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Abstract
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asymptotics for this new estimator, including feasible central limit theorems for standard methods such as covariance,

regression, and correlation analysis. We discuss several versions of this ”modulated” realised covariance, which canbe

designed to possess an optimal rate of convergence or to guarantee positive semi-definite covariance matrix estimates.

We also derive a pre-averaged version of the Hayashi-Yoshida estimator that can be applied directly to the noisy and
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1 Introduction

The theory of financial economics is often cast in multivariate settings, where the covariance structure of assets playsa

key role to the solution of fundamental economic problems, such as optimal asset allocation and risk management. In

recent years, a broader access to financial high-frequency data has improved our ability to accurately estimate and draw

inference about financial covariation. The underlying ideais to use quadratic covariation, which we can estimate using

realised covariance, as an ex-post measure, whose increments can be studied to learn about the properties of the true asset

return covariation (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003; Barndorff-Nielsen and Shephard, 2004).

In practice, implementing realised covariance is hamperedby two empirical phenomena, namely the presence of

market microstructure noise (e.g., price discreteness or bid-ask spread bounce) and non-synchronous trading. The impact

of microstructure noise has received much attention in the univariate setting, where its effect on the realised variance has

been well-documented. This builds on previous work in the noiseless case, including Andersen, Bollerslev, Diebold, and

Labys (2001), Barndorff-Nielsen and Shephard (2002), or Mykland and Zhang (2006, 2009). A key to understanding

the nature of the noise and a possible tool of how to deal with it is that microstructure noise induces autocorrelation in

high-frequency returns and this leads to a bias problem (see, e.g., Zhou, 1996; Aı̈t-Sahalia, Mykland, and Zhang, 2005;

Hansen and Lunde, 2006). Currently, there are three main univariate approaches, where the damage caused by the noise is

explicitly fixed: the two-scale subsampler proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005) or its multi-scale version

of Zhang (2006), the realised kernel introduced in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a), which relies

on autocovariance-based corrections, and finally the pre-averaging estimator of Podolskij and Vetter (2009) and Jacod,

Li, Mykland, Podolskij, and Vetter (2009).

The multivariate version of this problem is, however, more complicated in that not only does the estimator need to be

robust against various types of noise, it also has to cope with non-synchronous trading (see, e.g., Fisher, 1966). Asyn-

chronicity causes high-frequency covariance estimates tobe biased towards zero as the sampling frequency increases.

This feature of the data, the so-called Epps effect, was highlighted by Epps (1979). Intuitively, as the sampling frequency

is increased, there are more and more zero-returns in the presence of non-synchronous trading, and this will dominate

realised covariance and related statistics (e.g. realisedcorrelation). Hayashi and Yoshida (2005) introduced an estima-

tor, which is capable of dealing with non-synchronous data,but not with market microstructure noise. More recently,

Zhang (2008) extended the two-scale RV to integrated covariance estimation in the simultaneous presence of noise and

non-synchronicity, while in concurrent and independent work Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b)

proposed a multivariate realised kernel. Additional work in this growing line of research includes Malliavin and Mancino

(2002), Martens (2003), Renò (2003), Bandi and Russell (2005), Griffin and Oomen (2006), Large (2007), Voev and

Lunde (2007), and Boudt, Croux, and Laurent (2008), among others.

In this paper, we propose to use a ”modulated” realised covariance (MRC) to estimate the ex-post integrated co-
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variance. The econometric technique employed here for dealing with microstructure noise relies on rather simple pre-

averaging of the high-frequency data, which makes the estimator both intuitive to understand and trivial to implement.It

relates to previous work in the univariate case, where pre-averaging has been suggested in Podolskij and Vetter (2009) and

Jacod, Li, Mykland, Podolskij, and Vetter (2009). The current article draws ideas from these papers, but the multivariate

extension is challenging, as it faces the additional complexity of non-synchronous trading and requires that the resulting

estimator be positive semi-definite.

The pre-averaging approach depends on a bandwidth parameter, or window length, that grows with the sample and

dictates the amount of averaging to be carried out. In turn, the choice of this tuning parameter controls the influence of

microstructure noise on the MRC and, hence, also its asymptotic properties. In the optimal case, called balanced pre-

averaging, this leads to an efficientn−1/4 rate of convergence, which is known to be the fastest attainable (see, e.g., Gloter

and Jacod, 2001a,b). This baseline MRC estimator, however,needs a bias-correction to be consistent for the integrated

covariance. As a result, it is not guaranteed to be positive semi-definite in finite samples, though our empirical work

indicates this shortcoming is not too much of a concern for more recent data. Nonetheless, as we show in the paper, it is

straightforward to design a positive semi-definite estimator by increasing the pre-averaging window length slightly,which

can also serve to make the MRC robust against more general noise processes.

The MRC is, in all its essence, a realised covariance computed on the back of pre-averaged high-frequency returns.

As such, it depends on receiving synchronous observations as input, which clashes with the irregular spacing of real high-

frequency data. We propose two distinct ways in which pre-averaging can be applied in the context of non-synchronous

trading. First, we use traditional imputation schemes to map asynchronous data onto a common time grid, for example

using previous-tick or refresh time, where the latter approach has been used in Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008b). An MRC computed from such returns will be asymptotically robust to non-synchronous trading.

Second, we extend the Hayashi and Yoshida (2005) estimator to the case of microstructure noise by using pre-averaging

and show that it is consistent. This second estimator has theproperty that it can be implemented directly on the irregular,

non-synchronous and noisy observations without any form ofimputation. It therefore omits throwing away information

in the sample and further avoids potential biases arising from artificially imputed returns.

An appealing feature of pre-averaging is that it is a generalstatistical tool that can be applied to many estimation

problems. This proves useful in our setting, because as usual the mixed Gaussian central limit theorems feature an

unknown conditional covariance matrix. In practice, this must be robustly estimated from sample data in the presence

of noise and non-synchronous trading to make the distributional results feasible, such that confidence bands for elements

of the integrated covariance matrix can be constructed. We outline how this can be done based on pre-averaged high-

frequency data.

The paper progresses as follows. In section 2, we formulate the theoretical setup and define the MRC estimator.

In section 3, we first show consistency of the MRC based on balanced pre-averaging and then derive its asymptotic
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distribution. As discussed above, this estimator needs a bias-correction, so we carry on to study a modified MRC estimator,

in which the degree of pre-averaging is increased. We also discuss the application of the MRC to non-synchronous data,

show its relation to the multivariate realised kernel, and finally we derive a pre-averaged version of the Hayashi-Yoshida

estimator. In section 4, we propose an estimator of the conditional covariance matrix that appears in the central limit

theorem of MRC, which can be used to transform infeasible limit results into feasible ones. In section 5, the focus is

shifted towards regression and correlation analysis. A simulation study is undertaken in section 6 to uncover the finite

sample properties of our estimators, while an empirical illustration is conducted in section 7. Section 8 draws conclusions

and presents some ideas for future work. The appendix contains the derivations of all our theoretical results.

2 Theoretical setup

We consider a vector of log-pricesX defined on a probability space(Ω0,ℱ0, P 0) and equipped with an information

filtration (ℱ0
t )t≥0. X has dimensiond - the number of assets under consideration.

A standard no-arbitrage condition suggests security prices must be semimartingales (see, e.g., Back, 1991; Delbaen

and Schachermayer, 1994). These processes obey the fundamental theorem of asset pricing and, as a result, are used

extensively to model the evolution of asset prices through time. In accordance with this, we modelX as a semimartingale

that follows the equation

Xt = X0 +

∫ t

0
audu+

∫ t

0
�udWu, t ≥ 0, (1)

wherea = (at)t≥0 is a d-dimensional predictable locally bounded drift vector,� = (�t)t≥0 an adapted càdlàgd × d

covolatility matrix andW = (Wt)t≥0 is d-dimensional Brownian motion.

This model is a Brownian semimartingale, or stochastic volatility model with drift, which permeates financial eco-

nomics (cf., Ghysels, Harvey, and Renault, 1996, for a review). We think of this construct as governing an underlying

efficient price process - the price that would prevail in the absence of market frictions, which we then subject to mi-

crostructure noise.

Of importance to our analysis is the quadratic covariation process ofX, which is defined as

[X]t = p-lim
n→∞

n∑

i=1

(
Xti −Xti−1

) (
Xti −Xti−1

)′
(2)

for any sequence of deterministic partitions0 = t0 < t1 < ... < tn = t with supi {ti − ti−1} → 0 for n → ∞. In our

setting, the quadratic covariation ofX is given by

[X]t =

∫ t

0
Σudu, (3)

whereΣ = ��′. The quadratic covariation is pivotal in financial economics (see, e.g., the reviews by Barndorff-Nielsen

and Shephard, 2007; Andersen, Bollerslev, and Diebold, 2009), and we thus take Eq. (3) as defining the target that we are

3



interested in estimating. We note that for obvious reasons the matrix in Eq. (3) is also called the integrated covariance

and both terms are used interchangeably.

Throughout the remainder of the paper, and without loss of generality, we restrict the clockt to evolve in the unit

interval [0, 1], which we think of as representing the passing of an economicevent, for example a trading day.

2.1 Microstructure noise

In practice, market microstructure noise leads to a departure from the pure semimartingale model. Microstructure noise

has many forms, including price discreteness and bid-ask spread bounce, which creates spurious variation in asset prices.

As a result, we do not observeX from Eq. (1) in the market but a processY , which is the efficient price distorted by

noise. More precisely, we consider the processY , observed at time pointsi/n, i = 0, 1, . . . , n, which is given as

Yt = Xt + �t, (4)

where(�t) is an i.i.d. process withX ⊥⊥ � (the symbol⊥⊥ is used to denote stochastic independence).

The noise process can be constructed as follows. We define a second probability space(Ω1,ℱ1, (ℱ1
t )t≥0, P

1), where

Ω1 denotesℝ[0,1] andℱ1 the product Borel-�-field onΩ1. Next, letQ be a probability measure onℝ (Q is the marginal

distribution of�). For anyt ∈ [0, 1], P 1
t = Q andP 1 denotes the product⊗t∈[0,1]P

1
t . The filtered probability space

(Ω,ℱ , (ℱt)t≥0, P ), on which we define the processY , is given as

Ω = Ω0 × Ω1, ℱ = ℱ0 ×ℱ1, ℱt =
∩
s>tℱ0

s ×ℱ1
s ,

P = P 0 ⊗ P 1.

⎫
⎬
⎭ (5)

The multivariate noise process� is assumed to satisfy:

E (�t) = 0, E
(
�t�

′
t

)
= Ψ, (6)

whereΨ is a positive definited× d-matrix.

Remark 1 The empirical results found by Hansen and Lunde (2006) show that both the i.i.d. assumption on(�t) and

the independenceX ⊥⊥ � can be called into question when sampling the data at very high frequencies, e.g., below the

1-minute mark (see also Diebold and Strasser, 2008). Jacod,Li, Mykland, Podolskij, and Vetter (2009) consider more

general types of (1-dimensional) noise processes. Roughlyspeaking, they assume that the errors�t’s are, conditionally on

X, centered and independent. The asymptotic theory developed in this paper still holds true for the multivariate version

of such noise processes, but we restrict attention to modelsof the form in Eq. (4) to ease the exposition.
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2.2 Pre-averaging of high-frequency data

It is intuitive that under mean zero i.i.d. microstructure noise some form of smoothing of the observed log-priceY should

tend to diminish the impact of the noise. Effectively, we aregoing to approximateXt, X being a continuous function of

t, by an average of observations ofY in a neighborhood oft, the noise being averaged away.

