5,10) -0.025 0.174 -0.089 0.161 -0.011 0.176 -0.022 0.239 -0.053298
A= (10,20 -0.046 0.188 -0.183 0.292 -0.016 0.198 -0.028 0.267 -0.07134%
A = (30,60 -0.125 0.246 -0.383 0.538 -0.030 0.263 -0.036 0.329 -0.100432
/\2: 60, 120) -0.226 0.368 -0.506 0.705 -0.039 0.295 -0.043 0.366 -0.123518
=0.01
é\: 3,6) -0.014 0.350 -0.048 0.519 -0.007 0.147 -0.019 0.216 -0.0442760
A = (5,10) -0.019 0.350 -0.070 0.485 -0.010 0.174 -0.021 0.237 -0.05429%)
A= (10,20 -0.056 0.346 -0.192 0.604 -0.017 0.202 -0.029 0.264 -0.0693410
A= 30,60% -0.116 0.365 -0.392 0.682 -0.029 0.243 -0.040 0.323 -0.099430
A = (60,120) -0.225 0.494 -0.508 0.767 -0.039 0.324 -0.042 0.386 -0.12152%
Panel B: Integrated correlation
£ =0 bias rmse bias rmse bias rmse bias rmse bias rmse
A= (3,6) -0.016 0.028 -0.069 0.070 -0.001 0.017 -0.002 0.026 -0.0120510
A = (5,10) -0.026 0.037 -0.119 0.121 -0.002 0.020 -0.003 0.030 -0.014059
A = (10,20 -0.051 0.060 -0.237 0.239 -0.002 0.024 -0.004 0.036 -0.02007&)
A = (30,60 -0.157 0.167 -0.514 0.517 -0.003 0.034 -0.008 0.047 -0.032110
/\2: 60, 120) -0.287 0.299 -0.672 0.674 -0.006 0.044 -0.013 0.061 -0.0441590
= 0.001
é\: 3,6) -0.141 0.149 -0.438 0.440 -0.001 0.018 -0.005 0.027 -0.012050
A = (5,10) -0.146 0.154 -0.463 0.465 -0.002 0.020 -0.005 0.030 -0.014060
A =(10,20 -0.170 0.179 -0.528 0.530 -0.003 0.025 -0.007 0.037 -0.0190771
A = (30,60 -0.257 0.266 -0.657 0.659 -0.005 0.035 -0.012 0.050 -0.032117
/\2: 60, 120) -0.368 0.378 -0.738 0.739 -0.007 0.046 -0.017 0.062 -0.045159
=0.01
é\: 3,6) -0.559 0.571 -0.813 0.815 -0.002 0.026 -0.024 0.039 -0.0110510
A = (5,10) -0.564 0.574 -0.817 0.819 -0.003 0.030 -0.027 0.044 -0.014063
A =(10,20 -0.579 0590 -0.831 0.833 -0.005 0.037 -0.034 0.055 -0.020079D
A = (30,60 -0.620 0.632 -0.851 0.853 -0.007 0.053 -0.044 0.074 -0.0351210
A = (60,120) -0.657 0.667 -0.859 0.861 -0.011 0.067 -0.054 0.091 -0.043168)
Panel C: Integrated beta
£2=0 bias rmse bias rmse bias rmse bias rmse bias  rmse
A= (3,6) -0.020 0.092 -0.090 0.128 -0.000 0.065 -0.002 0.098 -0.026179D
A = (5,10) -0.034 0.100 -0.159 0.219 -0.001 0.076 -0.002 0.112 -0.0302140
A= (10,20 -0.069 0.143 -0.316 0.427 -0.003 0.092 -0.003 0.135 -0.043268)
A = (30,60 -0.212 0.316 -0.693 0.926 -0.001 0.129 -0.005 0.178 -0.06938%0
/\2: 60, 120) -0.384 0.538 -0.902 1.190 -0.001 0.170 -0.008 0.222 -0.1065040
=0.001
é\: 3,6) -0.188 0.277 -0.586 0.777 0.000 0.067 -0.004 0.099 -0.0261770.
A = (5,10) -0.195 0.297 -0.623 0.832 -0.002 0.076 -0.004 0.112 -0.0282171
A= (10,20 -0.226 0.325 -0.716 0.956 -0.003 0.093 -0.007 0.136 -0.039263
A = (30,60 -0.354 0.511 -0.903 1.200 -0.004 0.131 -0.010 0.183 -0.07038&
/\2: 60, 120) -0.495 0.680 -1.005 1.330 -0.006 0.169 -0.014 0.215 -0.0894980
£ =0.01
A= (3,6) -0.747 1.010 -1.093 1.450 0.000 0.091 -0.031 0.116 -0.02518%0.
A = (5,10) -0.758 1.033 -1.096 1.442 -0.002 0.114 -0.035 0.134 -0.032220
A = (10,20 -0.772 1.047 -1.123 1501 -0.009 0.137 -0.045 0.159 -0.0452890
A = (30,60 -0.839 1.149 -1.154 1530 -0.006 0.181 -0.059 0.215 -0.076380
A = (60,120) -0.888 1.203 -1.169 1559 -0.005 0.222 -0.065 0.239 -0.09448&)

