
Rate-optimal Tests for Jumps in Di¤usion Processes
Taesuk Leea and Werner Plobergerb

aDepartment of Economics, University of Rochester
bDepartment of Economics, Washington University in St. Louis

Sep. 2009
(Very Preliminary)

ABSTRACT

Suppose one has given discrete observations of a continuous-time random process (like e.g. stock market
data) and one wants to test for the presence of jumps. Then the power of the tests will depend on the
frequency of observations. We show, that if the data are observed at intervals of length 1=n, at best
one can detect jumps of height

p
log(n)=n. We construct a test which achieves this rate in the case of

di¤usion-type processes.

Keywords: High Frequency Data, Jump, Likelihood Test.

1. INTRODUCTION

Continuous di¤usion models are the "workhorses" of models for �nancial time series. These di¤usion
models are simple, �exible and powerful in modeling. However, data are only observed at discrete
times, so we do not have the "full" information on the trajectory of the process. Technological progress
allows us to analyze high frequency data. Still, we may have modeling errors due to the discreteness
of the observations, but this problem can be signi�cantly mitigated.

High frequency data, however, generate their own challenges: We cannot be sure that the process
modeling the data is continuous, there may be jumps. Furthermore, many data (when returns are
measured in short intervals - say 1-5 minutes) contain some contamination commonly called the "market
microstructure". Our aim is to propose an optimal test for the null hypothesis of continuous di¤usion
models against an alternative hypothesis of jump di¤usion models considering market microstructure.
In literature there are many tests for jump detection such as the ones by Barndor¤-Nielsen and Shephard
(2002) and Ait-Sahalia and Jacod (2009), but the power of these tests is rarely discussed. We derive a
rate-optimal test from the general assumptions on data generating process.

2. LOCAL POWER BOUND

As null, we consider the usual di¤usion model:

dXt = �tdt+ �tdWt, (1)

where W = (Wt : t 2 [0; 1)) is an Brownian motion, �t and �t are non-anticipating random processes
ful�lling the usual requirements of Ito-calculus. Later on we will maintain even more assumption on
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� and � (We assume them to be smooth to a certain extent, so that the process Xt speci�ed by the
above equation has some nice properties.)

As an alternative, we want to consider jumps to di¤usion model :

dXt = �tdt+ �tdWt + Jtd�t,

where Jt is a non-zero random variable whose absolute value speci�es the jump size and �t is a counting
process governing whether there is a jump or not.

The problem, however, is that we cannot observe the whole process, but only at discrete times
t = i=n; where n is a natural number and

0 � i � n:

The �rst test for this testing problem - and still the "gold standard" for all tests was developed
by Barndor¤-Nielsen and Shephard (2002) only a few years ago. Since this problem is of enormous
practical importance, a whole lot of research was (and is done) in this �eld. An alternative test was
developed by Ait-Sahalia and Jacod (2009), and an informal "testing procedure" was given in Lee and
Mykland (2008).

None of the results, however, discusses the power of the tests. Here we will show two things:

1. Clearly, when n, the number of observations increases, we should expect our test to have "better"
power. In particular, we want to consider the power against local alternatives for the jumping processes.
So we consider for each n the alternative

J
(n)
t = cn

where we assume that cn is a sequence converging to zero, and assume the process �t remains (uniformly)
bounded. (So we assume there is only a maximum number of jumps). Let " > 0 be arbitrary. Then
we show that - even if we know that �t = � - it is impossible to construct tests that have nontrivial
power against alternatives with

cn = (1� ")�
p
lnnp
n

(2)

2. As a main result, we show that one can construct a test so that (even in the general case)

cn = (
p
2 + ")�t

p
lnnp
n

the power of the test converges to one. So in a certain way, our tests attain the "optimal rate". This
is an advantage over the classical BNS or AJ tests: their local alternatives shrink with the order n�1=4

(or - in the case of AJ - with the order of n�1=2+1=p, where p is a positive number determining the test
statistic).

Let us �rst deal with our �rst assertion. Let assume we even deal with the simplest case, namely
�t = 0 and �t = 1, so our underlying process Xt is a Wiener process. Then let us assume that -
under the alternative - we only have one jump, and the time of the jump is distributed uniformly in
the interval [0; 1] : We �rst will show that even under this rather ideal conditions we will be unable to
construct tests with nontrivial power if the cn are following (2).



Theorem 2.1. We want to test the null of Xt being a Wiener process Wt ,of known variance, against
the alternative of

Xt =Wt + cnI(� � t);

where � is an independent random variable following an uniform distribution. Suppose we observe
the process Xt only at the time points 0; 1=n; 2=n; :::1: Suppose cn follows (2) (or is smaller then this
bound). Then it is impossible to construct nontrivial tests.

Proof. We did assume the variance of the Wiener processW to be known. Without limitation of gen-
erality, we can assume this variance to be 1. Let Pn the probability measure of (X0; X1=n; X2=n; :::; X1)
under the null, and Qn be the measure under the alternative. Let the zi be de�ned as

zi =
�
Xi=n �X(i�1)=n

�p
n

Then the we can easily see that the zi are i.i.d. standard normal, and that

dQn
dPn

=
1

n

nX
i=1

exp((cn
p
n)zi �

1

2
(cn
p
n)2)

Since each of the zi is standard normal, the expectation of each exp((cn
p
n)zi� 1

2(cn
p
n)2) equals one.

Moreover, E
�
exp((cn

p
n)zi � 1

2(cn
p
n)2)

�2
= E(exp(2(cn

p
n)zi � (cn

p
n)2)) = exp((cn

p
n)2): Hence

the variance of dQndPn
is smaller than exp((cn

p
n)2)=n, which converges to zero if cn follows (2). Therefore

dQn
dPn

! 1

in probability. Therefore for an arbitrary � > 0

Pn

������dQndPn
� 1
���� > ���! 0:

Now let An be a sequence of events. Then we have

(1� �)Pn(An)� Pn
������dQndPn

� 1
���� > ��� < Qn(An)

< (1 + �)Pn(An) + Pn

������dQndPn
� 1
���� > ��� :

Since � was arbitrary, we can conclude that

Pn(An)�Qn(An)! 0:

Since An is an arbitrary sequence of events, we can conclude that the total variation between Pn and
Qn converges to zero, hence for all measurable functions 'n with 0 � 'n � 1 we haveZ

'ndPn �
Z
'ndQn ! 0:

But this is exactly what we wanted to show: For every sequence of tests, the power under the null (Pn)
is the same as under the alternative (Qn).



