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on averaging estimators, in order to meet the first condition, and the no-arbitrage theory, in order to meet the
second one. Moreover, the dynamic interactions of this large set of variables is based on the statistical notion of
New Information Response Function, recently introduced by Jardet, Monfort and Pegoraro (2009b). This technical
toolkit is then used to analyze three monetary policy tightening episodes (1994, 1999 and 2004) and to study the
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1 Introduction

Macroeconomic questions involving interest rates generally require a reliable joint dynamics of
a large set of variables. More precisely, such a dynamic modelling must satisfy two important
conditions. First, it must be able to propose reliable predictions of some key variables. Second,
it must be able to propose a joint dynamics of some macroeconomic variables, of the whole curve
of interest rates, of the whole set of term premia and, possibly, of various decompositions of the
term premia. The first condition is required if we want to disentangle the respective impacts of,
for instance, the expectation part of the term premium of a given long-term interest rate on some
macroeconomic variable. The second condition is necessary if we want to analyze the interactions
between macro-variables with some global features of the yield curve (short part, long part, level,
slope and curvature) or with, for instance, term premia of various maturities.

In the present paper we propose to satisfy both requirements by using a Near-Cointegrated
modelling based on averaging estimators [see B. Hansen (2007, 2008, 2009) and Jardet, Monfort
and Pegoraro (2009a)], in order to meet the first condition, and the no-arbitrage theory, in order
to meet the second one. Moreover, the dynamic interactions of this large set of variables is based
on the statistical notion of New Information Response Function, recently introduced by Jardet,
Monfort and Pegoraro (2009b). This technical toolkit is then used to analyze three monetary policy
tightening episodes (1994, 1999 and 2004) and to study the puzzling relationship between the term
premia on long-term yields and future economic activity. Let us now describe more precisely these
technical points as well as these empirical issues.

The foundation of our approach is based on a careful VAR modelling of the dynamics of some
basic observable variables, namely Yt = (rt, Rt, Gt)

′, where rt is a short rate, Rt a long rate
and Gt is the Log of the real gross domestic product (GDP). These variables are also considered
in the pioneering paper of Ang, Piazzesi and Wei (2006) [APW (2006), hereafter] whose model
constitutes a benchmark of our study. The observability of the basic variables allows for a crucial
step of econometric diagnostic tests on stationarity, cointegration, and number of lags. In our
application, based on quarterly observations of US yields and real GDP, this analysis shows a
unique cointegration relationship, namely the spread St = Rt−rt, and then leads to a cointegrated
VAR(3), denoted by CVAR(3), for the variables Xt = (rt, St, gt = ∆Gt)

′, which are exactly the
ones appearing in the VAR(1) model considered by APW (2006).

Nevertheless, the presence of unit roots is wrongly induced by the high persistence of (station-
ary) interest rates and this phenomenon rises the huge ”discontinuity” problem, already stressed
by Cochrane and Piazzesi (2008), that is, the dramatic difference between long-run predictions
based on the CVAR(3) and an unconstrained VAR(3) model (for Xt). An additional problem is
the well known bias that stands out when estimating without constraints dynamic models which
are ”nearly non-stationary”. Among the possible ways of tackling these problems, we choose the
one based on the local-to-unity asymptotic properties of predictions based on averaging estimators
[see B. Hansen (2007, 2008, 2009)]. More precisely, we consider the averaging among the estimators
of the cointegrated and unconstrained VAR(3) models (for Xt). In order to motivate and to eval-
uate the prediction performances of these averaging estimators we propose a Monte Carlo study
comparing these performances with those of natural competitors, namely bias-corrected estimators
like Indirect Inference estimator, Bootstrap estimator, Kendall’s estimator and Median-unbiased
estimator. We thus are lead to a Near-Cointegrated VAR(3) model, or NCVAR(3), in which the
averaging parameter is obtained by optimizing the out-of-sample predictions of a variable of in-
terest4. Given the application we have in mind, this variable is chosen to be the expectation part

4It is important to point out that the averaging estimator strategy does not imply any parameter or model
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of a long-term yield. Our empirical application fully confirms the theoretical results in Hansen
(2009), since the NCVAR(3) model allows for a large reduction of the out-of-sample root mean
square-forecast errors (RMSFE) in interest rates.

The second technical component of our paper is the derivation of an affine term structure of
interest rates based on an exponential-affine stochastic discount factor (SDF), including stochastic
market prices of risk depending on present and lagged values of Xt. The parameters of the SDF are
estimated by a least square fitting of the whole yield curve. In the empirical application the fitting is
very good and, moreover, the out-of-sample RMSFE in the prediction of yields of various maturities
at various horizons is much better than the one of competing models [VAR(1), VAR(3), CVAR(3),
AR(1)], the reduction reaching 45% for the 10-year horizon. Moreover, this affine modelling allows
for a simple recursive computation of term premia and of their decompositions in terms of forward
term premia and in terms of expected risk premia.

The first application is devoted to analyze and to compare three monetary policy tightening
episodes that took place in 1994, 1999 and 2004, with the latter being the so-called ”conundrum”
episode. The rise of federal funds rates (f.f.r.) of 425 basis points and the low and relative stable
level of the 10-year interest rate, observed between June 2004 and June 2006 on the U.S. market is
described as a ”conundrum” by the Federal Reserve Chairman Alan Greenspan in February 2005,
given that, during previous episodes of restrictive monetary policy (in 1986, 1994 and 1999), the
10-year yield on US zero-coupon bonds strongly increased along with the fed funds target.

Among several finance and macro-finance models [see, for instance, Hamilton and Kim (2002),
Bernanke, Reinhart and Sack (2004), Favero, Kaminska and Sodestrom (2005), Kim and Wright
(2005), Ang, Piazzesi and Wei (2006), Bikbov and Chernov (2006), Dewachter and Lyrio (2006),
Dewachter, Lyrio and Maes (2006), Rosenberg and Maurer (2007), Rudebusch and Wu (2008),
Chernov and Mueller (2008), Cochrane and Piazzesi (2008), Joslin, Priebsch and Singleton (2010)
and the survey proposed by Rudebusch, Sack and Swanson (2007)], some have indicated that the
reason behind the coexistence of increasing f.f.r. and stable long-rates is found in a reduction of
the term premium, that offsets the upward revision to expected future short rates induced by a
restrictive monetary policy. Our analysis, which is based on a reliable measure of the term premia
(on the long-term bond) and also on a decomposition of that measure in terms of forward term
premia and expected risk premia, confirms the conclusion of that part of the literature.

The second application deals with the relationship between term premia (on the long-term
yield) and future economic activity. Some works [Hamilton and Kim (2002), and Favero, Kaminska
and Sodestrom (2005)] find a positive relation between term premium and economic activity. In
contrast, Ang, Piazzesi and Wei (2006), Rudebusch, Sack and Swanson (2007), and Rosenberg
and Maurer (2007) find that the term premium has no predictive power for future GDP growth.
Practitioner and private sector macroeconomic forecaster views agree on the decline of the term
premium behind the conundrum but suggest a relation of negative sign between term premium
and economic activity [see Rudebusch, Sack and Swanson (2007), and the references there in, for
more details]. This negative relationship is usually explained by the fact that a decline of the term
premium, maintaining relatively low and stable long rates, may stimulate aggregate demand and
economic activity, and this explanation implies a more restrictive monetary policy to keep stable
prices and the desired rate of growth. Therefore, policy makers seems to have no precise indication
about the stimulating or shrinking effect of term premia on gross domestic product (GDP) growth.

In the present paper we provide a dynamic analysis of the relationship between the spread and
future economic activity. In addition, we are interested in disentangling the effects of a rise of the

uncertainty of the investor [like, for instance, in L.P. Hansen and Sargent (2007, 2008)]. It is a procedure adopted
by the econometrician to improve the out-of-sample forecast performances of the model.
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spread due to an increase of its expectation part, and a rise of the spread caused by an increase
of the term premium. For that purpose, we propose a new approach based on a generalization of
the Impulse Response Function, called New Information Response Function (NIRF) [see Jardet,
Monfort and Pegoraro (2009b)]. This approach allows us to measure the dynamic effects of a new
(unexpected) information at date t = 0, regarding any state variables, any yield to maturity or any
linear filter of that variables, on any variables. Like in most studies found in the literature, we find
that an increase of the spread implies a rise of the economic activity. We find similar results when
the rise of the spread is generated by an increase of its expectation part. In contrast, an increase of
the spread caused by a rise of the term premium induces two effects on future output growth: the
impact is negative for short horizons (less than one year), whereas it is positive for longer horizons.
Therefore, our results suggest that the ambiguity found in the literature regarding the sign of the
relationship between the term premium and future activity, could come from the fact that the sign
of this relationship is changing over the period that follows the shock. In addition, we propose an
economic interpretation of this fact.

The paper is organized as follows. Section 2 proposes a motivation for the use of averaging
estimators based on their prediction performances. Section 3 describes the data and Section 4
introduces the Near-cointegration methodology, that is, describes the cointegration analysis of
Yt = (rt, Rt, Gt)

′, specifies the CVAR(3) model for Xt = (rt, St, gt)
′, stresses the discontinuity

problem and presents its solution based on a averaging estimators. Moreover, we present the
empirical performances of the NCVAR(3) model in terms of out-of-sample forecast of the short rate
and long rate, and we compare them to some competing model in the literature. Section 5.1 shows
how the Near-cointegrated model can be completed by a no-arbitrage affine term structure model,
and Section 5.2 presents the risk sensitivity parameter estimates, along with the risk sensitivity
parameter estimates of the other competing models considered in the empirical analysis. We study
in Section 5.3 the empirical performances of our model in terms of in-sample fit of the yield curve,
yield curve out-of-sample forecasts and Campbell-Shiller regressions. In Section 6, we present
decompositions of the term premia in terms of forward and expected risk term premia, and we
show how these measures can be used to accurately analyse the recent ”conundrum” episode.
Section 7 presents the impulse response analysis based on the notion of New Information Response
Function and Section 8 concludes. Appendix 1 derives the yield-to-maturity formula, in Appendix
2 we gather additional tables and graphs, while in Jardet, Monfort and Pegoraro (2010) we provide
an online appendix with further details and additional results about state dynamics specification,
in-sample fit of the yield curve and out-of-sample forecast performances.

2 Persistence, bias, prediction and averaging estimators

2.1 The ”discontinuity” and the ”bias” problems

Many macroeconomic time series are persistent, that is highly serially autocorrelated. It is the
case, in particular, for interest rates which will be central variables of this study. Because of the
persistence property of these time series, we will necessarily have to face two important problems,
namely the ”discontinuity” problem and the ”bias” problem. The discontinuity problem is the
huge difference between predictions, in particular long-run predictions, based on models taking
into account unit root and cointegration constraints and on unconstrained models. In the former
class of models the predictions stay close to actual values whereas in the latter class the forecasts
move toward the marginal mean [see Cochrane and Piazzesi (2008) and Section 3 of the present
paper]. The bias problem is a very old one. Kendall (1954) stressed that the OLS estimator of the
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Figure 1:
PDF of the OLS estimators of ρ with sample size T = 160.
ρ = 0.91 (short dashes), 0.95 (dashes), 0.99 (solid line).

correlation ρ in the AR(1) model is severely downward biased in finite sample, especially when this
correlation is close to one, and he proposed an approximation of this bias. Since this pioneering
paper, many other studies have considered this problem [see e.g. Marriott and Pope (1954), Evans
and Savin (1981) and Shaman and Stine (1988)]. In the following sections we will present some
simulation studies, in order to evaluate these problems, and we will propose some possible solution
[see Jardet, Monfort and Pegoraro (2009a) for details].

2.2 Finite sample distribution and bias

There exists a large literature which considers the behavior of the OLS estimator ρ̂T of the autore-
gressive coefficient ρ when ρ is close to one, by introducing various ”near to unit root asymptotics”.
Although this literature provides interesting theoretical results, it fails to give a clear message to
practitioners because these results heavily depend on elements which are difficult to take into
account in practice, like the behavior of the initial values (of the AR process) or the rate of conver-
gence [see Elliott (1999), Elliott and Stock (2001), Muller and Elliott (2003), Giraitis and Phillips
(2006), Magdalinos and Phillips (2007) and Andrews and Guggenberger (2007)]. So, to get a precise
idea of the finite sample behavior of ρ̂T , we use simulation techniques in the simple AR(1) model
yt = µ(1− ρ)+ ρyt−1 + εt, t ∈ {1, . . . , T}, where the εt’s are independently distributed as N(0, σ2),
y0 = µ and T = 160, which is a typical sample size in empirical studies based on quarterly data
(a bivariate model will be also considered in Section 2.3). The empirical pdf of the OLS estimator
ρ̂T of ρ (which does not depend on µ and σ2) are given in figure 1 for ρ ∈ {0.91, 0.95, 0.99}.

These distributions are clearly left skewed and far from the asymptotic distribution N(ρ, (1 −
ρ2)/T ). If we focus on the bias bT (ρ) = Eρ(ρ̂T ), we can first evaluate it by the Kendall’s approxi-
mation −(1 + 3ρ)/T , but the exact bias presented in figure 2 is even much worse when ρ is close
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Figure 2:
Bias of the OLS estimator ρ̂T with sample size T = 160.

Exact (solid line), Spline approximation (dashes), Kendall’s approximation (short dashes).

to one. For instance, for ρ = 0.99 the Kendall’s approximation of the bias is 0.025 while the true
value is 0.034. It is clear that this bias may have dramatic consequences for predictions since the
behavior of ρq and (ρ− 0.034)q are very different for ρ close to one and q large (for instance, when
q = 20 quarters). Figure 2 also gives a quadratic spline approximation of bT (ρ) which will be useful
in Section 2.3.

2.3 Prediction performances of bias-corrected and averaging estimators

It seems natural, given the severe finite sample bias of the OLS estimator ρ̂T and the focus of this
paper on interest rates forecasts, to consider different bias-corrected estimators and to evaluate
their prediction performances. The bias-corrected estimators considered here are:

i) the indirect inference estimator [see Gourieroux, Monfort and Renault (1993), Gourieroux
and Monfort (1996) and Gourieroux, Touzi and Renault (2000)] defined by:

ρ̂I
T = e−1

T (ρ̂T ) , (1)

where eT (ρ) = Eρ(ρ̂T ) = ρ+ bT (ρ).

ii) the bootstrap bias-corrected estimator [see Hall (1997), chap. 1] defined by:

ρ̂B
T = 2ρ̂T − eT (ρ̂T ) . (2)

iii) the Kendall’s estimator:

ρ̂K
T = ρ̂T −

(
−

1 + 3ρ̂T

T

)
=

(
1 +

3

T

)
ρ̂T +

1

T
. (3)
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iv) the median-unbiased estimator [see Andrews (1993)]:

ρ̂M
T = m−1

T (ρ̂T ) , (4)

where mT (ρ) is the median of ρ̂T when ρ is the true value.

The estimators ρ̂I
T , ρ̂B

T , and ρ̂K
T can be shown to be mean-unbiased at order T−1, and ρ̂M

T is
exactly median-unbiased. Figure 3 shows these estimators as functions of ρ̂T and we see that the
more important correction is provided by ρ̂I

T . In practice, all these estimators will be truncated at
one. We will also consider another kind of estimators, namely the class of ”averaging estimators”
proposed by B. Hansen (2009) and defined, in our context, by:

ρ̂A
T (λ) = (1 − λ) + λρ̂T , 0 ≤ λ ≤ 1 . (5)

Figure 3:
Bias-corrected estimators with sample size T = 160.