Note This table shows the results of the simulation analysis.
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7 Empirical lllustration

To illustrate some empirical features of the pre-averatfiregry developed above, we retrieved high-frequency aata f
five-dimensional vector of assets from Wharton Research Batvices (WRDS). We picked four equities at random from
the S&P 500 constituents list as of July 1, 2009. We then addgith element, namely the S&P 500 Depository Receipt
(ticker symbol SPY), which is an exchange-traded fund treaikis the large-cap segment of the U.S. stock market. As
such, it can be viewed as generating market-wide indexngtdrhe four remaining stocks are the following (with ticker
symbol and industry classification in parenthesis): BHbtgers Squibb (BMY, health care), Lockheed Martin (LMT,
industrials), Oracle (ORCL, information technology) arat&Lee (SLE, consumer staples), thus representing a broad
category of industries. We use both trades and quotes datag@sample period that covers the whole of 2006, which
results in 251 trading days.

Table 2 reports some descriptive statistics for our unevefsstocks and sample period. As can be seen, these equities
display varying degrees of liquidity with ORCL and SPY bethg most liquid, while LMT and SLE are the least liquid.
Also reported in the table is the univariate noise ratiastiat v, which is a noise-to-signal measure that describes thé leve
of microstructure noise to integrated variance (see, ©gmen, 2006, for further details on the noise ratio). Gdhera
speaking, there is a tendency for more frequently tradedpeoies to contain less microstructure noise, the notable

exception being the transaction data for ORCL.

7.1 Filtering procedures

As a preliminary step, we subdued the sample data to someimtpprocedures. Pre-cleaning high-frequency data is
necessary, because the raw data has many invalid obses/édig., data with misplaced decimal points, or tradesaiteat
reported out-of-sequence). Our filter is roughly identioahat used by Barndorff-Nielsen, Hansen, Lunde, and Sirelph

(2008b) with some minor differences. Here, we briefly démcthe filtering rules we employ.

Trades and quotes The following rules are applied to both trades and quotea.da) We keep data from a single

exchange: Pacific for SPY and primary exchange for the 4 mintiequities, see Table 2, b) we delete data with time
stamps outside the regular exchange opening hours frona®:30 4:00pm, c) we delete rows with a transaction price,
bid or ask quote of zero, and d) we aggregate data with idarime stamp using volume-weighted average prices (using

total transaction volume or quoted bid and ask volume, isdy).
Trades only: We delete entries with a correction indicatérO or with abnormal sales condition.

Quotes only We delete quotes with negative spreads and rows where thtedjgpread exceeds 10 times the median

spread for that day.
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Table 2: Descriptive statistics and number of data befodeadier filtering

Stock BMY LMT ORCL SLE SPY
Exchange N N Q N P
Panel A: Transaction data
Raw trades 1085420 811607 8153413 533517 7685215
Corrected/Abnormal/Zeros 111 61 13806 85 2584
Time aggregation 231826 139181 6599286 78039 6000898
#Trades 853483 672365 1540321 455393 1681733
Intensity 3400 2679 6137 1814 6700
Noise ratio,y 0.363 0.336 0.484 0.656 0.202

Panel B: Quotation data

Raw quotes 5402607 3245315 23411495 3208830 17536447
Negative/Wide/Zeros 643 3917 2623 604 256
Time aggregation 2547054 1075914 20050224 979299 12851464