Here, we describe in more detail how to conduct the pre-averaging. In particular, we consider a sequence of integers,

kn, and a number� ∈ (0,∞) such that
kn√
n
= � + o

(
n−1/4

)
. (7)

An example of this would bekn = ⌊�√n⌋.
We also choose a functiong on [0, 1], which is continuous, piecewise continuously differentiable with a piecewise

Lipschitz derivativeg′ with g(0) = g(1) = 0 and which satisfies
∫ 1
0 g

2 (s)ds > 0. Furthermore, we introduce the

following functions and numbers that are associated withg:

�1 (s) =

∫ 1

s
g′ (u) g′ (u− s)du, �2 (s) =

∫ 1

s
g (u) g (u− s) du,  1 = �1 (0) ,  2 = �2 (0) ,

Φ11 =

∫ 1

0
�21 (s)ds, Φ12 =

∫ 1

0
�1 (s)�2 (s)ds, Φ22 =

∫ 1

0
�22 (s)ds.

The functions�1 and�2 are assumed to be0 outside the interval[0, 1].

Next, with any processV = (Vt)t≥0 we associate the following random variables

Δn
i V = V i

n
− V i−1

n
, for i = 1, . . . , n V̄ n

i =

kn−1∑

j=1

g

(
j

kn

)
Δn
i+jV, for i = 0, . . . , n− kn + 1.

Applying this notation toY , it can be seen thatΔn
i Y represents the noisy high-frequency returns, whileȲ n

i is the pre-

averaged return data, using the weight functiong. It follows that the stochastic order of̄Y n
i = X̄n

i + �̄ni is controlled by

the sequencekn, since

X̄n
i = Op

(√
kn
n

)
, �̄ni = Op

(√
1

kn

)
. (8)

Thus, takingkn = O(
√
n) implies that the orders of the two terms in Eq. (8) are equal, so thatȲ n

i = Op
(
n−1/4

)
. This

is called balanced pre-averaging and delivers the best rateof convergence. As shown below, it is also useful to look at

cases in which a higher order ofkn is chosen. This results in a suboptimal rate of convergence,but it has some potentially

valuable side-effects on the robustness and finite sample properties of our estimator.

The pre-averaging window length,kn, depends on the tuning parameter�, which needs to be chosen by the user. We

will later discuss how to sensibly make this choice.
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2.3 Modulated realised covariance

The core statistic of this paper is the multivariate extension of the estimator, which was introduced in Jacod, Li, Mykland,

Podolskij, and Vetter (2009). We call it the modulated realised covariance (MRC) and define it as

MRC [Y ]n =
n

n− kn + 2

1

 2kn

n−kn+1∑

i=0

Ȳ n
i

(
Ȳ n
i

)′
. (9)

The factorn/(n − kn + 2) is a finite sample correction for the true number of summands in MRC [Y ]n relative to the

sample sizen. It is sometimes left out in the presentation below, but it isalways included in implementations on data.

Remark 2 The sum of outer products in Eq. (9) is a realised covariance based on pre-averaged data. To build some

intuition for our approach, we explain the usage ofȲ n
i in more detail. Supposekn is an even number and write

Ŷ n
i =

2

kn

kn/2−1∑

j=0

Y i+j
n
,

which is a simple average ofY overkn/2 terms. Because of this pre-averaging,Ŷ n
i will be closer to the efficient price

X i
n

. Next, we compute the realised covariation estimator basedon these filtered increments by setting

Ȳ n
i =

1

2
(Ŷ n
i+ kn

2

− Ŷ n
i ) =

1

kn

⎛
⎝

kn−1∑

j=kn/2

Y i+j
n

−
kn/2−1∑

j=0

Y i+j
n

⎞
⎠ .

(However, as we shall see this induces a bias, which is a function ofΨ). This method was originally proposed by Podolskij

and Vetter (2009) and using the above definition ofȲ n
i corresponds to choosing the weight function

g (x) = min (x, 1− x) , (10)

which is the most intuitive example. Here we explicitly givethe numerical values of the asymptotic constants for this

choice of functiong, as it is the one used for all our simulations and empirical work:

 1 = 1,  2 =
1

12
, Φ11 =

1

6
, Φ12 =

1

96
, Φ22 =

151

80640
.

Remark 3 As noted in Jacod, Li, Mykland, Podolskij, and Vetter (2009), to avoid biases in small samples we should

replace the asymptotic constants and functions 1,  2, �1, �2, Φ11, Φ12, andΦ22 by their Riemann approximations:

 kn1 = kn

kn∑

i=1

(
g

(
i

kn

)
− g

(
i− 1

kn

))2

,  kn2 =
1

kn

kn−1∑

i=1

g2
(
i

kn

)
,

�kn1 (j) =
kn−1∑

i=j+1

(
g

(
i− 1

kn

)
− g

(
i

kn

))(
g

(
i− j − 1

kn

)
− g

(
i− j

kn

))
, �kn2 (j) =

kn−1∑

i=j+1

g

(
i

kn

)
− g

(
i− j

kn

)
,
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Φkn11 = kn

⎛
⎝
kn−1∑

j=0

(
�kn1 (j)

)2
− 1

2

(
�kn1 (0)

)2
⎞
⎠ , Φkn12 =

1

kn

⎛
⎝
kn−1∑

j=0

�kn1 (j)�kn2 (j)− 1

2
�kn1 (0)�kn2 (0)

⎞
⎠ ,

Φkn22 =
1

k3n

⎛
⎝
kn−1∑

j=0

(
�kn2 (j)

)2
− 1

2

(
�kn2 (0)

)2
⎞
⎠ .

These are the actual terms that appear in the computations ofthe MRC. Note that for all appropriate indices ofi andj,

 kni →  i, �
kn
i → �i, Φ

kn
ij → Φij asn → ∞ at smaller order thann−1/4, so the finite sample versions can be replaced

with the asymptotic constants in all the limit theorems given below, including the central limit theorems.

3 Asymptotic properties of MRC

3.1 Consistency

Our first result inspects the probability limit ofMRC [Y ]n.

Theorem 1 Assume thatE
(
∣�j ∣4

)
<∞ for all j = 1, ..., d and(kn, �) satisfy Eq.(7). Asn→ ∞, it holds that

MRC [Y ]n
p→
∫ 1

0
Σsds+

 1

�2 2
Ψ. (11)

Proof See appendix. ■

A couple of points are worth highlighting. First, as Theorem1 showsMRC [Y ]n is consistent for
∫ 1
0 Σsds up to a

bias-correction. The bias term depends on the unknownΨ, which must be estimated from the data.

We set

Ψ̂n =
1

2n

n∑

i=1

Δn
i Y (Δn

i Y )′ , (12)

which is linked to the univariate estimator proposed by Aı̈t-Sahalia, Mykland, and Zhang (2005) and Bandi and Russell

(2006, 2008). Then, we obtain the convergenceΨ̂n
p→ Ψ, such that

MRC [Y ]n −
 kn1
�2 kn2

Ψ̂n
p→
∫ 1

0
Σsds.

Hence, for the remainder of the paper, we shall incorporate the bias-correction term into the definition ofMRC [Y ]n.1 In

doing so, we are no longer ensured thatMRC [Y ]n is positive semi-definite in finite samples. To deal with thisproblem,

1Since
∑n
i=1 Δ

n
i Y (Δn

i Y )′ = 2nΨ +
∫ 1

0
Σsds + op(n

−1), where the error of this approximation has expectation zero, the bias-corrected

MRC [Y ]n actually estimates

(

1−
 

kn
1

�2 
kn
2

1
2n

)

∫ 1

0
Σsds and thus needs to be rescaled by1/

(

1−
 

kn
1

�2 
kn
2

1
2n

)

. We include this rescaling in our

simulations and empirical work but omit it throughout the remainder of the text to simplify notation.
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we propose an alternative formulation of the MRC below, which uses a longer pre-averaging windowkn to avoid this step.

Second, sincêΨn is a
√
n-estimator ofΨ, it will not affect the CLT ofMRC [Y ]n, as the latter converges at a slower rate.

Third, our initial MRC estimator is based on synchronous data, assuming all components of the log-price vectorY are

observed contemporaneously. We will later extend the MRC tothe non-synchronous setting.

3.2 The central limit theorem

We proceed with the central limit theorem forMRC [Y ]n. As in Jacod, Li, Mykland, Podolskij, and Vetter (2009), we

only require a moment condition on� to prove this result.

The notion of stable convergence is used, which we describe here. A sequence of random variablesV n is said to

converge stably in law towardsV , whereV is defined on an appropriate extension(Ω′,ℱ ′, P ′) of the probability space

(Ω,ℱ , P ), if and only if for anyℱ-measurable, bounded random variableW and any bounded, continuous functionf ,

the convergence

lim
n→∞

E [Wf(V n)] = E
′ [Wf(V )]

holds.

We write this asV n ds→ V and note that stable convergence is a slightly stronger modeof convergence than weak

convergence, or convergence in law, which is the special case obtained by takingW = 1 (see, e.g., Rényi, 1963; Aldous

and Eagleson, 1978, for further details on stable convergence). Jacod and Shiryaev (2003) discuss the extension of this

concept to stable convergence of processes. The key reason we require the convergence in law stably is that the conditional

covariance matrix in the CLT ofMRC[Y ]n, avarMRCn , is a function of� and therefore random, and the usual convergence

in law is insufficient to ensure joint convergence of the bivariate vector(MRC[Y ]n,avarMRCn), which we need to apply

the delta method to the joint asymptotic distribution and toconstruct confidence intervals.

Theorem 2 Assume thatE
(
∣�j ∣8

)
<∞ for all j = 1, ..., d and(kn, �) satisfy Eq.(7). Asn→ ∞, it holds that

n1/4
(
MRC [Y ]n −

∫ 1

0
Σsds

)
ds→

d∑

j′,k′=1

∫ 1

0
jk,j

′k′
s dBj′k′

s , (13)

whereB is a standardd2-dimensional Brownian motion defined on an extension of(Ω,ℱ , (ℱt)t≥0, P ) withB ⊥⊥ ℱ ,

d∑

j,m=1

kl,jms k
′l′,jm
s =

2

 2
2

(
Φ22�Λ

kl,k′l′
s +

Φ12

�
Θkl,k′l′
s +

Φ11

�3
Υkl,k′l′

)
,
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and whereΛ, Θ andΥ ared× d× d× d arrays with elements

Λs =
{
Σkk

′

s Σll
′

s +Σkl
′

s Σlk
′

s

}
k,k′,l,l′=1,...,d

,

Θs =
{
Σkk

′

s Ψll′ +Σkl
′

s Ψk′l +Σk
′l
s Ψkl′ +Σll

′

s Ψkk′
}
k,k′,l,l′=1,...,d

,

Υ =
{
Ψkk′Ψll′ +Ψkl′Ψlk′

}
k,k′,l,l′=1,...,d

.

(14)

Proof See appendix. ■

BecauseB ⊥⊥ ℱ , we can write the convergence statement in Theorem 2 as follows:

n1/4
(
MRC [Y ]n −

∫ 1

0
Σsds

)
ds→MN (0,avarMRC) ,

where

avarMRC =
2

 2
2

(
Φ22�

∫ 1

0
Λsds+

Φ12

�

∫ 1

0
Θsds+

Φ11

�3
Υ

)
(15)

is the conditional covariance matrix. This means that the asymptotic distribution ofMRC [Y ]n is mixed normal. To make

use of this result to construct confidence intervals for elements of
∫ 1
0 Σudu in practice, we need to estimate avarMRC, which

is addressed in section 4.2

3.3 Choosing� in practice

The avarMRC matrix in Theorem 2 depends on the parameter�, or in other words the window sizekn. If the purpose

is to estimate some one-dimensional parameters (such as realised covariance, regression or correlation) by real-valued

functions of the MRC, it is in principle possible to minimizeavarMRC by choosing the ”best”� for a fixed functiong.3

To illustrate this point, we focus on the estimation problemin the univariate case,d = 1. In this situation, the

expressions reduce to

avarMRC =
4

 2
2

(
Φ22�

∫ 1

0
�4sds+

2Φ12

�
Ψ2

∫ 1

0
�2sds+

Φ11

�3
Ψ4

)
,

whereIV =
∫ 1
0 �

2
sds andIQ =

∫ 1
0 �

4
sds are called the integrated variance and integrated quarticity, respectively. Mini-

mizing this term with respect to� results in solving a quadratic equation. Thus, for the optimal choice of�, say�∗, we get

2The assumption that data be equidistant is not required for the consistency to hold true. It would also apply under identical observation times

(i.e., synchronous but non-equidistant data). Here,MRC [Y ]n is consistent withΔn
i V redefined asΔn

i V = Vti − Vti−1 for any processV and

kn = �
√

n + o(n1/4). This is not surprising: the realised covariance also remains consistent for irregular observations (by definition). The CLT

also holds, but here the variable of integration ds needs to be replaced by dHs, whereHs is the so-called ”quadratic variation of time”, see, e.g.,

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b).
3The optimal choice of� will depend on the original real-valued functions of the MRC. In this sense, there is no universal optimal�.
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�∗ = f (IV, IQ,Ψ). Then, we can use an iterative procedure to find an approximation of �∗: (i) Choose a ”reasonable”

value for� and computeˆIV , ˆIQ andΨ̂, (ii) from these computê�∗ by setting�̂∗ = f( ˆIV , ˆIQ, Ψ̂) and (iii) then, assuming

the values of̂�∗ converge, repeat this process until�̂∗ has stabilized.