Indirect Inference (upper solid line), Bootstrap (dashes), Median (short dashes),
Kendall (dots and dashes), OLS (lower solid line).

Figure 4 shows the bias of these various estimators when ρ = 0.99 (based on 5×105 simulations)
and we see that, among the bias-corrected estimators, the best correction is provided by the indirect
inference one, which is in line with the results given in Gourieroux, Phillips and Yu (2007) and
Phillips and Yu (2009). Figure 5 provides the root mean square error (RMSE) of these estimators
and it is clear that the optimal averaging estimator (obtained for λ ≈ 0.15) is much better than
all other ones: ρ̂A

T (0.15) provides a RMSE at least five times smaller than the one obtained by the
bias-corrected estimators and nine times smaller than the OLS estimator.

Nevertheless, since we are mainly interested in forecast performances, we also compare these
estimators in terms of root mean squared forecast errors (RMSFE) ratio, computed again from
5×105 estimations and out-of-sample predictions. Each ratio is calculated by dividing the RMSFE
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of each estimator by the one obtained from the true model. Figures 6 and 7 provide these RMSFE
ratios for prediction horizons q = 1 and q = 20, respectively. The performance of the optimal
averaging estimator (obtained with λ ≈ 0.25 both for q = 1 and q = 20) is by far the best one:
the percentage of increase of the RMSFE (compared to the one obtained from the true model) is
about four times smaller than for the bias-corrected estimators and six times smaller for the OLS
estimator.

Similar conclusions are obtained for different values of T and ρ [see Jardet, Monfort and Pego-
raro (2009a)] and these results confirm those obtained by B. Hansen (2009) short-run predictions
using a near to unit root approach in an univariate AR model.

Let us also consider a ”near-cointegrated” bivariate model, defined by:

{
y1t = (1 − ρ) + ρy1,t−1 + ε1t

y2t = 2y1t + ε2t
(6)

with ρ ∈ {0.97, 0.98, 0.99}, where ε1t and ε2t are independent standard Gaussian white noises. In
order to define an averaging estimator we consider, on the one hand, an unconstrained VAR(1)
model

yt = ν +Ayt−1 + ηt , (7)

where the unconstrained OLS estimators of ν and A are denoted by ν̂
(u)
T and Â

(u)
T and, on the

other hand, we consider an error correction model imposing one cointegration relationship:

∆yt = µ+ α(y1,t−1 − βy2,t−1) + ξt , (8)

and the associated constrained estimators of ν and A:

ν̂
(c)
T = µ̂T and Â

(c)
T = I + α̂T (1,−β̂T ) ,

where β̂T is obtained by regressing y1t on y2t, while µ̂T and α̂T are obtained by regressing ∆yt on
(1, y1,t−1 − β̂T y2,t−1).

The class of averaging estimators is:

ν̂T (λ) = (1 − λ)ν̂
(c)
T + λν̂

(u)
T ,

ÂT (λ) = (1 − λ)Â
(c)
T + λA

(u)
T , 0 ≤ λ ≤ 1 ,

(9)

and the predictions of yT+h at T are :

ŷT,h(λ) = [I − ÂT (λ)]−1[I − Âh
T (λ)]ν̂T (λ) + Âh

T (λ)yT . (10)

Figures 8 to 11 provide the RMSFE ratios for y1 and y2 when q = 1 and q = 20, each figure
providing these ratios as functions of λ and ρ ∈ {0.97, 0.98, 0.99}. We see that we still have a
clear minimum for a λ between 0 and 1, that this minimum depends on ρ and that for q = 20 the
minimum values of λ are similar for y1 and y2. However, for q = 1 these values are different and,
therefore, the choice of the variable of interest have some impact.

Finally, all these examples suggest the following strategy that will be adopted in this paper. If
we denote by yT = (y1, . . . , yT ) the observations and by g(yt), t ∈ {1, . . . , T} a variable of interest
that we want to predict accurately at horizon h, the strategy we suggest is as follows :
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Figure 4:
Bias with ρ = 0.99 and T = 160.
ρ̂A

T (λ) (solid curve), ρ̂I
T (solid line),

ρ̂B
T (dashes), ρ̂M

T (short dashes).

Figure 5:
RMSE with ρ = 0.99 and T = 160.
ρ̂A

T (λ) (solid curve), ρ̂I
T (solid line),

ρ̂B
T (dashes), ρ̂M

T (short dashes).

Figure 6:
RMSFE ratio with ρ = 0.99, T = 160, q = 1.

ρ̂A
T (λ) (solid curve), ρ̂I

T (solid line),
ρ̂B

T (dashes), ρ̂M
T (short dashes).

Figure 7:
RMSFE ratio with ρ = 0.99, T = 160, q = 20.

ρ̂A
T (λ) (solid curve), ρ̂I

T (solid line),
ρ̂B

T (dashes), ρ̂M
T (short dashes).

• define a sequence of increasing windows {1, . . . , t}, with t ∈ {t0, . . . , T − q};

• for each t compute the unconstrained estimator θ̂
(u)
t and the constrained estimator θ̂

(c)
t of the

parameter θ;

• for each t compute the class of averaging estimators θ̂t(λ) = (1 − λ)θ̂
(c)
t + λθ̂

(u)
t , the corre-
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sponding predictions ĝt,q(λ) of g(yt+q) and the prediction error g(yt+q) − ĝt,q(λ);

• compute QT (λ, q) =

T−q∑

t=t0

[g(yt+q) − ĝt,q(λ)]2;

• calculate λ∗(q) = argminλ∈[0,1]QT (λ, q);

• compute θ̂T (λ∗(q)).

Also note that it would be possible to minimize a criterion taking into account several variables
of interest and/or several prediction horizons.

3 Description of the Data

The data set that we consider in the empirical analysis contains 174 quarterly observations of U. S.
zero-coupon bond yields, for maturities 1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36 and 40 quarters, and
U. S. real GDP, covering the period from 1964:Q1 to 2007:Q2. The yield data are obtained from
Gurkaynak, Sack, and Wright (2007) [GSW (2007), hereafter] data base and from their estimated
Svensson (1994) yield curve formula. In particular, given that GSW (2007) provide interest rate
values at daily frequency, each observation in our sample is given by the daily value observed at
the end of each quarter. The same data base is used by Rudebusch, Sack, and Swanson (2007)
[RSS (2007), hereafter] in their study on the implications of changes in bond term premiums on
economic activity. Observations about real GDP are seasonally adjusted, in billions of chained
2000 dollars, and taken from the FRED database (GDPC1).

In the data base they provide, GSW (2007) do not propose (over the entire sample period,
ranging from 1961 to 2007), yields with maturities shorter than one year. Moreover, they calculate
yields with 8, 9 and 10 years to maturity only after (mid-)August, 1971. Our construction of the
interest rate time series with 3, 6 and 9 months to maturity, based on the Svensson (1994) formula
estimated by GSW (2007), is justified by the fact that they estimate this formula using Treasury
notes and bonds with at least three months to maturity. The construction of the three long-term
interest rate time series before 1971 is justified [as indicated by RSS (2007, footnote 26), for the
10-years yield-to-maturity] by the fact that (even if there were few bond observations with these
maturities), the reconstructed time series are highly correlated with other well known and widely
used time series [like, for instance, the FRED interest rates data base (Treasury Constant Maturity
interest rates), or the McCulloch and Kwon (1993) data base]. Moreover, in order to be coherent
with the literature and, in particular, with the majority of the papers concerned with the predictive
ability of the term spread for GDP [see, for instance, Fama and Bliss (1987), and Ang, Piazzesi
and Wei (2006)], we have decided to start the sample period in 1964.

Summary statistics about the yields (expressed on a quarterly basis), the real log-GDP and its
first difference are presented in Table 1. The average yield curve is upward sloping, and interest
rates with larger standard deviation, skewness and kurtosis are those with shorter maturities.
Furthermore, yields are highly autocorrelated with an autocorrelation which is, for any given lag,
increasing with the maturity and, for any given maturity, decreasing with the lag. The high
persistence in log-GDP strongly reduces when we move to its first difference (the one-quarter GDP
growth rate).

The short rate (rt) and the long rate (Rt) used in this paper are, respectively, the 1-quarter
and 40-quarter yields, and the log-GDP at date t is denoted by Gt. These three variables, collected
in the vector Yt, constitute the information that investors use to price bonds.
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Figure 8:
RMSFE ratio for y1 when T = 160, q = 1.

ρ = 0.97 (solid), ρ = 0.98 (dashes),
ρ = 0.99 (short dashes).

Figure 9:
RMSFE ratio for y2 when T = 160, q = 1.

ρ = 0.97 (solid), ρ = 0.98 (dashes),
ρ = 0.99 (short dashes).

Figure 10:
RMSFE ratio for y1 when T = 160, q = 20.

ρ = 0.97 (solid), ρ = 0.98 (dashes),
ρ = 0.99 (short dashes).

Figure 11:
RMSFE ratio for y2 when T = 160, q = 20.

ρ = 0.97 (solid), ρ = 0.98 (dashes),
ρ = 0.99 (short dashes).

4 Near-Cointegration Analysis

The purpose of this section is to present the first two steps of the modelling procedure we follow
to specify and implement the Near-Cointegrated VAR(p) class of affine term structure models. In
particular, in Section 4.1, we apply a cointegration analysis to the autoregressive dynamics of the
vector Yt = (rt, Rt, Gt)

′, suggested by classical and efficient unit root tests presented in Section
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Yields 1-Q 4-Q 8-Q 12-Q 16-Q 20-Q 40-Q Gt gt

Mean 0.015 0.016 0.016 0.017 0.017 0.017 0.018 8.709 0.008
Std. Dev. 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.385 0.008
Skewness 1.029 0.846 0.842 0.863 0.886 0.909 0.982 -0.025 -0.085
Kurtosis 4.691 4.136 4.008 3.880 3.782 3.720 3.643 1.830 4.487
Minimum 0.002 0.003 0.003 0.004 0.005 0.006 0.009 7.990 -0.020
Maximum 0.040 0.039 0.039 0.039 0.038 0.038 0.037 9.352 0.039
ACF(1) 0.910 0.932 0.940 0.946 0.951 0.955 0.959 0.981 0.268
ACF(4) 0.760 0.788 0.805 0.817 0.826 0.831 0.842 0.925 0.093
ACF(8) 0.513 0.581 0.627 0.658 0.679 0.693 0.717 0.853 -0.167
ACF(12) 0.335 0.426 0.494 0.538 0.566 0.585 0.616 0.785 -0.170
ACF(16) 0.240 0.307 0.365 0.404 0.430 0.448 0.482 0.718 0.004
ACF(20) 0.224 0.252 0.283 0.308 0.325 0.336 0.356 0.655 0.127

Table 1: Summary Statistics on U.S. Quarterly Yields, log-GDP (Gt) and one-quarter GDP growth
rate (gt) observed from 1964:Q1 to 2007:Q2 [Gurkaynak, Sack and Wright (2007) data base].
ACF(k) indicates the empirical autocorrelation with lag k expressed in quarters.

4.1.1 (first step). This econometric procedure lead us to a vector error correction model (with
two lags) for ∆Yt, that we can write as a Cointegrated VAR(3) for Xt = (rt, St, gt)

′, the spread
St = Rt − rt being the (only) cointegrating relationship (Section 4.1.2).

This specification has the advantage to explain the persistence in interest rates better than the
unconstrained counterpart given by a VAR(3) model for Xt, but has two important drawbacks.
First, it assumes the non-stationarity of interest rates, while a wide literature on nonlinear models
indicates that they are highly persistent but stationary [see, for instance, Gray (1996) and Ang and
Bekaert (2002), and the references therein]. Second, as indicated by Cochrane and Piazzesi (2008),
interest rate forecasts over long horizons, coming from alternative CVAR and VAR specifications,
have very different behaviors because of the discontinuity problem induced by the presence or not
of unit roots. As a consequence, important differences are found about the term premia extraction.
The methodology we follow to solve this problem is presented in Section 4.2. More precisely, this
discontinuity problem is discussed in Section 4.2.1 and the methodology we follow to solve it is
presented in Section 4.2.2 (second step). The third step of the modelling procedure is presented in
Section 5, where we introduce a parametric exponential-affine Stochastic Discount Factor (SDF),
we obtain the yield-to-maturity formula of the Near-Cointegrated class of Affine Term Structure
Models, and we estimate risk sensitivity parameters by Constrained NLLS (CNLLS).

4.1 A Vector Error Correction Model of the State Variables

4.1.1 Unit Root Tests

The first step of our modelling start studying the presence of unit roots in the short rate, long
rate and real log-GDP time series. We apply not only classical unit root tests, like the Augmented
Dickey-Fuller (ADF) tests (t test and F test), and the Phillips-Perron (PP) test, but also the
(so-called) efficient unit root tests proposed in the paper of Elliott, Rothenberg and Stock (1996)
[Dickey-Fuller test with GLS detrending (denoted Dickey-Fuller GLS), and Point-Optimal test],
and in the work of Ng and Perron (2001) (denoted Ng-Perron). It is well known that ADF and PP
tests have size distortion and low power against various alternatives, and against trend-stationary
alternatives when conventional sample size are considered [see, for instance, De Jong, Nankervis,
Savin and Whiteman (1992a, 1992b), and Schwert (1989)]. For these reasons, we verify the presence
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of unit roots using also these efficient unit root tests which have more power against persistent
alternatives, like the time series we analyze [see Table 1].

The results are the following. With regard to the short rate and the long rates, Table a.i) in
Jardet, Monfort and Pegoraro (2010) shows that for both series, and for all tests, we accept (at
5% or 10% level) the hypothesis of unit root without drift. As far as the real log-GDP level is
concerned, the hypothesis of unit root is accepted at 10 % level and for every test when a constant
is included in the test regression [see left panel of Table a.ii) in Jardet, Monfort and Pegoraro
(2010)]. When, also a linear time trend is included in the test regression (see Table a.ii), right
panel), the hypothesis of unit root in the time series Gt is rejected at 1 % level by the ADF test,
and at the 5 % level by the PP test. Nevertheless, when we consider the efficient unit root tests,
the hypothesis of unit root is always accepted at 10% level and for each test. Given the better
power properties of efficient unit root tests, with respect to ADF and PP tests, we are lead to
accept the hypothesis of unit root in Gt. We have also applied unit root tests to the components
of ∆Yt, and we always reject the unit root hypothesis.

The results presented above suggest that short rate, long rate and log-GDP are I(1) time series,
thus, Yt is a I(1) process [in the Engle and Granger (1987) sense, that is, a vectorial process in
which all scalar components are integrated of the same order]. The purpose of the next section is to
search for long-run equilibrium relationships (common stochastic trends) among the components
of Yt, using cointegration techniques.