Now we want to present a test statistic, for which we will show that we can reach this bound. The
result above indicates that for �xed cn our best statistic is an exponential sum of the zi. We should,
however, keep in mind that our zi are increments over smaller and smaller time intervals. So - in order
to consider relevant alternatives - we might be interested in alternatives where c becomes "large". In
this case, the test statistic gives more and more in�uence to bigger values. So it might be a good idea to
look at the "largest" value of the increments of Xt: Standard theory of di¤usion processes guarantees
that, when divided by �t, these increments are approximately normal. Since we do not know �t, we
have to estimate it. Since �t is varying over time, a moving average of the squares of the increments
seems to be natural. So we propose the test statistic: Let us de�ne (for an arbitrary n) the ri = ri;n by

ri = ri;n =
�
Xi=n �X(i�1)=n

�
Then choose an integer l (the "length of the window") and reject when

�n = sup
i

r2i
(r2i�1 + r

2
i�2 + ::r

2
i�l)=l

becomes "too large". This is quite analogous to the test statistics of Lee and Mykland (2008): We

standardize the return by an estimator for �2 (t;Xt). We use, however, the usual quadratic estimator
instead of the bipower estimator. One might argue that jumps might distort our estimator. We think,
however, that the much simpler form is justi�able, essentially for two reasons:

1. We assume that the jumps are separated events: Before the �rst jump, our estimator for �2 (t;Xt)
will not be in�uenced by it.

2. We only use a window of size l for estimating �2 (t;Xt). So a jump will only in�uence a small
number of estimated values. Our test would get only distorted if we had two jumps within a
time-frame of length l=n, which we assume converges to zero.

The main reason, however, for using this speci�c estimator is convenience. Speci�cally, only lemma
A.1 is essential for our proof. We think an analogous result will hold for a more general class of
estimators.

3. CRITICAL VALUE AND POWER OF TEST

For the computation of the critical values, the following lemma is very helpful.

Let zi; i = 1; ::n be independent, identically distributed according to a standard normal distribution.
Assume that for each n we have given an l = l(n), and let us denote by Fi the ��algebra generated
by zi; zi�1; :: Then let us de�ne

wi =

lX
j=1

z2i�j ;

b�2i = wi=l



and
� i = z

2
i =b�2i :

Then we have the following lemma:

Lemma 3.1. Suppose
l = o (n) ;

but also
l � 2 log n:

De�ne for each c > 0 K�
n = K�

n(c) so that

2E

�
exp

�
�K�2

n b�2i =2� =q2�K�2
n b�2i� = c=n (3)

Then;

P

�
max

i=`+1;::n
� i > K

�
n

�
! 1� exp (�c) as n!1:

Proof. First of all let us observe that P (maxi=`+1;::n � i > K�
n) = 1� P (maxi=`+1;::n � i � K�

n) and

P

�
max

i=`+1;::n
� i � K�

n

�
= E

0@ Y
i=`+1;::n

I(� i � K�
n)

1A :
It can immediately be seen that the � i are Fi measurable. We will now repeatedly apply the optional
sampling theorem for various stopping times. Let " > 0 be arbitrary, and let M(") be de�ned as in
(14), (15), (16).
Let us de�ne the the stopping time � in the following way: De�ne � to be the �rst index m � n� 1 so
that

m+1X
j=`+1

logE (I(� i � K�
n)=Fi�1) < �c(1+")3 or b�2m+1 < M (")2 =Kn or

m+1X
j=`+1

logE (I(� i � K�
n)=Fi�1) > �c(1�")

and
n if no such m exists.

First of all let us observe that � is indeed a stopping time adapted to Fi.: Since for i � m + 1
E ((� i � K�

n)=Fi�1) as well as b�2m+1 are Fm-measurable, the event
[� = n] 2 Fm.

We contend that
lim
n!1

P ([� = n]) = 1: (4)

For showing (4). it is su¢ cient to �rst show that

P (
h
inf b�2i > M (")2 =Kn

i
)! 1 (5)



and then - since logE (I(� i � K�
n)=Fi�1) � 0 -

P (

24 nX
j=`+1

logE (I(� i � K�
n)=Fi�1) � �c(1 + ")3

35 \ hinf b�2i > M (")2 =Kn

i
)! 1: (6)

(5) is an immediate consequence of lemma A.1. This lemma shows that

P
h
inf b�2i �M (")2 =Kn

i
� nP

hb�2i �M (")2 =Kn

i
! 0:

For the proof of (6), �rst observe that

E (I(� i � K�
n)=Fi�1) = 2�(

q
K�
nb�2i )� 1:

If b�2i > M (")2 =Kn , we can use inequality (16) and conclude that

log

�
2�(

q
K�
nb�2i )� 1�

� �2(1 + ")2 exp
�
�K�

nb�2i =2� =q2�K�
nb�2i

Hence 24 nX
j=`+1

logE (I(� i � K�
n)=Fi�1) � �c(1 + ")3

35 \ hinf b�2i > M (")2 =Kn

i

�

24�2(1 + ")2 nX
j=`+1

exp
�
�K�

nb�2i =2� =q2�K�
nb�2i � �c(1 + ")3

35 \ hinf b�2i > M (")2 =Kn

i

Since we already know that P
�h
inf b�2i > M (")2 =Kn

i�
! 1, it is su¢ cient to show that

P

0@242 nX
j=`+1

exp
�
�K�

nb�2i =2� =q2�K�
nb�2i � c (1 + ")

351A! 1 (7)

Let us now introduce the Yj by

Yj = 2 exp
�
�K�

nb�2i =2� =q2�K�
nb�2i

Then we can easily see that (7) is ful�lled if

nX
j=`+1

Yj ! c (8)

in probability. By our de�nition of K�
n, , EYj = c=n. Moreover, we know that b�2i is distributed according

to a scaled �2 distribution with l degrees of freedom. Hence it is an elementary, but elementary exercise
to show that EY 2j = O(1=n

2), and that Yj and Yk are independent if

jj � kj > `+ 1:



As `=n! 0, we can easily see that the variance of
P
Yj converges to zero.