In practice, a simple guide that informs us about how to select � for small values ofn would certainly be valuable.

Unfortunately,� comes from asymptotic statistics and therefore it does not give any precise instructions on this issue.

Nonetheless, some plausible range of values of� can be inferred from previous work in this area. For example,Jacod, Li,

Mykland, Podolskij, and Vetter (2009) report that the univariate pre-averaged realised variance measure is fairly robust to

the choice ofkn, and they suggest to take� = 1/3. Christensen, Oomen, and Podolskij (2010) use simulationsto gauge

the influence of sample size and noise on the optimal choice of�. Interestingly, they show that the MSE curve of their

pre-averaged quantile-based realised variance is highly asymmetric inkn and they generally prefer to use a slightly higher

value ofkn than what would be optimal. In their empirical analysis, they also show that conservative choices ofkn helps

to heavily reduce the detrimental effects of price discreteness. In the simulation section and empirical illustrationbelow,

we therefore pick conservative values ofkn by choosing� = 1, which seems to work well.

3.4 Positive semi-definite estimators

In the previous section, we used an optimal pre-averaging window length to construct the MRC, which balances the impact

of the noise with the estimation of the integrated covariance matrix. This choice leads to an optimal rate of convergence

- n−1/4 - but requires that we subtract an estimate ofΨ to eliminate the bias induced by noise, and the final estimator is

then not positive semi-definite in general. Here, we demonstrate how positive semi-definite estimates of
∫ 1
0 Σsds can be

formed by increasing the bandwidth parameterkn as to kill the influence of the noise, rather than balancing it. This comes

at the cost of slowing down the speed at which MRC converges tothe true integrated covariation.

Now, we take:
kn

n1/2+�
= � + o

(
n−1/4+�/2

)
(16)

for some0 < � < 1/2, and set

MRC [Y ]�n =
n

n− kn + 2

1

 2kn

n−kn+1∑

i=0

Ȳ n
i

(
Ȳ n
i

)′
. (17)

The following result shows thatMRC [Y ]�n is consistent without a bias-correction.

Theorem 3 Assume thatE
(
∣�j ∣4

)
<∞ for all j = 1, ..., d and(kn, �) satisfy Eq.(16). Asn→ ∞, it holds that

MRC [Y ]�n
p→
∫ 1

0
Σsds. (18)

Proof See appendix. ■
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In Theorem 3, the properties of the noise process do not show up in the stochastic limit of Eq. (18), because the influence

of the noise is negligible by the choice of order forkn made in Eq. (16) (refer back to Eq. (8)). This has some appealing

advantages. First,MRC [Y ]�n is positive semi-definite by construction. Second, although we state and prove this result

in the i.i.d. noise case, Theorem 3 does in fact allow for moregeneral noise dynamics than in Theorem 1. In particular, so

long asE (�t ∣ X) = 0 and �̄ni admits asymptotic normality at the usual ratek−1/2
n , the theorem will hold (so we do not

require any assumptions on the dependence betweenX and�). Of course, the ratek−1/2
n is achieved in the i.i.d. case, but

there are more general cases where it also holds (e.g., forq-dependent and mixing processes).

To show the CLT, we require a restriction on�. This is because the bias caused by the noise, which is negligible in

Theorem 3, becomes more substantial when multiplying with the rate of convergence.

Theorem 4 Assume thatE
(
∣�j ∣8

)
<∞ for all j = 1, ..., d and(kn, �) satisfy Eq.(16). Asn→ ∞, it holds that

(i) If � > 0.1

n1/4−�/2
(
MRC [Y ]�n −

∫ 1

0
Σsds

)
ds→MN

(
0,

2Φ22�

 2
2

∫ 1

0
Λsds

)
, (19)

where(Λs) is defined in(14).

(ii) If � = 0.1

n1/5
(
MRC [Y ]�n −

∫ 1

0
Σsds

)
ds→MN

(
 1

�2 2
Ψ,

2Φ22�

 2
2

∫ 1

0
Λsds

)
. (20)

Proof See appendix. ■

Theorem 4 amounts to a classical bias-variance trade-off. It shows the expected result that using a longer pre-averaging

window kn = O(n1/2+�) averages enough to makeMRC [Y ]�n consistent without a bias-correction, but it also slows

down its rate of convergence. The larger is�, the harder is this effect. Note that the asymptotic variance depends solely on

the volatility process�, while the two noise-dependent terms (a cross-term and a pure noise term) appearing in Eq. (15)

are wiped out.

The optimal choice� = 0.1 results in an−1/5 rate of convergence, and a large sample bias of the ordern−1/5  1

�2 2
Ψ.

If desired, the bias can be estimated usingΨ̂n, but it should be small for more recent data and could be ignored.4

This result bears some resemblance to that of the multivariate realised kernel of Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008b). A flat-top kernel estimator can be designed to converge at raten−1/4, but the resulting estimator

may go negative. To guarantee positive semi-definiteness, the authors propose kernel corrections that are not entirely

flat-top and they show this results inn−1/5 rate of convergence and a non-zero asymptotic mean as produced here as well.

4If we do bias-correctMRC [Y ]�n, the resulting estimator is then again not ensured to be positive semi-definite.
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3.5 Mapping MRC into a realised kernel estimator

We can indeed make a stronger link between the multi-scale RV, the kernel approach and our pre-averaging method, when

estimating quadratic variation. Here, we provide some moredetails about this relationship. To fix ideas, we taked = 1

(i.e., the univariate setting) and compare only to the kernel approach. Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008a) then show how the multi-scale RV fits into the realised kernel setting.

When we explicitly include the bias-correction and ignore finite sample issues, theMRC [Y ]n estimator is given by

the formula

MRC [Y ]n =
1

 2kn

n−kn+1∑

i=0

∣Ȳ n
i ∣2 −

 1

�2 2
Ψ̂n. (21)

Consider a flat-top kernel-based estimator with kernel weights

k(s) =
�2(s)

 2
,

where�2(s) and 2 are defined as in Section 2.2. We call the functionk a flat-top kernel, if (i)k(0) = 1, (ii) k(1) = 0

and (iii) k′(0) = k′(1) = 0. We note thatk(s) = �2(s)/ 2 satisfies all three conditions: (i) and (ii) are trivial, while the

third condition follows from the identity:

k′(s) = − 1

 2

∫ 1

s
g(x)g′(x− s)dx,

and integration by parts (recall thatg(0) = g(1) = 0).

In the next step, we map the MRC statistic into a kernel-like one as follows

MRC [Y ]n =
n∑

i=1

�0i∣Δn
i Y ∣2 + 2

kn−2∑

ℎ=1

n−ℎ∑

i=1

�ℎiΔ
n
i YΔn

i+ℎY (22)

with

�0i =

⎧
⎨
⎩

1
 2kn

∑i
j=1 g

2( j
kn
)−  1

�2 22n
: 1 ≤ i ≤ kn − 2

1
 2kn

∑kn−1
j=1 g2( j

kn
)−  1

�2 22n
: kn − 1 ≤ i ≤ n− kn + 2

1
 2kn

∑n−i+1
j=1 g2(kn−jkn

)−  1

�2 22n
: n− kn + 3 ≤ i ≤ n

(23)

and

�ℎi =

⎧
⎨
⎩

1
 2kn

∑i
j=1 g(

j
kn
)g( j+ℎkn ) : 1 ≤ i ≤ kn − ℎ− 2

1
 2kn

∑kn−ℎ−1
j=1 g( j

kn
)g( j+ℎkn ) : kn − ℎ− 1 ≤ i ≤ n− kn + 2

1
 2kn

∑n−i+1
j=1 g(kn−jkn

)g(kn−j+ℎkn
) : n− kn + 3 ≤ i ≤ n

(24)

for 1 ≤ ℎ ≤ kn − 2.

An example and some remarks are now in order.
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Example 1 Takeg(x) = min(x, 1 − x) for x ∈ [0, 1], which is our canonical weight function. Then, the corresponding

kernelk(s) = �2(s)/ 2 is the Parzen kernel.

Remark 4 Apart from border terms, i.e. terms close to 0 and 1, the pre-averaging estimator coincides with the kernel-

based estimator using the flat-top kernel functionk(s) = �2(s)/ 2. Both estimators possess the optimal rate of conver-

gencen−1/4, but the border terms affect their asymptotic distribution. In fact, to arrive at their central limit theorem for the

realised kernel, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) need to apply some averaging (or ”jittering”)

to edge terms, while the pre-averaging estimator is asymptotically mixed normal ”by construction”.

Remark 5 Using the definitionk(s) = �2(s)/ 2, we learn that for every weight functiong there exists a flat-top kernel

k. However, the converse statement is not true in general. Thus, the class of flat-top kernels is larger than our class of pre-

averaging functions, but this does not appear to be a noticeable disadvantage for practical applications (Barndorff-Nielsen,

Hansen, Lunde, and Shephard, 2008b, for example, advocate using the Parzen kernel in practice, which corresponds to

our g function by Example 1).

It is worthwhile to underscore that pre-averaging is a general approach, which can be used to estimate various char-

acteristics of semimartingales, when they are cloaked withnoise. Jacod, Li, Mykland, Podolskij, and Vetter (2009), for

example, pre-average realised variance, but it has also been used in jump-robust inference in conjunction with the bipower

variation statistic (e.g., Podolskij and Vetter, 2009) or the quantile-based realised variance (e.g., Christensen, Oomen, and

Podolskij, 2010). This is also the reason, why we can estimate the asymptotic conditional variance in the CLT using the

same type of estimator to deliver a feasible result. Other estimation methods are typically designed to estimate quadratic

variation and cannot, in general, be used to solve other estimation problems.

3.6 Applying the MRC to non-synchronous data

Non-synchronous trading has long been a recognized featureof multivariate high-frequency data (see, e.g., Fisher, 1966;

Lo and MacKinlay, 1990). This causes spurious cross-autocorrelation amongst asset price returns sampled at regular

intervals in calendar time, as new information gets built into prices at varying intensities. It is well-known that high-

frequency realised covariance estimates, using for example the previous-tick method to align prices, are biased towards

zero in this setting (e.g., Epps, 1979).

Motivated by these shortcomings of realised covariance, a number of alternative procedures have been proposed in the

literature. Scholes and Williams (1977) and Dimson (1979) suggested to include leads and lags of sample autocovariances

of high-frequency returns into the realised covariance to correct for stale prices. This results in a bias reduction butalso

increases the variance of the estimator (e.g., Griffin and Oomen, 2006). Importantly, the lead-lag realised covarianceis
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generally inconsistent in the presence of noise. More recently, Zhang (2008) extends the two-scale RV to the multivariate

setting and shows that it is consistent under non-synchronous prices and noise. An analytic derivation of the impact of

Epps effect on realised covariance under previous-tick sampling is also given. In independent and concurrent work to

ours, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) propose a multivariate realised kernel. They rely on the

concept of refresh time to match prices in calendar time and show that stale pricing errors under refresh time sampling do

not change the asymptotic distribution of the multivariaterealised kernel.