4.1.2 Cointegration Analysis and State Dynamics Specification

We study the presence of cointegrating relationships among the short rate, long rate and log-
GDP time series using the (VAR-based) Johansen (1988, 1995) Trace and Maximum Eigenvalue
tests. First, we assume that the I(1) vector Yt = (rt, Rt, Gt)

′ can be described by a 3-dimensional
Gaussian VAR(p) process of the following type:

Yt = ν +

p∑

j=1

ΦjYt−j + εt , (11)

where εt is a 3-dimensional Gaussian white noise with N (0,Ω) distribution [Ω denotes the (3 × 3)
variance-covariance matrix]; Φj, for j ∈ {1, . . . , p}, are (3× 3) matrices, while ν is a 3-dimensional
vector. On the basis of several lag order selection criteria (and starting from a maximum lag of
p = 4, in order to make the following estimation of risk-neutral parameters feasible), the lag length
is selected to be p = 3 [see Table a.iii) in Jardet, Monfort and Pegoraro (2010)], and the OLS
estimation of the (unrestricted) VAR(3) model is presented in Table A.1. Then, we write the
Gaussian VAR(3) model in the (equivalent) vector error correction model (VECM) representation:

∆Yt = ΠYt−1 +

2∑

j=1

Γj∆Yt−j + ν + εt ,

with Π = −
[
I3×3 −

∑3
j=1 Φj

]
and Γj = −

3∑

i=j+1

Φi ,

(12)

and we determine the rank r ∈ {0, 1, 2, 3} of the matrix Π using the (likelihood ratio) trace and
maximum eigenvalue tests. The rank(Π) gives the number of cointegrating relations (the so-called
cointegrating rank, that is, the number of independent linear combinations of the variables that are
stationary), and (3− r) the number of unit roots (or, equivalently, the number of common trends).
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The results, presented in the first part of Table A.2, indicate that both tests accept the presence of
one cointegrating relation (r = 1) at 5 % level, and, thus, they decide for the presence of two unit
roots in the vector Yt. Consequently, we can write Π = αβ′, where α and β are (3× 1) vectors (the
second part of Table A.2 provides the maximum likelihood parameter estimates of these matrices),
and β′Yt will be I(0) [see Engle and Granger (1987) and Johansen (1995)].

Observe that, the cointegration analysis is based on the model specification (12), in which the
unrestricted constant term ν induces a linear trend in Yt. Given the decomposition ν = αµ + γ
(with µ a scalar determined so that the error correction term has a sample mean of zero, and γ
a (3 × 1) vector), we have tested the null hypothesis H0 : ν = αµ (the intercept is restricted to
lie in the α direction) using the χ2(2)-distributed (under H0) likelihood ratio statistic l̃r taking
the value 13.9354 which is larger than the chi-square 1 % quantile (with two degrees of freedom)
χ2

0.01(2) = 9.21. Consequently, the null hypothesis is rejected, which implies a drift in the common
trends5.

Moreover, in order to achieve economic interpretability of the cointegrating relation, we have
tested the null hypothesis H0 : β = (−1, 1, 0)′ (the spread between the long and the short rate is
the cointegrating relation) using the likelihood ratio statistic lr∗ taking the value6 3.276, which is
smaller than the chi-square 5 % quantile (with two degrees of freedom) χ2

0.05(2) = 5.99. Conse-
quently, the null hypothesis is accepted, and, therefore, the spread provides the long-run equilibrium
relationship7. Least squares parameter estimates of model (12), when Π = αβ′, with β = (−1, 1, 0)′,
and ν = αµ + γ, are presented in Table A.3. Observe that, the same kind of model specification
(a VECM with two lags in differences, one cointegrating relation given by the spread and an un-
restricted constant term) is obtained when the 5-years yield is considered as the long rate, when
the analysis is applied to the same sample period (1964:Q1 - 2001:Q4), or the same data base8, as
in APW (2006) [the results are available upon request from the authors].

In order to propose a direct comparison between the performances of our model (under the
historical and the risk-neutral probability) and the one proposed by APW (2006), we rewrite
model (12) in terms of the 3-dimensional state process Xt = (rt, St, gt)

′, with St = Rt − rt and
gt = Gt −Gt−1 :

Xt = ν̃ +

3∑

j=1

Φ̃jXt−j + ηt ,

with ν̃ = Aν , A =




1 0 0
−1 1 0
0 0 1


 ,

(13)

5The likelihood ratio statistic is l̃r = −T
∑

3

k=2
log[(1− λ̃k)/(1−λk)], where (λ̃2, λ̃3) and (λ2, λ3) are, respectively,

the two smallest eigenvalues associated to the maximum likelihood estimation of the restricted (under H0) and
unrestricted model (12). The estimation of the two models leads to (λ̃2, λ̃3) = (0.0962431, 0.032958) and (λ2, λ3) =
(0.039789, 0.008368).

6The likelihood ratio statistic is lr∗ = −T log[(1 − λ∗

1)/(1 − λ1)] (χ2(2)-distributed under the null), where λ∗

1 is
the largest eigenvalue associated to the maximum likelihood estimation of model (12) under H0.

7Many authors have found cointegration between short-term and long-term interest rates, and the existence of
long-run equilibrium relationships given by the spread [see Campbell and Shiller (1987), Engle and Granger (1987),
Hall, Anderson and Granger (1992)].

8We are very grateful to Andrew Ang, Monika Piazzesi and Min Wei for providing us the data set.
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Φ̃1 = Γ̃1 + α̃ (0, 1, 0) +B , Φ̃2 = Γ̃2 − Γ̃1B , Φ̃3 = −Γ̃2B ,

Γ̃i = AΓiA
−1 for i ∈ {1, 2} , B =




1 0 0
0 1 0
0 0 0


 , α̃ = Aα ,

and where ηt is a 3-dimensional Gaussian white noise with N (0, Ω̃) distribution and Ω̃ = ΣΣ′ =
AΩA′ [the parameter estimates are presented in Table A.4, while the estimates of the APW (2006)
state dynamics are organized in Table A.5], where Σ is assumed to be lower triangular. Note that
the third column of Φ̃3 is a vector of zeros. This Cointegrated VAR (3) model [CVAR(3), hereafter]
can equivalently be represented in the following 9-dimensional VAR(1) form:

X̃t = Φ̃X̃t−1 + e1[ν̃ + ηt] ,

where Φ̃ =




Φ̃1 Φ̃2 Φ̃3

I3×3 03×3 03×3

03×3 I3×3 03×3


 , X̃t = (X ′

t,X
′

t−1,X
′

t−2)
′ ,

(14)

and where e1 is a (9 × 3) matrix equal to (I3, 03, 03)
′.

4.2 Near-Cointegrated VAR(p) Dynamics

4.2.1 A Discontinuity Problem

It is well known that moving from a stationary environment to a non-stationary one, implies various
types of discontinuity problems, in particular in term of asymptotic behavior of the estimation or
testing procedure (see e.g. Chan and Wei (1987), Phillips (1987, 1988), Phillips and Magdalinos
(2007)) or in term of prediction (see e.g. Stock (1996), Kemp (1999), Diebold and Kilian (2000),
Elliott (2006)). In the context of macro-finance VAR modelling, Cochrane and Piazzesi (2008) also
noted very different long term interest rates predictions depending whether unit roots constraints
are imposed or not (see figures 12 and 13). In the VAR context this discontinuity simply comes
from the fact that the long run behavior of predictions is driven by roots of the determinant of the
autoregressive matrix polynomial and that this behavior becomes very different as soon as at least
one unit root is present.

As an illustration, we consider the q-step ahead short rate forecasts obtained from the CVAR(3)
and an unconstrained VAR(3) model for Xt (see Table A.6 for its parameter estimates). The
forecasts are displayed in figures 12 and 13, respectively, for q = 1, 4, 8, 12, 16 and 20 quarters. We
observe that the forecasts of the short rate differ sharply depending on the considered model. More
specifically, with a VAR(3) model, forecasts tend to quickly converge to the unconditional mean
of the short rate as far as the forecast horizon increases. In contrast, when a unit root constraint
is imposed [like in the CVAR model of Joslin, Priebsch and Singleton (2010)], forecasts obtained
at all horizons are very similar, and very close to the present short rate. This sharp difference is
due to the fact that model (13) imposes a unit root in the determinant of the autoregressive lag
operator, whereas in the unconstrained VAR(3) specification the largest root is found to be equal
to 0.93 (see Table A.6).
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Figure 12:
q-step ahead short rate forecasts from the CVAR(3) model

q = 1, 4, 8, 12, 16, 20, 40 quarters.

4.2.2 Handling the Discontinuity Problem

The discontinuity problems can be tackled in different ways. First, it would be possible to try to
extend to macrofinance models the switching regime approach which has been used successfully in
pure finance models [see Bansal and Zhou (2002), Bansal, Tauchen and Zhou (2004), Dai, Singleton
and Yang (2007) and Monfort and Pegoraro (2007)] and thus checking how persistence properties
are transformed within each regime [see Evans (2003) and Ang, Bekaert and Wei (2008)]. Second, a
bayesian approach would also be interesting provided that a sensitivity of the results to the choice
of the prior (informative prior, Jeffreys or flat prior) is taken into account, since the behavior of the
prior near the unit root is an important issue [see Sims and Uhlig (1991), Uhlig (1994)]. Third, we
could try to use fractionally integrated processes and the generalized notion of cointegration in this
framework and to cope with technical problems appearing in this kind of approach, in particular
the possible slow rate of convergence of some estimators [see, among the others, Geweke and Porter-
Hudak (1983), Sowell (1992), Agiakloglou, Newbold and Wohar (1993), Robinson (1995)]. Fourth,
we could adopt the shifting endpoint methodology of Kozicki and Tinsley (2001a, 2001b).

In this paper we adopt a fifth approach resting on the averaging estimators considered in
Section 2 and proposed by B. Hansen (2009). Hansen’s results have been derived in a univariate
and one-step-ahead framework and their generalization to a multivariate and multi-horizon setting
raise difficult technical problems, in particular the multiplicity of the parameter paths leading to
the constrained VAR at rates proportional to 1/T . So we have decided to adopt a pragmatic
approach and, extrapolating the Monte Carlo results of Section 2, we have checked empirically
whether the out-of-sample mean square forecast errors, when forecasting some variable of interest
at various horizons, are improved when using an average estimator based on the VAR(3) and
CVAR(3) models. As explained below, our empirical findings thoroughly confirm Hansen (2009)’s
theoretical results.
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Figure 13:
q-step ahead short rate forecasts from the VAR(3) model

q = 1, 4, 8, 12, 16, 20, 40 quarters.

4.2.3 Averaging Estimations and Extraction of Short Rate Expectations

The Near-Cointegrated VAR(3) class of models for the state vector Xt is obtained in the fol-
lowing way: once we have estimated by OLS the parameters θvar = (ν̄, Φ̄1, Φ̄2, Φ̄3) (say) of the
unconstrained VAR(3) model (parameter estimates are presented in Table A.6) and the parame-
ters θcvar = (ν̃, Φ̃1, Φ̃2, Φ̃3) of the CVAR(3) model for Xt (see Table A.4), the averaging estimators
specifying the Near-Cointegrated VAR(3) class of models is given by:

θnc = θnc(λ) = λθvar + (1 − λ)θcvar , that is,

ν(λ) = λ ν̄ + (1 − λ) ν̃ , Φi(λ) = λ Φ̄i + (1 − λ) Φ̃i , i ∈ {1, 2, 3} .
(15)

with λ ∈ [0, 1] a free parameter selected to minimize a criterion of interest (for each autoregressive
model, the conditional variance-covariance matrix is estimated from model residuals). In particular,
given our aim to provide a reliable measure of the term premia on long term bonds, we focus
on minimizing the prediction error of the associated expectation part. This choice could leave
some uncertainty about the selected variable of interest and, thus, about the selected value of the
averaging parameter specifying the near-cointegrated factor dynamics. We will see in Section 5.3.1
that, if we select λ, together with risk sensitivity parameters, by minimizing the yield curve fitting
error, we find (in practice) for λ the same value as the one obtained with our preferred criterion.

Let us present now the criterion we consider to select the value of the averaging parameter.
Given at date t a yield with residual maturity h, denoted by Rt(h), we define its expectation term
as EXt(h) = − 1

h
logB∗

t (h) with B∗

t (h) = Et[exp(−(rt + rt+1 + ... + rt+h))]. The associated term
premium is given by TPt(h) = Rt(h) − EXt(h) (see Section 6 for a detailed presentation). For a
given maturity h, the parameter λ = λ(h) (say) is selected as the solution of the following problem:

λ∗(h) = arg min
λ∈[0,1]

∑

t

[B̃∗

t (h) − B̂∗

t (h, λ)]2 (16)

where, for each date t and residual maturity h, B̃∗

t (h) is the observed realization of exp(−rt −
...− rt+h−1) while B̂∗

t (h, λ) is the NCVAR(3) model implied B∗

t (h), that is the model’s forecast of
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exp(−rt − ... − rt+h−1). The out-of-sample forecasts are performed during the period 1990:Q1 -
2007:Q2, using an expanding window for the estimation of models VAR(3) and CVAR(3). More
precisely, we first estimate the parameters θvar and θcvar over the period 1964:Q1 to 1989:Q4 and
we calculate B̂∗

t (h, λ) with t =1989:Q4. Then, at each later point in time t, we re-estimate θvar and
θcvar taking into account the new observation and, in doing so, we replicate the typical behavior of
an investor that incorporates new information over time (see also Favero, Kaminska and Sodestrom
(2006)).

In table 2 we compare, for h ranging from 2 to 40 quarters, the RMFSE obtained from the
NCVAR(3) model, with λ∗(h) solution of (16), with those obtained by the CVAR(3), VAR(3),
VAR(1) and AR(1) (based on the short rate) models. With regard to the NCVAR mechanism,
when λ∗(h) = 0, the optimal forecasts of B∗

t (h) are obtained from the CVAR(3) model, while, when
λ∗(h) = 1 the optimal forecasts come from the VAR(3) model. The case 0 < λ∗(h) < 1 corresponds
to predictions of B∗

t (h) computed with the NCVAR(3) model, with a vector of parameters given
by θ∗nc(h) = λ∗(h)θvar + (1− λ∗(h))θcvar . We observe that, for h > 4, the NCVAR(3) specification
outperforms the VAR(3) and CVAR(3) models: there exist a λ∗(h), strictly between 0 and 1,
such that the average of the estimated parameters in the CVAR(3) and VAR(3) models improves
the forecasts of B∗

t (h) [see figure 14]. Even more, the NCVAR(3) model outperforms the (most
competing) VAR(1) and AR(1) models (except for h = 2 for the AR(1) model); in particular,
for long maturities, that is for short rate forecasts over long horizons, our model reduces their
out-of-sample RMSFEs of 20-30%.

Since, in this work, one of the main objectives is to extract the term premium from the 40-
quarters long term bond, we will assume that the NCVAR(3) state dynamics, driving term structure
shapes over time and maturities, be specified by a λ∗ = λ∗(40) = 0.2617, that is we assume:

Xt = ν(λ∗) +

p∑

j=1

Φj(λ
∗)Xt−j + ζ∗t , (17)

where ζ∗t is a 3-dimensional Gaussian white noise with N (0,Ω∗) distribution and Ω∗ = Σ∗Σ∗′, Σ∗

being lower triangular [see Table A.7 for the associated parameter estimates]. This means that, the
optimal extraction of the expectation part of the long term bond is obtained by a NCVAR model
in which the weight of the CVAR(3) model is three times larger than the one of the VAR(3) model.
This result could be interpreted not only as an indication of the high persistence in the short
rate which asks for a larger weight for the model which mostly catch sources of serial dependence.
But also, as a suggestion (given by the estimated value of λ) of a hierarchy among its dynamic
properties. It seems that catching long term dynamics (persistence) in the short rate has the
priority with respect to short term variability.