#Quotes 2854910 2165484 3358648 2228927 4684727

Intensity 11374 8627 13381 8880 18664

Avg. spread (in cents) 1.273 2.389 1.017 1.215 1.575

Noise ratio,y 0.205 0.219 0.203 0.310 0.109

Note This table reports some descriptive statistics and liguideasures for the selection of stocks included in our eicgdiapplication.
We show the exchange from which data are extracted. The egehzode is: N = NYSE, Q = NASDAQ and P = Pacific. Raw tradesA&giot
is the total number of data available from these exchangeaglthe trading session, while # trades/quotes is the sataiple remaining
after filtering the data. Intensity is the average numberabé gbr. day, while the noise ratio is defined in Oomen (2006).

Table 2 also reports how many observations that are lost gsip@these filters through the data. It should be noted that

the "Trades Only” and "Quotes Only” filters generally tendéduce the sample by only a very small fraction.

7.2 High-frequency covariance analysis

Here, we inspect the outcome of applying the estimatoreduoited above, after which we look at transforms of the
covariance matrix. As a comparison, we also compute thelatdrrealised covariance from 15-min, 5-min, and 15-sec
previous-tick data.

We implement both thé/ RC' [Y'],, andM RC [Y]i estimators of section 2 and 3.4, respectively. RecallAM&C' [Y],,
converges at rate~ /4, it needs to be corrected for bias, and as a result is not geE@ to be positive semi-definite. We

baseM RC [Y]fL ond = 0.1, among many plausible choices, which results inra/> rate of convergence, a small finite
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sample bias that we omit correcting and, hence, positiva-definiteness by construction. Two sampling schemes are
used, calendar time and refresh time sampling, which yielidgal of four combinations. We use pre-averaging windows
found ask,, = |6n’ |, where§ = 1 andd’ = (0.5,0.6) for our two choices. The selection éffollows the conservative
rule discussed above. We set= 390 for the calendar time-based estimators, which is 1-minateping, whilen is
determined automatically by the data for the refresh tinmepimg scheme.

In Table 3, we report the sample covariance matrix estinatesaged across the 251 days. This table is constructed in
the usual way, displaying the results based on transactioesan the upper diagonal (including the main diagonahilev
the strict lower diagonal elements are the correspondisgltebased on quotation data. Consistent with prior liteeg
we see from the table that the standard realised covarianseffering from Epps effect, when sampling runs quickly.
All estimated covariance terms lie in the positive regiaut, flor Cov'®* they are heavily compressed towards zero. This
is less of a concern fafov®9(5™m15m) “which should tend to capture the average level of the canee structure well,
while not being seriously influenced by microstructuretioics and Epps effect. Turning next to the estimators pregos
in this paper, we note that the time series average of both Mé&€ions and the noise-robust HY estimator are in line
with that produced by ov@9(5m:15m) ' showing that they appear free of any systematic bias. Tlyasté and Yoshida
(2005) estimator produces a strong downwards bias in thariemce estimates, when it is applied directly to noisy and
irregular high-frequency data. This reaffirms previous eitgl work (see, e.g., Barndorff-Nielsen, Hansen, Lurale]
Shephard, 2008b; Griffin and Oomen, 2006; Voev and Lunde7@d these results are not surprising or novel. The
pre-averaged versiofl Y[Y]ﬁf’l), however, does a much better job and tends to agree with #rage level of other
noise-robust estimators.

Finally, we turn to the issue of positive semi-definitenegs noted aboveM RC' Y], and H Y[Y]ﬁf’l) are not
guaranteed to possess this property. Nonetheless, thegtdailito be positive semi-definite on a single instance s&ro
our sample period. This is true for both the transaction ammtajion data, and both combinations of the bias-corrected
MRC estimator. Thus, while theoretically a concern, thisgbem does not appear to occur frequently in practice, atho

the conclusion might change for other data sets.

7.3 Analysing realised beta

We now focus on estimatingt?) by 3Y” = MRC [v])% /MRC [Y], where we také = SPY and form regressions
by usingj = BMY, LMT, ORCL, SLE. This type of regression, where indivaduequity covariances with the market
are regressed onto a market-wide realised variance measurgortant in financial economics, for example within the
conditional CAPM (see, e.g., Jagannathan and Wang, 1996&uU and Ludvigson, 2001), since only systematic risk
should be rewarded with expected excess returns.