A related approach can be taken to make the MRC robust to non-synchronous observation times. In particular, under

suitable regularity conditions on the sampling times, non-synchronous trading does not alter the asymptotic distribution

of the MRC, when constructing synchronous time series of prices. A multivariate time series of high-frequency returns

obtained in this fashion can therefore be plugged into the asymptotic theory developed above without concern. The proof

of these results are highly technical, but their validity should be clear in the light of the comparison with the multivariate

realised kernel given above. Therefore, we omit the detailed proofs of these results. Instead, we conduct some simulations

in section 6 to verify the correctness of these conjectures.

3.6.1 A pre-averaged Hayashi-Yoshida estimator

Hayashi and Yoshida (2005, 2008) develop an alternative procedure for covariance measurement in the noise-free case,

which is based on the original non-synchronous data (see, e.g., de Jong and Nijman, 1997; Martens, 2003; Palandri,

2006; Corsi and Audrino, 2007, for related work). This estimator has the profound advantage that it does not throw away

information that is typically lost using a synchronizationprocedure. Here, we show how this estimator can also be made

robust to noise by using pre-averaging.

Given the vector of log-pricesY = (Y 1, . . . , Y d)′, which is defined by the noisy diffusion model in Eq. (4), we now

assume that the component processes(Y k) are observed at non-random time pointst(k)i , for i = 1, . . . , nk, with (t
(k)
i )

being a partition of the interval[0, 1] andk = 1, . . . , d. In addition, we need some regularity conditions on the sampling

such that all time schemes are comparable in the following way: max ∣t(k)i − t
(k)
i−1∣ → 0 asnk → ∞, for k = 1, . . . , d and

max
1≤i≤nk

#
{
t
(k)
j ∣ t(k)j ∈

[
t
(l)
i , t

(l)
i

]}
≤ K, (25)

for 1 ≤ k, l ≤ d and someK > 0, whereK is independent ofnk, for k = 1, . . . , d. The latter condition says that data

from one process do not cluster in any single interval of the others. Finally, the following condition is needed

max ∣t(k)i − t
(k)
i−1∣

min ∣t(k)i − t
(k)
i−1∣

≤ c , (26)

wherec > 0 is a constant independent ofnk for all 1 ≤ k ≤ d. This condition implies thatnkmax ∣t(k)i − t
(k)
i−1∣ ≤ c,

which could be assumed instead.
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A consistent estimator of the integrated covariance
∫ 1
0 Σkls ds between assetsY k andY l can then be constructed as

follows. We setn =
∑d

k=1 nk and define the statistic

HY [Y ](k,l)n =
1

( HY kn)
2

nk−kn+1∑

i=0

nl−kn+1∑

j=0

Ȳ kn
i Ȳ

ln
j I{(t

(k)
i ,t

(k)
i+kn

]∩(t
(l)
j ,t

(l)
j+kn

] ∕=∅}
, (27)

where HY =
∫ 1
0 g(x)dx andI{∙} is the indicator function discarding pre-averaged returnsthat do not overlap in time.

Hence,HY [Y ]
(k,l)
n is a pre-averaged version of the Hayashi and Yoshida (2005) estimator. Note that under the previous

conditions,n, nk andnl are of the same order and thatn controls the universal pre-averaging windowkn.5

Theorem 5 Assume thatE
(
∣�j ∣4

)
< ∞ for all j = 1, . . . , d, (kn, �) satisfy Eq.(7) and g(x) > 0 for x ∈ (0, 1). As

n→ ∞, it holds that

HY [Y ](k,l)n
p→
∫ 1

0
Σkls ds, (28)

for 1 ≤ k, l ≤ d.

Proof See appendix. ■

Interestingly, Theorem 5 shows the somewhat surprising result that there is no asymptotic noise-induced bias in

HY [Y ]
(k,l)
n , not even when the spacings(t(k)i ) and(t(l)j ) are identical. This can be seen as follows. First, under the i.i.d.

structure on the noise only products of the form�k
t
(k)
i

�l
t
(l)
j

with t(k)i = t
(l)
j = t contribute to potential bias. We consider that

set of points and assume thatkn ≤ i ≤ n1 − kn andkn ≤ j ≤ n2 − kn (this is innocent, for the summands which do not

fulfill this are negligible). Then, an inspection ofHY [Y ]
(k,l)
n shows that all products�kt �

l
t appear with the factor

⎛
⎝
kn−1∑

j=0

g(
j + 1

kn
)− g(

j

kn
)

⎞
⎠

2

in front. But
∑kn−1

j=0 g( j+1
kn

)− g( j
kn
) = 0, becauseg(0) = g(1) = 0, so these terms drop out of the summation.

While HY [Y ]
(k,l)
n has the advantage that it is free of prior alignment of log-prices and hence does not throw away

information in the sample, it does suffer from being a pairwise estimator, which means that once we assemble all the

single variance/covariance estimates into a full covariance matrix, it is not guaranteed to be positive semi-definite.Still,

5Our choice here implies thatkn is identical across all pairs of asset combinations. In general, the best way of choosingkn depends on what is

being estimated (e.g., covariance, correlation or beta). Thus, if one only cares about efficiency in pairwise covariance estimation, a betterHY [Y ]
(k,l)
n

estimator might be based on a localkn, for examplekk,ln = �k,l
√

n + o(n1/2). This would also serve to make the estimated covariances universe

independent (i.e., they will not change by adding or removing assets). To make a more qualified, statistical argument on this issue, however, we

need to compare an expression for the asymptotic variance ofHY [Y ]
(k,l)
n under different ways of choosingkn (e.g., from a CLT). This is beyond

the scope of this paper and will be left for future research, where we hope to shed more light on the subject.
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there are some problems in financial economics, in which it isonly the accuracy of the estimator that matters and positive

semi-definiteness is less important, for example in asset allocation and risk management under gross exposure constraints

(e.g. Fan, Zhang, and Yu, 2009). Moreover, our empirical results show that(HY [Y ]
(k,l)
n )1≤k,l≤d does not fail to be

positive semi-definite on a single day for thed = 5-dimensional vector of asset prices considered there.

Proposition 1 Assume thatE
(
∣�j ∣4

)
< ∞ for all j = 1, . . . , d. If (kn, �) satisfy Eq.(7) andg(x) > 0 for x ∈ (0, 1),

then

var(HY [Y ](k,l)n ) = O(n−1/2),

that is,HY [Y ]
(k,l)
n has the optimal rate of convergence.

Proof See appendix. ■

Proposition 1 shows that the rate of convergence associatedwith HY [Y ]
(k,l)
n is n−1/4. A proof of the much stronger

result, the CLT forHY [Y ]
(k,l)
n , will be given in a companion paper to this one (see Christensen, Podolskij, and Vetter,

2010). In the empirical section, we gauge the properties of this estimator on actual data and find that the pre-averaged

version performs very well.

4 An estimator of the asymptotic covariance matrix

In order to make Theorem 2 and 4 feasible, we need to estimate the asymptotic covariance matrix avarMRC, as it appears

in Eq. (15). Here, we give an explicit estimator of avarMRC. More precisely, we present an estimator of the asymptotic

covariance matrix of the vectorized statistic in Eq. (13).

First, we set

�ni = vec
(
Ȳ n
i (Ȳ

n
i )

′
)
, (29)

where vec(⋅) is the vectorisation operator that stacks columns of a matrix below one another. Next, we define the statistic

Vn(g) =

n−kn+1∑

i=0

�ni (�
n
i )

′ − 1

2

n−2kn+1∑

i=0

(
�ni (�

n
i+kn)

′ + �ni+kn(�
n
i )

′
)
.

We should note thatVn(g) depends on both the bandwidth parameter� and the pre-averaging functiong, and that it is

positive semi-definite by construction. Moreover, for any1 ≤ k, k′, l, l′ ≤ d, we get the following convergence

V (k−1)d+k′,(l−1)d+l′

n (g)
p→ aB(g, �)

∫ 1

0
Λkk

′,ll′

u du+ aM (g, �)

∫ 1

0
Θkk′,ll′

u du+ aN (g, �)Υ
kk′,ll′ ,

whereaB(g, �) = �2 2
2, aM (g, �) =  1 2 andaN (g, �) =

 2
1
�2 (the proof of this result is achieved by using arguments

alike the ones presented in the proof of Theorem 1; see Kinnebrock and Podolskij, 2008, for further details).
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What needs to be estimated is

avarMRC =
2

 2
2

(
Φ22�

∫ 1

0
Λudu+

Φ12

�

∫ 1

0
Θudu+

Φ11

�3
Υ

)
,

with all constants referring to a given functiong0. Suppose thatg0(x) = min(x, 1 − x) as above. Now, we take three

different functionsg1, g2 andg3 that satisfy all the conditions ofg0, and which are chosen such that the matrix

A(g1, g2, g3) =

⎛
⎜⎜⎝

aB(g1, �) aM (g1, �) aN (g1, �)

aB(g2, �) aM (g2, �) aN (g2, �)

aB(g3, �) aM (g3, �) aN (g3, �)

⎞
⎟⎟⎠

is invertible. We can then construct a weight vector

C(g1, g2, g3) =
(2Φ22�

 2
2

,
2Φ12

 2
2�
,
2Φ11

 2
2�

3

)
A−1(g1, g2, g3). (30)

Finally, we form the statistic

âvarMRC,n = C(1)(g1, g2, g3)Vn(g1) + C(2)(g1, g2, g3)Vn(g2) + C(3)(g1, g2, g3)Vn(g3), (31)

whereVn(gk) are the above estimators associated with the functionsgk, k = 1, 2, 3. Then, it holds that

âvar(k−1)d+k′,(l−1)d+l′

MRC,n
p→ avarkk

′,ll′

MRC ,

for any1 ≤ k, k′, l, l′ ≤ d.6

There are various classes of functions from which thegk can be selected, for exampleg(x) = xa (1− x)b with

a, b ≥ 1 or g(x) = sin(c�x) for integerc. If one manages to find a set of functionsgk for which the coefficients

C(k)(g1, g2, g3) are all positive,k = 1, 2 and3, then the statistic in Eq. (31) is guaranteed to be positive semi-definite,

because it is a linear combination of positive semi-definitestatisticsVn(gk) using positive weightsC(k)(g1, g2, g3). It

appears to be quite hard to find such a combination in practice, and so far we did not succeed at this. Nonetheless,

âvarMRC,n remains a consistent estimator.

5 Asymptotic theory for covariance, regression and correlation

The results in section 3 and 4 can be applied in order to compute confidence intervals for some functionals of
∫ 1
0 Σudu

that are important in practice, such as covariance, regression and correlation. For theith andjth asset, these quantities are

6The weights
(

2Φ22�

 2
2

, 2Φ12

 2
2�

, 2Φ11

 2
2�

3

)

in Eq. (30) are the coefficients in front of(
∫ 1

0
Λudu,

∫ 1

0
Θudu,Υ) in the expression for the asymp-

totic variance of MRC. This choice results in a consistent estimator of avarMRC. More generally, one can estimate any linear combination of

(
∫ 1

0
Λudu,

∫ 1

0
Θudu,Υ) by choosing an appropriate weight vector in Eq. (30). For example, the multivariate version of the integrated quarticity,

∫ 1

0
Λudu, can be estimated by plugging the linear combination(1, 0, 0)A−1(g1, g2, g3) into Eq. (31).
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given by ∫ 1

0
Σiju du, �(ji) =

∫ 1
0 Σiju du
∫ 1
0 Σiiudu

, �(ji) =

∫ 1
0 Σiju du√∫ 1

0 Σiiudu
∫ 1
0 Σjju du

. (32)

Theorem 1, 3 or 5 can be invoked to provide consistent estimates of
∫ 1
0 Σiju du, �(ji) and�(ji), e.g. forMRC [Y ]n

MRC [Y ]i,jn
p→
∫ 1

0
Σiju du, �̂(ji)n =

MRC [Y ]i,jn
MRC [Y ]i,in

p→ �(ji),

�̂(ji)n =
MRC [Y ]i,jn√

MRC [Y ]i,in MRC [Y ]j,jn

p→ �(ji) (33)

for any 1 ≤ i, j ≤ d. The estimators in (33) are called modulated realised covariance, regression and correlation,

respectively. In the next theorem we present the associatedfeasible central limit theorems, which follow from Theorem2

and the delta method for stable convergence.