We will see in Section 5 that, even if we select λ by minimizing the fitting error of the yield curve,
we will find λ ≈ 0.26 again. This result seems to reinforce, at the same time, the reliability of our
criterion, and also the above mentioned interpretation about the dominating role that persistence
has in interest rates modelling9. In order to deeply understand all the potentialities of the proposed
NCVAR term structure model, we will also consider the case of a weighting parameter λ optimally
selected on the basis of a criterion of interest like the forecast of state variables and yields over
several horizons [see Sections 4.2.4 and 5.3]10.

9It is important to highlight, as an additional indication about the reliability of λ ≈ 0.26, that this value remains
around 0.26 even if the window of observations [1964:Q1, t], starting the out-of-sample forecast exercise of Section
4.2.3, is specified for t varying around 1989:Q4 [see Section II.3 in Jardet, Monfort and Pegoraro (2010)].

10The empirical analysis presented in Sections 4.2.3, 4.2.4 and 5.3 has also been run using a rolling window,
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Figure 14:
X axis: λ; Y axis: RMSFE of B∗

t (h) obtained from the NCVAR(3) model with vector of
parameters θnc = λθvar + (1 − λ)θcvar. λ = 0 corresponds to the CVAR(3) case, while λ = 1

corresponds to the VAR(3) case.

4.2.4 Short and Long Rate Out-of-Sample Forecasts with NCVAR(3) State Dynamics

In Section 4.2.2 we have seen that the specification of the expectation term of a zero-coupon
bond Bt(h), namely B∗

t (h), is in general more precise when performed by our NCVAR(3) model.
Moreover, besides the cases h = 2 and h = 4 quarters, λ∗(h) is always inside the interval [0, 1],
indicating the advantage in using the averaging estimator to forecast B̃t(h), with respect to the
extreme CVAR(3) and VAR(3) cases.

The purpose of the present section is to analyze the interest rates out-of-sample forecast perfor-
mances that the NCVAR(3) state dynamics is able to produce. In particular, we study its ability
to forecast the one-quarter short rate and the 10-years long rate in two main cases: a) when λ
is selected to minimize, for each forecasting horizon q (say) and for each variable, the associated
RMSFE; in this context λ is considered as a free parameter which gives a further degree of freedom

obtaining similar results. In particular, the solution of problem (16) leads to λ∗(40) = 0.2318, with the NCVAR
model being again the best one in extracting term premia from long term bonds [see Jardet, Monfort and Pegoraro
(2010)].
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h AR(1) λ∗(h) NCVAR(3) CVAR(3) VAR(3) VAR(1)
(Vasicek)

2 0.0014 1.0000 0.0015 0.0015 0.0015 0.0016
4 0.0071 1.0000 0.0064 0.0066 0.0064 0.0075
8 0.0257 0.7913 0.0228 0.0237 0.0229 0.0261

12 0.0476 0.5667 0.0423 0.0436 0.0429 0.0469

B̃∗

t (h) 16 0.0689 0.3461 0.0595 0.0607 0.0623 0.0667
20 0.0882 0.1760 0.0736 0.0742 0.0806 0.0848
28 0.1151 0.1771 0.0963 0.0979 0.1084 0.1114
32 0.1229 0.2311 0.0991 0.1037 0.1135 0.1196
36 0.1326 0.2589 0.1034 0.1121 0.1197 0.1304
40 0.1411 0.2617 0.1012 0.1155 0.1224 0.1406

Table 2: Out-of-sample forecasts of B̃∗

t (h) = exp(−rt − ... − rt+h−1). Table entries are associated
RMSFEs. AR(1) (Vasicek) denotes forecasts of B̃∗

t (h) using a Gaussian AR(1) process describing
the dynamics of the (one-quarter) short rate. The time to maturities (h) are measured in quarters.

in order to improve model’s performances like, in this case, the forecast of a variable of interest over
a certain horizon; b) when the averaging parameter is fixed to λ = 0.2617, in order to establish the
performances of the factor characterizing the yield-to-maturity formula of our selected term struc-
ture model [in Section 5.3 we will concentrate on the forecast of yields with maturities between
4 and 20 quarters]. As in Section 4.2.2, the out-of-sample forecast exercise is performed using
an expanding window: we first estimate the parameters θvar and θcvar over the period 1964:Q1 -
1989:Q4 and then, at each later point in time t, we re-estimate θvar and θcvar taking into account
the new observation.

The results, organized in Table 3, are presented for case a) and, then, for case b).

a) First, with regard to the optimal value of λ = λ(q) (say) in the NCVAR(3) specification, we
observe that, as far as q increases, λ∗(q) decreases from λ∗(q) = 1 to λ∗(q) = 0. This result
indicates that the minimization of the forecast error, when the forecasting horizon increases,
gives an increasing weight to the CVAR(3) component and, thus, it indicates how important
it is for obtaining reliable long-run forecasts. Second, our NCVAR(3) model outperforms,
over both short and long forecasting horizons, the AR(1) and VAR(1) specifications. In
particular, it is important to observe the remarkable performance about short rate long-
horizon forecasts: the NCVAR(3) model reduces the RMSFE obtained by AR(1) and VAR(1)
specifications of 45% when q = 40 quarters. This result, along with the forecast performance
of the expectation term, highlights the ability of our approach to extract a reliable measure
of term premia on long-term bonds.

b) If we consider the forecast of the state variables obtained by the NCVAR(3) process with
λ = 0.2617, the results we obtain are the following. With regard to the short rate, even if the
averaging parameter is selected using the yield curve fitting criterion, the RMSFEs produced
by our selected state process remain in general lower than those obtained by the AR(1) and
VAR(1) models and, in particular, for long horizons. Indeed, for q = 40 quarters, our selected
model reduces the RMSFE of the AR(1) and VAR(1) models of 25%. If we consider the long
rate, the forecast errors remain, in average, quite close to those obtained in case a), for short
and middle forecasting horizons, while, for q = 40 quarters, they get slightly worse than the
AR(1) forecasts, but still better than those obtained by the VAR(1) process.
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q AR(1) λ∗(q) NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ = 0.2617]

rt 1 0.0015 1.0000 0.0015 0.0016 0.0016 0.0015 0.0016
4 0.0044 0.7585 0.0039 0.0039 0.0040 0.0039 0.0045
8 0.0066 0.5993 0.0061 0.0061 0.0063 0.0061 0.0065

12 0.0075 0.4329 0.0069 0.0070 0.0071 0.0072 0.0072
20 0.0081 0.0378 0.0067 0.0068 0.0067 0.0078 0.0078
40 0.0106 0.0000 0.0058 0.0079 0.0058 0.0102 0.0107

Rt 1 0.0113 1.0000 0.0012 0.0012 0.0012 0.0012 0.0012
4 0.0101 0.8894 0.0023 0.0024 0.0024 0.0023 0.0023
8 0.0090 0.6469 0.0030 0.0031 0.0032 0.0031 0.0031

12 0.0082 0.4707 0.0039 0.0040 0.0041 0.0041 0.0043
20 0.0070 0.0000 0.0042 0.0045 0.0042 0.0056 0.0059
40 0.0055 0.0000 0.0055 0.0064 0.0055 0.0081 0.0086

Table 3: Out-of-sample forecasts of the short and long rate. Table entries are RMSFEs. rt denotes
the (one-quarter) short rate and Rt is the 10-years interest rate. AR(1) denotes a Gaussian scalar
autoregressive of order one process used to forecast, respectively, rt and Rt. The forecasting
horizons (q) are measured in quarters.

5 Near-Cointegrated Affine Term Structure Models

5.1 The Yield Curve Formula

In the previous sections we have specified (and estimated) the historical dynamics of the state
variable Xt as a Near-Cointegrated Gaussian VAR(3) process with averaging parameter given by
λ∗(40) = 0.2617. The following (third) step in our modelling procedure aims at deriving the
associated Near-Cointegrated (arbitrage-free) yield-to-maturity formula by specifying a positive
stochastic discount factor (SDF) Mt,t+1 for each period (t, t+ 1). More precisely, we assume:

Mt,t+1 = exp
[
−µ0 − µ′1X̃t + Γ′

t ζt+1 −
1
2Γ′

tΓt

]
, (18)

where ζ∗t+1 = Σ∗ζt+1 and where Γt = γ0 +γX̃t = γ0 +γ1Xt +γ2Xt−1 +γ3Xt−2 is the affine (multiple
lags) stochastic risk sensitivity vector; the constant term γ0 is a (3×1) vector and γ = [γ1 : γ2 : γ3] is
a (3× 9) matrix. γ0, γ1, γ2, γ3 are called risk sensitivity coefficients or parameters. The absence of
arbitrage opportunity (A.A.O.) restriction for the risk-free asset implies rt = µ0 +µ′1X̃t, where rt is
the one-period interest rate between t and t+1 (known at t). So, under the no-arbitrage restriction,
we have Mt,t+1 = exp

[
−rt + Γ′

tηt+1 −
1
2Γ′

tΓt

]
. This specification is convenient computationally

because V ar(ζt+1) = I, however it depends on the arbitrary choice of Σ∗ in the decomposition
Ω∗ = Σ∗Σ∗′. A more intrinsic specification involves the innovation ζ∗t+1 of Xt+1:

Mt,t+1 = exp
[
−rt + Γ̃′

tζ
∗

t+1 −
1
2 Γ̃′

tΩ
∗Γ̃t

]

where Γ̃′

tΣ
∗ = Γ′

t or equivalently, Γ̃′

tΩ
∗ = Γ′

tΣ
∗′ or Σ∗Γt = Ω∗Γ̃t (where Γ̃t = γ̃0+ γ̃X̃t = γ̃0+ γ̃1Xt+

γ̃2Xt−1 + γ̃3Xt−2). Now, given that under the A.A.O. the price Bt(h) at date t of a zero-coupon
bond (ZCB) maturing at t + h can be written as Bt(h) = Et[Mt,t+1 . . .Mt+h−1,t+h], we have the
following result.
Proposition 1: Let us assume that the factor Xt follows, under the historical probability, the
Near-Cointegrated Gaussian VAR(3) dynamics (17). Then, the price at date t of the zero-coupon
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bond with time to maturity h is:

Bt(h) = exp(c′hX̃t + dh) , (19)

where ch and dh satisfies, for h ≥ 1, the recursive equations:





ch = −ẽ1 + Φ(λ∗)
′

ch−1 + (Σ∗γ)′c1,h−1 = −ẽ1 + Φ∗(λ∗)
′

ch−1 ,

dh = c′1,h−1(ν(λ
∗) + Σ∗γo) + 1

2c
′

1,h−1Σ
∗Σ∗′c1,h−1 + dh−1 ,

(20)

and where :

Φ∗(λ∗) =




Φ1(λ
∗) + Σ∗γ1 Φ2(λ

∗) + Σ∗γ2 Φ3(λ
∗) + Σ∗γ3

I3×3 03×3 03×3

03×3 I3×3 03×3


 is a (9 × 9) matrix ,

with initial conditions c0 = 0, d0 = 0 (or c1 = −ẽ1, d1 = 0), where ẽ1 is the (9 × 1) vector with all
entries equal to 0 except the first one equal to 1. c1,h indicates the vector of the first 3 components
of the 9-dimensional vector ch. If we adopt the parameterizations (Ω∗, Γ̃t) instead of (Σ∗,Γt) we
just have to replace Σ∗Σ∗′ by Ω∗ and Σ∗γi by Ω∗γ̃i (i = 0, 1, 2, 3) [Proof : see Appendix 1].

Corollary 1: The yield with h periods to maturity at date t, denoted Rt(h), is given by :

Rt(h) = −
1

h
logBt(h) = −

c′h
h
X̃t −

dh

h
, h ≥ 1 . (21)

So Rt(h) is an affine function of the factor X̃t, that is of the 3 most recent lagged values of the 3-
dimensional factor Xt+1. If we assume, in Proposition 1 and Corollary 1, λ ∈ [0, 1] (free parameter)
instead of λ = λ∗, then we identify the Near-Cointegrated class of Affine Term Structure Models
nesting, as particular cases, the competing term structure models based on unconstrained (λ = 1)
and cointegrated (λ = 0) autoregressive factor dynamics.

5.2 Risk Sensitivity Parameter Estimates

The estimation of historical (VAR, CVAR and NCVAR) and risk sensitivity parameters follows
a consistent two-step procedure, as adopted, among the others, by APW(2006), Monfort and
Pegoraro (2007), and Garcia and Luger (2007). In Section 4 we have presented the (first step) least
squares estimates of θvar and θcvar, thanks to the observations of the 1-quarter and 40-quarters
yields, and of the real GDP. Given these parameter estimates, and given the selected value of λ
for the NCVAR(3) model, the (second step) estimation of the risk sensitivity parameters θγ =
(γ0, γ1, γ2, γ3) is obtained by constrained nonlinear least squares (CNLLS), using the observations
on yields with maturities different from those used in the first step (that is, maturities ranging from
2-quarters to 36-quarters). A constraint is imposed in order to satisfy the arbitrage restriction on
the 10-years yield (the long rate). In particular, the Constrained NLLS estimator is given by:





θ̂γ = Argminθγ
S2(θγ)

S2(θγ) =
∑

t

∑

h

(R̃t(h) −Rt(h))
2,

s. t.
∑

t

(R̃t(40) −Rt(40))
2 = 0 ,

(22)
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where, for each date t and maturity h, Rt(h) is the theoretical yield determined by formula (21),
and R̃t(h) indicate the observed one. Risk sensitivity parameter estimates of the Near-Cointegrated
VAR(3) factor-based term structure model are presented in Table A.8, while risk sensitivity pa-
rameter estimates (obtained by CNLLS) of the CVAR(3), VAR(3) and VAR(1) factor-based term
structure models are presented in Table A.9.

5.3 Empirical Results

5.3.1 In-Sample Fit of the Yield Curve

The purpose of this section is to study the ability of our yield-to-maturity formula, driven by the
NCVAR(3) factor (with λ = 0.2617), to explain the observed interest rates variability in terms of
fitting performances over the maturities used in the estimation of the risk sensitivity parameters.
In the following section (Section 5.3.2), we will study the performances of our model to forecast out-
of-sample these interest rates. Moreover, in Section 5.3.3, with the purpose to further analyze the
specification of our term structure model, we will test its ability to explain the observed violation
of the Expectation Hypothesis theory (see, among the others, Campbell and Shiller (1991), and
Dai and Singleton (2002,2003)). These results will be systematically compared with those obtained
by the competing CVAR(3), VAR(3) and VAR(1) factor-based term structure models.

Let us start from fit performances: in the last four columns of Table 4, we compare the (an-
nualized absolute) yield-to-maturity errors of our selected NCVAR(3) factor-based term structure
model with the performances of the other competing term structure models. For each date t and
for each estimated model, we compute, over the maturities used to estimate the risk sensitivity
parameters θγ = (γ0, γ1, γ2, γ3), the pricing error in the following way:

PEt =

∑
h |R̃t(h) −Rt(h)|

H
, (23)

where R̃t(h) and Rt(h) are, respectively, the (annualized) observed and model-implied yields, and
where H denotes the number of maturities used to estimate θγ . Given the time series PEt, we
calculate (for each model) the associated mean, standard deviation, minimum and maximum value.

NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ∗ = 0.2558] [λ = 0.2617]

Mean 16.79 16.81 16.91 16.86 18.76
Median 12.11 12.22 12.89 12.55 16.02
Std. Dev. 13.80 13.88 14.02 13.96 15.23
Min. 1.74 1.87 2.07 1.21 2.01
Max. 91.63 91.74 93.39 91.49 112.74

Table 4: Annualized Absolute Pricing Errors (Basis Points).