In Figure 1, we plot the MRC-based betas from transactiateprand refresh time sampling. The corresponding plots
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Table 3: Average of high-frequency covariance matrix estés

MRC[Y]n:CT(390) MRC[Y];SL::OCIT(?,Q())

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1465 0.203 0259 0.154  0.233 1.396 0195 0259 0.152 31.2
LMT 0201 0975 0232 0149  0.247 0.194 0.905  0.222 0.158 3%.2
ORCL 0255 0.228  1.804 0.143 0.316 0.256 0.218  1.718  0.151 3160.
SLE 0.144 0149  0.136 0.955 0.162 0.144 0156  0.143  0.911 670.1
SPY 0.228 0249  0.307 0.154 0.317 0.228 0.237 0309 0.162 100.3

MRC[Y|n=rr MRCY], =%

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1394 0.197 0226 0.134  0.220 1.397 0198 0249 0.141 2D.2
LMT 0.193 0955  0.224 0.134  0.242 0.201  0.924 0222 0.147 410.2
ORCL 0.196 0198 1756 0.128  0.297 0.228 0220 1726  0.139 3100.
SLE 0.117 0114  0.105 0.878  0.147 0.131  0.134  0.122  0.898 570.1
SPY 0.200 0237 0243 0120 0.310 0.216 0.249  0.285 0.138 110.3

HY HY YD

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY 1160 0.093  0.097 0.103 0.111 1.417 0192 0255 0.144 2D.2
LMT 0.049 0761  0.075 0.072  0.097 0.202 0.902 0223 0.147 3®.2
ORCL 0.032 0036 1922 0077 0.112 0.240  0.227  1.903  0.135 3090.
SLE 0.029 0026 0013 1.053 0.095 0.134  0.137  0.127  0.900 590.1
SPY 0.041 0.051  0.040 0.023  0.253 0.219 0250  0.292  0.143 090.3

Covlss Clopav9(5m.15m)

BMY LMT ORCL  SLE  SPY BMY LMT ORCL  SLE  SPY
BMY  1.823 0.088 0118 0.091  0.120 1499  0.192 0288 0.149 210.2
LMT 0.095 0854  0.084 0.059 0.094 0.191 0.953  0.209 0.152 210.2
ORCL  0.095 0.086  4.043 0.069 0.162 0.261 0.206  1.936  0.153 3060.
SLE 0.056 0.049  0.043 1.947  0.072 0.146  0.148  0.142  1.008 610.1
SPY 0.111 0118  0.117 0.057  0.293 0.219 0233  0.290 0.152 030.3

Note This table reports average covariance matrix estimatesall Isubpanels, the numbers in the upper diagonal (inctudiagonal
elements) are based on transaction prices, while the loigodal is based on mid-quote dat@ov®*?®"15™) is a simple time series

average of the realised covariance computed from 5- andifGtereturns.

from the other estimators proposed in this paper are qtredita similar. As in Barndorff-Nielsen, Hansen, Lundedan

Shephard (2008b), we smooth the daily beta estimates byngasem through an ARMA(1,1) filter. The figure shows

that beta is time-varying and predictable, and that it teodductuate around its mean level. Evidently, the estimated

processes exhibit substantial memory with autoregresemts at 0.90 or higher (see also Andersen, Bollerslev, @ikb
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Figure 1: MRC-based beta.
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Note g1 s the time series of daily/ RC [Y],,-based beta estimates, using transaction prices andhéiimes sampling for various

asset combinations (in subpanebﬁﬁﬁ%ﬂ”n

and moving average parameter MA(1). The sample mean MROsetported ag.

are fitted values from an ARMA(1,1) filter, with estimated@egressive parameter AR(1)

and Wu, 2006, who study the persistence of quarterly rehbs¢a estimated from daily asset returns).

8 Concluding remarks

In this paper, we present a simple solution, based on agplyie-averaging to financial high-frequency data, to the
problem of how to estimate the multivariate ex-post integfacovariance matrix, possibly in the simultaneous presen
of market microstructure noise and non-synchronous tgadin

A modulated realised covariance (MRC) estimator is intoedll The MRC bears close resemblance to a standard re-
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alised covariance, being a sum of outer products of higieacy returns, but it relies instead on pre-averagingdoae

the harmful impact of microstructure noise. We study thepprties of this new estimator by showing its consistency
and asymptotic mixed normality under mild conditions ondlgaamics of the price process. As shown in the paper, the
MRC can be configured to possess an optimal rate of convezgero guarantee positive semi-definite covariance matrix
estimates. In the presence of non-synchronous trading)ssepatline how to modify the MRC by using an imputation
scheme (for example the previous-tick rule or refresh tiameing) to match high-frequency prices in time. An MRC
constructed on the back of such artificial returns will ad&rconsistent for the integrated covariance.