We now have established (4). Now it is rather easy to establish our lemma: We have to show that

E

0@ Y
i=`+1;::n

I(� i � K�
n)

1A! exp(�c)

Using again (4), it is su¢ cient to show

E

0@Y
i��
I(� i � K�

n)

1A! exp(�c)

Trivially,

E

�
I(� i � K�

n)

E(I(� i � K�
n)=Fi�1

=Fi�1
�
= 1:

A straightforward argument, perfectly analogous to the optional sampling theorem yields

E

0BB@
E
Y
i��
I(� i � K�

n)Y
i��
E(I(� i � K�

n)=Fi�1)

1CCA = 1: (9)

According to the de�nition of �;

�(1 + ")2
�X

j=`+1

Yj � log
Y
i��
E(I(� i � K�

n)=Fi�1) � �(1� ")2
�X

j=`+1

Yj (10)

and
log
Y
i��
E(I(� i � K�

n)=Fi�1) � �c(1 + ")3 (11)

Moreover, (4) implies that P
�hP�

j=`+1 Yj =
Pn
j=`+1 Yj

i�
! 1. Therefore

P�
j=`+1 Yj ! c, too. Hence

it can easily be seen that (11) and (10) allow us to deduct from (9) that

exp(�(1 + ")2c) � lim inf E
Y
i��
I(� i � K�

n)

� lim supE
Y
i��
I(� i � K�

n) � exp(�(1� ")2c):

Now one can easily see that (4) allows us to replace � with n in the above inequalities, which proves
our theorem.

So we now have computed the distribution of our test statistic for a very speci�c process, namely
when the parameters �t = 0 and �t = 1. We now have to reduce the general case described by (1) to
the speci�c case discussed above. For this purposed, we will have to make assumptions on �t and �t:

Theorem 3.2. Suppose �t and ln�t are di¤usion-type processes with a.s. uniformly bounded di¤usion
coe¢ cients. Then - provided - ln= lnn converges to a constant di¤erent from 0 - the di¤erence between
the test statistic applied to Xt and Wt converges to zero in probability.



Proof. Since the proof is rather technical, we give it in appendix B.

The above lemma and the above theorem show that our construction - rejecting when the � i are
larger than K�

n - is indeed a test. Moreover, it is an easy, but tedious exercise to establish the order of
magnitude of K�

n. The distribution of b�2i is a scaled �2, so the right hand side of (3) can be evaluated
using the Gamma function.� Then it is an easy task to show that

K�
n= (2 lnn) = 1:

Then it is an elementary task to establish our assertion that the test is consistent against jumps of the
order

(1 + ")�t

p
2 lnnp
n

:

4. POWER OF THE COMPETING TESTS

As mentioned in the introduction, various tests for this problems have been developed. Two of the
most proli�c ones are the tests of Barndor¤-Nielsen and Shephard (2006) and of Ait-Sahalia and Jacod
(2009). These tests are based on the following test statistics:

Definition 4.1. BNS test statistic(Barndor¤-Nielsen and Shephard (2006))

b�LINBNS =

p
n
�
RV � �

2BPV
�qR 1

0 �
4
udu

;b�ADJBNS =

p
n
�
1� �BPV

2RV

�s
max

�
1;
R 1
0 �

4
udu=

nR 1
0 �

2
udu

o2� where

RV =

1=�X
j=1

r2t+j� and BPV =
1=�X
j=2

jrt+j�j
��rt+(j�1)���

Another alternative was proposed by Ait-Sahalia and Jacod. This test is based on the p-th power
variation, and compares the estimates for the variation for di¤erent time scales.

�Given the ��level of signi�cance; we can plug-in c = � log (1� �) : Then we can �nd the critical value K
such that �

K

l
+ 1

�� (l�1)
2
�
K

l

��1=2
� (l=2� 1=2)
� (1=2) � (l=2)

+
log (1� �)

n
= 0 (12)

If the sample size is small and/or the average window size l is small, then the approximation of lemma 3.1 can
be improved with a small sample corrected critical value K such that�

K

l
+ 1

�� (l�1)
2
�
K

l

��1=2
� (l=2� 1=2)
� (1=2) � (l=2)

�
l � 1
l

�
+
log (1� �)
n� l = 0 (13)



Definition 4.2. AJ test statistic(Ait-Sahalia and Jacod (2009))y

b�p;kAJ =
�
kp=2�1 � bS (p; k;�)� =qbVp;k where p > 3; k � 2;

bS (p; k;�) = bB (p; k�) = bB (p;�) , bB (p; k�)t = n=kX
i=1

jrt+ik�jp and

bVp;k is the variance of bS (p; k;�) under the null.
The behavior of these test statistics - under our kind of alternatives can easily be analyzed. We just

add to one of the returns the jump. For the BNS test, this is easily be done. One can easily see, that
if the jump is of o(n�1=4), the di¤erence between the test statistic under the null and the alternative
converge against 0. Hence the test will be much less powerful against our kind of alternatives. The
same is true for the AJ test: Here (after some calculations), one can see that the corresponding bound
is o

�
n�1=2+1=p

�
. So - in a bit of contrast to the inventors of the test - we think that larger order p

deserve attention (Our simulation results, however, indicate that the limiting distribution for higher
order p is not a good approximation of the sampling distribution). In any case, we think that this
subject merits further research.