The indications that stand out from this (in-sample) term structure fit comparison are the
following. First, if we compare the fit of the yield curve obtained by the CVAR(3) and VAR(3)
term structure models, we observe that these two models perform equally well and they outperform
the APW(2006) model. This similarity highlights the compatibility of the parameter’s restriction
characterizing the CVAR(3) model, with respect to the interest rates dynamics. Second, our
preferred model, with an averaging parameter selected to minimize an error forecast criterion and
not a fitting criterion like (22), has similar mean, std. dev., minimum and maximum pricing errors
than those obtained by the three above mentioned competing models. This result indicates that,
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the parameter λ we add to solve the discontinuity problem and we select to improve the specification
of the expectation term in the long-term bond leads, at the same time, to a competing fitting of the
yield curve [see also figures a.1) in Jardet, Monfort and Pegoraro (2010)]. The reason of this result
is shown in the second column of Table 4, where we put pricing error statistics of the NCVAR(3)
term structure model in which we have jointly estimated the parameters θγ and λ using the CNLLS
methodology of Section 5.2. We observe that the optimal value of the averaging parameter, for
the criterion (22), is λ∗ = 0.2558, which is very close to λ∗(40) = 0.2617 [see Table a.iv) in Jardet,
Monfort and Pegoraro (2010) for further details].

5.3.2 Yields Out-of-Sample Forecasts

In this section we want to further corroborate the out-of-sample forecast ability of our term struc-
ture modelling, based on a NCVAR(3) factor dynamics. The exercise is based on the increasing-size
window procedure used above, in which we re-estimate at each iteration the historical parameters
θcvar and θvar when a new observation is available, while, for ease of computation, risk sensitivity
parameters are fixed to the values estimated over the entire sample period11. In particular, we
aim at studying if our model is able to forecast well the yield curve, with respect to the competing
models mentioned above, both in the case of a parameter λ selected to minimize the yield forecast
error for a given maturity h and over a certain horizon q, and in the case of λ = 0.2617 [case i)
and case ii), respectively, presented below]. The results, presented in Table 5, are the following.

i) With regard to the optimal value of the averaging parameter λ, considered as a function of
the forecasting horizon q and of the time-to-maturity h [λ∗ = λ∗(h, q), say], we first observe
that, for any h ∈ {4, 8, 12, 20}, λ∗(h, .) decreases when q increases. In other words, for any
considered yield-to-maturity, the weight of the CVAR(3) component in the minimization of
the forecast error increases when the forecast horizon increases. This means that, as for the
short and long rate forecasts analyzed in Table 3, the out-of-sample forecast of yields over
increasing horizons, asks for a model (in the VAR setting) increasingly able to explain their
serial dependence. Second, for q ∈ {1, 4, 8} (short forecast horizons), as far as h increases,
λ∗(., q) decreases as well, indicating the increasing importance of the CVAR(3) model in the
short run forecast of long-term yields. In particular, one may observes that, for q = 1, we
move from λ∗(4, 1) = 0.8781 to λ∗(20, 1) = 0.4543. Third, for q = 12, the optimal value of
λ is around 0.5 for any h ∈ {4, 8, 12, 20}, suggesting the equal importance of the CVAR(3)
and VAR(3) components in the forecast over this particular horizon. Finally, for any q > 12
(medium and long forecast horizons), the CVAR(3) model has a dominating role in forecasting
yields for any residual maturity h ∈ {4, 8, 12, 20}. In particular, for q = 40, λ∗(h, q) = 0 for
any h.

Let us now make a comparison of forecast performances between the NCVAR(3) term struc-
ture model with the AR(1) time series model and the VAR(1) term structure model. The
conclusion standing out from Table 5 is that our NCVAR(3) affine model outperforms the
most competing AR(1) model, as well as the VAR(1) term structure model, over any forecast-
ing horizon q (except for q = 1) and any residual maturity h. Moreover, for long forecasting
horizons (q = 40), when we move from the AR(1) time series model to the NCVAR(3) term
structure model, the RMSFE reduces between 35% and 45% for residual maturities ranging
from h = 4 and h = 20.

11We have also performed forecast exercises estimating, at each iteration, historical and risk sensitivity parameters,
and we have found that the ranking among the models was the same and the magnitude of associated RMSFEs was
almost unchanged.
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q AR(1) λ∗(q) NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ = 0.2617]

Rt(4) 1 0.0015 0.8781 0.0017 0.0018 0.0019 0.0023 0.0021
4 0.0041 0.7316 0.0039 0.0040 0.0041 0.0047 0.0046
8 0.0062 0.6468 0.0060 0.0061 0.0062 0.0071 0.0064

12 0.0071 0.5086 0.0069 0.0070 0.0071 0.0084 0.0073
20 0.0080 0.0566 0.0067 0.0068 0.0066 0.0091 0.0083
40 0.0108 0.0000 0.0059 0.0080 0.0057 0.0109 0.0114

Rt(8) 1 0.0015 0.5851 0.0017 0.0018 0.0020 0.0026 0.0022
4 0.0038 0.6630 0.0036 0.0037 0.0038 0.0046 0.0042
8 0.0056 0.6340 0.0055 0.0057 0.0058 0.0069 0.0058

12 0.0066 0.5307 0.0065 0.0066 0.0067 0.0082 0.0067
20 0.0077 0.0803 0.0064 0.0065 0.0062 0.0093 0.0079
40 0.0106 0.0000 0.0059 0.0080 0.0056 0.0109 0.0112

Rt(12) 1 0.0015 0.5026 0.0017 0.0018 0.0020 0.0029 0.0023
4 0.0035 0.6235 0.0034 0.0035 0.0036 0.0046 0.0039
8 0.0050 0.6137 0.0051 0.0052 0.0053 0.0067 0.0054

12 0.0061 0.5320 0.0061 0.0062 0.0063 0.0081 0.0062
20 0.0074 0.1006 0.0062 0.0063 0.0059 0.0093 0.0075
40 0.0104 0.0000 0.0062 0.0079 0.0056 0.0108 0.0109

Rt(20) 1 0.0015 0.4543 0.0017 0.0018 0.0022 0.0035 0.0027
4 0.0031 0.5908 0.0031 0.0033 0.0034 0.0048 0.0038
8 0.0043 0.5848 0.0044 0.0046 0.0046 0.0065 0.0048

12 0.0053 0.5273 0.0055 0.0056 0.0055 0.0078 0.0056
20 0.0067 0.1380 0.0058 0.0059 0.0053 0.0093 0.0070
40 0.0098 0.0000 0.0067 0.0079 0.0056 0.0106 0.0105

Table 5: Out-of-sample forecasts of Rt(h), with h ∈ {4, 8, 12, 20} measured in quarters. Table
entries are RMSFEs. AR(1) denotes a Gaussian scalar autoregressive of order one process used to
forecast Rt(h) for any h ∈ {4, 8, 12, 20}. Forecasting horizons (q) are measured in quarters.

ii) We consider now the case of the NCVAR(3) term structure model with λ(h, q) = 0.2617 for
any pair (h, q). What we interestingly observe, again from Table 5, is that our model still
outperforms the AR(1) time series model and the VAR(1) term structure model, for any
q > 1 and any h ∈ {4, 8, 12, 20}, even with a fixed averaging parameter selected to optimally
forecast the expectation part of the 40-quarters yield. This means that, our specification of
the NCVAR yield curve model, focused on the extraction of the term premia from the long-
term bond is, at the same time, able to forecast interest rates, for any forecasting horizon
q ∈ {4, . . . , 40} and any residual maturity h ∈ {1, 4, 8, 12, 20, 40}, better than the most
competing AR(1) time series model and VAR(1) yield curve model.

5.3.3 Campbell-Shiller Regressions

Let us now study the ability of our NCVAR(3) term structure model (with λ = 0.2617) to explain
the empirically observed failure of the Expectation Hypothesis Theory (EHT, hereafter) by means
of the well known Campbell and Shiller (1991) long-rate regressions. This violation is documented
by the fact that, for any residual maturity h, regressing the yield variation Rt+1(h − 1) − Rt(h)
onto the normalized spread (Rt(h) − rt)/(h− 1) leads to a negative regression coefficient φh (say)
while, if EHT was correct (under the assumption of constant risk premiums), this coefficient (in the
population) should be equal to one for any h. Moreover, several empirical studies have documented
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that φh becomes increasingly negative when h increases [see Campbell and Shiller (1991), Bansal
and Zhou (2002), Dai and Singleton (2002), Monfort and Pegoraro (2007)]. We find confirmation
of this stylized fact also in the GSW (2007) data base considered in our empirical analysis; indeed,
the estimated slope coefficients φh,T (say) obtained from the above mentioned regression is always
negative and moves from -0.494 to -2.567 when h increases from three to forty quarters (see the
second column of Table 6).

Let us compare the ability of our term structure model to replicate these increasingly negative
Campbell-Shiller regression coefficients, with the ability of the competing VAR(3) and VAR(1) term
structure models. In order to understand how well the proposed term structure models replicate
the violation of the EHT, we operate in the following way. First, we calculate, for each of them,
the population slope coefficient φh given by the following relation:

φh =
Cov[Rt+1(h− 1) −Rt(h), (Rt(h) − rt)/(h− 1)]

V ar[(Rt(h) − rt)/(h − 1)]
, (24)

where we take the estimates of the model parameters as the true parameters of the data-generating
process, and we verify if φh is increasingly negative. Second, in order to understand if small-
sample bias affect the population slope coefficients generated by any of the models we consider,
we conduct the following Monte-Carlo exercise: for any given residual maturity h, we simulate
500 samples of length 174 (the length of our sample of observations) from a given estimated
model, we calculate the 5% quantiles (Confidence Bands, hereafter) of the small sample distribution
of the (Monte-Carlo based) estimated slope coefficient, and then we verify if the sample slope
coefficients lie well inside these Monte-Carlo confidence bands. If the estimated term structure
model generates negative downward sloping population Campell-Shiller regression coefficients and
if their empirical counterpart lie inside the small-sample Monte-Carlo confidence bands, then we
consider this model as able to successfully match the violation of the EHT. From Table 6, we observe
that our NCVAR(3) factor-based term structure model is the only one able, among the three models
considered in the empirical analysis, to successfully replicate this stylized fact: the population slope
coefficient is increasingly negative for any h (while the VAR(3) and VAR(1) specifications generate
a positive φ3 coefficient) and the sample coefficients lie inside the Confidence Bands (except for
h = 8).

6 Unbiased Term Premia

6.1 Definition of Unbiased Term Premia

Let us consider Rt(h) and rt, that is, the yield of maturity h periods at time t, and the short rate
(Rt(1) = rt). The usual yield term premium corresponding to this maturity is defined as:

T̃ P t(h) = Rt(h) −
1

h
Et

h−1∑

j=0

rt+j , (25)

ẼXt(h) =
1

h
Et

h−1∑

j=0

rt+j being the Expectation Hypothesis term. So, we have:

Rt(h) = ẼX t(h) + T̃ P t(h),
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h sample NCVAR(3) Confidence VAR(3) Confidence VAR(1) Confidence
φh,T φh Bands φh Bands φh Bands

3 -0.49 -0.20 (-0.72, 0.88) 0.19 (-0.54, 1.06) 0.02 (-0.68, 1.18)
[0.28]

4 -0.74 -0.31 (-0.92, 0.76) 0.00 (-0.77, 0.93) -0.05 (-0.78, 1.06)
[0.40]

8 -0.98 -0.58 (-0.90, 0.86) -0.48 (-0.90, 0.89) -0.38 (-0.57, 1.20)
[0.68]

12 -1.20 -0.88 (-1.46, 0.56) -0.88 (-1.43, 0.61) -0.71 (-1.16, 0.84)
[0.82]

20 -1.55 -1.46 (-2.36, 0.11) -1.52 (-2.35, 0.06) -1.35 (-2.24, 0.18)
[0.93]

40 -2.57 -2.74 (-4.33, -0.69) -2.75 (-4.38, -0.88) -2.70 (-4.44, -0.59)
[1.19]

Table 6: Campbell-Shiller long-rate regressions. The slope sample coefficients φh,T are estimated
from the regression Rt+1(h − 1) − Rt(h) = φo,h + φh,T [Rt(h) − rt]/(h − 1) + ut+1,h, using the
GSW (2007) data base of sample size T = 174 [Newey-West standard errors with 4 lags are in
brackets; the residual maturity h is measured in quarters]. The slope population coefficients φh

are obtained from the model taking the parameter estimates as the true parameters of the data-
generating process. Confidence bands show the 5% quantiles of the estimated slope coefficients
from 500 samples of length 174 quarters simulated from the model.

and a similar decomposition for the spread gives:

St(h) = Rt(h) − rt = ẼXSt(h) + T̃ P t(h) ,

where ẼXSt(h) = ẼX t(h) − rt is the Expectation Hypothesis Spread.

A drawback of this version of the term premium T̃ P t(h) is that it would not be zero under
the hypothetic situation where the historical dynamics and the risk-neutral dynamics would be
identical, i.e. in a hypothetic world without risk aversion. In a such a situation, the yield of
maturity h would be:

EXt(h) = −
1

h
logB∗

t (h) (26)

where:
B∗

t (h) = Et[exp−(rt + rt+1 + . . .+ rt+h−1)],

and not ẼX t(h). Therefore, a more natural definition of the yield term premium, called ”unbiased”
because it is exactly equal to zero when the risk neutral and historical worlds are identical, is:

TPt(h) = Rt(h) − EXt(h) . (27)

Note that EXt(h) is easily computed using the recursive equations (20), with γ0 = 0 and γ = 0.

6.2 Yield term premia and forward term premia

The short-term forward rate of maturity h is:

ft(h) = logBt(h− 1) − logBt(h) ,
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where Bt(h) is the price at time t of the zero-coupon bond of residual maturity h. Therefore, we
have:

ft(h) = log
EQ

t [exp(−rt − . . .− rt+h−2)]

EQ
t [exp(−rt − . . .− rt+h−1)]

,

with the convention rt + . . . + rt+h−2 = 0 if h = 1. If the historical dynamics was identical to the
risk-neutral one, this forward rate would be:

EXf
t (h) = logB∗

t (h− 1) − logB∗

t (h)

So, a natural term premium for the short-term forward rate ft(h), called the forward term premium,
is:

TP f
t (h) = ft(h) − EXf

t (h) , with TP f
t (1) = 0 , (28)

and it can be seen as the premium of a FRA (forward rate agreement) in the short rate between

t + h − 1 and t + h, negotiated at time t at level ft(h). So TP f
t (h) can be viewed as the price

evaluated at t of the risk coming from the uncertainty of the short rate between t + h − 1 and
t+ h. Now, it is possible to prove that (27) can be rewritten in the following way [see Section V
in Jardet, Monfort and Pegoraro (2010)]:

TPt(h) =
1

h

h∑

j=1

TP f
t (j) . (29)

and

TP f
t (h) = (ch−1 − c∗h−1)

′(I − Φ(λ∗))X̃t − (c1,h−1 − c∗1,h−1)
′ν(λ∗) (30)

−
1

2
c′1,h−1Ω

∗c1,h−1 +
1

2
c∗

′

1,h−1Ω
∗c∗1,h−1 − c′1,h−1Ω

∗Γ̃t .

In particular, if Γt = 0 (γ = 0, γ0 = 0), TP f
t (h) = 0, and if Γt does not depend on t (γ = 0) we

have ch−1 = c∗h−1, TP
f
t (h) = −c′1,h−1Σ

∗γ0 (= −c′1,h−1Ω
∗γ̃0), and

TPt(h) =
1

h

h∑

j=1

TP f
t (j) (31)

= −
1

h

h∑

j=1

c′1,j−1Σ
∗γ0 .