Another novelty developed in this paper is a pre-averagesiare of the Hayashi and Yoshida (2005) estimator that
can be implemented directly on the raw no&yd non-synchronous observations, without any prior alignnoéiprices.

We also show the consistency of this estimator and deriveedaaits variance, but otherwise we defer further theoggti
analysis of finite sample improvements and asymptotic ptigseof the pre-averaged Hayashi-Yoshida estimator toéut
research (see Christensen, Podolskij, and Vetter, 2010).

We demonstrate with a set of simulations that these newlgqs®d estimators can bring substantial efficiency gains
with them compared to a standard realised covariance inedhlistic setting with both microstructure noise and non-
synchronous trading. Furthermore, an empirical illugirahighlights their applicability to real high-frequendgata. We
therefore look forward to future applications of thesersators, including an investigation of their informatioahtent
about future volatility. Being able to produce good foresad future volatility is paramount in financial economid@us,
as an example, it could be interesting to apply our estirsaiothe context of portfolio choice to calculate their ecmino
value, akin to Fleming, Kirby, and Ostdiek (2001, 2002), &isand Russell (2006) and others. However, generally they

should also be useful in many other areas, including assdteption pricing or risk management.

Proofs

In the following, we assume that the procesgseendo are bounded. This is without loss of generality and can bifigs by a
standard localization procedure (see, e.g., Barndodiden, Graversen, Jacod, Podolskij, and Shephard (2088))eover, we
denote constants iy, or C, if they depend on an additional parameieirhe main parts of the proofs are based upon Podolskij and
Vetter (2009) and Jacod, Li, Mykland, Podolskij, and Ve{&509).

Proof of Theorem 1Due to the triangular equality/, W] = 1([V + W,V + W] — [V — W,V — W]), it suffices to prove the

univariate casd = 1 (i.e. all processes are 1-dimensional). We use the decatigmos

1/)1A

MRC[Y :—ZMRC’ " o,

(39)
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with

. 1 [n/kn]71

MRCY| =—+ Yo |2
[ ]n 9¢2ﬁ 720 | H—]knl

Notice that, forany = 0,..., k, — 1, the summands in the definition 8f RC' [Y]il are asymptotically uncorrelated. This type of
estimators have been discussed in Podolskij and Vette®j20@ we can deduce by the methods presented therein (se@tiof

Theorem 1) that
U1
0a07
where the convergence holds uniformly/idue to the boundedness of the processasds). On the other hand we have that

1
MRC[Y]L&/ o2ds +
0

T 1 S ny 12 P
W":%Z;mm L.
This implies the convergence )
MRCIY], £>/ o2ds,
0

which completes the proof. O

Proof of Theorem 2:Here we apply the "big blocks & small blocks”-technique usedacod, Li, Mykland, Podolskij, and Vet-
ter (2009). The role of the small blocks (which will be asyotjmally negligible) is to ensure the asymptotic indepermieof the big

blocks. More precisely, we choose an integeset
a;(p) =i(lp+ 1)ky and bi(p) =i(p+ Vkn + pky

and letA;(p) denote the set of integelsatisfyinga;(p) < I < b;(p) and B;(p) the integers satisfying;(p) <! < a;+1(p). We
further definej, (p) to be the largest integgrsuch thab, (p) < n holds, which gives the identity

. n

Jn(p) = {mJ -1 (40)
Moreover, we use the notatidn(p) = (4. (p) + 1)(p + 1)kp.