Theorem 6 Assume thatE
(
∣�j ∣8

)
<∞ for all j = 1, ..., d and(kn, �) satisfy Eq.(7). Asn→ ∞, it holds that

n1/4
(
MRC [Y ]i,jn −

∫ 1
0 Σiju du

)

âvar(i−1)d+j,(i−1)d+j
MRC,n

d→ N(0, 1), (34)

n1/4(�̂
(ji)
n − �(ji))√(

MRC [Y ]i,in

)−2
g
(ji)
n

d→ N(0, 1), (35)

n1/4(�̂
(ji)
n − �(ji))√(

MRC [Y ]i,in MRC [Y ]j,jn

)−1
ℎ
(ji)
n

d→ N(0, 1), (36)

whereâvarMRC,n is given in(31) andg(ji)n andℎ(ji)n are defined by

g(ji)n =
(
1,−�̂(ji)n

)
Γn

(
1,−�̂(ji)n

)′
, ℎ(ji)n =

(
− 1

2
�̂(ji)n , 1,−1

2
�̂(ij)n

)
Γn

(
− 1

2
�̂(ji)n , 1,−1

2
�̂(ij)n

)′

with

Γn =

⎛
⎝ âvar(i−1)d+j,(i−1)d+j

MRC,n âvar(i−1)d+j,(i−1)d+i
MRC,n

∙ âvar(i−1)d+i,(i−1)d+i
MRC,n

⎞
⎠ ,

Γn =

⎛
⎜⎜⎜⎝

âvar(i−1)d+i,(i−1)d+i
MRC,n âvar(i−1)d+j,(i−1)d+i

MRC,n âvar(i−1)d+i,(j−1)d+j
MRC,n

∙ âvar(i−1)d+j,(i−1)d+j
MRC,n âvar(i−1)d+j,(j−1)d+j

MRC,n

∙ ∙ âvar(j−1)d+j,(j−1)d+j
MRC,n

⎞
⎟⎟⎟⎠ .

All the required terms are easy to compute, so it is rather simple to implement the estimators.
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6 Simulation study

We now demonstrate the finite sample accuracy of some of the asymptotic results developed above using simulations.

The design of our Monte Carlo study, which we briefly describehere, is identical to the analysis conducted in Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008b).

Specifically, to simulate log-prices we consider the following bivariate stochastic volatility model

dX(i)
t = a(i)dt+ �(i)�

(i)
t dB(i)

t +
√

1− [�(i)]2�
(i)
t dWt, for i = 1, 2, (37)

whereB(i) andW are independent Brownian motions. In this model, the term�(i)�
(i)
t dB(i)

t is an idiosyncratic component,

while
√

1− [�(i)]2�
(i)
t dWt is a common factor.

The spot volatility is modeled as�(i)t = exp(�
(i)
0 + �

(i)
1 %

(i)
t ) with an Ornstein-Uhlenbeck specification for%(i)t :

d%(i)t = �(i)%
(i)
t dt + dB(i)

t . This implies that there is perfect correlation between theinnovations of�(i)�(i)t dB(i)
t and

�
(i)
t , while it is �(i) between the increments ofX(i)

t and%(i)t . Finally, the magnitude of correlation between the two

underlying price processesX(1)
t andX(2)

t is
√

1− [�(1)]2
√

1− [�(2)]2. The reported results are based on the following

configuration of parameters for both processes:(a(i), �
(i)
0 , �

(i)
1 , �(i), �(i)) = (0.03,−5/16, 1(8,−1/40,−0.3), so that

�
(i)
0 = [�

(i)
1 ]2/[2�(i)]. We note that this particular choice of parameters also means that the volatility process has been

normalized, in the sense thatE(
∫ 1
0 [�

(i)
s ]2ds) = 1.

We simulate 1,000 paths of this model over the interval[0, 1]. Motivated by our empirical data, we let[0, 1] represent

6.5 hours worth of trading, which is then further decomposedinto N = 23, 400 subintervals of equal length1/N (N

denoting the number of seconds in 6.5 hours). In constructing noisy pricesY (i), we first generate a complete high-

frequency record ofN equidistant observations of the efficient priceX(i) using a standard Euler scheme. The initial

values for the%(i)t processes at each simulation run is drawn randomly from the stationary distribution of%(i)t , which is

%
(i)
t ∼ N(0, [−2�(i)]−1).7

We add simulated microstructure noiseY (i) = X(i) + �(i) by taking

�(i) ∣ {�,X} i.i.d∼ N(0, !2) with !2 = 2

√√√⎷ 1

N

N∑

j=1

�
(i)4
j/N . (38)

This choice again follows Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) and means that the variance of the

noise process increases with the level of volatility ofX(i), as documented by Bandi and Russell (2006).2 takes the

values 0, 0.001, 0.01, which covers scenarios with no noise through low-to-high levels of noise.

Finally, we extract irregular, non-synchronous data from the complete high-frequency record using Poisson process

sampling to generate actual observation times,{t(i)j }. In particular, we consider two independent Poisson processes with

7Note that the Ornstein-Uhlenbeck process admits an exact discretization (see, e.g., Glassermann, 2004). We use that result here to avoid

discretization errors in approximating the continuous time distribution of d%(i) over discrete time steps of sizeΔt = 1/N .
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intensity parameter� = (�1, �2). Here�i denotes the average waiting time (in seconds) for new data from processY (i),

so that an average day will haveN/�i observations ofY (i), i = 1, 2. We vary�1 through(3, 5, 10, 30, 60) to capture the

influence of liquidity on the performance of our estimators,and we set�2 = 2�1 such that on averageY (2) refreshes at

half the pace ofY (1).

In Table 1, we report the results of the simulations. As the results for estimating the variance components of the

2 × 2 covariance matrix are as expected compared to prior work, wegive focus here towards estimating the integrated

covariance, correlation and beta. Also, because the refresh time sampled MRC estimators perform somewhat better

than the previous-tick based MRC estimators, we only reportthe results for the MRC estimators based on refresh time

sampling (n = RT ).8 In the three panels of the table, we therefore provide the bias and root mean squared error (rmse)

of the various estimators in terms of estimating the integrated covariance, correlation and beta. We compare our results to

a standard realised covariance sampled at either a 1-minuteor 15-minute frequency.

Looking at the table, we see that the MRC estimators are very efficient across all scenarios of noise and non-

synchronous trading considered here, matching or outperforming the standard realised covariance. TheHY [Y ](k,l)

estimator is less efficient, owing largely to a larger finite sample bias in this estimator. We will study the possibilities

of making finite sample adjustments toHY [Y ](k,l), elsewhere.

Above, we conjectured without a proof that the MRC was robustto stale prices and retained its rate of convergence

under non-synchronous trading. If this is to be true, and ignoring finite sample biases, we should then expect the rmse of

the two MRC estimators to decrease at raten−1/4 andn−1/5. As can be seen from the table, this is exactly what we find.

For example, when estimating the integrated covariance andgoing from� = (60, 120) to � = (3, 6), i.e. an approximate

twenty-fold increase in sample size, the rmse ofMRC[Y ]n decreases roughly by half and the rmse ofMRC[Y ]�n by

slightly less than a half, which is consistent with the ratesgiven above.

All in all, the simulation results show that the estimators proposed in this paper are very good at estimating the

integrated covariance, correlation and beta across a wide range of noise and liquidity scenarios, and that the asymptotic

predictions given above are also reasonable guides to theirfinite sample behavior.

8All unreported results are available upon request.
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Table 1: Simulation results
Panel A: Integrated covariance

Cov15m Cov1m MRC[Y ]n=RT MRC[Y ]�=0.1
n=RT HY [Y ]

(k,l)
n

�2 = 0 bias rmse bias rmse bias rmse bias rmse bias rmse
� = (3, 6) -0.015 0.159 -0.052 0.103 -0.007 0.156 -0.018 0.222 -0.044 0.278
� = (5, 10) -0.025 0.170 -0.090 0.147 -0.010 0.167 -0.023 0.233 -0.055 0.296
� = (10, 20) -0.044 0.174 -0.178 0.266 -0.017 0.207 -0.027 0.270 -0.069 0.338
� = (30, 60) -0.128 0.255 -0.387 0.547 -0.028 0.259 -0.038 0.326 -0.101 0.426
� = (60, 120) -0.228 0.367 -0.505 0.702 -0.038 0.300 -0.047 0.370 -0.123 0.513
�2 = 0.001
� = (3, 6) -0.019 0.166 -0.054 0.122 -0.008 0.148 -0.018 0.220 -0.044 0.275
� = (5, 10) -0.025 0.174 -0.089 0.161 -0.011 0.176 -0.022 0.239 -0.053 0.298
� = (10, 20) -0.046 0.188 -0.183 0.292 -0.016 0.198 -0.028 0.267 -0.071 0.345
� = (30, 60) -0.125 0.246 -0.383 0.538 -0.030 0.263 -0.036 0.329 -0.100 0.432
� = (60, 120) -0.226 0.368 -0.506 0.705 -0.039 0.295 -0.043 0.366 -0.123 0.518
�2 = 0.01
� = (3, 6) -0.014 0.350 -0.048 0.519 -0.007 0.147 -0.019 0.216 -0.044 0.276
� = (5, 10) -0.019 0.350 -0.070 0.485 -0.010 0.174 -0.021 0.237 -0.054 0.295
� = (10, 20) -0.056 0.346 -0.192 0.604 -0.017 0.202 -0.029 0.264 -0.069 0.341
� = (30, 60) -0.116 0.365 -0.392 0.682 -0.029 0.243 -0.040 0.323 -0.099 0.430
� = (60, 120) -0.225 0.494 -0.508 0.767 -0.039 0.324 -0.042 0.386 -0.121 0.525
Panel B: Integrated correlation
�2 = 0 bias rmse bias rmse bias rmse bias rmse bias rmse
� = (3, 6) -0.016 0.028 -0.069 0.070 -0.001 0.017 -0.002 0.026 -0.012 0.051
� = (5, 10) -0.026 0.037 -0.119 0.121 -0.002 0.020 -0.003 0.030 -0.014 0.059
� = (10, 20) -0.051 0.060 -0.237 0.239 -0.002 0.024 -0.004 0.036 -0.020 0.076
� = (30, 60) -0.157 0.167 -0.514 0.517 -0.003 0.034 -0.008 0.047 -0.032 0.112
� = (60, 120) -0.287 0.299 -0.672 0.674 -0.006 0.044 -0.013 0.061 -0.044 0.159
�2 = 0.001
� = (3, 6) -0.141 0.149 -0.438 0.440 -0.001 0.018 -0.005 0.027 -0.012 0.050
� = (5, 10) -0.146 0.154 -0.463 0.465 -0.002 0.020 -0.005 0.030 -0.014 0.060
� = (10, 20) -0.170 0.179 -0.528 0.530 -0.003 0.025 -0.007 0.037 -0.019 0.077
� = (30, 60) -0.257 0.266 -0.657 0.659 -0.005 0.035 -0.012 0.050 -0.032 0.117
� = (60, 120) -0.368 0.378 -0.738 0.739 -0.007 0.046 -0.017 0.062 -0.045 0.159
�2 = 0.01
� = (3, 6) -0.559 0.571 -0.813 0.815 -0.002 0.026 -0.024 0.039 -0.011 0.051
� = (5, 10) -0.564 0.574 -0.817 0.819 -0.003 0.030 -0.027 0.044 -0.014 0.063
� = (10, 20) -0.579 0.590 -0.831 0.833 -0.005 0.037 -0.034 0.055 -0.020 0.079
� = (30, 60) -0.620 0.632 -0.851 0.853 -0.007 0.053 -0.044 0.074 -0.035 0.121
� = (60, 120) -0.657 0.667 -0.859 0.861 -0.011 0.067 -0.054 0.091 -0.043 0.166
Panel C: Integrated beta
�2 = 0 bias rmse bias rmse bias rmse bias rmse bias rmse
� = (3, 6) -0.020 0.092 -0.090 0.128 -0.000 0.065 -0.002 0.098 -0.026 0.179
� = (5, 10) -0.034 0.100 -0.159 0.219 -0.001 0.076 -0.002 0.112 -0.030 0.214
� = (10, 20) -0.069 0.143 -0.316 0.427 -0.003 0.092 -0.003 0.135 -0.043 0.266
� = (30, 60) -0.212 0.316 -0.693 0.926 -0.001 0.129 -0.005 0.178 -0.069 0.385
� = (60, 120) -0.384 0.538 -0.902 1.190 -0.001 0.170 -0.008 0.222 -0.106 0.504
�2 = 0.001
� = (3, 6) -0.188 0.277 -0.586 0.777 0.000 0.067 -0.004 0.099 -0.026 0.177
� = (5, 10) -0.195 0.297 -0.623 0.832 -0.002 0.076 -0.004 0.112 -0.028 0.217
� = (10, 20) -0.226 0.325 -0.716 0.956 -0.003 0.093 -0.007 0.136 -0.039 0.263
� = (30, 60) -0.354 0.511 -0.903 1.200 -0.004 0.131 -0.010 0.183 -0.070 0.388
� = (60, 120) -0.495 0.680 -1.005 1.330 -0.006 0.169 -0.014 0.215 -0.089 0.496
�2 = 0.01
� = (3, 6) -0.747 1.010 -1.093 1.450 0.000 0.091 -0.031 0.116 -0.025 0.185
� = (5, 10) -0.758 1.033 -1.096 1.442 -0.002 0.114 -0.035 0.134 -0.032 0.220
� = (10, 20) -0.772 1.047 -1.123 1.501 -0.009 0.137 -0.045 0.159 -0.045 0.289
� = (30, 60) -0.839 1.149 -1.154 1.530 -0.006 0.181 -0.059 0.215 -0.076 0.380
� = (60, 120) -0.888 1.203 -1.169 1.559 -0.005 0.222 -0.065 0.239 -0.094 0.486