6.3 Yield term premia, risk premia and risk sensitivities

Formula (29) gives a decomposition of the yield term premium TPt(h) in terms of the forward term

premia TP f
t (j). Anoher interesting decomposition of TPt(h) is based on the expected risk premia

attached to future one-period holdings of the zero-coupon bond with residual maturity h at time
t. It is possible to prove that [see Section V in Jardet, Monfort and Pegoraro (2010)]:

TPt(h) =
1

h

h∑

j=1

EtRPt+j−1(h− j + 1) (32)

=
1

h

h∑

j=1

−c′1,h−jΣEtΓt+j−1 −
1

2
c′1,h−jΣ

∗Σ∗′c1,h−j +
1

2
c∗

′

1,h−jΣΣ′c∗1,h−j ,
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and, thus, TPt(h) is decomposed in h terms, each term depending on t through the expectation
EtΓt+j−1 of the risk sensitivity vector. Roughly speaking a term of this decomposition will increase
if the expected price of risk within the period is increasing.

6.4 Computation of the term premia

Figure A.1 shows the term premia computed from VAR(3), CVAR(3) and NCVAR(3) models. The
three measures are very similar in their variations over the sample. The VAR(3) term premium is
the more volatile (standard deviation equal to 2.63), with levels that range from -1 to 6, and its
correlation with the 10-year spread is equal to 0.31. The CVAR(3) measure is much more stable
(standard deviation equal to 1.19), but is highly correlated with the 10-year spread (correlation
coefficient equal to 0.91). This result is related to the presence of a unit root in the short term
interest rate. When the short rate is considered as an I(1) non stationary process, the expectation
part of the 10-year interest rate, EXt(40), is very close to the short rate. Therefore, the expectation
part of the spread, EXSt(40), is close to zero, and the 10-year spread is nearly equal to the term
premium. This result highlights one of the limits of the CVAR approach for computing the term
premium. As argued earlier, our preferred measure of the term premium is the one obtained from
the NCVAR(3) model. This measure is an average of the measures obtained from VAR(3) and
CVAR(3) models. It is more stable than the VAR(3) term premium (standard deviation equal to
1.16), and it is less correlated with the spread than the CVAR(3) term premium (the correlation
coefficient between the spread and the NCVAR(3) term premium is equal to 0.77).

In figures A.2 and A.3 we focus on the behavior of our preferred measure, the NCVAR(3) term
premium. This measure shows similarities with other measures of the term premium found in
the literature. Rudebusch, Sack and Swanson (2007) compare five term premia measures before
focusing their attention on a measure based on the Kim-Wright approach (2005)12 which appears
to be representative of other measures. Figure A.2 shows that over the period 1990-2007, our
NCVAR(3) measure displays similar features, including peaks and trough observed with the Kim-
Wright measure. More particularly, both measures are very close between 1990 and 2002. The
main difference between both term premia is observed during the period 2002-2004 during which,
the NCVAR(3) term premium is substantially higher than the Kim-Wright’s one13. In addition, we
also note that the decrease in the term premium in 2004 is more pronounced with the NCVAR(3)
model. For comparison purposes, we also present in figure A.2, the 10-year term premium obtained
from a VAR(1) model similar to Ang, Piazzesi and Wei (2006). This measure tends to be lower than
the two others. In addition, we also note that the three term premia have substantially decreased
over the recent period, consistently with results found in the literature. Finally we also report
in figure A.3 recessions (shaded bars) as dated by the National Bureau of Economic Research.
We note that the term premium tends to increase in period of recession, and then appears to be
contra-cyclical.

12This approach is based on a standard no-arbitrage continuous-time affine term structure model, in which the
yield curve is driven by a three-dimensional latent factor.

13During this period, levels of the NCVAR(3) term premium are closer to those obtained with others methodologies,
such as the Rudebusch and Wu (2008) measure (see Rudebusch, Sack and Swanson (2007) for further details).
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6.5 An Application to Monetary Policy Tightening Episodes

Figure 15 presents the short term rate and the 10-year interest rate, along with its expectation
part and term premium, during the three previous episodes of monetary policy tightening (shaded
areas). We observe that in the three cases, the rise in the short term interest rate comes with
an increase of EXt(40) and a decrease in TPt(40). The final effect on the 10-year interest rate
depends on the extent of the changes in its two components EXt(40) and TPt(40). For the 1994
and 1999 episodes, the rise of EXt(40) exceeds the decline in TPt(40) in such a way that in both
cases, the 10-year interest rate increases. In contrast, for the 2004 episode, the rise in EXt(40)
seems to be offset by the decline in TPt(40), leading to stable 10-year interest rate. This inertia
of the 10-year interest rate is described as a ”conundrum” by Alan Greenspan given that during
previous episodes of restrictive monetary policy, this rate increased along with the fed fund target.

The explanation of this phenomenon has to be found in the sharp decrease of the term premium
between June 2004 and June 2006. In order to shed more light regarding this phenomenon, we
present in figure 16 the term premium decomposition in risk premia as it is described in equation
(32). For sake of readability, we aggregate the expected risk premia over the time intervals (t, t+2y)
(0 to 2y, in the graph), (t + 2y, t + 5y) (2y to 5y), (t + 5y, t + 10y) (5y to 10y), and we will call
these aggregate measures as short-run, middle-run and long-run expected risk premia. The sum
of these three components gives the 10-year term premium. Expected risk premia for a given
period measures the expected risk of holding, over that period, a bond with residual maturity of
10 years at date t. Looking at figure 16 we see that the decreasing trend of the term premium
observed during the rise of short term interest rate is mainly driven by the short-term expected risk
premia. During the 1994 tightening, this short-term expected risk premia decreases but remains
positive, except for one quarter in 1996. During the 1999 episode, negative short-term expected
risk premia are more frequent but do not exceed three quarters in 2000. In contrast, during the
2004 episode, period of negative short-term expected risk premia lasts at least six quarters. The
observed increasing periods of negative short-term expected risk premia may reveal that the Fed
became more and more credible over the three previous monetary policy tightening episodes, as
suggested by Cochrane and Piazzesi (2008). Of course, other elements have probably intensified
the decreasing trend of the risk premium, particularly in 2004 (foreign central banks intervention
for instance), but the possibility an of increased credibility of the Fed cannot be rejected at a
first glance. For that reason, we are tempted to adopt the views of Cochrane and Piazzesi (2008)
questioning the puzzling feature of the ”conundrum” episode and we argue that the 2004 episode is
not different in nature but just in terms of the relative weights of the components of the long term
interest rate. Finally, we also show in figure 17 the decomposition of the 10-year term premium,
in terms of forward term premium (see equation (31)) aggregated over the same expected risk
premia time intervals. We see that the 10-year term premium is mainly driven by the forward term
premium spanning the period (t+ 5y, t+ 10y). More particularly, this premium tends to decrease
during restrictive monetary policy, and its decline is more pronounced during the 2004 tightening.
Once again, this corroborate the idea according to which the credibility of the Fed has increased
over the last decade.

7 New Information Response Functions

In what follows, the dynamics of the 3-dimensional state process Xt = (rt, St, gt)
′ is given by the

Near-Cointegrated VAR(3) model described in the previous sections. The optimal weight used
to average the VAR(3) and CVAR(3) parameters is chosen to get the best prediction of B∗

t (40)
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Figure 15:
Short rate, 10-year interest rates and its components over the three

previous monetary policy tightening episodes
Shaded areas: monetary policy tightening episodes.
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Figure 16:
Expected risk premia and 10-year term premium

Shaded areas: monetary policy tightening episodes.
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Figure 17:
Forward term premia and 10-year term premium

Shaded areas: monetary policy tightening episodes.

(λ∗(40) = 0.2617). Hence, our NCVAR(3) specification provides the best measure of the 10-year
term premium.

In this section we are interested in measuring the differential impact on Xt, t = 1, ..., T of a
shock hitting a given variable. For that purpose, we follow in this section a new approach based on
a generalization of the Impulse Response Function, called New Information Response Function and
proposed by Jardet, Monfort and Pegoraro (2009b). The first two subsections rapidly summarize
the methodology, while the last two present the responses to a shock on the spread, along with its
expectation part and term premium component, and to a shock on the short term interest rate.

7.1 Definition of New Information Response Function

In this section, we generalize the standard notion of Impulse Response Function (IRF ) to the
notion of New Information Response Function (NIRF ). Let us consider a n-dimensional VAR(p)
process yt, possibly non-stationary. We denote by ηt its innovation process. We want to measure
the differential impact on yt, t = 1, ..., T , of a new information I0 at date t = 0 (by convention).
Typically, this new information will be the value h0 taken by some function h(η0) of the innovation
of the process at t = 0. In order to measure this differential impact we use a definition introduced
in the context of nonlinear models (see e.g. Gallant, Rossi and Tauchen (1993), Koop, Pesaran
and Potter (1996), Gourieroux and Jasiak (1999)). More precisely, the NIRF is defined by:

NIRF (t) = E
(
yt|I0, y−p

)
− E

(
yt|y−p

)
, t ≥ 0 ,
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where y−p = (y′
−1, ..., y

′

−p)
′. Exploiting the linearity of the model we see that:

NIRF (t) = E
(
yt|h(η0) = h0, y−p = 0

)

= E
(
yt|η0 = E(η0|h(η0) = h0), y−p = 0

)

and:
NIRF (t) = Dtδ (33)

with δ = E(η0|h(η0) = h0), and Dt is the tth Markov matrix coefficient of the MA representation
of yt [see Jardet, Monfort and Pegoraro (2009b)].

This general definition of a NIRF includes standard Impulse Response Functions. First, if the
variance-covariance V (η0) matrix of η0 is diagonal, it is usual to consider a shock of 1 on the jth

component of η0 and 0 on the others. In this case the new information is simply η0 = δ = ej ,
(where ej is the vector with components equal to zero except the jth equal to 1). Second, if V (η0)
=Σ, it is usual to consider a shock of 1 on the jth component of a transformed vector ξ0 defined
by η0 = Pξ0, where PP ′ = Σ. In this case, the new information is η0 = δ = P (j), where P (j)

is the jth column of P [P (j) can also be normalized in order to have its jth component equal to
1; see Jardet, Monfort and Pegoraro (2009b)]. Third, Pesaran and Shin (1998) also considered
a ”generalized” IRF, in which the new information is η0j = 1 and therefore, in formula (33),
δ = E(η0|η0j = 1) = Cov(η0, η0j)/V ar(η0j) (in the Gaussian case).

But the New Information Response Function is useful in a much more general context [see
Jardet, Monfort and Pegoraro (2009b) for further details], in particular when considering shocks
on filtered variables.

7.2 Shocks on filtered variables

If we consider a m-dimensional process ỹt obtained by applying a linear filter on yt:

ỹt = F (L)yt

where F (L) = [F1(L), ..., Fn(L)] is a (m × n) matrix of polynomials in the lag operator. The
innovation of ỹt at t = 0 is: η̃0 = F (0)η0.

Therefore if the new information at t = 0 is h̃(η̃0) = h̃0, the NIRF is:

NIRF (t) = Dtδ

with δ = E
(
η0|h̃(F (0)η0) = h̃0

)
. Obviously, the new information may also be made of an infor-

mation on both η0 and η̃0: h(η0) = h0, and h̃(η̃0) = h̃0 or h(η0) = h0 and h̃(F (0)η0) = h̃0.
In the context of our model, the component of ỹt may be, for instance, the expectation part of

a spread of some maturity, or the term premium corresponding to some maturity. If the maturity
if 40 quarters, the corresponding filter can be computed from the VAR coefficients only, otherwise
it necessitates the affine term structure model.

7.3 Impulse responses to a shock on the 10-year spread

In this section we focus on the responses of the GDP, the yields of various maturities and their
corresponding term premia and expectation components, to a unexpected increase in the spread
equal to one at date t = 0.
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For that purpose and following previous notations, we need to determine the value of the (3×1)
vector δ such that δ = E(η0|I0), where η0 is the innovation of the vector (rt, St, gt) and I0 is the
new information at date t = 0. Here, the new information I0 includes, first of all, η0,2 = 1,
where η0,2 is the second component of η0, that is, the innovation of the spread at date t = 0. In
addition, we have to remember that rt and St are observed at the end of the period (end-of-quarter
observations) and they drive an information covering a following period spanned by the residual
maturity, whereas gt is the growth rate of GDP between t − 1 and t, observed at t, and driving
an information spanning the two previous quarters. Therefore, a shock on the spread (or on any
interest rate) occurring at date t (end of the quarter), should have no effect on the growth rate
of real GDP between t− 1 and t. Accordingly, we impose an additional restriction to ensure that
the growth rate of real GDP does not respond instantaneously to a shock on the spread. More
precisely, the information η0,3 = 0, where η0,3 is the innovation of the one-quarter GDP growth at
date t = 0, is included in I0.

This means that, we have to find the value δ = E(η0|η0,2 = 1, η0,3 = 0) or, in other words,
the value of the first component of δ, that is the instantaneous expected response of the short
rate when the spread increases by one unity whereas the growth rate of GDP remains at its past
level: we have δ = (β, 1, 0)′, where β = E(η0,1|η0,2 = 1, η0,3 = 0). In the gaussian case, β is
the coefficient of η0,2 in the theoretical regression of η0,1 on η0,2 and η0,3. Figures 18 present the
responses over 20 quarters of the real GDP, interest rates, term premia and expectation components
of yield as defined by equation (26) and(27). Figure 18(a) indicates that an increase in the spread
of 1 percentage point (that is 4 percentage points in annual basis) concurs with a decrease in the
short term interest rate greater than 1 percentage point (4 percentage point in annual basis). The
expectation component of the 10-year interest rate also decreases, but less than the short term
interest rate. In contrast the differential impact on the 10-year term premium is initially positive,
before becoming negative after about 10 quarters. Finally, the response of the 10 year interest rate
is negative and ranges between 0 and −0.4 percentage point (that is a range between 0 and −1.6
percentage points in annual basis). As far as the yield curve is concerned [see figure 18(b)], we see
that all the responses of the yields are negative with an amplitude that is growing as the maturity
decreases. This suggests that the shock mainly affects the short end of the yield curve leading to
a steepening of the curve. Similar results are obtained, by means of our Near-Cointegrated yield
curve model, when we consider a shock on the 1-year and 5-year spread. Here, in order to provide
responses comparable with the previous ones, we apply a (normalized) shock of δ(S)(hy) on the
h-year spread (for h = 1 and h = 5, respectively), such that the instantaneous variation of St is
equal to one [see Section VI.1 in Jardet, Monfort and Pegoraro (2010) to see how this normalized
shock is built, and Sections VI.2 and VI.3 for the responses to a shock on the 1-year and 5-year
spreads].

In figure 18(c) we observe that after a slight decrease that does not exceed 1 quarter, the real
GDP tends to increase until to reach its new steady state level. After 20 quarters, the real GPD
has increased by 4%, corresponding to an average annual growth rate equal to 0.8%. This result
confirms the well documented results in the literature that emphasizes the positive relationship
between the slope of the yield curve and future activity. In figure 18(d), exploiting our estimated
NCVAR(3) ATSM, we show that a shock on the 1-year and 5-year spread (of magnitude δ(1y)
and δ(5y), respectively) has the same kind of effects on real GDP even if the size of the response
slightly reduces (over intermediate horizons) of 0.5 percentage points as far as we move from the
10-year to the 1-year spread.