Next, we introduce the random variable

kn—1 .
V= 2 9(i ) (0= Al, W+ A0, (41)
=1 "

which can be interpreted as an approximation of s&f;ﬁe Moreover, we set
T = Vi (Vi) = B [¥ (V) P ] (42)
and define
Yy I €Ailp)
Yi =\ Yy 7 €Bip)

Tzin(p)a Jjz Zn(p)
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as well as

bj(p)—1 ~ aj1(p
o= > Y (2] = §j fm
l=a;(p) I=b;(p)

Notice that((p, 1)} containgk,, summands ("big block”) whereagp, 2)’' containsk,, summands ("small block”). Finally, we set

Mp =00 p 1), Ner =X P cp2r,  Ce)r=nEY, o,V

and note that
B¢ D} P | =0 =2 [c0: 2 P | (43)

by construction.
Now, by the same approximations as presented in Jacod, Lklavig, Podolskij, and Vetter (2009) (see the identity ($.14

Lemma 5.5 and Lemma 5.6 therein) we get that

! :
Wt (MRCIY], - [ 5.05) = M)+ NG + O + R, (@)
0 2
where the last three summands satisfy the convergence

lim_lim sup P(|[n* N(p)"|| +[[nTC(p)"|| + || R(p)"[| > §) = 0 (45)

P=0 nco

for anyd > 0. Notice that the ternR(p),, stands for the approximation error in Eq. (41).
In the next lemma we show the stable convergeﬁ%d\/[(p)” s U(p) (for any fixedp). On the other hand, we will see that,
asp — oo, U(p) & U, whereU is the limiting variable defined in Theorem 2. By combiningstith Eqs. (44-45) we obtain the

assertion of Theorem 2.

Lemma 1 If the assumptions of Theorem 2 are satisfied we obtain (fpffiaadp)

1

n4 ’
M IR F (p)dBI M
012 ®)" Z /

jl k=1

and

’ o ’ 2 9 rqr 1 u
kljm kl,]m Aklkl _( pAkz,kl/ 1— )2 (w)du
3 o () = 2 Gt [ (1= 7))

J,m=1

! 1
p kl,k/[/ . E L kl,k/l/ _ E 9
T+ 1)65 /0 (1 p)¢1 ()2 (u)dhu + 03(p + 1)T /o (1 p)d)l(u)du) :

where the processes;, O, and Y are given in Theorem 2.

Notice thaty 7 |, A*bim (p)yktsim (p) B 571 ykbimakVim (1 < kg k/,1,1' < d), wherev, is defined in Theorem 2. From

this we deduce the convergeridép) = U.
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Proof of Lemma 1:Due to Theorem IX 7.28 in Jacod and Shiryaev (2003) the fotiguconditions need to be shown (for all
1<k K, I < d)

n=1/2 gy Kl Kl p [ "
T O B[ P | B [ e, (46)
9 1/]2 ]:0 n 0
71 Z E |:||< pa || |faJ(P)] p 07 (47)
Jn(p) ,
n—1/4 Z E { ) klAW( )n,k |]_-aj_(m} 20, (48)
Jn(P)
,1/4 Z |: nklAN( ) |FW:| £>O, (49)

whereAV (p)? = Vi b;(p) — Vasa, (p) fOr any proces$” and Eq. (49) holding for any 1-dimensional bounded martmgabeing
orthogonal tdl/. For proving Egs. (47) and (49), it is no restriction to assuhatd = 1. Then these conditions are already shown
in Jacod, Li, Mykland, Podolskij, and Vetter (2009) (Lemm@)5On the other hand, the functior@p, 1)’} is even inWW. SincelV’

ande are independent, we readily deduce that
E [C( ny MAW (p )nk | Fa, <p>] =0,

which implies the condition in Eq. (48). Hence, we are lefptoving Eq. (46).

First, notice the identity

k kn,—1 . .
I n - n X j+1 -]
w=>o (L) anv == (o(5) <o (L)) v
2 =

7j=1

The second equality is useful for the computation of the musefe}’. By the smoothness assumption on the functiand the

above identity we obtain the approximations< k, ! < d)

kl s
B, W3 = o2 (L) o, st = o (L2 + o (50)

for |7 — j'| < k,, whereas the above expectations vanish when j'| > k,, (heredy, denotes the Kronecker symbol). Next, we

introduce the decomposition

C(p, 1)} =v(p, D)} +v(p,2)] +v(p,3)},
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where the terms(p, 1)}, v(p, 2)} anduv(p, 3) are given by
bj(p)—1 o o
Z Ty W (Ua (p)Wl) —E{JWWZ (UL@WZ) |]-"aj(p>],

I=a;j(p) "

v(p, 1)}

bj(p)—1 , ,
w2y = > @(@) -ela@)].

l=a;(p)

bj(p)—1 L , o
Z Uaj_(le (E?) —I—E?(aaj_(le) .