Despite the fact that the tests have "low" power against "our" alternatives, it should be noted that
there are situations where these tests have large advantages over our test. Assume one has not only
one jump, but many. So let us assume that we have L jumps of size J (rather evenly distributed, let
us assume the time between jumps is bigger than 1. Then it is easily seen from the de�nition of the
BNS statistic that the test is consistent (the power converges to 1) if

p
nLJ2 !1:

An analogous result holds for the AJ - test. This fact is easily explainable, if one takes into account
that the test statistics are constructed from sums: So small jumps can accumulate, in contrast to our
test. So one should consider these tests not as tests against simple jumps, but as tests against Levy-
type alternatives. It might be a worthwhile task to investigate the power of the test against speci�c
alternatives of this type.

yFor bVp;k; they suggest two estimators:bV cp;k = �nM(p;k) bA(2p;�)tbA(p;�)2t ; eV cp;k = �nM(p;k) eA( p
p+1 ;2p+2;�)teA( p

p+1 ;p+1;�)
2

t

where

M (p; k) = 1
m2
p

�
kp�2 (1 + k)m2p + k

p�2 (k � 1)m2
p � 2kp=2�1mk;p

�
;

mp = E (jZ1jp) = ��1=22p=2�
�
p+1
2

�
;

mk;p = E
h
jZ1jp

��Z1 +pk � 1Z2��pi,
Zi �iid N (0; 1) ;bA (p;�n)t = �1�p=2

n

mp

P
j�ni Xj

p
1 fj�ni Xj � ��$n g, $ 2 (0; 1=2) ;eA (r; q;�n)t = �1�qr=2

n

mq
r

P
i=1�

q
j=1

���ni+j�1X��r



5. SIMULATIONS

First, we consider a very simple ideal condition.

ri=n =

Z i=n

(i�1)=n
dpt =

Z i=n

(i�1)=n
�dWt +

Z i=n

(i�1)=n
Jd�t (Model 1)

Second, we borrowed the model from Barndor¤-Nielsen and Shephard (2006)

dpt = � (s)W (ds) + Jd�t (Model 2)

�2 (t) = w1�
2
1 (t) + w2�

2
2 (t)

�2k (t) = �
Z t

0
�k (s)

�
�2k (s)� � (s)

	
ds+

Z t

0
! (s)�k (s)Bk (ds) where k = 1; 2

We consider 4 test statistics : Lee-Ploberger (LP), Barndor¤-Nielsen & Shephard(BNS), Ait-Sahalia
& Jacod(AJ), and Lee-Mykland (LM). We assume J � N

�
0; �2c

�
and consider three cases of jump

size : no jump
�
�2c = 0

�
, 20% jump

�
�2c = 0:2� (s)

�
, ln (n) =n jump

�
�2c = ln (n) =n � � (s)

�
. The sample

sizes considered are 72, 288, 1440, 2880, 8640 which are corresponding to 20 minutes, 5 minutes, 1
minutes, 30 seconds, and 10 seconds, respectively. The number of replication is 50,000. The parameters
are calibrated by Barndor¤-Nielsen and Shephard (2002) as follow : � (s) = 0:509; !2 (s) = 0:461;
w1 = 0:218; w2 = 1 � p1; �1 = 0:0429; �2 = 3:74: For MA(1) microstructure noise, we assume
mt � N

�
0; �2m

�
with �2m =

2:5
n �

2
r which means we set the variance of MA(1) microstructure noise is 2.5

times larger than that of one second return. If rt and mt is independent, then the realized volatility
with high frequency data will be 6 times larger than that with low frequency data with that assumption.
We also set the minimum price variation c = 0:02 which is smaller than pre-decimalization tick sizes
of NYSE ($1/8 and $1/16) but is larger than foreign exchange market minimum variation.

Let�s consider the rejection probabilities under the null, no jump case. Table1 shows that our tests
have better rejection probabilities than other tests in the continuous pure di¤usion model. Most other
tests are precise with 10 seconds data but they are imprecise with small samples. Our tests have precise
size even with 20 minutes data. The di¤erence between our rejection probabilities and nominal level
of signi�cance is less than 0.5 percentage point which can be explained by simulation variations. The
next best test is the adjusted BNS test. It is better than other tests but to some extent it overjects
the null with small samples.

Table2 also shows our tests are better in the continuous stochastic volatility model. With small
samples, our tests show moderate size distortion around 1 percentage point but it is smaller than that
of other tests. Note that our test and LM test statistics looks similar but their performance is di¤erent.
LM test needs larger window size for normalization whose required order is the square root of sample
size. So its performance with small averaging windows is distorted a lot even in the pure di¤usion
case, table1. However our test is still valid with small windows. Both tests assume some continuity of
volatility within that averaging window. Since our averaging window is smaller, our test is more robust



to the rapidly changing volatility model. So our tests show better performance comparing LM in the
stochastic volatility model.

Let�s consider the power of test. Our tests have better power controlling the size distortion. In
some cases, other tests have larger rejection probabilities under the alternative hypothesis, but they
also have larger rejection probabilities under the null hypothesis. If we control the size distortion, our
test have better power in most cases. Especially our tests have non-trivial power with the jump whose
order is ln(n)n where n is the sample size while BNS and AJ tests have trivial power for that case. LM
tests also have non-trivial power but their sizes are not as reliable as ours and their averaging window
requirement is restricted. As we see in �gure3 and table3, the size adjusted power curve of our test
envelops those of other tests, which is the sign of optimality of our test. In following section, we apply
our tests to various important �nancial data.

6. EMPIRICAL APPLICATIONS

We apply our test to stock index and foreign exchange rate in the FOREX database and individual stock
data in the TAQ database. We consider USD index, USD/JPY, EUR/USD, GBP/USD, USD/CAN
from 1999 to 2000. 1998-2000 DJDA, NASDAQ COMP, NASDAQ100, S&P500, S&P100, RUSSEL2000
are examined. Dow jones 30 stocks in 2005 NYSE TAQ are also considered. The empirical results are
reported in table 6-9. We �nd the followings.

First, we can �nd the strong evidence of jump in the most markets. For the European and US foreign
exchange market data, AJ test shows 15-45% trading days have the jump. The ratios of jumping days
increases to 20-35% for BNS test, 30-65% for LP test, and 70-85% for LM test. We observe a similar
pattern in other markets : The ratios of jumping days in the whole foreign exchange market are 20-60%
for AJ test, 25-40% for BNS test, 45-85% for LP test, and 76-95% for LM test. Those in the stock
indices are 2-8% for AJ test, 10-25% for BNS test, 15-40% for LP test, and 45-60% for LM test. Those
in the Dow 30 stocks are 15-20% for AJ and BNS test, 20-30% for LP test, and 55-65% for LM test.