There exists an extensive empirical literature relating the predictive power of the slope of the
yield curve on subsequent real activity. Theoretically, one of the main explanation of this fact
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Figure 18: (a)-(b)-(c) Responses to a shock on the 10-year spread. (d) Response of cumulated GDP
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is related to countercyclicality of monetary policy. When the central bank lowers the short term
interest rate two effects are expected. First, the long term interest rate tends to decrease, but less
than the short term interest rate (because the central bank is expected to move to a contractionary
policy in the future to respond to future increases in inflation). Second, with long term interest
rates smaller, financing conditions improve and private investment increases, leading in turn to an
increase of activity. According to this theory, the increase of the spread is mainly generated by the
drop of the short term interest rate and the expectation part of the spread. More precisely, recall
that the 10-year spread, St(40) = St, can be decomposed as:

St = TPt(40) + EXt(40) − rt (34)

where TPt(40) is the 10-year term premium, and EXt(40) the expectation part of the 10-year
interest rate defined by (27) and (26) respectively. rt = Rt(1) is the short term (one-quarter)
interest rate. We denote by EXSt(40) the expectation part of the spread, defined by:

EXSt(40) = EXt(40) − rt (35)

Therefore, we see that an increase in the spread can be generated by an increase in EXSt(40) or
an increase in TPt(40) (or both). The ”monetary policy explanation” of the predictive power of
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the spread is based on the fact that St increases in response to a decrease of rt and an increase of
EXSt(40). However, equation (34) indicates that an increase in the spread can also result from a
rise in the term premium TPt(40), not necessarily related to monetary policy. For instance, any
events that can affect the supply and demand for long term bonds are good candidate to explain
a move on the term premium, and consequently the spread of interest rate. However, if the spread
increases because of a rise in the term premium, the final effect on real activity is not clear. On one
hand, an higher term premium, that is an higher long term interest rate, should deteriorate the
financing conditions and then should reduce private investment and economic activity. In this case
there is a negative relationship between the spread and future output growth. On the other hand,
if the rise in the term premium and long term interest rate are due to an increase in the government
purchases, financed by the issue of long term bonds, one may expect that spending government
policy should finally stimulate economic activity. In this case, the increase in the spread induces a
rise in real output and the relationship between the spread and future activity is positive.

This ambiguity appears in the results of the literature. Actually, papers that try to determinate
to what extent each component of the spread, that is EXSt(40) or TPt(40), helps to predict future
activity, generally lead to different conclusions regarding the role of the term premium. Hamilton
and Kim (2002), and Favero, Kaminska and Södeström (2005) tend to conclude to a positive and
significant relationship between the term premium and future activity. In contrast, Ang, Piazzesi
and Wei (2006), Rudebusch, Sack and Swanson (2007), and Rosenberg and Maurer (2007) do not
find significant link between the level of the term premium and future output growth.

In what follows, we try to shed light on this debate by analyzing the dynamic effects of an
increase in the spread on real activity, disentangling the effects of a rise in the spread due to an
increase in its expectation part, and a rise in the spread caused by an increase in the term premium.

7.4 Impulse Responses to a shock on the term premium and the expectation
part of the spread

Given the affine structure of our model, the expectation part of the spread EXSt(40) and the term
premium TPt(40) are obtained by applying a linear filter on yt = (rt, St, gt)

′:

EXSt(40) = F1,1(L)rt + F1,2(L)St + F1,3(L)gt (36)

TPt(40) = F2,1(L)rt + F2,2(L)St + F2,3(L)gt (37)

Hence, the innovation at t = 0 of EXSt(40) and TPt(40), denoted by η̃0,1 and η̃0,2 respectively are:

η̃0,1 = F1,1(0)η0,1 + F1,2(0)η0,2 + F1,3(0)η0,3 (38)

η̃0,2 = F2,1(0)η0,1 + F2,2(0)η0,2 + F2,3(0)η0,3 (39)

where η0,1, η0,2 and η0,3 are the innovation at t = 0 of rt, St and gt respectively. In addition, by
construction, we have14:

η0,2 = η̃0,1 + η̃0,2

7.4.1 Shock on the expectation part

We are interested in the dynamic effects of 1 percentage point increase in the spread that would
be completely due to a 1 percentage point increase in the expectation part of the spread. More
precisely, the new information I0 includes η0,2 = 1, η̃0,1 = 1 and η̃0,2 = 0. We also assume that this

14This implies that the Fi,j(0) verify F1,1(0) + F2,1(0) = 0, F1,2(0) + F2,2(0) = 1 and F1,3(0) + F2,3(0) = 0

35



increase has no instantaneous effect of the real GDP, that is I0 also includes η0,3 = 0. Therefore, we
have to determine the value of the vector δ = E(η0|I0) = E(η0|η0,2 = 1, η̃0,1 = 1, η̃0,2 = 0, η0,3 = 0)

where η0 = (η0,1, η0,2, η0,3)
′. From equation (38) we immediately obtain that E(η0,1 | I0) =

1−F1,2(0)
F1,1(0) .

Then:

δ =

(
1 − F1,2(0)

F1,1(0)
, 1, 0

)
′

Figures 19 show the impulse responses to a 1 percentage point shock on the expectation part
of the spread (4 percentage point in annual basis). The response of the spread is mainly driven by
its expectation part, the response of the 10-year term premium remaining very close to zero. In
addition, we observe that the increase in the expectation part of the spread is mainly generated
by a drop in the short term interest rate [see figure 19(a)]. More generally, figure 19(b) shows
that this shock principally affects the short run of the yield curve (steepening of the yield curve).
Figure 19(c) presents the responses of the real GDP (in log). We see that the real GDP tends
to slightly decrease after one period before growing to its new long term steady state. Here the
positive relationship between the spread and the subsequent values of GDP growth is confirmed.
These results suggest that this shock can be interpreted as a monetary policy shock: the central
bank decreases the short term interest rate, leading to a lower long term interest rate. Given that
the decline in the long term interest rate is smaller (in absolute value) than the fall in the short
term interest rate, the spread immediately increases. With lower long term interest rates, private
investment tends to increase, as well as subsequent GDP. Similar results are obtained when we
apply a (normalized) shock of δ(EXS)(1y) and δ(EXS)(5y) on the expectation part of the 1-year
and 5-year spread, respectively [see Sections VI.4 and VI.5 in Jardet, Monfort and Pegoraro (2010)].
Figure 19(d) shows that the shape of the cumulated GDP response does not vary when we move
from the 10-year to the 1-year expectation term. We only observe a reduction over intermediate
horizons in line with figure 18(d).

We observe that responses to a spread shock, reported in previous section, seem very close
to the ones obtained after a shock on the expectation part of any of the three spreads (10-year,
5-year and 1-year). This indicates that in our sample, rises and falls in the spread has been mainly
generated by shocks on its expectation part.

7.4.2 Shock on the term premium

Now, we focus on dynamic effects of a 1 percentage point increase in the spread that is completely
generated by a 1 percentage point increase in the term premium (4 percentage point in annual
basis). Here the new information is I0 = {η0,2 = 1, η̃0,1 = 0, η̃0,2 = 1, η0,3 = 0}. From equation (39)

we have E(η0,1 | I0) =
1−F2,2(0)

F2,1(0)
. Then:

δ =

(
1 − F2,2(0)

F2,1(0)
, 1, 0

)
′

Figures 20 present the responses to the 10-year term premium shock. We observe that the impulse
responses of the 10-year spread and the 10-year interest rate are mainly driven by the response
of the term premium. The response of the short term interest rate is very flat and close to zero.
More generally, the shock seems to affect principally the long end of the yield curve (see figure
(20(b)). In addition, we observe that the shock have only slight effects on the expectation part of
the spread and on the long term interest rate.

Regarding the response of real GDP (see figure (20(c)), we observe that in the first year that
follows the shock, the real GDP tends to decrease. Then, real GDP increases until to reach a
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Figure 19: (a)-(b)-(c) Responses to a shock on the Expectation part of the 10-year spread. (d)
Response of cumulated GDP after a shock on the Expectation part of the 1-y, 5-y, 10-y spread.

new long term steady state value that is higher than the previous one. Therefore, the relationship
between the term premium part of the 10-year spread and future economic activity is negative for
short horizon (smaller than one year), whereas it is positive for longer horizon. It is interesting
to highlight that, the same kind of results are obtained when we apply a (normalized) shock of
δ(TP )(1y) and δ(TP )(5y) on the 1-year and 5-year term premium, respectively [see Sections VI.6
and VI.7 in Jardet, Monfort and Pegoraro (2010)]. In particular, we find the same kind of (first
decreasing and then increasing) reaction of real GDP to a shock on the term premium of the 1-year
and 5-year spread [see figure 20(d)].

Giving an economic interpretation to the term premium shock is not obvious because the only
macroeconomic factor we take into account in our model is the GDP growth. More precisely, to be
able to interpret more accurately the shock, we should incorporate more macroeconomic variables
such as inflation, private investment or government spending. Notwithstanding, the shapes of
impulses responses provide us some insight about the nature of the shock. Actually, the shock
induces a higher long term interest rate that is followed by an increase in activity in the long run
(with short term interest rates and expectations of future short term interest rates that remain
relatively stable). We can conjecture that the term premium shock could be compared to a shock
on government spending that would be financed by issue of long term bonds [see also Greenwood
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and Vayanos (2008)]. Such policy can generate two opposite effects on activity. First, higher long
term interest rate tends to reduce private investment, and have negative effect on real GDP. Second,
public investment tends to boost activity. Our results suggest that the first effect dominates in the
short run, explaining the decreasing trend of real GDP during the first year, and is progressively
offset by the second effect, leading the real GDP to increase in the long run. Of course, at this
stage of our analysis we can only venture some interpretation that one has to verify with a more
accurate macroeconomic (structural) model [see, for instance, Rudebusch and Swanson (2008a,
2008b)]. However, according to our result, the ambiguity found in the literature regarding the
effect of the term premium component of the spread and future activity, could stem from the
changing sign of this relationship over the period that follows the shock. Over short horizons, this
relationship is negative, whereas it becomes positive for longer horizons [see Joslin, Priebsch and
Singleton (2010) for a similar result].
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Figure 20: (a)-(b)-(c) Responses to a shock on the 10-year Term Premium. (d) Response of
cumulated GDP after a shock on 1-y, 5-y, 10-y Term Premium.

7.5 Shock on the short term interest rate

Finally, we focus on the dynamics effects of a decrease equal to one percentage point in the short
term interest rate ( 4 percentage point in annual basis). The new information at date t = 0 is I0 =
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Figure 21: Responses to a (negative) shock on the short term interest rate

(η0,1 = −1, η0,3 = 0). Therefore, we have to determine the value of δ = E(η0|η0,1 = −1, η0,3 = 0).
We have:

δ = (−1,−ζ, 0)′

where ζ is the coefficient of η0,1 in the theoretical regression of η0,2 on η0,1 and η0,3.
Figures 21 report the responses to the shock. Roughly speaking, an unexpected move on the short
term interest rate can be interpreted as a monetary policy shock. We see that the responses to
this shock are close to the one obtained with a shock on the expectation part of the spread (EXS
shock hereafter). In particular, we observe that in both cases, the response of the spread seems to
be driven by its expectation part [see figure 21(a)]. This result confirms the intuition according to
which the EXS shock can be viewed as a monetary policy shock.

However, some slight difference can be noted. Looking at figure 21(a), we observe that the
response at t = 0 of the term premium to a short rate shock is negative. In the case of a EXS shock,
the response of the term premium becomes negative after three quarters (recall that we controlled
it to be zero at t = 0). In addition, at t = 0, the amplitude of the fall in the expectation part of the
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long term interest rate, EX0(40), is comparable to the one observed after an EXS shock (for the
short rate shock: EX0(40)/r0 = 0.45 in quarterly basis; for the EXS shock: EX0(40)/r0 = 0.44
in quarterly basis). Therefore, recalling that Rt(40) = EXt(40) + TPt(40), the long rate also
decreases after the short term rate shock, but the fall is relatively higher in absolute value than
the one obtained after an EXS shock (for the short rate shock: Rt(40)/r0 = 0.7; for the EXS
shock: R0(40)/r0 = 0.44 in quarterly basis). In other words, the increase in the spread is smaller
than after an EXS shock (for the short rate shock: S0/r0 = 0.3; for the EXS shock: S0/r0 = 0.55
in quarterly basis). More generally the yield curve tends to steepen, but the steepening is less
pronounced than after an EXS shock (compare figures 19(b) and 21(b)).

Looking at figure 21(c), we see that the real GDP tends to increase after a negative shock on
the short rate, but the long run impact is much smaller than the one associated to an EXS shock
or a spread shock. Indeed, the immediate reduction in the long rate is, in that case, much larger
and therefore the immediate rise in the spread is only 0.3. Here again, the positive relationship
between the spread and future activity is verified.

8 Conclusions and Further Developments

In this paper we have used and developed both econometric tools and asset pricing models to study
various problems concerned with the dynamic relationships between economic activity, yields and
term premia on long-term bonds. The econometric tools we have used are mainly, unit root
and cointegration tests, information criteria, local-to-unit root and near-cointegration analysis.
Moreover, we have developed the notion of New Information Response Function. As far as asset
pricing models are concerned, we have used the theory of no-arbitrage discrete-time affine term
structure models to build the yield curve, and we have introduced a notion of unbiased term
premia. In addition, this notion of term premia is decomposed in various forward term premia over
different horizons and in various risk premia attached to one-period holdings of bonds at different
maturities.

The results obtained from our Near-Cointegrated VAR(p) term structure model are promising
in terms of fitting and prediction properties, as well as in terms of evaluating term premia and
disentangling the dynamic impact on the GDP growth of shocks on the expectation part and
on the term premium part of the spread. Our starting point was the model proposed by APW
(2006), but the various methodologies proposed here could clearly be used in different contexts,
and there are obvious possible extensions of our approach. On the econometric side we could,
for instance, consider the introduction of stochastic volatilities, switching regimes or fractionally
integrated processes. On the macroeconomic side, it would be useful to extend the state vector in
order to introduce other variables and, in particular, inflation. These are the objectives of ongoing
and future research works.
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Appendix 1: Proof of Proposition 1

Assuming that (19) is true for h− 1, we get:

Bt(h) = exp(c′hX̃t + dh) = Et[Mt,t+1 · · ·Mt+H−1,t+H ] = Et[Mt,t+1Bt+1(h− 1)]

= exp
[
−β − α′X̃t −

1
2Γ′

tΓt + dh−1

]
× Et[exp

(
Γ′

tηt+1 + c′h−1X̃t+1

)
]

= exp
[
−β − α′X̃t −

1
2Γ′

tΓt + dh−1 + c′h−1Φ(λ∗)X̃t + c′1,h−1ν(λ
∗)

]

×Et[exp (Γt + Σ(λ∗)′c1,h−1)
′ηt+1)]

= exp
[
(−α+ Φ(λ∗)′ch−1 + (Σ(λ∗)γ)′c1,h−1)

′ X̃t

+
(
−β + c′1,h−1(ν(λ

∗) + Σ(λ∗)γo) + 1
2c

′

1,h−1Σ(λ∗)Σ(λ∗)′c1,h−1 + dh−1

)]
,

(A.1)
and by identifying the coefficients we find the recursive relation presented in Proposition 1. �

Appendix 2: Tables and Graphs.