Note. This table shows the results of the simulation analysis.
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7 Empirical Illustration

To illustrate some empirical features of the pre-averagingtheory developed above, we retrieved high-frequency data for a

five-dimensional vector of assets from Wharton Research Data Services (WRDS). We picked four equities at random from

the S&P 500 constituents list as of July 1, 2009. We then addeda 5th element, namely the S&P 500 Depository Receipt

(ticker symbol SPY), which is an exchange-traded fund that tracks the large-cap segment of the U.S. stock market. As

such, it can be viewed as generating market-wide index returns. The four remaining stocks are the following (with ticker

symbol and industry classification in parenthesis): Bristol-Myers Squibb (BMY, health care), Lockheed Martin (LMT,

industrials), Oracle (ORCL, information technology) and Sara Lee (SLE, consumer staples), thus representing a broad

category of industries. We use both trades and quotes data for the sample period that covers the whole of 2006, which

results in 251 trading days.

Table 2 reports some descriptive statistics for our universe of stocks and sample period. As can be seen, these equities

display varying degrees of liquidity with ORCL and SPY beingthe most liquid, while LMT and SLE are the least liquid.

Also reported in the table is the univariate noise ratio statistic, , which is a noise-to-signal measure that describes the level

of microstructure noise to integrated variance (see, e.g.,Oomen, 2006, for further details on the noise ratio). Generally

speaking, there is a tendency for more frequently traded companies to contain less microstructure noise, the notable

exception being the transaction data for ORCL.

7.1 Filtering procedures

As a preliminary step, we subdued the sample data to some cleaning procedures. Pre-cleaning high-frequency data is

necessary, because the raw data has many invalid observations (e.g., data with misplaced decimal points, or trades thatare

reported out-of-sequence). Our filter is roughly identicalto that used by Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008b) with some minor differences. Here, we briefly describe the filtering rules we employ.

Trades and quotes: The following rules are applied to both trades and quotes data. a) We keep data from a single

exchange: Pacific for SPY and primary exchange for the 4 remaining equities, see Table 2, b) we delete data with time

stamps outside the regular exchange opening hours from 9:30am to 4:00pm, c) we delete rows with a transaction price,

bid or ask quote of zero, and d) we aggregate data with identical time stamp using volume-weighted average prices (using

total transaction volume or quoted bid and ask volume, respectively).

Trades only: We delete entries with a correction indicator∕= 0 or with abnormal sales condition.

Quotes only: We delete quotes with negative spreads and rows where the quoted spread exceeds 10 times the median

spread for that day.
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Table 2: Descriptive statistics and number of data before and after filtering

Stock BMY LMT ORCL SLE SPY

Exchange N N Q N P

Panel A: Transaction data

Raw trades 1085420 811607 8153413 533517 7685215

Corrected/Abnormal/Zeros 111 61 13806 85 2584

Time aggregation 231826 139181 6599286 78039 6000898

#Trades 853483 672365 1540321 455393 1681733

Intensity 3400 2679 6137 1814 6700

Noise ratio, 0.363 0.336 0.484 0.656 0.202

Panel B: Quotation data

Raw quotes 5402607 3245315 23411495 3208830 17536447

Negative/Wide/Zeros 643 3917 2623 604 256

Time aggregation 2547054 1075914 20050224 979299 12851464

#Quotes 2854910 2165484 3358648 2228927 4684727

Intensity 11374 8627 13381 8880 18664

Avg. spread (in cents) 1.273 2.389 1.017 1.215 1.575

Noise ratio, 0.205 0.219 0.203 0.310 0.109

Note. This table reports some descriptive statistics and liquidity measures for the selection of stocks included in our empirical application.

We show the exchange from which data are extracted. The exchange code is: N = NYSE, Q = NASDAQ and P = Pacific. Raw trades/quotes

is the total number of data available from these exchanges during the trading session, while # trades/quotes is the totalsample remaining

after filtering the data. Intensity is the average number of data pr. day, while the noise ratio is defined in Oomen (2006).

Table 2 also reports how many observations that are lost by passing these filters through the data. It should be noted that

the ”Trades Only” and ”Quotes Only” filters generally tend toreduce the sample by only a very small fraction.

7.2 High-frequency covariance analysis

Here, we inspect the outcome of applying the estimators introduced above, after which we look at transforms of the

covariance matrix. As a comparison, we also compute the standard realised covariance from 15-min, 5-min, and 15-sec

previous-tick data.

We implement both theMRC [Y ]n andMRC [Y ]�n estimators of section 2 and 3.4, respectively. Recall thatMRC [Y ]n

converges at raten−1/4, it needs to be corrected for bias, and as a result is not guaranteed to be positive semi-definite. We

baseMRC [Y ]�n on � = 0.1, among many plausible choices, which results in an−1/5 rate of convergence, a small finite
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sample bias that we omit correcting and, hence, positive semi-definiteness by construction. Two sampling schemes are

used, calendar time and refresh time sampling, which yieldsa total of four combinations. We use pre-averaging windows

found askn = ⌊�n�′⌋, where� = 1 and�′ = (0.5, 0.6) for our two choices. The selection of� follows the conservative

rule discussed above. We setn = 390 for the calendar time-based estimators, which is 1-minute sampling, whilen is

determined automatically by the data for the refresh time sampling scheme.

In Table 3, we report the sample covariance matrix estimatesaveraged across the 251 days. This table is constructed in

the usual way, displaying the results based on transaction prices in the upper diagonal (including the main diagonal), while

the strict lower diagonal elements are the corresponding results based on quotation data. Consistent with prior literature,

we see from the table that the standard realised covariance is suffering from Epps effect, when sampling runs quickly.

All estimated covariance terms lie in the positive region, but for Cov15s they are heavily compressed towards zero. This

is less of a concern forCovavg(5m,15m), which should tend to capture the average level of the covariance structure well,

while not being seriously influenced by microstructure frictions and Epps effect. Turning next to the estimators proposed

in this paper, we note that the time series average of both MRCversions and the noise-robust HY estimator are in line

with that produced byCovavg(5m,15m), showing that they appear free of any systematic bias. The Hayashi and Yoshida

(2005) estimator produces a strong downwards bias in the covariance estimates, when it is applied directly to noisy and

irregular high-frequency data. This reaffirms previous empirical work (see, e.g., Barndorff-Nielsen, Hansen, Lunde,and

Shephard, 2008b; Griffin and Oomen, 2006; Voev and Lunde, 2007), so these results are not surprising or novel. The

pre-averaged versionHY [Y ]
(k,l)
n , however, does a much better job and tends to agree with the average level of other

noise-robust estimators.

Finally, we turn to the issue of positive semi-definiteness.As noted above,MRC [Y ]n andHY [Y ]
(k,l)
n are not

guaranteed to possess this property. Nonetheless, they do not fail to be positive semi-definite on a single instance across

our sample period. This is true for both the transaction and quotation data, and both combinations of the bias-corrected

MRC estimator. Thus, while theoretically a concern, this problem does not appear to occur frequently in practice, although

the conclusion might change for other data sets.

7.3 Analysing realised beta

We now focus on estimating�(ji) by �̂(ji)n = MRC [Y ]i,jn /MRC [Y ]i,in , where we takei = SPY and form regressions

by usingj = BMY, LMT, ORCL, SLE. This type of regression, where individual equity covariances with the market

are regressed onto a market-wide realised variance measure, is important in financial economics, for example within the

conditional CAPM (see, e.g., Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001), since only systematic risk

should be rewarded with expected excess returns.

In Figure 1, we plot the MRC-based betas from transaction prices and refresh time sampling. The corresponding plots
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Table 3: Average of high-frequency covariance matrix estimates

MRC[Y ]n=CT (390) MRC[Y ]�=0.1
n=CT (390)

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.465 0.203 0.259 0.154 0.233 1.396 0.195 0.259 0.152 0.231

LMT 0.201 0.975 0.232 0.149 0.247 0.194 0.905 0.222 0.158 0.235

ORCL 0.255 0.228 1.804 0.143 0.316 0.256 0.218 1.718 0.151 0.316

SLE 0.144 0.149 0.136 0.955 0.162 0.144 0.156 0.143 0.911 0.167

SPY 0.228 0.249 0.307 0.154 0.317 0.228 0.237 0.309 0.162 0.310

MRC[Y ]n=RT MRC[Y ]�=0.1
n=RT

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.394 0.197 0.226 0.134 0.220 1.397 0.198 0.249 0.141 0.227

LMT 0.193 0.955 0.224 0.134 0.242 0.201 0.924 0.222 0.147 0.241

ORCL 0.196 0.198 1.756 0.128 0.297 0.228 0.220 1.726 0.139 0.310

SLE 0.117 0.114 0.105 0.878 0.147 0.131 0.134 0.122 0.898 0.157

SPY 0.200 0.237 0.243 0.120 0.310 0.216 0.249 0.285 0.138 0.311

HY HY [Y ]
(k,l)
n

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.160 0.093 0.097 0.103 0.111 1.417 0.192 0.255 0.144 0.227

LMT 0.049 0.761 0.075 0.072 0.097 0.202 0.902 0.223 0.147 0.238

ORCL 0.032 0.036 1.922 0.077 0.112 0.240 0.227 1.903 0.135 0.309

SLE 0.029 0.026 0.013 1.053 0.095 0.134 0.137 0.127 0.900 0.159

SPY 0.041 0.051 0.040 0.023 0.253 0.219 0.250 0.292 0.143 0.309

Cov15s Covavg(5m,15m)

BMY LMT ORCL SLE SPY BMY LMT ORCL SLE SPY

BMY 1.823 0.088 0.118 0.091 0.120 1.499 0.192 0.288 0.149 0.221

LMT 0.095 0.854 0.084 0.059 0.094 0.191 0.953 0.209 0.152 0.221

ORCL 0.095 0.086 4.043 0.069 0.162 0.261 0.206 1.936 0.153 0.306

SLE 0.056 0.049 0.043 1.947 0.072 0.146 0.148 0.142 1.008 0.161

SPY 0.111 0.118 0.117 0.057 0.293 0.219 0.233 0.290 0.152 0.303

Note. This table reports average covariance matrix estimates. In all subpanels, the numbers in the upper diagonal (including diagonal

elements) are based on transaction prices, while the lower diagonal is based on mid-quote data.Covavg(5m,15m) is a simple time series

average of the realised covariance computed from 5- and 15-minute returns.

from the other estimators proposed in this paper are qualitatively similar. As in Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008b), we smooth the daily beta estimates by passing them through an ARMA(1,1) filter. The figure shows

that beta is time-varying and predictable, and that it tendsto fluctuate around its mean level. Evidently, the estimated

processes exhibit substantial memory with autoregressiveroots at 0.90 or higher (see also Andersen, Bollerslev, Diebold,
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Figure 1: MRC-based beta.