Second, we can order the tests by the ratio of jumping days. The AJ test shows the least number
of jumping days. The next is the BNS tests and our LP test. The LM test has largest ratio of jumping
days. Our previous simulated power curve shows the similar pattern. Note that the LM test has largest
power because of size distortion under the null. So we can say the LP test has the most power in some
sense.

Third, we can detect more jump with more data. The 5 minutes data shows more jumping days
than the 15 minutes data in most cases. In the foreign exchange market data, we consider 13 hours
data and 24 hours data. We can detect the more jump with 24 hours data. We can see the similar
pattern in the previous simulated power curve example. The powers of tests increase with number of
sample.
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APPENDIX A. NORMAL AND �2 DISTRIBUTIONS FOR SMALL AND
LARGE VALUES

It is well known that for the standard distribution function � (x)

lim
x!1

(1� � (x))
p
2�x exp

�
x2=2

�
= 1

or equivalently
lim
x!1

(log(2� (x)� 1))
p
2�x exp

�
x2=2

�
=2 = �1

we can de�ne M (") as the smallest value so that for all

x > M (") (14)

(1� ") �
���p2�x exp �x2=2� (1� � (x))��� � (1 + ") : (15)

and
�2 (1 + ")2 � (log(2� (x)� 1))

p
2�x exp

�
x2=2

�
� �2 (1� ")2 (16)

Lemma A.1. So let us now choose an arbitrary " > 0, and let l, n, wi be the integers de�ned in the
main section of the paper. If

l � 2 lnn

and
K !1;

then
pn = P

h
wi � lM (")2 =K

i
= o

�
n�1

�
:

:

Proof. Since wi is distributed according to a �2distribution with l degrees of freedom, we have

pn =
1

� (l=2)

Z lM(")2=(K)

0
xl=2�1 exp (�x=2) dx:



Since exp (�x=2) � 1, we have with

C =
M (")2

K

pn �
1

� (l=2)

1

l=2
C l=2ll=2;

and therefore

log pn � � log � (l=2)� log (l=2) +
l

2
logC + l=2 log l:

The well known formula of Stirling implies that for l!1 (with m = l=2� 1)

log � (l=2)�
�
m (log(m)�m+ log(

p
2�m

�
! 0:

Therefore

log pn � ((l=2) log l �m (log(m)) + (m+
l

2
logC) +O(log l)

One can easily see that ((l=2) log l �m (log(m)) = (l=2) (log(l=m)) +O(logm). So the terms linear in
l dominate the right hand side of the inequality, Moreover, as M (") is �xed and K ! 1, we may
conclude that C ! 0. Therefore, l2 logC will become negative. Therefore,

l
2 logC will become negative

and dominate other parts. Therefore it can immediately be seen that lim sup

� log pn
l=2 (� logC) � 1;

which implies pn � exp (�l=2) M(")2

K :

APPENDIX B. THE PROOF OF THEOREM 3.2.

Our proof of Theorem 3.2 is based on the following lemma.

Lemma B.1. Suppose we have given a standard Wiener processW , an adapted process f and a constant
� so that

bZ
z

f2dt � B:

Then, where

bZ
a

fdW is the usual Ito-integral,

P

0@24������
bZ
a

fdW

������ � C
351A � 2 exp(�C

2

2B
):



Proof. Novikov�s theorem guarantees that for all u

E

0@exp(u bZ
a

fdW � u
2

2

bZ
a

f2dt

1A = 1

Hence

E(exp(u

bZ
a

fdW � u
2

2
B) � 1

and therefore

exp(uC � u
2

2
B)P (

24 bZ
a

fdW > C

35) � 1:
Setting

u =
C

B

and repeating the same idea with �
bZ
a

fdW proves our proposition.

We are now prove Theorem 3.2 applying Lemma B.1.

Proof. of Theorem 3.2. We have

d�t = Atdt+BtdV
(1)
t ;

d(log �t) = Ctdt+DtdV
(2)
t ;

where At; Bt; Ct; Dt are continuous processes and V
(1)
t ,V (2)t are (standard) Wiener processes. First

of all let us demonstrate that without limitation of generality we can assume that At; Bt; Ct; Dt and
�t; log �t as well are uniformly bounded.

Since the processes At; Bt; Ct; Dt and �t; ln�t are continuous, for every " > 0 there exists a M =
M(") so that

P ([sup jAtj ; sup jBtj ; sup jCtj ; sup jDtj ; sup j�tj ; sup jln�tj < M(")]) > 1� ":

Let us now de�ne the stopping time � (") be de�ned as the �rst time one of the absolute values of
At; Bt; Ct; Dt and �t; ln�t becomes larger than M("), or 1 if the absolute values of the processes
remain below M(") all the time. Then

P
�h
� (") = 1

i�
> 1� ": (17)

Let ri;n =
�
Xi=n �X(i�1)=n

�
and si;n =

�
Wi=n �W(i�1)=n

�
. Then let

�n = sup
i

r2i
(r2i�1 + r

2
i�2 + ::r

2
i�l)=l

;



�(")n = sup
i�� (")

r2i
(r2i�1 + r

2
i�2 + ::r

2
i�l)=l

;

�n = sup
i

s2i
(s2i�1 + s

2
i�2 + ::s

2
i�l)=l

;

and

�(")n = sup
i�� (")

s2i
(s2i�1 + s

2
i�2 + ::s

2
i�l)=l

:

Then - by de�nition, �n and �n are our test statistics applied to Xi=n andWi=n, respectively. Moreover,
(17) guarantees that

P
�h
�n = �

(")
n

i�
> 1� "

and
P
�h
�n = �

(")
n

i�
> 1� ";

too. Hence it is su¢ cient to show that for all " > 0 the di¤erence between converges to zero. For
showing this, let us �rst observe that

min(
�2(i�k)=n
�2i=n

) � s2i
(s2i�1 + s

2
i�2 + ::s

2
i�l)=l

=
�2i=ns

2
i

(�2(i�1)=ns
2
i�1 + �

2
(i�2)=ns

2
i�2 + ::�

2
(i�l)s

2
i�l)=l

� max(
�2(i�k)=n
�2i=n

):