ν Φ1 Φ2 Φ3

rt 0.0013 0.6068 0.1431 0.0350 0.1023 -0.1896 0.0492 0.3239 -0.0570 -0.0843
[0.2289] [6.4211] [0.7662] [1.1271] [0.9346] [-0.8029] [1.0878] [3.1638] [-0.3204] [-2.9603]

Rt 0.0016 0.0198 0.8108 0.0120 0.0111 0.0855 -0.0030 0.0797 -0.0462 -0.0091
[0.5235] [0.3886] [8.0530] [0.7187] [0.1889] [0.6715] [-0.1235] [1.4430] [-0.4818] [-0.5931]

Gt 0.04404 0.2289 -0.3115 1.1425 -1.0742 0.4420 0.0129 0.2328 0.3175 -0.1597
[2.8522] [0.9121] [-0.6282] [13.8549] [-3.6955] [0.7048] [0.1075] [0.8563] [0.6721] [-2.1117]

Ω × 103 Corr. log-L |ψ |
0.0079 0.0026 0.0048 ρ12 0.6060 2289.43 0.9968
[8.9722] [6.5758] [2.8558] AIC 0.9315

. 0.0023 0.0036 ρ13 0.2310 -26.4261 0.8647
[8.9722] [3.8719] SIC 0.6170

. . 0.0555 ρ23 0.3205 -25.8749 0.5595(c)
[8.9722] FPE 0.2891

6.70e-16 0.0840(c)

Table A. 1: Parameter estimates of the state dynamics Yt = ν +
∑3

j=1
ΦjYt−j + εt, with Yt = (rt, Rt, Gt)

′

and εt ∼ IIN(0,Ω) [Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values
are in brackets. ρij denotes the (empirical) correlation between (εit) and (εjt). log-L denotes the maximum

value of the log-Likelihood function. |ψ | indicates the modulus of the roots of equation |Φ̃(ψ)| = 0, with
Φ̃(ψ) = (I3×3ψ

3 −Φ1ψ
2 −Φ2ψ−Φ3) denoting the characteristic polynomial; (c) indicates a pair of complex

conjugate roots.
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Eigen. Trace 5 % Max-Eigen 5 %
r λi Statistic Crit. Value p-value Statistic Crit. Value p-value
0 0.1413 34.4260 29.7971 0.0136 26.0462 21.1316 0.0094
1 0.0398 8.3798 15.4947 0.4257 6.9429 14.2646 0.4959
2 0.0084 1.4369 3.8415 0.2306 1.4369 3.8415 0.2306
α 0.0419 0.1178 -0.5778 β 1.0000 -1.0029 0.0031

[0.5551] [2.8829] [-2.8754] 〈0.00004〉 〈0.0877〉

Table A. 2: Johansen cointegration tests for the variables (rt, Rt, Gt) observed quarterly from 1964:Q1 to
2007:Q2 [Gurkaynak-Sack-Wright (2007) data base]. The null hypothesis is for both tests H0 : rank(Π) =
r. In the Trace test, the alternative hypothesis is HA : rank(Π) = 3, and the associated statistic is given by

2(log-LA - log-L0) = −T
∑3

i=r+1
log(1 − λi), where log-LA and log-L0 denote, respectively, the maximum

value of the log-Likelihood function (of model (12)) under the case of 3 and r < 3 cointegrating relations. In
the Maximum Eigenvalue test, HA : rank(Π) = r+1, and 2(log-LA - log-L0) = −T log(1−λr+1). Both test
statistics accept at 5 % the hypothesis rank(Π) = 1 [we use MacKinnon, Haug, and Michelis (1999) p-values].
Under the restriction r = 1, the second half of the table provides the estimates of the adjustement parameters
α = (α1, α2, α3)

′ (t-values are in brackets) and the cointegrating vector β = (1, β2, β3)
′. For parameters

β2 and β3 we report in angled brackets, respectively, the p-value of the χ2(1)-distributed likelihood ratio
statistic associated to the test H0 : β = (1, 0, β3)

′ and H0 : β = (1, β2, 0)′. The alternative hypothesis is
HA : β = (1, β2, β3)

′ in both cases, and the 5% and 1% critical values for a χ2(1) are, respectively, 3.84 and
6.63.

γ Γ1 Γ2 α µ
∆rt -0.0010 -0.4154 0.1941 0.0393 -0.3152 0.0110 0.0893 -0.0349 -0.0029

[-2.7075] [-3.9779] [1.1085] [1.2985] [-3.1595] [0.0626] [3.1587] [-0.5074]
∆Rt -0.0002 -0.0862 -0.0675 0.0148 -0.0761 0.0216 0.0120 -0.1132

[-0.9910] [-1.5306] [-0.7148] [0.9048] [-1.4135] [0.2270] [0.7891] [-3.0492]
∆Gt 0.0048 0.6854 -0.7554 0.1964 -0.3700 -0.3038 0.1912 0.4086

[4.8954] [2.4406] [-1.6043] [2.4138] [-1.3792] [-0.6415] [2.5147] [2.2074]

Ω × 103 log-L |ψ |
0.0079 0.0026 0.0051 2283.60 1.0000∗∗

[9.0277] [6.6826] [2.9613] AIC 0.8478
. 0.0023 0.0038 -26.3930 0.6271

[9.0277] [3.9628] SIC 0.5489(c)
. . 0.0573 -25.8969 0.2468

[9.0277] FPE 0.1050(c)
7.18e-16

Table A. 3: Parameter estimates of the model ∆Yt = α(β′Yt−1 + µ) +
∑2

j=1
Γj∆Yt−j + γ + εt, with

∆Yt = (∆rt,∆Rt,∆Gt)
′, when rank(αβ′) = 1 and β = (−1, 1, 0)′ [Gurkaynak-Sack-Wright (2007) data

base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets. log-L denotes the maximum value of
the log-Likelihood function. |ψ | indicates the modulus of the roots of equation |Φ̃(ψ)| = 0, with Φ̃(ψ) =
(I3×3ψ

3−Φ1ψ
2−Φ2ψ−Φ3) denoting the characteristic polynomial; (c) indicates a pair of complex conjugate

roots, while (∗∗) denote a root with multiplicity two.
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ν̃ Φ̃1 Φ̃2 Φ̃3

rt -0.0009 0.7787 0.1592 0.0393 -0.0829 -0.1831 0.0893 0.3042 -0.0110 0.0000
St 0.0010 0.0675 0.6600 -0.0245 0.1822 0.2722 -0.0773 -0.2497 -0.0106 0.0000
gt 0.0036 -0.0701 -0.3469 0.1964 -0.6038 0.4516 0.1912 0.6739 0.3038 0.0000

Ω̃ × 103 Corr.
0.0079 -0.0053 0.0051 ρ12 -0.8435

. 0.0050 -0.0013 ρ13 0.2385

. . 0.0573 ρ23 -0.0786

Table A. 4: Parameter estimates of the CVAR(3) state dynamics Xt = ν̃ +
∑3

j=1
Φ̃jXt−j + ηt, with

Xt = (rt, St, gt)
′ and ηt ∼ IIN(0, Ω̃) [Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 -

2007:Q2]. ρij denotes the (empirical) correlation between (ηit) and (ηjt).

ν̄ Φ̄ Ω̄ × 103

rt 0.0009 0.9307 0.0694 0.0022 0.0088 -0.0061 0.0049
[1.0679] [23.8278] [0.9523] [0.0785] [9.1378] [-8.4468] [2.6368]

St 0.00008 0.0296 0.8223 -0.0043 . 0.0056 -0.0014
[0.1275] [0.9490] [14.1173] [-0.1970] [9.1378] [-0.9733]

gt 0.0079 -0.1626 0.1898 0.2414 . . 0.0626
[3.6441] [-1.5640] [0.9782] [3.2890] [9.1378]

Corr. log-L |ψ |
ρ12 -0.8637 2258.76 0.9472

AIC 0.8037
ρ13 0.2084 -26.2779 0.2435

SIC
ρ23 -0.0755 -26.0574

FPE
7.77e-16

Table A. 5: Parameter estimates of unconstrained VAR(1) modelXt = ν+ΦXt−1+ξt, withXt = (rt, St, gt)
′

and ξt ∼ IIN(0, Ω̄) [Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values
are in brackets. ρij denotes the (empirical) correlation between (ξit) and (ξjt). log-L denotes the maximum
value of the log-Likelihood function. |ψ | indicates the modulus of the roots of equation |Φ̄(ψ)| = 0, with
Φ̄(ψ) = (I3×3ψ − Φ̄) denoting the characteristic polynomial.
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ν̄ Φ̄1 Φ̄2 Φ̄3

rt 0.0002 0.7588 0.1777 0.0295 -0.0739 -0.1960 0.0743 0.2486 -0.0783 0.0428
[0.2043] [4.9693] [0.9530] [0.9736] [-0.3727] [-0.8361] [2.5760] [1.6408] [-0.4438] [1.5634]

St 0.0006 0.0737 0.6416 -0.0182 0.1745 0.2798 -0.0676 -0.2192 0.0250 -0.0312
[0.9415] [0.6043] [4.3039] [-0.7544] [1.1009] [1.4931] [-2.9311] [-1.8104] [0.1771] [-1.4249]

gt 0.0062 -0.1316 -0.4212 0.1994 -0.6263 0.4486 0.1969 0.6386 0.2473 -0.0532
[2.7461] [-0.3165] [-0.8295] [2.4207] [-1.1596] [0.7028] [2.5077] [1.5481] [0.5148] [-0.7140]

Ω̄ × 103 Corr. log-L |ψ |
0.0077 -0.0052 0.0050 ρ12 -0.8412 2287.93 0.9299
[8.9722] [-8.1680] [2.9381] AIC 0.8888

. 0.0049 -0.0013 ρ13 0.2380 -26.4085 0.6015(c)
[8.9722] [-0.9965] SIC 0.49188

. . 0.0574 ρ23 -0.0788 -25.8574 0.4283(c)
[8.9722] FPE 0.2449

6.82e-16 0.1598

Table A. 6: Parameter estimates of the unconstrained VAR(3) state dynamics Xt = ν̄+
∑3

j=1
Φ̄jXt−j + ξt,

with Xt = (rt, St, gt)
′ and ξt ∼ IIN(0, Ω̄) [Gurkaynak-Sack-Wright (2007) data base; sample period :

1964:Q1 - 2007:Q2]. t-values are in brackets. ρij denotes the (empirical) correlation between (ξit) and (ξjt).
log-L denotes the maximum value of the log-Likelihood function. |ψ | indicates the modulus of the roots of
equation |Φ̄(ψ)| = 0, with Φ̄(ψ) = (I3×3ψ

3 − Φ̄1ψ
2 − Φ̄2ψ − Φ̄3) denoting the characteristic polynomial; (c)

indicates a pair of complex conjugate roots.

ν(λ∗) Φ1(λ
∗) Φ2(λ

∗) Φ3(λ
∗)

rt -0.0006 0.7735 0.1641 0.0367 -0.0806 -0.1865 0.0854 0.2896 -0.0287 0.0112
St 0.0009 0.0692 0.6552 -0.0229 0.1802 0.2742 -0.0747 -0.2417 -0.0012 -0.0081
gt 0.0043 -0.0862 -0.3664 0.1972 -0.6097 0.4508 0.1927 0.6646 0.2890 -0.0140

Ω∗ × 103 Corr. log-L |ψ |
0.0079 -0.0053 0.0051 ρ12 -0.8424 2282.39 0.9866

. 0.0050 -0.0013 ρ13 0.2383 AIC 0.8535

. . 0.0577 ρ23 -0.0787 -26.3787 0.6021
SIC 0.5607(c)

-25.8827 0.3187
FPE 0.1893

6.78e-16 0.1316(c)

Table A. 7: Parameter estimates of the NCVAR(3) state dynamics Xt = ν(λ∗) +
∑3

j=1
Φj(λ

∗)Xt−j + ζt,
with Xt = (rt, St, gt)

′, ζ∗t ∼ IIN(0,Ω∗) and λ∗ = λ∗(40) = 0.2624 [Gurkaynak-Sack-Wright (2007) data
base; sample period : 1964:Q1 - 2007:Q2]. ρij denotes the (empirical) correlation between (ζit) and (ζjt). |ψ |
indicates the modulus of the roots of equation |Φ∗(ψ)| = 0, with Φ∗(ψ) = (I3×3ψ

3 −Φ1(λ
∗)ψ2 −Φ2(λ

∗)ψ−
Φ3(λ

∗)) denoting the characteristic polynomial; (c) indicates a pair of complex conjugate roots.
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γo γ1 γ2 γ3

rt -0.234 102.009 102.622 -13.795 21.063 12.619 -21.957 -97.484 -13.044 0.455
[-4.912] [6.615] [5.374] [-4.721] [0.881] [0.460] [-7.432] [-7.202] [-0.823] [0.187]

St 0.022 49.605 92.903 -1.080 -98.565 -81.329 7.816 34.913 35.646 -3.002
[0.331] [1.812] [2.707] [-0.182] [-2.227] [-1.601] [1.391] [1.595] [1.344] [-0.687]

gt 1.615 72.856 156.141 -44.240 -253.550 94.835 8.570 82.669 -422.016 55.639
[1.460] [0.165] [0.284] [-0.503] [-0.361] [0.119] [0.099] [0.240] [-1.019] [0.865]

Table A. 8: Risk sensitivity parameter estimates for the NCVAR(3) factor-based term structure model
[Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets.

I γo γ1 γ2 γ3

rt -0.137 100.691 102.269 -14.896 19.314 8.438 -20.437 -100.213 -15.560 0
[-2.844] [6.450] [5.324] [-4.821] [0.800] [0.304] [-7.622] [-7.337] [-0.978]

St 0.092 47.176 93.102 -0.956 -97.518 -79.733 5.604 32.176 30.835 0
[1.450] [1.743] [2.743] [-0.166] [-2.225] [-1.573] [1.233] [1.467] [1.188]

gt 1.540 47.995 99.149 -41.930 -232.010 77.676 62.374 91.746 -349.378 0
[1.648] [0.126] [0.204] [-0.587] [-0.391] [0.111] [1.057] [0.304] [-0.968]

II γo γ1 γ2 γ3

rt -0.525 108.229 98.626 -11.656 19.073 15.907 -18.090 -83.383 4.561 -11.029
[-10.560] [7.004] [5.143] [-3.828] [0.792] [0.577] [-6.043] [-6.107] [0.286] [-4.488]

St -0.162 54.490 97.186 -0.681 -97.839 -80.545 7.869 38.467 41.643 -1.424
[-2.253] [2.001] [2.831] [-0.112] [-2.210] [-1.585] [1.401] [1.747] [1.565] [-0.325]

gt 1.714 43.853 140.023 -61.069 -250.282 108.642 4.151 109.366 -416.392 61.739
[1.374] [0.095] [0.242] [-0.646] [-0.340] [0.130] [0.045] [0.300] [-0.955] [0.912]

III γo γ1

rt -0.478 34.789 56.968 -4.557
[-6.629] [11.523] [9.066] [-1.777]

St -0.301 2.384 66.540 5.373
[-4.304] [1.115] [13.899] [1.771]

gt 1.588 0.648 4.256 -5.401
[0.539] [0.006] [0.018] [-0.057]

Table A. 9: Risk sensitivity parameter estimates for the Cointegrated VAR(3) (panel I), the uncon-
strained VAR(3) (panel II) and the (unconstrained) VAR(1) (panel III) factor-based term structure models
[Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets.
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Figure A. 1: Term premia measures and 10-year spread.
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