I=a;j(p) "

By a straightforward calculation (and Eg. (50)) we obtaindth1 < k,1, kI’ < d

v(p,3)}

. T Wk u
Blotp, U5 M0 1 ] = LAY [ (1= B 300 +0,0),

n?

1
n n,k'l’ g U
Efv(p, 2)j’klv(p, 2)j’lC ! |F ;] 2p YLK / (1 - E)Qﬁ(u)du + 0p(1),
w 0

n n.k'l 2 k% 1y 1 U
Efo(p,3); " o(p. 3)) | Fum] = RO / (1= ) or(waa(wdu + o,(1),
n n 0

where the approximation holds uniformly jn Now recall thatj,, (p) = {WJ — 1. Consequently, by Riemann integrability we

deduce that
7% 771 p)

921/1 Z p7 ’?kl (p, )ﬁkl|]:a (p) —)/ Aklkldu
7=0

which completes the proof of Lemma 1. O

Proof of Theorem 3 and Recall that—%z— 1/2+6 =0 + o(n~Y/4+9/2), A straightforward calculation shows that
51 —1/446/2
E [MRC[E]H] = G ¥+ ol /4+8/2).

By similar methods as presented in the proof of Theorem 1 wedethat
1
(2 P
MRCY] — Sods + ——— U .
RCYT], </0 S+92w2n2‘5 =0
Hence, we obtain the convergence in probability
MRCY —> / Ysds,

which implies the assertion of Theorem 3. Following the saofeeme as demonstrated in the proof of Theorem 2 we get

nl/4—5/2 (MRC [Y]6 _ (/1 Esd8+ LW)) % MN (0, 2(1)2229 /1 Asd8> )
n 0 921/)27126 1/)2 0

- U is an appropriate centering for the noise term in this cassv N

sincem}
1/}1711/475/2\1} 5
024)on20 -
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foré > 1/10, whereas
w1n1/4—5/2 v 1/11 v
921/)277,25 92¢2

for 6 = 1/10. Hence, Theorem 4 follows. O

Proof of Theorem 5First, we start with the decomposition

1
(kD) R
R = (XJ:X X0 48, 0, 10

itkn +kn

+ Z(in ey + b le)ﬂ{(toc) £ 1?0, 120}

D LT R L) = HY VI, + HY [V + HY VTS,

itkn Jtkn
As X ande are independent, it follows th&@t (HY[Y]2) = 0, and a simple computation shows that
var(HY'[Y]?) — 0.

Thus,HY[Y)? % 0. Next, we consider the terd Y [Y]3. This expression can be further decomposed as

1
HY[Y]% = ﬁ( E Et Et + E bn k l Et Gt E k l t(k)ﬁt(L)l{t(k)#t(l)}),
(1/}HY n) ti€Jk,1 ticdy, (4,9)EFk 1 !

for certain numbers} (k, 1), b} (k, 1) andcy’; (k, 1). HereJkldenotesthesetofcommonpomts(tﬁC Ven <i<ng—kn and(tEl))kn<l<m K,

andJ;g_’l denotes the set of all common pomts(o?“ Vi<i<ny and(ti )1<i<n, €xcludedJy ;. The setFy, ; is given by

Frg = {(i,)| 3r,swith r <i <7+ kpys < j < s+ K, (0565, 100,64, 140}

Sinceck! = — Sk (g(,j—n) — g(%))e’i,ﬁ andg is piecewise differentiable it holds that

=1
J it+J

17 (k, D] + [ei (R, D] < C.

A straightforward computation shows that

2
kn

Soa() -o(5) | = -g0) =0,

becausg(0) = g(1) = 0. Thus, the first summand in the decompositiodf [Y']? disappears, which is absolutely crucial for the
proof. On the other hanq:lJ;g_’l < Ck,, which means that

1 n
HY B ) egg

Finally, note that the summandék) have expectatiof and are mutually uncorrelated. Singg,; < Cnk, this

€ #® {to@)#(z)}
implies that

1 n k l P,
W . j)%wk | ciy (k, l)etgmet;nll{tgm#;n} 0.
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Hence,