Panel A: BMT vs. SPY Panel B: LMT vs. SPY
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Note. �MRC[Y ]n is the time series of dailyMRC [Y ]n-based beta estimates, using transaction prices and refresh time sampling for various

asset combinations (in subpanels).�
MRC[Y ]n
ARMA(1,1) are fitted values from an ARMA(1,1) filter, with estimated autoregressive parameter AR(1)

and moving average parameter MA(1). The sample mean MRC betais reported as̄�.

and Wu, 2006, who study the persistence of quarterly realised beta estimated from daily asset returns).

8 Concluding remarks

In this paper, we present a simple solution, based on applying pre-averaging to financial high-frequency data, to the

problem of how to estimate the multivariate ex-post integrated covariance matrix, possibly in the simultaneous presence

of market microstructure noise and non-synchronous trading.

A modulated realised covariance (MRC) estimator is introduced. The MRC bears close resemblance to a standard re-
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alised covariance, being a sum of outer products of high-frequency returns, but it relies instead on pre-averaging to reduce

the harmful impact of microstructure noise. We study the properties of this new estimator by showing its consistency

and asymptotic mixed normality under mild conditions on thedynamics of the price process. As shown in the paper, the

MRC can be configured to possess an optimal rate of convergence or to guarantee positive semi-definite covariance matrix

estimates. In the presence of non-synchronous trading, we also outline how to modify the MRC by using an imputation

scheme (for example the previous-tick rule or refresh time sampling) to match high-frequency prices in time. An MRC

constructed on the back of such artificial returns will againbe consistent for the integrated covariance.

Another novelty developed in this paper is a pre-averaged version of the Hayashi and Yoshida (2005) estimator that

can be implemented directly on the raw noisyandnon-synchronous observations, without any prior alignment of prices.

We also show the consistency of this estimator and derive a rate for its variance, but otherwise we defer further theoretical

analysis of finite sample improvements and asymptotic properties of the pre-averaged Hayashi-Yoshida estimator to future

research (see Christensen, Podolskij, and Vetter, 2010).

We demonstrate with a set of simulations that these newly proposed estimators can bring substantial efficiency gains

with them compared to a standard realised covariance in the realistic setting with both microstructure noise and non-

synchronous trading. Furthermore, an empirical illustration highlights their applicability to real high-frequencydata. We

therefore look forward to future applications of these estimators, including an investigation of their informationalcontent

about future volatility. Being able to produce good forecasts of future volatility is paramount in financial economics.Thus,

as an example, it could be interesting to apply our estimators in the context of portfolio choice to calculate their economic

value, akin to Fleming, Kirby, and Ostdiek (2001, 2002), Bandi and Russell (2006) and others. However, generally they

should also be useful in many other areas, including asset- and option pricing or risk management.

Proofs

In the following, we assume that the processesa and� are bounded. This is without loss of generality and can be justified by a

standard localization procedure (see, e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)).Moreover, we

denote constants byC, orCp if they depend on an additional parameterp. The main parts of the proofs are based upon Podolskij and

Vetter (2009) and Jacod, Li, Mykland, Podolskij, and Vetter(2009).

Proof of Theorem 1:Due to the triangular equality[V,W ] = 1
4 ([V +W,V +W ] − [V −W,V −W ]), it suffices to prove the

univariate cased = 1 (i.e. all processes are 1-dimensional). We use the decomposition

MRC [Y ]n =
1

kn

kn−1∑

l=0

MRC [Y ]ln −  1

�2 2
Ψ̂n, (39)
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with

MRC [Y ]
l
n =

1

� 2
√
n

[n/kn]−1∑

j=0

∣Ȳ nl+jkn ∣2.

Notice that, for anyl = 0, . . . , kn − 1, the summands in the definition ofMRC [Y ]
l
n are asymptotically uncorrelated. This type of

estimators have been discussed in Podolskij and Vetter (2009) and we can deduce by the methods presented therein (see theproof of

Theorem 1) that

MRC [Y ]
l
n

p→
∫ 1

0

�2
sds+

 1

 2�2
Ψ,

where the convergence holds uniformly inl (due to the boundedness of the processesa and�). On the other hand we have that

Ψ̂n =
1

2n

n∑

i=1

∣Δn
i Y ∣2 p→ Ψ.

This implies the convergence

MRC [Y ]n
p→
∫ 1

0

�2
sds,

which completes the proof. □

Proof of Theorem 2:Here we apply the ”big blocks & small blocks”-technique usedin Jacod, Li, Mykland, Podolskij, and Vet-

ter (2009). The role of the small blocks (which will be asymptotically negligible) is to ensure the asymptotic independence of the big

blocks. More precisely, we choose an integerp, set

ai(p) = i(p+ 1)kn and bi(p) = i(p+ 1)kn + pkn ,

and letAi(p) denote the set of integersl satisfyingai(p) ≤ l < bi(p) andBi(p) the integers satisfyingbi(p) ≤ l < ai+1(p). We

further definejn(p) to be the largest integerj such thatbj(p) ≤ n holds, which gives the identity

jn(p) =
⌊ n

kn(p+ 1)

⌋
− 1. (40)

Moreover, we use the notationin(p) = (jn(p) + 1)(p+ 1)kn.

Next, we introduce the random variable

Ȳ ni,m =

kn−1∑

j=1

g
( j
kn

)
(�m

n
Δn
i+jW +Δn

i+j�) , (41)

which can be interpreted as an approximation of someȲ nj . Moreover, we set

Υnj,m = Ȳ ni,m
(
Ȳ ni,m

)′ − E

[
Ȳ ni,m

(
Ȳ ni,m

)′ ∣ℱm
n

]
, (42)

and define

Ỹ nj =

⎧
⎨
⎩

Υnj,ai(p), j ∈ Ai(p)

Υnj,bi(p), j ∈ Bi(p)

Υnj,in(p), j ≥ in(p)
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as well as

�(p, 1)nj =

bj(p)−1∑

l=aj(p)

Ỹ nl , �(p, 2)nj =

aj+1(p)−1∑

l=bj(p)

Ỹ nl .

Notice that�(p, 1)nj containspkn summands (”big block”) whereas�(p, 2)nj containskn summands (”small block”). Finally, we set

M(p)n = n− 1
2

∑jn(p)
j=0 �(p, 1)nj , N(p)n = n− 1

2

∑jn(p)
j=0 �(p, 2)nj , C(p)n = n− 1

2

∑n
j=in(p) Ỹ

n
j

and note that

E

[
�(p, 1)nj ∣ℱ aj(p)

n

]
= 0 = E

[
�(p, 2)nj ∣ℱ bj(p)

n

]
(43)

by construction.

Now, by the same approximations as presented in Jacod, Li, Mykland, Podolskij, and Vetter (2009) (see the identity (5.14),

Lemma 5.5 and Lemma 5.6 therein) we get that

n1/4

(
MRC [Y ]n −

∫ 1

0

Σsds

)
=

n
1
4

� 2
(M(p)n +N(p)n + C(p)n) +R(p)n (44)

where the last three summands satisfy the convergence

lim
p→∞

lim sup
n→∞

P (∣∣n 1
4N(p)n∣∣+ ∣∣n 1

4C(p)n∣∣+ ∣∣R(p)n∣∣ > �) = 0 (45)

for any� > 0. Notice that the termR(p)n stands for the approximation error in Eq. (41).

In the next lemma we show the stable convergencen
1
4

� 2
M(p)n

ds→ U(p) (for any fixedp). On the other hand, we will see that,

asp → ∞, U(p)
p→ U , whereU is the limiting variable defined in Theorem 2. By combining this with Eqs. (44-45) we obtain the

assertion of Theorem 2.

Lemma 1 If the assumptions of Theorem 2 are satisfied we obtain (for any fixedp)

n
1
4

� 2
M(p)n

ds→ U(p) =
d∑

j′,k′=1

∫ 1

0

jk,j
′k′

s (p)dBj
′k′

s ,

and

d∑

j,m=1

kl,jms (p)k
′l′,jm
s (p) = Akl,k

′ l′

s =
2

 2
2

(
�p

p+ 1
Λkl,k

′l′

s

∫ 1

0

(
1− u

p

)
�22(u)du

+
p

�(p+ 1)
Θkl,k

′l′

s

∫ 1

0

(
1− u

p

)
�1(u)�2(u)du+

p

�3(p+ 1)
Υkl,k

′l′
∫ 1

0

(
1− u

p

)
�21(u)du

)
,

where the processesΛs, Θs andΥ are given in Theorem 2.

Notice that
∑d

j,m=1 
kl,jm
s (p)k

′l′,jm
s (p)

p→ ∑d
j,m=1 

kl,jm
s k

′l′,jm
s (1 ≤ k, k′, l, l′ ≤ d), wheres is defined in Theorem 2. From

this we deduce the convergenceU(p)
p→ U .
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Proof of Lemma 1:Due to Theorem IX 7.28 in Jacod and Shiryaev (2003) the following conditions need to be shown (for all

1 ≤ k, k′, l, l′ ≤ d)

n−1/2

�2 2
2

jn(p)∑

j=0

E

[
�(p, 1)n,klj �(p, 1)n,k

′l′

j ∣ℱ aj(p)

n

]
p→
∫ 1

0

Akl,k
′l′

u du, (46)

n−1

jn(p)∑

j=0

E

[
∣∣�(p, 1)nj ∣∣4∣ℱ aj(p)

n

]
p→ 0, (47)

n−1/4

jn(p)∑

j=0

E

[
�(p, 1)n,klj ΔW (p)n,k

′

j ∣ℱ aj(p)

n

]
p→ 0, (48)

n−1/4

jn(p)∑

j=0

E

[
�(p, 1)n,klj ΔN(p)nj ∣ℱ aj(p)

n

]
p→ 0, (49)

whereΔV (p)nj = Vn/bj(p) − Vn/aj(p) for any processV and Eq. (49) holding for any 1-dimensional bounded martingaleN being

orthogonal toW . For proving Eqs. (47) and (49), it is no restriction to assume thatd = 1. Then these conditions are already shown

in Jacod, Li, Mykland, Podolskij, and Vetter (2009) (Lemma 5.7). On the other hand, the functional�(p, 1)nj is even inW . SinceW

and� are independent, we readily deduce that

E

[
�(p, 1)n,klj ΔW (p)n,k

′

j ∣ ℱ aj(p)

n

]
= 0,

which implies the condition in Eq. (48). Hence, we are left toproving Eq. (46).

First, notice the identity

V̄ ni =

kn∑

j=1

g

(
j

kn

)
Δn
i+jV = −

kn−1∑

j=0

(
g

(
j + 1

kn

)
− g

(
j

kn

))
V i+j

n
.