For analyzing the di¤erence of the left and right side of the above inequality and one, it is su¢ cient to
consider

sup
k�l

�����ln(�
2
(i�k)=n
�2i=n

)

����� :
Now observe that ln(�2i=n) � ln(�

2
(i�k)=n) =

R i=n
(i�k)=nCtdt + DtdV

(2)
t . For i < � (")

���R i=n(i�k)=nCtdt
��� �

kM=n:Moreover, we have due to Lemma B.1

P

 "�����
Z i=n

(i�k)=n
DtdV

(2)
t

����� > 2pMl
r
lnn

n

#!
� 1

n2

and hence

P

 "
sup

i�� (");k�l

�����
Z i=n

(i�k)=n
DtdV

(2)
t

����� > 2pMl
r
lnn

n

#!
� l

n
! 0:

Hence we can conclude that

P

 "
sup
k�l

�����ln(�
2
(i�k)=n
�2i=n

)

����� > 4pMl
r
lnn

n

#!
! 0:

Since

sup
s2i

(s2i�1 + s
2
i�2 + ::s

2
i�l)=l

= O(lnn);

we can conclude that the di¤erence between

sup
s2i

(s2i�1 + s
2
i�2 + ::s

2
i�l)=l



and

sup
�2i=ns

2
i

(�2(i�1)=ns
2
i�1 + �

2
(i�2)=ns

2
i�2 + ::�

2
(i�l)s

2
i�l)=l

converges to zero.
It now remains to show that the di¤erences��ri;n � �(i�1)=nsi;n��
remain small. Now observe that

��ri;n � �(i�1)=nsi;n�� =

�����
Z i=n

(i�1)=n

�
�tdt+ �tdWt � �(i�1)=ndWt

������
=

�����
Z i=n

(i�1)=n
�tdt

�����+
�����
Z i=n

(i�1)=n

�
�t � �(i�1)=n

�
dWt

�����
� max j�tj

1

n
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�����
Z i=n

(i�1)=n

�
�u � �(i�1)=n
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dWu

����� :
For the analysis of �����

Z i=n

(i�1)=n

�
�u � �(i�1)=n

�
dWu

�����
we will apply Lemma B.1. Since �u is a di¤usion process, where drift and di¤usion coe¢ cients were
assumed to be bounded, we can conclude that for all � > 0 there exists a M so that

P
�
for all i and (i� 1)=n � u � i=n

���u � �(i�1)=n�� �M ju� (i� 1)=nj1=2��
�
! 1:

Hence

P

" Z i=n

(i�1)=n

�
�u � �(i�1)=n

�2
du

!
� 2Mn�2+�

#
! 1:

To apply Lemma B.1, however, we need to guarantee an uniform bound on the integral
R i=n
(i�1)=n

�
�u � �(i�1)=n

�2
du.

This can easily be achieved by using a stopping time.

We stop the process at time S, where

i=n � S � (i� 1)=n;

if for the �rst time Z S

(i�1)=n

�
�u � �(i�1)=n

�2
du = 2Mn�2+�;

otherwise we set
S = 1:

Obviously the de�nition of M guarantees that

P (S = 1) � 1� "



Hence if we de�ne

��u =

�
�u for u � S
�S otherwise,

we have
P ([��u = �u for all u]) � 1� ":

Hence it is su¢ cient to give estimates for
R i=n
(i�1)=n

�
��u � ��(i�1)=n

�
dWu: For this task, however, we can

apply Lemma B.1 and conclude that
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 �����
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(i�1)=n

�
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�
dWu
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Since � > 0 was arbitrary, we can conclude that for arbitrary � > 0

P

"
sup

�����
Z i=n

(i�1)=n

�
��u � ��(i�1)=n

�
dWu

����� > n�1+�
#
! 0;

which demonstrates that these terms are negligible.

APPENDIX C. DATA

We use the FOREX historical database which has intraday transactions data of stock indices and
foreign exchange rates. We use the intraday data of US Dollar Index(DXA0), USD/JPY(Japanese yen,
JPYA0), EUR/USD(EURA0), GBP/USD(British pound, GBPA0), and USD/CAN(Canadian dollar,
CADA0). Since the European and US foreign exchange markets are larger than other markets, we
�rst consider the data from 2:00 to 16:00 eastern time. We exclude the �rst and last 30 minutes data
because we observe relatively infrequent trading. We also consider the whole 24 hour data including
data from the Asian and paci�c market.

For stock indices, we analyze Dow Jones Industrial Average (DJIA), Nasdaq Composite Index
(COMPQ), NASDAQ-100 Index(NDX)z, S&P 500 Index(SPX), S&P 100 Index(OEX), and Russell
2000 Index (RUT). Contrary to other market value weighted indices, the Dow Jones index is a price
weighted index and represents well-established blue-chip stocks. The Nasdaq Composite is the index of
all of the common stocks and similar securities listed on the NASDAQ stock market, so it measures the
performance of technology stocks. The NASDAQ-100 is the index of 100 of the largest non-�nancial
companies listed on the NASDAQ. The S&P 500 is a large-cap stock market index of 500 of largest
common stocks actively traded in the US stock market. The S&P 100 chooses 100 largest companies
in the S&P 500 considering sector balance. The Russell 2000 Index is a small-cap stock market index
of the bottom 2,000 stocks in the Russell 3000 Index which measures the performance of the small-cap
segment of the US stock market. Since US stock market opens at 9:30 and closes at 16:00 eastern
time, we consider that time span. But we exclude the �rst and last 30 minutes because of infrequent
transactions.