HY[Y]? 50
Now we consider the terf/ Y [Y'].. We decompose
1
1 -n n kAN l
HY[Y]n = (71/)]1)/]{: )2 ( )ZI aij(k,l)AikX Ale H{(tq(;’i)lyts;k)]ﬂ(ty,)l-,t;l)]?f@}
n 4,J)EIk 1

+ > Bk DATFX AT X

(i.9)€lg,

{(t(k) t(k)]ﬂ(t”) ty)];é@} (51)

+ > kDA XFAT X

L {(tg@l,tg%(t;lzl,t;w]:@})a
1,7)EFK 1

» Yig

for some constants?; (k, 1), b7, (k, 1), & (k, 1), Tuq = {(6,§) © kn < i < ngp—kn, kn <5 < ng—kn} andlp, = {(i,j) : 1<
i <mng, 1 <j<mn}— I, Notice that all "border terms” are collected in the seconthsiand whereas all terms with empty
intersection of the intervals are in the third summand (ot,fare will see that both are negligible).
Notice that
|ai (K, D] + (035 (k, D + [¢i (k, D] < Cn.

Furthermore, we have

n n k k l l
E[lamx*amx!] < 0/ (" - ) -4 )

ands(7g, N {(i,5) : (¢&), “] D, ¢9] £ 0}) < Ck,, by Eq. (25). This implies by Eq. (26) that

Jj—17g

> b (kDAY FATY =0,(n"Y?),

(¢HY/€) (ij)el GRS ICRNGY )
1,7)€ C)

and thus the second summand in Eq. (51) is negligible.

Now, recall thatA* X* can be replaced witto; A" W)* for any s with tz(.k) — s = 0(k,/n) (1 < k < d) without changing
the first-order asymptotics (see, e.g., Podolskij and ¥&2@09). Notice also that the terrztﬁ”kW’“A}”Wl]I{(tg,i)l)tgk)]m(t;zll7t5_1>]:®}
are mutually uncorrelated. Hence,

1 -n n kAn l
i 2 DA XA 0 0100, 01y = 0p(1):
) (4,5)EFk

Finally, consider the first summand in Eq. (51). As above, pmaximateA?’“X’“A?le by

o n k n l
X;)lj(k, l) = (Utgi)lAt;lzlAi kW) (Utgli)l/\t;l,)lAjLW)

whenevert'" "] n (ty)l,t(l)] # ), and set
1 n
HY (X[ = > alk DXk, l)]l{(tﬁ’i)l,tﬁk)]m(tﬁ-lll.,t§~”];é@}'

2
(1/JHYkn) (4,9) €Tk

33



Note that the quantitieHY[Y]ﬁf“’l) andW[X]g“” have the same first order asymptotics. Then, it can be shaatn th

2

) = (z(—)) ([ s o0

h=1

Next, note that
n a A k l k !
B [APWOAT WL 0, oy, oy F 0, | = 8an [ (87 167) = (82 v 24)] 52)

Eq. (52) and Riemann integrability then delivers the cogeace

1 —n n P, ! kl
(Wrykn)? <J>Ze:z Y (ks DB [ X5 (5 D0, 0100, 103 o9, 0, _)/0 o 05

By usual martingale arguments we have that

— 1
HY [ XD —

n

—-n n P,
(rrykn)” 2 k0B {Xw‘(k’l”{(ti’?ptik)m(t?ﬁl,t§”1¢@}|f tE’iﬁAt?lJ =0
o (4,)€lk

On the other hancﬂY[Y]ﬂ“’” - W[X]ﬁf’l) % 0. Thus, collecting terms produces
1
HY[Y]*D 2 / ykds,
0

which completes the proof. O

Proof of Proposition 1 The terms};’f??l?]l{(tgm_’tgi)kn]m(t;z)_’tﬂkn]} andYk:};lgﬂ{(t?k)vti'fﬁknJﬂ(ti”=t§llknl} are (asymptotically) un-

correlated when the interva[$(k),t§i)kn] and (t(l) ¢ | do not intersect witl*(tﬁk) ¢(k) ] and (tgl) ¢ ]. Thus, due to the

7 7 0 Vitkn 'y Yrtkg, ) Vs+tkn
assumption in Eq. (25), there atEnk?) correlated terms, and each covariance has apger!) (cf. Eqn (8)). This implies that
var(HY [y = o(n=1/2). 0
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