The second equality is useful for the computation of the moments of �̄ni . By the smoothness assumption on the functiong and the

above identity we obtain the approximations (1 ≤ k, l ≤ d)

E[W
n,k

j W
n,l

j′ ] = �kl
kn
n
 2

( ∣j − j′∣
kn

)
+O(n−1), E[�n,kj �n,lj′ ] =

Ψkl

kn
 1

( ∣j − j′∣
kn

)
+O(n−1) (50)

for ∣j − j′∣ < kn, whereas the above expectations vanish when∣j − j′∣ ≥ kn (here�kl denotes the Kronecker symbol). Next, we

introduce the decomposition

�(p, 1)nj = v(p, 1)nj + v(p, 2)nj + v(p, 3)nj ,
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where the termsv(p, 1)nj , v(p, 2)nj andv(p, 3)nj are given by

v(p, 1)nj =

bj(p)−1∑

l=aj(p)

�aj(p)

n

W
n

l

(
�aj (p)

n

W
n

l

)′
− E

[
�aj(p)

n

W
n

l

(
�aj(p)

n

W
n

l

)′
∣ℱ aj(p)

n

]
,

v(p, 2)nj =

bj(p)−1∑

l=aj(p)

�nl

(
�nl

)′
− E

[
�nl

(
�nl

)′]
,

v(p, 3)nj =

bj(p)−1∑

l=aj(p)

�aj(p)

n

W
n

l

(
�nl

)′
+ �nl

(
�aj(p)

n

W
n

l

)′
.

By a straightforward calculation (and Eq. (50)) we obtain for all 1 ≤ k, l, k′l′ ≤ d

E[v(p, 1)n,klj v(p, 1)n,k
′l′

j ∣ℱ aj(p)

n

] =
2pk4n
n2

Λkl,k
′l′

aj (p)

n

∫ 1

0

(
1− u

p

)
�22(u)du+ op(1),

E[v(p, 2)n,klj v(p, 2)n,k
′l′

j ∣ℱ aj(p)

n

] = 2pΥkl,k
′l′
∫ 1

0

(
1− u

p

)
�21(u)du+ op(1),

E[v(p, 3)n,klj v(p, 3)n,k
′l′

j ∣ℱ aj(p)

n

] =
2pk2n
n

Θkl,k
′l′

aj (p)

n

∫ 1

0

(
1− u

p

)
�1(u)�2(u)du+ op(1),

where the approximation holds uniformly inj. Now recall thatjn(p) =
⌊

n
kn(p+1)

⌋
− 1. Consequently, by Riemann integrability we

deduce that

n− 1
2

�2 2
2

jn(p)∑

j=0

E[�(p, 1)n,klj �(p, 1)n,k
′l′

j ∣ℱ aj(p)

n

]
p→
∫ 1

0

Akl,k
′l′

u du,

which completes the proof of Lemma 1. □

Proof of Theorem 3 and 4:Recall that kn
n1/2+� = � + o(n−1/4+�/2). A straightforward calculation shows that

E

[
MRC [ � ]�n

]
=

 1

�2 2n2�
Ψ+ o(n−1/4+�/2).

By similar methods as presented in the proof of Theorem 1 we deduce that

MRC [Y ]
�
n −

(∫ 1

0

Σsds+
 1

�2 2n2�
Ψ

)
p→ 0.

Hence, we obtain the convergence in probability

MRC [Y ]�n
p→
∫ 1

0

Σsds,

which implies the assertion of Theorem 3. Following the samescheme as demonstrated in the proof of Theorem 2 we get

n1/4−�/2

(
MRC [Y ]

�
n −

(∫ 1

0

Σsds+
 1

�2 2n2�
Ψ

))
ds→MN

(
0,

2Φ22�

 2
2

∫ 1

0

Λsds

)
,

since  1

�2 2n2� Ψ is an appropriate centering for the noise term in this case. Now

 1n
1/4−�/2

�2 2n2�
Ψ

p→ 0
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for � > 1/10, whereas
 1n

1/4−�/2

�2 2n2�
Ψ =

 1

�2 2
Ψ

for � = 1/10. Hence, Theorem 4 follows. □

Proof of Theorem 5:First, we start with the decomposition

HY [Y ](k,l)n =
1

( HY kn)
2

(∑

i,j

X̄k
n

i X̄
l
n

j I{(t
(k)
i ,t

(k)
i+kn

]∩(t
(l)
j ,t

(l)
j+kn

] ∕=∅}

+
∑

i,j

(X̄k
n

i �̄
l
n

j + �̄k
n

i X̄
l
n

j )I{(t(k)
i ,t

(k)
i+kn

]∩(t
(l)
j ,t

(l)
j+kn

] ∕=∅}

+
∑

i,j

�̄k
n

i �̄
l
n

j I{(t
(k)
i ,t

(k)
i+kn

]∩(t
(l)
j ,t

(l)
j+kn

] ∕=∅}

)
=: HY [Y ]1n +HY [Y ]2n +HY [Y ]3n.

AsX and� are independent, it follows thatE
(
HY [Y ]2n

)
= 0, and a simple computation shows that

var(HY [Y ]2n) → 0.

Thus,HY [Y ]2n
p→ 0. Next, we consider the termHY [Y ]3n. This expression can be further decomposed as

HY [Y ]3n =
1

( HY kn)
2

( ∑

ti∈Jk,l

ani (k, l)�
k
ti�

l
ti +

∑

ti∈Jc
k,l

bni (k, l)�
k
ti�

l
ti +

∑

(i,j)∈Fk,l

cnij(k, l)�
k

t
(k)
i

�l
t
(l)
j

1
{t

(k)
i ∕=t

(l)
j }

)
,

for certain numbersani (k, l), b
n
i (k, l) andcnij(k, l). HereJk,l denotes the set of common points of(t

(k)
i )kn≤i≤nk−kn and(t(l)i )kn≤i≤nl−kn ,

andJck,l denotes the set of all common points of(t
(k)
i )1≤i≤nk

and(t(l)i )1≤i≤nl
excludedJk,l. The setFk,l is given by

Fk,l = {(i, j)∣ ∃r, s with r ≤ i ≤ r + kn, s ≤ j ≤ s+ kn, (t
(k)
r , t

(k)
r+kn

] ∩ (t(l)s , t
(l)
s+kn

] ∕= ∅}.

Since�̄k
n

i = −∑kn
j=1

(
g
(
j
kn

)
− g
(
j−1
kn

))
�k
t
(k)
i+j

andg is piecewise differentiable it holds that

∣bni (k, l)∣+ ∣cnij(k, l)∣ ≤ C.

A straightforward computation shows that

ani (k, l) =

⎛
⎝

kn∑

j=1

g
( j

kn

)
− g
( j − 1

kn

)
⎞
⎠

2

= (g(1)− g(0))2 = 0 ,

becauseg(0) = g(1) = 0. Thus, the first summand in the decomposition ofHY [Y ]3n disappears, which is absolutely crucial for the

proof. On the other hand,♯Jck,l ≤ Ckn which means that

1

( HY kn)
2

∑

ti∈Jc
k,l

bni (k, l)�
k
ti�

l
ti

p→ 0.

Finally, note that the summands�k
t
(k)
i

�l
t
(l)
j

I
{t

(k)
i ∕=t

(l)
j }

have expectation0 and are mutually uncorrelated. Since♯Fk,l ≤ Cnkn this

implies that
1

( HY kn)
2

∑

(i,j)∈Fk,l

cnij(k, l)�
k

t
(k)
i

�l
t
(l)
j

I
{t

(k)
i ∕=t

(l)
j }

p→ 0.
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Hence,

HY [Y ]3n
p→ 0.

Now we consider the termHY [Y ]1n. We decompose

HY [Y ]1n =
1

( HY kn)
2

( ∑

(i,j)∈Ik,l

ānij(k, l)Δ
nk

i XkΔnl

j X
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ] ∕=∅}

+
∑

(i,j)∈Ick,l

b̄nij(k, l)Δ
nk
i XkΔnl

j X
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ] ∕=∅}

(51)

+
∑

(i,j)∈Fk,l

c̄nij(k, l)Δ
nk

i XkΔnl

j X
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

)
,

for some constants̄anij(k, l), b̄
n
ij(k, l), c̄

n
ij(k, l), Ik,l = {(i, j) : kn ≤ i ≤ nk − kn, kn ≤ j ≤ nl − kn} andIck,l = {(i, j) : 1 ≤

i ≤ nk, 1 ≤ j ≤ nl} − Ik,l. Notice that all ”border terms” are collected in the second summand whereas all terms with empty

intersection of the intervals are in the third summand (in fact, we will see that both are negligible).

Notice that

∣anij(k, l)∣+ ∣bnij(k, l)∣+ ∣cnij(k, l)∣ ≤ Cn.

Furthermore, we have

E
[
∣Δnk

i XkΔnl

j X
l∣
]
≤ C

√
(t

(k)
i − t

(k)
i−1)(t

(l)
j − t

(l)
j−1)

and♯(Ick,l ∩ {(i, j) : (t
(k)
i−1, t

(k)
i ] ∩ (t

(l)
j−1, t

(l)
j ] ∕= ∅}) ≤ Ckn by Eq. (25). This implies by Eq. (26) that

1

( HY kn)
2

∑

(i,j)∈Ick,l

b̄nij(k, l)Δ
nk
i Y kΔnl

j Y
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ] ∕=∅}

= Op(n
−1/2) ,

and thus the second summand in Eq. (51) is negligible.

Now, recall thatΔnk
i Xk can be replaced with(�sΔ

nk
i W )k for anys with t(k)i − s = O(kn/n) (1 ≤ k ≤ d) without changing

the first-order asymptotics (see, e.g., Podolskij and Vetter, 2009). Notice also that the termsΔnk

i W kΔnl

j W
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

are mutually uncorrelated. Hence,

1

( HY kn)
2

∑

(i,j)∈Fk,l

c̄nij(k, l)Δ
nk

i XkΔnl

j X
l
I
{(t

(k)
i−1,t

(k)
i ]∩(t

(l)
j−1,t

(l)
j ]=∅}

= op(1).

Finally, consider the first summand in Eq. (51). As above, we approximateΔnk

i XkΔnl

j X
l by

Xn
i,j(k, l) = (�

t
(k)
i−1∧t

(l)
j−1

Δnk
i W )k(�

t
(k)
i−1∧t

(l)
j−1

Δnl
j W )l

whenever(t(k)i−1, t
(k)
i ] ∩ (t

(l)
j−1, t

(l)
j ] ∕= ∅, and set

HY [X ](k,l)n =
1

( HY kn)
2

∑

(i,j)∈Ik,l

ānij(k, l)X
n
i,j(k, l)I{(t(k)

i−1,t
(k)
i ]∩(t
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Note that the quantitiesHY [Y ]
(k,l)
n andHY [X ]

(k,l)
n have the same first order asymptotics. Then, it can be shown that
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))2
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Next, note that
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i ∧ t(l)j

)
−
(
t
(k)
i−1 ∨ t

(l)
j−1

)]
. (52)

Eq. (52) and Riemann integrability then delivers the convergence

1
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(l)
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∣ℱ
t
(k)
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]
p→
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0

Σkls ds.

By usual martingale arguments we have that
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On the other hand,HY [Y ]
(k,l)
n −HY [X ]

(k,l)
n

p→ 0. Thus, collecting terms produces

HY [Y ](k,l)n
p→
∫ 1

0

Σkls ds,

which completes the proof. □

Proof of Proposition 1: The termsȲ k
n

i Ȳ
l
n
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l
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]}
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correlated when the intervals(t(k)i , t
(k)
i+kn

] and (t(l)j , t
(l)
j+kn

] do not intersect with(t(k)r , t
(k)
r+kn

] and (t
(l)
s , t

(l)
s+kn

]. Thus, due to the

assumption in Eq. (25), there areO(nk3n) correlated terms, and each covariance has orderO(n−1) (cf. Eqn (8)). This implies that

var(HY [Y ]
(k,l)
n ) = O(n−1/2). □
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