We also use the New York Stock Exchange (NYSE) Trade and Quote (TAQ) database which covers
intraday transactions data for securities listed on the major stock exchanges. Because of limited

zNote that NASDAQ100(NDX) starts from 2.24. 1998 in FOREX database. So number of sample is smaller.



accessibility, we mainly consider data of 2005 year. Dow Jones 30 stocks are chosen as main subjects
because they are generally leading blue-chip stocks represent their industry and constitute a popular
stock market indicator, Dow Jones Industrial Average (DJIA). We use the transaction data from the
New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and Nasdaq National Market
System (NMS). (We choose data whose Ex �eld is "N","A", or "T") Furthermore, only regular way
sales are selected. We exclude special sales like Bunched sales (B), Automatic Executed sales(E), and
Burst Basket Executed sales(F). TAQ database deals with intraday data which may have trading error
or canceled transactions. By choosing trades whose CORR �eld is equal to either zero or one, we
exclude erroneous data like cancelled trades and obvious error records. About 99.71 percentage data
have the proper CORR �eld. When we see multiple trades with di¤erent prices at the same time, we
choose a volume-weighted average of the trade price. Since we consider jumps, we did not �lter data
based on the size of price change.x During the opening and closing hours, we observe volatile movement
of prices. We consider rather a clean time horizon excluding near opening and closing hours : from
10:30 to 15:30. We also exclude holidays and some trading days which had few transactions, say Labor
day, Thanksgiving day, Black Friday, Christmas, and so on. On Dec. 1th, AT&T substitutes SBC. I
used the return of SBC until Nov. 30th and used that of AT&T after Dec. 1st.

xStandard �ltering rules exlcude trades which are less than 50% or greater 150% of the previous prices.
(Boehmer,Saar, and Yu(JF2005))



APPENDIX D. TABLES AND FIGURES

Following tables summarize rejection probabilities under 5% size.

n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 4.83 5.24 11.76 8.61 6.83 3.19 3.35 27.37 6.03 27.37

288 4.95 5.21 7.97 6.58 5.85 3.87 3.95 20.34 11.03 40.13
1440 5.02 5.05 6.15 5.54 5.31 4.94 4.56 9.90 15.73 61.03
2880 4.81 5.16 5.81 5.40 5.21 4.99 4.67 6.63 19.23 71.74
8640 4.95 5.12 5.47 5.23 5.15 5.11 4.82 4.05 23.10 80.10

n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 35.55 27.89 32.84 28.88 26.36 6.00 9.65 50.71 35.33 50.71

288 58.83 52.54 47.96 46.13 45.32 19.13 35.31 66.41 62.32 74.81
1440 78.67 74.84 64.92 64.31 64.06 34.56 67.75 80.79 82.15 91.81
2880 84.23 81.38 70.71 70.33 70.20 38.68 76.21 85.34 87.44 95.65
8640 90.36 88.75 78.27 78.09 78.05 42.75 84.93 90.84 92.63 98.14

n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 14.18 10.86 17.42 13.74 11.46 3.83 5.11 35.01 14.89 35.01

288 14.27 11.18 12.16 10.33 9.45 5.23 6.94 29.52 20.79 47.41
1440 14.69 11.12 8.36 7.64 7.31 6.30 7.73 20.64 25.87 66.13
2880 14.45 11.00 7.49 7.02 6.81 6.22 7.51 17.83 29.24 75.63
8640 14.86 11.43 6.39 6.13 6.05 6.17 7.10 15.90 33.18 82.89

Model1­3 : Pure Diffusion W LN(N)/N JUMP
LP BNS AJ LM

Model1­2 : Pure Diffusion W 20% JUMP
LP BNS AJ LM

Model1­1 : Pure Diffusion W/O JUMP
LP BNS AJ LM

Table1 : Simulated rejection probability of Model 1
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Figure1: Simulated rejection probability under the null
(model 1, 5% level of signi�cance)



n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 6.50 5.98 12.10 9.14 7.30 3.20 3.84 28.91 7.85 28.91

288 6.07 5.39 8.15 6.78 6.25 4.07 4.23 22.18 12.80 41.27
1440 5.40 5.11 6.38 5.73 5.58 4.83 4.57 10.78 16.77 61.29
2880 5.20 5.12 5.94 5.48 5.46 5.28 4.77 7.40 19.82 71.99
8640 5.02 4.89 5.40 5.17 5.15 5.43 4.84 4.49 23.64 80.36

n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 37.56 29.86 33.74 29.85 27.69 5.74 9.72 52.50 37.66 52.50

288 59.69 53.28 48.15 46.28 45.70 18.33 33.97 67.73 63.67 75.70
1440 79.03 75.34 64.94 64.28 64.18 34.22 66.94 81.09 82.50 91.73
2880 84.40 81.67 70.78 70.39 70.35 38.18 75.41 85.59 87.62 95.64
8640 90.46 88.86 78.10 77.93 77.92 42.32 84.41 91.02 92.84 98.19

n 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
72 16.53 12.50 18.18 14.57 12.38 3.71 5.45 37.27 17.33 37.27

288 16.03 12.10 12.59 10.88 10.18 5.26 6.94 31.85 23.20 48.94
1440 16.38 12.26 8.65 7.88 7.73 6.19 7.54 22.65 28.01 67.12
2880 16.27 12.18 7.79 7.23 7.19 6.57 7.60 19.88 30.98 76.15
8640 16.27 12.42 6.38 6.11 6.10 6.42 7.07 17.59 34.57 83.38

Model2­3 : CIR SV­Diffusion W LN(N)/N JUMP
LP BNS AJ LM

Model2­2 : CIR SV­Diffusion W 20% JUMP
LP BNS AJ LM

Model2­1 : CIR SV­Diffusion W/O JUMP
LP BNS AJ LM

Table2 : Simulated rejection probability of Model2
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Figure2: Simulated rejection probability under the null
(model 2, 5% level of signi�cance)



Jump/MeanVol Meaning 4LN 2LN LIN Ratio ADJ QV BIP SQRT 4LN 2LN
0.000 No Jump 6.04 5.65 8.38 6.88 6.31 4.48 4.48 21.93 12.46 41.40
0.005 LN(N)/N 16.31 12.50 12.77 10.85 10.26 5.44 7.09 31.82 23.22 49.53
0.093 47.31 40.50 35.31 33.19 32.48 13.30 23.61 57.75 52.29 68.49
0.182 58.81 52.55 47.25 45.35 44.72 18.00 32.69 67.13 62.87 75.52
0.270 65.21 59.52 54.66 52.92 52.37 20.88 39.43 72.26 68.53 79.29
0.359 69.08 64.19 59.46 57.96 57.44 23.33 43.67 75.05 72.12 81.43
0.447 20% 72.11 67.22 63.18 61.70 61.24 25.17 47.34 77.70 74.90 83.27

Size Distortion 1.04 0.65 3.38 1.88 1.31 ­0.52 ­0.52 16.93 7.46 36.40
Size Adjusted Power

Jump/MeanVol
0.000 No Jump 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
0.005 LN(N)/N 15.27 11.85 9.38 8.97 8.95 5.96 7.61 14.88 15.76 13.13
0.093 46.27 39.85 31.92 31.31 31.17 13.82 24.13 40.81 44.83 32.09
0.182 57.77 51.90 43.87 43.47 43.41 18.53 33.21 50.20 55.41 39.11
0.270 64.17 58.87 51.28 51.04 51.06 21.41 39.96 55.33 61.07 42.88
0.359 68.04 63.54 56.08 56.09 56.13 23.86 44.20 58.11 64.66 45.03
0.447 20% 71.07 66.58 59.79 59.82 59.93 25.70 47.87 60.76 67.44 46.87

LP BNS AJ LM

Table3 : Simulated rejection prob of Model 2 with 5 min frequency
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Figure2: Simulated power curve of Model 2 with 5 min frequency



15min CODE LP(4LN) LP(2LN) BNS AJ LM n/day days
USD DXA0 46.22(4H) 36.61(2H) 28.83 16.56 70.76 51.3 489
JPY JPYA0 44.02(4H) 34.06(2H) 22.11 20.32 69.52 51.7 502
EUR EURA0 48.21(4H) 39.64(2H) 30.08 15.94 73.51 51.7 502
GBP GBPA0 39.84(4H) 31.47(2H) 23.11 16.33 66.73 51.7 502
CAN CADA0 48.70(4H) 36.73(2H) 27.15 19.16 74.45 51.6 501
5min CODE LP(4LN) LP(2LN) BNS AJ LM n/day days
USD DXA0 65.03(54M) 50.31(44M) 33.33 22.09 83.03 151.6 489
JPY JPYA0 64.34(55M) 54.38(45M) 32.67 37.65 85.66 154.1 502
EUR EURA0 62.95(55M) 52.19(45M) 35.06 27.29 85.06 154.4 502
GBP GBPA0 55.18(55M) 46.61(45M) 30.68 31.08 80.28 153.7 502
CAN CADA0 60.68(54M) 55.89(44M) 26.75 45.51 85.23 150.9 501

Table4 : Empirical Rejection ratio of FX rates (13HR)

15min CODE LP(4LN) LP(2LN) BNS AJ LM n/day days
USD DXA0 63.80(4H31M) 47.65(2H20M) 31.29 19.22 80.98 82.9 489
JPY JPYA0 58.17(4H41M) 47.61(2H26M) 27.49 24.50 78.29 89.8 502
EUR EURA0 66.33(4H41M) 49.00(2H26M) 31.27 20.32 84.46 89.9 502
GBP GBPA0 63.55(4H40M) 50.80(2H26M) 28.88 21.31 85.06 89.1 502
CAN CADA0 65.07(4H37M) 52.69(2H23M) 27.74 28.34 89.62 87.2 501
5min CODE LP(4LN) LP(2LN) BNS AJ LM n/day days
USD DXA0 72.8(1H53M) 61.35(58M) 41.31 25.77 90.59 238.9 489
JPY JPYA0 83.67(1H54M) 71.71(59M) 39.64 50.00 95.02 265.6 502
EUR EURA0 79.88(1H54M) 66.53(59M) 41.43 35.26 92.43 265.5 502
GBP GBPA0 75.3(1H54M) 66.93(59M) 36.25 36.45 91.24 259.5 502
CAN CADA0 76.45(1H52M) 66.47(58M) 27.35 57.49 93.41 240.7 501

Table5 : Empirical Rejection ratio of FX rates (24HR)

15min CODE LP(4LN) LP(2LN) BNS AJ LM n/day days
DJIA INDU 17.38(3H14M) 12.03(1H45M) 13.37 7.49 42.51 21.8 748

NASDAQ COMP COMPQ 23.93(3H15M) 13.1(1H45M) 12.17 4.01 44.39 21.9 748
NASDAQ100 NDX 21.09(3H15M) 12.85(1H45M) 10.89 5.45 38.13 21.9 716

S&P500 SPX 17.87(3H15M) 10.93(3H15M) 14.53 5.87 39.73 21.9 750
S&P100 OEX 18.00(3H15M) 10.93(1H45M) 12.80 8.00 41.73 21.9 750

RUSSEL2000 RUT 29.12(3H15M) 20.61(3H15M) 10.24 3.32 52.26 21.9 752
5min CODE LP(SQRT) LP(2LN) BNS AJ LM n/day days
DJIA INDU 24.87(1H25M) 17.25(45M) 21.12 8.16 47.46 65.3 748

NASDAQ COMP COMPQ 31.02(1H25M) 18.98(45M) 19.52 3.61 53.34 64.6 748
NASDAQ100 NDX 24.16(1H25M) 14.11(45M) 15.92 4.89 46.09 65.5 716

S&P500 SPX 27.73(1H25M) 20.4(45M) 26.27 6.53 50.67 65.5 750
S&P100 OEX 26.4(1H25M) 17.47(45M) 20.53 8.00 47.07 65.5 750

RUSSEL2000 RUT 41.89(1H25M) 30.32(45M) 9.97 1.33 61.04 65.4 752

Table6 : Empirical Rejection ratio of stock indices

freq LP(4LN) LP(2LN) BNS AJ LM
15min 0.2223(3H15M) 0.1823 (1H45M) 0.1471 0.1404 0.5559
5min 0.3197(1H25M) 0.2418(     45M) 0.1701 0.1694 0.6315

Table7 : Empirical Rejection ratio of stocks of Dow30 (Average)


